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Combining Numerical and Linguistic InformationinGroup Decision MakingM. Delgado, F. Herrera, E. Herrera-Viedma, L. Mart��nezDept. of Computer Science and Arti�cial IntelligenceUniversity of Granada, 18071 - Granada, Spaine-mail: delgado,herrera,viedma@decsai.ugr.es, martin@goliat.ugr.esAbstractPeople give information about their personal preferences in many di�erent ways, depend-ing on their background. This paper deals with group decision making problems in which thesolution depends on information of a di�erent nature, i.e., assuming that the experts expresstheir preferences with numerical or linguistic values.The aim of this paper is to present a proposal for this problem. We introduce a fusionoperator for numerical and linguistic information. This operator combines linguistic values(assessed in the same label set) with numerical ones (assessed in the interval [0,1]). It isbased on two transformation methods between numerical and linguistic values, which arede�ned using the concept of the characteristic values proposed in this paper. Its applicationto group decision making problems is illustrated by means of a particular fusion operatorguided by fuzzy majority. Considering that the experts express their opinions by means offuzzy or linguistic preference relations, this operator is used to develop a choice process forthe alternatives, allowing solutions to be obtained in line with the majority of the experts'opinions.Keywords: Linguistic modelling, fusion operators, aggregation operators, fuzzy linguistic quan-ti�er, choice degrees, group decision making.1 IntroductionCombining large quantities of data is absolutely essential in many sciences (e.g, Biology, DecisionTheory, Arti�cial Intelligence, Fuzzy Sets Theory). It consists of the treatment and the processingof a data set provided by di�erent information sources with a view to obtaining a single elaboratedone. In this paper, we address the problem of combining information in Fuzzy Sets Theory appliedto Decision Theory. Speci�cally, we are interested in the study of fusion operators of impreciseinformation of a di�erent nature, numerical and linguistic, which allow us to solve some GroupDecision Making (GDM) problems.A GDM problem is de�ned as a decision situation in which (i) there are two or more experts,each of them characterized by his own perceptions, attitudes, motivations,... (ii) who recognizethe existence of a common problem, and (iii) attempt to reach a collective decision. Due to thefact that the information provided by the human beings is in fact often vague and imprecise, themodelling of these problems requires adequate representation models of imprecise informationand fusion operators of imprecise information.In a fuzzy context, a GDM problem may be modelled as follows. There is a �nite set of altern-atives, X = fx1; x2; : : : ; xng (n � 2); as well as a �nite set of experts E = fe1; e2; : : : ; emg (m �2). Each expert, ek 2 E, provides his preferences on X by means of one of the two followingpreference relation models:



� Using a fuzzy preference relation, P k , with a membership function, �P k : XxX ! [0; 1];where �P k (xi; xj) = pkij denotes the preference degree of the alternative xi over xj [16].� Using a linguistic preference relation assessed in a pre-established label set, S = fs0; : : : ; sTg,i.e., with a membership function, �P k : XxX ! S; where pkij denotes the preference degreeof the alternative xi over xj linguistically expressed [12, 14].Many GDM problems may require the use of both relation types. For example, when theexperts come from di�erent working areas, and depending on their speci�c knowledge, someprefer to give their preferences in a numerical domain, and others in a linguistic one.In this paper, we deal with such GDM problems. Some experts provide their preferences bymeans of fuzzy preference relations, and others, by means of linguistic preference relations. Weintroduce the following new developments to model this GDM problem type:1. Two transformation functions between numerical and linguistic domains based on the conceptof characteristic values.2. A fusion operator of numerical and linguistic information de�ned using the transformationfunctions above.3. A particular fusion operator based on the Linguistic Ordered Weighted Averaging (LOWA)aggregation operator [11, 14], which is guided by the concept of fuzzy majority.4. And �nally, a choice process for GDM problems based on a choice degree of alternatives andon the proposed fusion operator. Speci�cally, we use the quanti�er guided non-dominancedegree de�ned in [4].The structure of this paper is the following: Section 2 briey reviews the linguistic approachconsidered, Section 3 de�nes the combination of numerical and linguistic information by meansof a fusion operator, Section 4 presents the choice process based on this fusion operator, Section5 develops an example, and �nally, some concluding remarks are made.2 Linguistic ApproachIn this section, we present some basic assumptions about the linguistic approach used to representthe linguistic information in decision making.When we work with vague or imprecise knowledge, we cannot estimatewith an exact numericalvalue. Then, a more realistic approach may be to use linguistic assessments instead of numericalvalues, that is, by assuming that the variables which participate in the problem are assessed bymeans of linguistic terms [21]. This approach is appropriate for a lot of problems, since it allows arepresentation of the information in a more direct and adequate form if we are unable of expressingit with precision. The following references show some linguistic approaches in decision making[2, 7, 12, 14, 18, 20]Usually, depending on the problem domain, an appropriate linguistic term set is chosen andused to describe the vague or imprecise knowledge. The elements in the term set will determinethe granularity of the uncertainty, that is, the level of distinction among di�erent countings ofuncertainty. In [1] the use of term sets with an odd cardinal was studied, representing the midterm a assess of "approximately 0.5", with the rest of the terms being placed symmetrically aroundit and the limit of granularity being 11 or no more than 13.The semantics of the elements in the term set is given by fuzzy numbers de�ned in the [0,1]interval, which are described by membership functions. Because the linguistic assessments are just



approximate ones given by the individuals, we can consider that linear trapezoidal membershipfunctions are good enough to capture the vagueness of those linguistic assessments, since it maybe impossible or unnecessary to obtain more accurate values. This representation is achieved bythe 4-tuple (x0; x1; x2; x3), x1 and x2 indicate the interval in which the membership function valueis 1, and x0 and x3 are the left and right limits of the de�nition domain of trapezoidal membershipfunction.The �rst priority ought to be to establish what kind of label set to use. Then, let S = fsig; i 2H = f0; : : : ; Tg, be a �nite and totally ordered term set in [0,1] in the usual sense [1]. Any label sirepresents a possible value for a linguistic real variable, that is, a vague property or constraint in[0,1]. We consider a term set with odd cardinal, where the middle label represents an uncertaintyof "approximately 0.5" and the remaining terms are placed symmetrically around it. Moreover,the term set must have the following characteristics:1) The set presents a total order: si � sj if i � j.2) There is the negation operator: Neg(si) = sj such that j = T -i.3) Maximization operator: MAX(si; sj) = si if si � sj .4) Minimization operator: MIN(si; sj) = si if si � sj .For example, this is the case of the following set of the nine labels with its semantic associated[1]: C Certain (1; 1; 1; 1)EL Extremely likely (:93; :98; :99; 1)ML Most likely (:72; :78; :92; :97)MC Meaningful chance (:58; :63; :80; :86)IM It may (:32; :41; :58; :65)SC Small chance (:17; :22; :36; :42)V LC V ery low chance (:04; :1; :18; :23)EU Extremely unlikely (0; :01; :02; :07)I Impossible (0; 0; 0; 0):Formally speaking, it seems di�cult to accept that all experts should agree on the same mem-bership function associated to linguistic terms, and therefore, there are no universality distributionconcepts. On the other hand, we should point out that the experts cannot be ready to give themembership functions associated to labels. Therefore, in our context, we consider an environmentwhere experts can discriminate perfectly the same term set under a similar conception, taking intoaccount that the concept of a linguistic variable serves the purpose of providing a means of ap-proximated characterization of imprecise preference information. We make the experts' activityeasy by giving them some more used term sets, e.g., the aforementioned set of nine labels.3 Combining Numerical and Linguistic InformationWe focus on the design of fusion operators of quantitative and qualitative information, i.e., weprovide a method for combining numerical and linguistic information. We assume that the in-formation is provided using absolute and compatible scales, i.e., all users use the same numericaldomain (speci�cally the unit interval [0,1]) to provide the quantitative assessments and the sameterm set (labels and semantics) to provide the qualitative ones. The problem of combining in-formation when di�erent and incompatible scales are used is not addressed here.We de�ne a fusion operator which acts as follows: it transforms all numerical and linguisticinput information given by di�erent users to an intermediate expression domain, aggregates the



information in that domain, and �nally, transforms the elaborated information into output in-formation depending on the user's initial domain. Therefore, to de�ne this fusion operator type,we have to answer the following three questions:� how does it transform the information among di�erent domains?,� what is the intermediate expression domain?, and� how does it combine the information in the intermediate domain?.These three questions are analyzed in the following subsections. After that we present the fusionoperator.3.1 Transformation MethodsIn this subsection, we shall characterize some transformation functions between the linguistic andnumerical expression domains. As was mentioned earlier, any linguistic label has its associatedfuzzy number, and thus, before de�ning these transformation functions, we introduce the conceptof the characteristic values associated to a fuzzy number.Let F (R) be the set of fuzzy numbers de�ned on R: Each fuzzy number, yi 2 F (R), hasassociated a membership function, �yi : F (R) �! [0; 1]. Let us consider that for each fuzzynumber, yi, we know a set of characteristic values, CVyi = fC1i ; C2i ; : : : ; Czi g; which are crispvalues that summarize the information given by yi, i.e., they support its meaning. We shallassume that, Cji 2 Supp(yi) = fr�R j �yi(r) > 0g: Without loss of generality, we can de�nea set of functions CF = ffj ; j = 1; : : : ; z; g; in such a way that each function fj associates acharacteristic value to each fuzzy number yi, i.e.,fj : F (R) �! R;fj(yi) = Cji :Therefore, each set of characteristic values, fCji ; 8ig; symbolizes a particular characteristic func-tion, fj , for a set of fuzzy numbers, fyi; 8ig. Some examples of this function type are: thede�uzi�cation methods applied in fuzzy control [5], the ranking functions [3, 23], and the value ofa fuzzy number de�ned in [8].3.1.1 Transformation Function from Linguistic Domain to Numerical DomainHere, we de�ne a Linguistic-Numerical Transformation Function, which obtains a numerical valuefrom a given label.Let si be a linguistic label, si 2 S, and suppose that it has associated a set of characteristicvalues, CVsi = fC1i ; C2i ; : : : ; Czi g; obtained by means of a set of characteristic functions, actingon its associated fuzzy number, ysi 2 F (R); i.e., C1i = f1(ysi); C2i = f2(ysi); : : : ; Czi = fz(ysi):In the following, we denote the characteristic value of a label si, fj(ysi); as Gj(si).De�nition 1. The Linguistic-Numerical Transformation Function,  N , is de�ned according tothe following expression:  N : S �! [0; 1] N(si) = g(G1(si); :::; Gz(si));where g is any aggregation operator verifying:minfv1; : : : ; vzg � g(v1; : : : ; vz) � maxfv1; : : : ; vzg:



Therefore, this function,  N ; obtains the real value of a label by means of the aggregation ofits respective characteristic values. Clearly,  N(si) 2 Supp(ysi):We must denote that there are no scienti�c bases for the choice of characteristic values (i.e.,no defuzzi�er is derived for a theretical principle, such as maximization of fuzzy information orentropy). Because we are interested in the aggregation of some of them, one criterion for thechoice of a caracteristic value may be the computation simplicity. For an additional discussion onthese values, see [3, 5, 8, 23]. Below, we show an example of  N with four characteristic values.Example 1. Let us consider the set of nine labels introduced in Section 2. Because we havetrapezoidal membership functions for representing the labels, we de�ne the characteristic valuesaccording to the four parameters used to represent the trapezoidal membership function of alabel, si, (xio; xi1; xi2; xi3): We consider the following methods: the value of a fuzzy number [8], themaximum value and the center of gravity [5].� Value. The characteristic value of a label si, G1(si); is:G1(si) = Z01s(r)(Lysi(r) +Rysi (r))drwhere Lysi (�) and Rysi(�) are the r-cut representations of ysi and s(r) is a reducing function[8]. G1(si) may be seen as a central value that represents, from a global point of view, thevalue of the (ill-de�ned) magnitude that the fuzzy number (associated to the label) represents[8]. Its expression using the trapezoidal membership functions and s(r) = r is:G1(si) = (xi1 + x2)2 + [(xi3 � xi2)� (xi1 � xi0)]6 = 2xi1 + 2xi2 + xi3 + xi06 :� Maximum Value. Given a label, si, with a membership function, �ysi (v); v 2 V = [0; 1], itsheight is de�ned as height(si) = Supf�ysi (v); 8vg:Therefore, this method may obtain a representative value of a label in di�erent ways [5]. Weassume two of these ways, obtaining two characteristic values, G2(si) and G3(si), accordingto the following expressions:G2(si) = minfv j �ysi (v) = height(si)g;G3(si) =maxfv j �ysi (v) = height(si)g:Therefore, their representations, based on the trapezoidal notation, are:G2(si) = xi1 and G3(si) = xi2:� Center of Gravity. This method summarizes the meaning of a label, si, into a numericalvalue as: G4(si) = RV v�ysi (v)dvRV �ysi (v)dvFor trapezoidal fuzzy numbers, we obtain:G4(si) = 8<: xi0 if xi0 = xi1 = xi2 = xi3(xi3)2+(xi2)2�(xi1)2�(xi0)2+xi3xi2�xi0xi13(xi3+xi2�xi1�xi0) otherwise



If a decision maker uses as aggregation function, g, the mean function, then, the transformationfunction, called  N1 ; is:  N1 (si) = G1(si) +G2(si) +G3(si) +G4(si)4 :and thus,  N1 (si) = ( xi0 if xi0 = xi1 = xi2 = xi38(xi1+xi2)H+(xi3+xi0)H+8(H+xi2xi3�xi1xi0)24H otherwisewith H = xi3 + xi2 � xi1 � xi0:If we consider the labels, fC;EL; IM;SCg; then: N1 (C) = 1:  N1 (EL) = 0:9783+0:98+0:99+0:97254 = 0:98: N1 (IM) = 0:4916+0:41+0:58+0:48944 = 0:49:  N1 (SC) = 0:29167+0:22+0:36+0:29274 = 0:29:We should point out that the results of  N1 depend on three factors: (i) the numerical meaningor semantic of the linguistic terms, (ii) the aggregation function g, and (iii) the chosen set offunctions, CF . Therefore, the sensitivity of  N1 is conditioned by the decisions made in eachfactor.3.1.2 Transformation Function from Numerical Domain to Linguistic DomainHere, using the aforementioned characteristic values, we de�ne a Numerical-Linguistic Transform-ation Function, which gives a representative label for a given numerical value.De�nition 2. Let r 2 [0; 1] be a numerical value. Let si be a label verifying thath(r; si) = minfh(r; st)j8st 2 Sg;with h(r; st) = ( z if r =2 Supp(st)Pzj=1(r �Gj(st))2 if r 2 Supp(st)where z is the cardinal of the characteristic function set, CF. Then the Numerical-LinguisticTransformation Function, called  L, is de�ned according to the following expression: L : [0; 1]�! S L(r) = si:Example 2. Working in the same context as Example 1, if the considered numerical value isr = 0:73; then  L1 (0:73) =MC; sinceminfh(0:73; C); h(0:73;EL); h(0:73;ML); h(0:73;MC); h(0:73; IM); h(0:73; SC); h(0:73; VLC);h(0:73; EU); h(0:73; I)g= minf4; 4; 0:48; 0:2; 4; 4; 4; 4; 4g= 0:2 = h(0:73;MC):



3.2 On the Intermediate Expression DomainAs we said at the beginning, the numerical expression domain is the unit interval [0,1] and thelinguistic one is a label set S. Therefore, the intermediate expression domain could be any one ofthem. We propose using the linguistic nature intermediate domain. We �nd it reasonable to workon the more general expression level, and later, to express the results in the speci�c expressionlevels on the basis of the following reasons:� There is a loss of information in both transformations. But, we �nd the linguistic-numericaltransformations to be more appropriate than the numerical-linguistic ones, because the �rstones try to determine exactly a numerical value from a linguistic preference given by anexpert incapable of providing his preference with the numerical value.� For an expert who uses a numerical expression domain to provide his preferences, to use alinguistic one should not be (theoretically) a di�cult task. However, for an expert who usesa linguistic expression domain, using a numerical one is not easy, because he may have avague knowledge about his preference and very often is not able to estimate it with an exactnumerical value (from the range of possible numerical values that support the meaning of alabel).3.3 Combining Information in the Intermediate DomainSince we use a linguistic nature intermediate domain, the information will be combined by meansof the aggregation operators of linguistic information [6, 11, 14, 18, 20]). We could use anyaggregation operator, but here, we propose using quanti�er guided aggregation operators [11,14, 20], representing the concept of fuzzy majority in its computation. In this way, and sinceour application is developed in GDM problems, we �nd that the �nal decisions reect what themajority of experts prefer, as for instance what was done in [10, 11, 12, 14, 15].Speci�cally, we propose using an operator with direct computation, the LOWA operator [11,14], which is based on the OWA operator de�ned by Yager [19], and on the convex combinationof linguistic labels de�ned by Delgado et al. [6].De�nition 3. [11, 14] Let A = fa1; : : : ; amg be a set of labels to be aggregated, then the LOWAoperator, �, is de�ned as�[a1; : : : ; am] = W �BT = Cmfwk; bk; k = 1; : : : ; mg == w1 � b1 � (1� w1)�Cm�1f�h; bh; h = 2; : : : ; mgwhere W = [w1; : : : ; wm] is a weighting vector, such that, (i) wi 2 [0; 1]; and (ii) �iwi = 1; andB = fb1; : : : ; bmg is a vector associated to A, such that, B = �(A) = fa�(1); : : : ; a�(n)g; where,a�(j) � a�(i) 8 i � j; with � being a permutation over the set of values A. �h = wh=�m2 wk; h =2; : : : ; m; and Cm is the convex combination operator of m labels [6]. If m=2, then it is de�nedas C2fwi; bi; i = 1; 2g= w1 � sj � (1� w1)� si = sk ; sj ; si 2 S; (j � i)such that, k = MINfT; i + round(w1 � (j � i))g;where "round" is the usual round operation, and b1 = sj ; b2 = si: If wj = 1 and wi = 0 with i 6=j 8i, then the convex combination is de�ned asCmfwi; bi; i = 1; : : : ; mg = bj:



Several arguments (axioms and properties) for its rational aggregation way were given in [14].Given that we are interested in the area of quanti�er guided aggregations, following Yager'smethod [19], we may calculate weights of the OWA operator using fuzzy linguistic quanti�ers[22], representing the fuzzy majority. For a non-decreasing relative quanti�er, Q, the weights areobtained as wi = Q(i=m)� Q((i� 1)=m); i = 1; : : : ; m:where the non-decreasing relative quanti�er, Q, is de�ned as [22]Q(y) = 8><>: 0 if y < ay�ab�a if a � y � b1 if y > bwith a; b; y 2 [0; 1], and Q(y) indicating the degree to which the proportion y is compatible withthe meaning of the quanti�er it represents. Some examples of relative quanti�ers are "most"(0:3; 0:8), "at least half" (0; 0:5) and "as many as possible" (0:5; 1). In the following, �Q denotesthe LOWA operator whose weights are computed using a linguistic quanti�er, Q.3.4 Fusion Operator of Numerical and Linguistic InformationThis operator acts on three steps:1. It transforms all inputs into a usual linguistic intermediate domain by means of a particularnumerical-linguistic transformation function,2. the transformed information is aggregated by means of a concrete linguistic aggregationoperator, and �nally,3. the output information is expressed in each user's expression domain, using an appropriatelinguistic-numerical transformation function.This idea is shown in Figure 1, and characterized in the following de�nition.
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De�nition 4. Let E = fei; i = 1; : : : ; mg be a group of experts, and let A = f(ai; ci); i = 1; :::; mgbe their respective opinions to be combined, such that, ci 2 f0; 1g, and if ci = 1 then ai 2 S andif ci = 0 then ai 2 [0; 1]. A fusion operator of linguistic and numerical information, !, is de�nedaccording to: ! : (([0; 1] [ S)xf0; 1g)m �! (S x [0; 1])![(a1; c1); (a2; c2); : : : ; (am; cm)] = (b1; b2);such that, b1 2 S is a linguistic output given byb1 = �L[�(a1; c1); �(a2; c2); : : : ; �(am; cm)];�(aj; cj) = ( aj if cj = 1 L(aj) otherwisewith �L an aggregation operator of linguistic information, and b2 2 [0; 1] is a numerical outputobtained as b2 =  N(b1):As we mentioned above, regarding the application of fusion operators in GDM problems, weuse a particular fusion operator based on the LOWA operator guided by fuzzy majority (i.e.,�L = �Q), symbolized by !LOWAQ .4 A GDM Process under Numerical and Linguistic AssessmentsHere, we present a direct choice process developed from the fuzzy and linguistic preference re-lations provided by the experts, called Non-Dominance Based Choice Process. It is based on aquanti�er guided choice degree of alternatives, i.e., the non-dominance property guided by a fuzzylinguistic quanti�er, as in [4].A direct process is developed along three steps, as it is shown in Figure 3 [15].1. Exploitation State. The goal of this state is to calculate the non-dominance degree of eachalternative according to each individual preference relation.2. Aggregation State. The goal of this state is to aggregate individual non-dominance degreesobtained in the above step with view to calculate the non-dominance degree of each altern-ative according to the global opinion of group of experts. To do that, we apply the proposedfusion operator based on the LOWA operator, !LOWAQ .3. Selection State. The goal of this state is to �nd the solution. We choose those alternativeswith global maximum non-dominance degree.We should point out that in the exploitation state, as well as in the aggregation state, theconcept of fuzzy majority is used, but with a di�erent meaning. In the �rst one because theindividual degrees are calculated, the fuzzy majority of alternatives (of non-dominance) is used[14]. In the second one, since individual degrees of di�erent experts are aggregated, the fuzzymajority of experts is used [14]. Therefore, we can use di�erent fuzzy linguistic quanti�ers ineach state.Assuming that we have a label set, S, two transformation functions f N ;  Lg with their char-acteristic functions CF = ffj ; j = 1; :::; zg, and the concepts of fuzzy majority of non-dominanceand fuzzy majority of experts represented by means of the two fuzzy linguistic quanti�ers, Q1and Q2, respectively, the choice process is described in the following steps:
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k Figure 2: Three Steps of a Direct Choice Process1. Exploitation State.In this state we have to calculate the quanti�er guided non-dominance degree of each alternativeaccording to the preference relation of each expert, P k ; called individual quanti�er guided non-dominance degree. It quanti�es the degree to which each alternative is not dominated by thefuzzy majority of the remaining ones. It is calculated on the basis of concept of non-dominatedalternatives de�ned by Orlovski [17] as follows:De�nition 5. [19] Let A = fa1; : : : ; amg; be a set of numerical values to be aggregated, then theOWA operator, F; is de�ned asF [a1; : : : ; am] =W �BT = �mi=1wi � bi;where W and B are like in De�nition 3.De�nition 6. Given an alternative, xi 2 X, the Individual quanti�er guided Non-DominanceDegree of xi, INDDki , is de�ned:� from a fuzzy preference relation, P k (pkji 2 [0; 1]), provided by the expert, ek, according tothe following expression [4]:INDDki = FQ1 [(1� ps;kji ); j = 1; :::; n; j 6= i];where FQ1 is the OWA operator guided by fuzzy majority, and ps;kji represents the degree towhich xi is strictly dominated by xj ; and it is obtained as ps;kji = maxfpkji � pkij ; 0g; 8i; j;� from a linguistic preference relation, P k (pkji 2 S); according to the following expression[15]: INDDki = �Q1 [Neg(ps;kji ); j = 1; :::; n; j 6= i];where �Q1 is the LOWA operator guided by fuzzy majority andps;kji = s0 if pkij > pkji;or ps;kji = sh 2 S if pkji � pkij with pkji = sl; pkij = st and l = t+ h:More speci�cally, INDDki expresses the degree to which an alternative, xi, is not dominated bythe fuzzy majority of the remaining alternatives according to one expert's opinions, ek.



2. Aggregation State.From the sets of individual quanti�er guided non-dominance degrees obtained for each altern-ative, xi, fINDDki ; 8kg, and by means of the fusion operator, !LOWAQ2 ; we calculate the Globalquanti�er guided Non-Dominance Degrees for each alternative. It is formed by two components,the �rst one, GNNDLi ; has a linguistic nature, whereas the second one, GNNDNi ; is purely nu-merical. In this way, we obtain the degree to which an alternative, xi, is not dominated by thefuzzy majority of the remaining alternatives according to all the experts' opinions. It is de�nedas follows: (GNDDLi ; GNDDNi ) = !LOWAQ2 [(INDDki ; ck); k = 1; :::; m]:3. Selection State.Finally, when the choice degrees of alternatives, (GNDDLi ; GNDDNi ), are calculated we ob-tain the set of solution alternatives, Xndmax, as follows:Xndmax = fxi 2 X=GNDDLi =MAXjfGNDDLj ; j = 1; : : : ; nggwhich is formed by the alternativeswith maximum linguistic global quanti�er guided non-dominancedegree. Then, the solution is shown to each expert in his respective expression domain using thelinguistic or numerical component.We should point out that if all the alternatives have the same maximum non-dominated degreeor this maximum is zero, we need either that the experts provide more information to decide amongthem, or the development of a negotiation and consensus process among the experts, which allowsthem to exchange information to update their preferences [2, 13]. On the other hand, if the choiceprocedure leads to an undesired solution we need either a method to include the experts' undesireddegrees in the choice process or a negotiation process.5 ExampleLet's suppose an investment company, which has an amount of money to invest. There are fourpossible options to invest an amount of money, fx1; x2; x3; x4g: a car factory, a food company,an atomic weapons factory, and a computer company, respectively. In the company, all thedecisions are made according to the opinions provided by the managers of four departments,fe1; e2; e3; e4g: business department, social-policy department, risk analysis department and theenvironment department. Given that these experts come from di�erent areas of knowledge such aseconomics, biology, law, ... some may have more facility to express their opinions with numbers,while others may prefer to express their opinions by means of linguistic assessments. Assumingthat the experts, fe1; e3g, use the numerical domain, [0; 1], and the remaining ones the linguisticdomain, S; given in Section 2, i.e., a set of nine labels.Without loss of generality, let us assume that we work with reciprocal preference relations,which, in the case of fuzzy preference relations, implies (i) pkij+pkji = 1, and pii = undefined(�);and, in the case of linguistic preference relations, implies (i) pkij = Neg(pkji), and (ii) pii =undefined(�): Consider that preference relations provided by the experts are:P 1 = 26664 � 0:3 0:7 0:10:7 � 0:6 0:60:3 0:4 � 0:20:9 0:4 0:8 � 37775P 2 = 26664 � IM C EUIM � EU CI EL � V LCEL I ML � 37775



P 3 = 26664 � 0:5 0:7 00:5 � 0:8 0:40:3 0:2 � 0:21 0:6 0:8 � 37775P 4 = 26664 � IM EL IIM � I ELEU C � V LCC EU ML � 37775Considering that both Q1 and Q2 are the fuzzy linguistic quanti�er "as many as possible" withthe pair, (0.5,1), assuming the transformation functions f N1 ;  L1 g presented in Examples 1 and2, and using the fusion operator, !LOWAQ2 , the choice process is applied as follows:1. Exploitation State.From the aforementioned preference relations, fP 1; P 2; P 3; P 4g; we obtain the respective strictpreference relations:P s;1 = 26664 � 0 0:4 00:4 � 0:2 0:20 0 � 00:8 0 0:6 � 37775P s;2 = 26664 � I C II � I CI ML � IML I IM � 37775P s;3 = 26664 � 0 0:4 00 � 0:6 00 0 � 01 0:2 0:6 � 37775P s;4 = 26664 � I ML II � I MLI C � IC I IM � 37775We calculate the individual quanti�er guided dominance degrees, INDDki ; by means of theOWA and LOWA operators, FQ1 and �Q1 ; with the weighting vector, W = [0; 0:334; 0:666]: Theresult is shown in Table 1.
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3. Selection State.Finally, we �nd the set of solution alternativesXndmax = fx2; x4g; since GNDDL2 = GNDDL4 =IM and IM =MAXjfGNDDLj g:Therefore, according to the di�erent experts' opinions, the food and computer companies arethe best options to invest the money. Then, the experts receive that information in the followingway:� experts e1 and e3: f(x2; 0:49); (x4; 0:49)g; and� experts e2 and e4: f(x2; IM); (x4; IM)g:6 Concluding RemarksDepending on their background, people give information about their personal preferences in manydi�erent ways. Particularly, we have shown that it is possible to combine linguistic and numericalinformation. We have studied the case in which experts provide their opinions by means of nu-merical or linguistic assessments. We have proposed a fusion operator of numerical and linguisticinformation, which allows us to combine numerical values assessed in [0,1] and linguistic valuesassessed in a label set S. To build this fusion operator we have designed two transformationmethods between the numerical and linguistic domains based on the concept of characteristicvalues. Later, we have shown the application of this fusion operator in a GDM problem in whichthe experts provide their preferences by means of fuzzy and linguistic preference relations.In the future, we plan to study the case in which the experts provide their opinions by meansof linguistic assessments with multi-granularity term sets.AcknowledgementThe authors would like to thank to the anonymous referees for their valuable comments whichhave improved the presentation of the paper.References[1] P.P. Bonissone and K.S. Decker. Selecting Uncertainty Calculi and Granularity: An Ex-periment in Trading-o� Precision and Complexity, in: L.H. Kanal and J.F. Lemmer, Eds.,Uncertainty in Arti�cial Intelligence (North-Holland, 1986) 217-247.[2] G. Bordogna, M. Fedrizzi, and G. Pasi, A linguistic modeling of consensus in group decisionmaking based on OWA operators, IEEE Transactions on Systems, Man and Cybernetics 27(1997) 126-132.[3] G. Bortolan and R. Degani, A Review of Some Methods for Ranking Fuzzy Subsets, FuzzySets and Systems 15 (1985) 1-19.[4] F. Chiclana, F. Herrera, E. Herrera-Viedma and M.C. Poyatos, A Clasi�cation Method ofAlternatives for Multiple Preference Ordering Criteria Based on Fuzzy Majority, Journal ofFuzzy Mathematics 4 (1996) 801-813.[5] O. Cordon, F. Herrera and A. Peregr��n, Applicability of the Fuzzy Operators in the Designof Fuzzy Logic Controllers, Fuzzy Sets and Systems 86 (1997) 15-41.[6] M. Delgado, J.L. Verdegay and M.A. Vila, On Aggregation Operations of Linguistic Labels,Int. Journal of Intelligent Systems 8 (1993) 351-370.
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