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Abstract

People give information about their personal preferences in many different ways, depend-
ing on their background. This paper deals with group decision making problems in which the
solution depends on information of a different nature, i.e., assuming that the experts express
their preferences with numerical or linguistic values.

The aim of this paper is to present a proposal for this problem. We introduce a fusion
operator for numerical and linguistic information. This operator combines linguistic values
(assessed in the same label set) with numerical ones (assessed in the interval [0,1]). Tt is
based on two transformation methods between numerical and linguistic values, which are
defined using the concept of the characteristic values proposed in this paper. Tts application
to group decision making problems is illustrated by means of a particular fusion operator
guided by fuzzy majority. Considering that the experts express their opinions by means of
fuzzy or linguistic preference relations, this operator is used to develop a choice process for
the alternatives, allowing solutions to be obtained in line with the majority of the experts’
opinions.

Keywords: linguistic modelling, fusion operators, aggregation operators, fuzzy linguistic quan-
tifier, choice degrees, group decision making.

1 Introduction

Combining large quantities of data is absolutely essential in many sciences (e.g, Biology, Decision
Theory, Artificial Intelligence, Fuzzy Sets Theory). It consists of the treatment and the processing
of a data set provided by different information sources with a view to obtaining a single elaborated
one. In this paper, we address the problem of combining information in Fuzzy Sets Theory applied
to Decision Theory. Specifically, we are interested in the study of fusion operators of imprecise
information of a different nature, numerical and linguistic, which allow us to solve some Group
Decision Making (GDM) problems.

A GDM problem is defined as a decision situation in which (i) there are two or more experts,
each of them characterized by his own perceptions, attitudes, motivations,... (ii) who recognize
the existence of a common problem, and (iii) attempt to reach a collective decision. Due to the
fact that the information provided by the human beings is in fact often vague and imprecise, the
modelling of these problems requires adequate representation models of imprecise information
and fusion operators of imprecise information.

In a fuzzy context, a GDM problem may be modelled as follows. There is a finite set of altern-
atives, X = {a,29,...,2,} (n > 2), as well as a finite set of experts K = {ey,e9,...,¢e,} (m >
2). Each expert, ex € F, provides his preferences on X by means of one of the two following
preference relation models:



o Using a fuzzy preference relation, P%, with a membership function, ppr : XxX — [0,1],
where ppr (2, 2;) = pfj denotes the preference degree of the alternative x; over z; [16].

e Using alinguistic preference relation assessed in a pre-established label set, S = {sq,...,s7},
i.e., with a membership function, ppr : XxX — S, where pfj denotes the preference degree
of the alternative x; over z; linguistically expressed [12, 14].

Many GDM problems may require the use of both relation types. For example, when the
experts come from different working areas, and depending on their specific knowledge, some
prefer to give their preferences in a numerical domain, and others in a linguistic one.

In this paper, we deal with such GDM problems. Some experts provide their preferences by
means of fuzzy preference relations, and others, by means of linguistic preference relations. We
introduce the following new developments to model this GDM problem type:

1. Two transformation functions between numerical and linguistic domains based on the concept
of characteristic values.

2. A fusion operator of numerical and linguistic information defined using the transformation
functions above.

3. A particular fusion operator based on the Linguistic Ordered Weighted Averaging (LOWA)
aggregation operator [11, 14], which is guided by the concept of fuzzy majority.

4. And finally, a choice process for GDM problems based on a choice degree of alternatives and
on the proposed fusion operator. Specifically, we use the quantifier guided non-dominance
degree defined in [4].

The structure of this paper is the following: Section 2 briefly reviews the linguistic approach
considered, Section 3 defines the combination of numerical and linguistic information by means
of a fusion operator, Section 4 presents the choice process based on this fusion operator, Section
5 develops an example, and finally, some concluding remarks are made.

2 Linguistic Approach

In this section, we present some basic assumptions about the linguistic approach used to represent
the linguistic information in decision making.

When we work with vague or imprecise knowledge, we cannot estimate with an exact numerical
value. Then, a more realistic approach may be to use linguistic assessments instead of numerical
values, that is, by assuming that the variables which participate in the problem are assessed by
means of linguistic terms [21]. This approach is appropriate for a lot of problems, since it allows a
representation of the information in a more direct and adequate form if we are unable of expressing
it with precision. The following references show some linguistic approaches in decision making
[2, 7, 12, 14, 18, 20]

Usually, depending on the problem domain, an appropriate linguistic term set is chosen and
used to describe the vague or imprecise knowledge. The elements in the term set will determine
the granularity of the uncertainty, that is, the level of distinction among different countings of
uncertainty. In [1] the use of term sets with an odd cardinal was studied, representing the mid
term a assess of "approximately 0.5, with the rest of the terms being placed symmetrically around
it and the limit of granularity being 11 or no more than 13.

The semantics of the elements in the term set is given by fuzzy numbers defined in the [0,1]
interval, which are described by membership functions. Because the linguistic assessments are just



approximate ones given by the individuals, we can consider that linear trapezoidal membership
functions are good enough to capture the vagueness of those linguistic assessments, since it may
be impossible or unnecessary to obtain more accurate values. This representation is achieved by
the 4-tuple (xq, 21, 22, 23), 1 and 25 indicate the interval in which the membership function value
is 1, and zg and z3 are the left and right limits of the definition domain of trapezoidal membership
function.

The first priority ought to be to establish what kind of label set to use. Then, let S = {s;},i €
H = {0,...,T}, be afinite and totally ordered term set in [0,1] in the usual sense [1]. Any label s;
represents a possible value for a linguistic real variable, that is, a vague property or constraint in
[0,1]. We consider a term set with odd cardinal, where the middle label represents an uncertainty
of 7approximately 0.5” and the remaining terms are placed symmetrically around it. Moreover,
the term set must have the following characteristics:

1) The set presents a total order: s; > s; if ¢ > j.

2) There is the negation operator: Neg(s;) = s; such that j = T-i.
3) Maximization operator: MAX(s;, s;) = s; if 5; > s;.

4) Minimization operator: MIN(s;, s;) = s; if 5; < s;.

For example, this is the case of the following set of the nine labels with its semantic associated

[1]:

C Certain (1,1,1,1)

ETL  FExtremelylikely (.93, ()8 99, 1)
ML Most_likely (.72,.78,.92,.97)
MC  Meaning ful chance (.58 6? .80, .86)
IM  Itmay (.32, .41, .58, .65)
SC Small _chance (.17 227 .36, .42)
VILC Verylow_chance (. 04 1,.18,.23)
EU  Faxtremely_unlikely (0,.01,.02,.07)
7 I'mpossible (0,0, 0, 0).

Formally speaking, it seems difficult to accept that all experts should agree on the same mem-
bership function associated to linguistic terms, and therefore, there are no universality distribution
concepts. On the other hand, we should point out that the experts cannot be ready to give the
membership functions associated to labels. Therefore, in our context, we consider an environment
where experts can discriminate perfectly the same term set under a similar conception, taking into
account that the concept of a linguistic variable serves the purpose of providing a means of ap-
proximated characterization of imprecise preference information. We make the experts’ activity
easy by giving them some more used term sets, e.g., the aforementioned set of nine labels.

3 Combining Numerical and Linguistic Information

We focus on the design of fusion operators of quantitative and qualitative information, i.e., we
provide a method for combining numerical and linguistic information. We assume that the in-
formation is provided using absolute and compatible scales, i.e., all users use the same numerical
domain (specifically the unit interval [0,1]) to provide the quantitative assessments and the same
term set (labels and semantics) to provide the qualitative ones. The problem of combining in-
formation when different and incompatible scales are used is not addressed here.

We define a fusion operator which acts as follows: it transforms all numerical and linguistic
input information given by different users to an intermediate expression domain, aggregates the



information in that domain, and finally, transforms the elaborated information into output in-
formation depending on the user’s initial domain. Therefore, to define this fusion operator type,
we have to answer the following three questions:

e how does it transform the information among different domains?,

e what is the intermediate expression domain?, and

1

e how does it combine the information in the intermediate domain?.

These three questions are analyzed in the following subsections. After that we present the fusion
operator.

3.1 Transformation Methods

In this subsection, we shall characterize some transformation functions between the linguistic and
numerical expression domains. As was mentioned earlier, any linguistic label has its associated
fuzzy number, and thus, before defining these transformation functions, we introduce the concept
of the characteristic values associated to a fuzzy number.

Let F(R) be the set of fuzzy numbers defined on R. Each fuzzy number, y; € F(R), has
associated a membership function, u,, : F(R) — [0,1]. Let us consider that for each fuzzy
number, y;, we know a set of characteristic values, C'V,, = {C! C? ... C?}, which are crisp
values that summarize the information given by y;, i.e., they support its meaning. We shall
assume that, C?! € Supp(y;) = {reR | p,(r) > 0}. Without loss of generality, we can define

a set of functions C'F = {f;, j = 1,...,2,}, in such a way that each function f; associates a
characteristic value to each fuzzy number y;, i.e.,

fi: F(R) — R,

Filys) =1

Therefore, each set of characteristic values, {CZ, Vi}, symbolizes a particular characteristic func-
tion, f;, for a set of fuzzy numbers, {y;, Vi}. Some examples of this function type are: the
deffuzification methods applied in fuzzy control [5], the ranking functions [3, 23], and the value of

a fuzzy number defined in [8].

3.1.1 Transformation Function from Linguistic Domain to Numerical Domain

Here, we define a Linguistic-Numerical Transformation Function, which obtains a numerical value
from a given label.
l.et s; be a linguistic label, s; € S, and suppose that it has associated a set of characteristic

values, C'V,, = {C},C? ... C?}, obtained by means of a set of characteristic functions, acting

on its associated fuzzy number, y,. € F(R), i.e., C! = fi(ys), CF = fo(ys,)s---, CF = f.(ys,)-
In the following, we denote the characteristic value of a label s;, fi(ys,), as G;(s;).

Definition 1. The Linguistic-Numerical Transformation Function, ¥, is defined according to
the following expression:
YN S —[0,1]

¢N('977) = 9(01 (377)7 SEEY) GZ('gi))v

where g is any aggregation operator verifying:

min{vy, ... 0.} < gvr,...,0.) <maz{v, ... v.}.



Therefore, this function, 1", obtains the real value of a label by means of the aggregation of
its respective characteristic values. Clearly, 1N (s;) € Supp(y,,)-

We must denote that there are no scientific bases for the choice of characteristic values (i.e.,
no defuzzifier is derived for a theretical principle, such as maximization of fuzzy information or
entropy). Because we are interested in the aggregation of some of them, one criterion for the
choice of a caracteristic value may be the computation simplicity. For an additional discussion on
these values, see [3, 5, 8, 23]. Below, we show an example of ¢V with four characteristic values.

Example 1. let us consider the set of nine labels introduced in Section 2. Because we have
trapezoidal membership functions for representing the labels, we define the characteristic values
according to the four parameters used to represent the trapezoidal membership function of a
label, s;, (2!, 2%, 2%, #%). We consider the following methods: the value of a fuzzy number [8], the
mazimum value and the center of gravity [b].

e Value. The characteristic value of a label s;, G (s;), is:

Gr(s) = [ 50) 1y 0+ Ry ()

where L, (-) and R, (-) are the r-cut representations of ys, and s(r) is a reducing function
[8]. (G4 (37;) may be seen as a central value that represents, from a global point of view, the
value of the (ill-defined) magnitude that the fuzzy number (associated to the label) represents
[8]. Tts expression using the trapezoidal membership functions and s(r) = r is:

(a1 +2) (w5 —ay) — (w7 —wp)] 200+ 205+ a5+ 2

G (s)) =
1(5:) 2 6 6

o Mazimum Value. Given a label, s;, with a membership function, u,.  (v),v €V =0, 1], its
height is defined as

height(s;) = Sup{p,.. (v), Yo}.

Therefore, this method may obtain a representative value of a label in different ways [5]. We
assume two of these ways, obtaining two characteristic values, G3(s;) and Ga(s;), according
to the following expressions:

Ga(si) = min{v | p,, (v) = height(s;)},
G3(si) = maz{v | p,, (v) = height(s;)}.
Therefore, their representations, based on the trapezoidal notation, are:

Ga(si) = Tq and Gs(s;) = T72

o (lenter of Gravity. This method summarizes the meaning of a label, s;, into a numerical

value as:
Jv vy, (v)do

a v [y, (v)dv

For trapezoidal fuzzy numbers, we obtain:

G4(S7j)

; . Y SN SR
xg ‘ ‘ - if xf, =2 = 2, = 2}

otherwise



If a decision maker uses as aggregation function, ¢, the mean function, then, the transformation
function, called ]V, is:

N G (i) + Gals:) + Galsg) + Galsi)
¢1 (37:) = 4 -
and thus,
¢N( ) zh if 2h = 2 = ab = 2
1 8(ri+as ) H+(wi+ %2124'8(”4' 273 TTN)  therwise
with H = 2% + 25, — 2 — z}.
If we consider the labels, {C, K1, TM,SC?}, then:
SN (C) = 1. YN (1) = L9T8HH0.95+0.90100.0725 () gg.

¢1N([M) — 0.4916-{—0.411—0.58—{—0.4894 — (.49. w]N(S(j) — 0.29167-{—0.22:—0.36—{—0.2927 — 0.929.

We should point out that the results of 1)1 depend on three factors: (i) the numerical meaning
or semantic of the linguistic terms, (ii) the aggregation function ¢, and (iii) the chosen set of
functions, C'F. Therefore, the sensitivity of ¥V is conditioned by the decisions made in each
factor.

3.1.2 Transformation Function from Numerical Domain to Linguistic Domain

Here, using the aforementioned characteristic values, we define a Numerical-Linguistic Transform-
ation Function, which gives a representative label for a given numerical value.

Definition 2. Let r € [0, 1] be a numerical value. Let s; be a label verifying that
h(r,s;) = min{h(r,s;)|Vs; € S},

with

Yimi(r = Gils))? if r € Supp(sy)

where z is the cardinal of the characteristic function set, C'F. Then the Numerical-Linguistic

hir,s0) = { : ifr ¢ Supp(s:)

Transformation Function, called ", is defined according to the following expression:
o [0,1]— S

Qbr’(r) = s;.

Example 2. Working in the same context as Example 1, if the considered numerical value is
r=0.73, then ¥](0.73) = M, since

min{h(0.73,C), h(0.73, EL), h(0.73, ML), h(0.73, MC), h(0.73, TM), h(0.73, SC), h(0.73, VL.C'),

h(0.73, EU), h(0.73, 1)} = min{4,4,0.48,0.2,4,4,4,4,4} = 0.2 = h(0.73, MC).



3.2 On the Intermediate Expression Domain

As we said at the beginning, the numerical expression domain is the unit interval [0,1] and the
linguistic one is a label set S. Therefore, the intermediate expression domain could be any one of
them. We propose using the linguistic nature intermediate domain. We find it reasonable to work
on the more general expression level, and later, to express the results in the specific expression
levels on the basis of the following reasons:

e There is a loss of information in both transformations. But, we find the linguistic-numerical
transformations to be more appropriate than the numerical-linguistic ones, because the first
ones try to determine exactly a numerical value from a linguistic preference given by an
expert incapable of providing his preference with the numerical value.

e For an expert who uses a numerical expression domain to provide his preferences, to use a
linguistic one should not be (theoretically) a difficult task. However, for an expert who uses
a linguistic expression domain, using a numerical one is not easy, because he may have a
vague knowledge about his preference and very often is not able to estimate it with an exact
numerical value (from the range of possible numerical values that support the meaning of a

label).

3.3 Combining Information in the Intermediate Domain

Since we use a linguistic nature intermediate domain, the information will be combined by means
of the aggregation operators of linguistic information [6, 11, 14, 18, 20]). We could use any
aggregation operator, but here, we propose using quantifier guided aggregation operators [11,
14, 20], representing the concept of fuzzy majority in its computation. In this way, and since
our application is developed in GDM problems, we find that the final decisions reflect what the
majority of experts prefer, as for instance what was done in [10, 11, 12, 14, 15].

Specifically, we propose using an operator with direct computation, the LOWA operator [11,
14], which is based on the OWA operator defined by Yager [19], and on the convex combination
of linguistic labels defined by Delgado et al. [6].

Definition 3. [11, 14] Tet A = {aq,...,a,,} be a set of labels to be aggregated, then the LOWA
operator, ¢, is defined as

Har, ... am] =W - BT = C™"{wy, by, k=1,...,m} =

=w O ®(1—w)® C™ By, by, h=2,...,m}

where W = [wy, ..., wy,] is a weighting vector, such that, (i) w; € [0,1], and (i) X;w; = 1; and
B = {bi,...,by} is a vector associated to A, such that, B = a(A) = {a,(1),---,05n)}, where,
Up(5) < gy Vi < j, with o being a permutation over the set of values A. (3 = wp, /35wy, h =
2,...,m; and C™ is the convex combination operator of m labels [6]. If m=2, then it is defined
as

CHw; byi=1,2Y=wy & s; B (1 —un)©s;=sk, S5, s €8, (j>1)

such that,
k= MIN{T,i + round(w;-(j—1))},

where "round” is the usual round operation, and by = s;, by = s;. If w; =1 and w; =0 with 1 #
7 Y, then the convex combination is defined as

C™{w;, b;yi=1,...,m}=b,.



Several arguments (axioms and properties) for its rational aggregation way were given in [14].
Given that we are interested in the area of quantifier guided aggregations, following Yager’s
method [19], we may calculate weights of the OWA operator using fuzzy linguistic quantifiers

[22], representing the fuzzy majority. For a non-decreasing relative quantifier, @, the weights are
obtained as

w; =Q/m)—Q((i—1)/m), i=1,...,m.

where the non-decreasing relative quantifier, @, is defined as [22]

0 if y<a
Qy) =4 4= fa<y<bh
1 ify>b

with a, b,y € [0,1], and Q(y) indicating the degree to which the proportion y is compatible with
the meaning of the quantifier it represents. Some examples of relative quantifiers are ”most”
(0.3,0.8), "at least half” (0,0.5) and ”as many as possible” (0.5, 1). In the following, ¢¢ denotes
the LOWA operator whose weights are computed using a linguistic quantifier, Q.

3.4 Fusion Operator of Numerical and Linguistic Information

This operator acts on three steps:

1. Tt transforms all inputs into a usual linguistic intermediate domain by means of a particular
numerical-linguistic transformation function,

2. the transformed information is aggregated by means of a concrete linguistic aggregation
operator, and finally,

3. the output information is expressed in each user’s expression domain, using an appropriate
linguistic-numerical transformation function.

This idea is shown in Figure 1, and characterized in the following definition.

GROUP OF

EXPERTS
EXPERTS’
EXPRESSION INDIVIDUAL
DOMAINS OEINIONS
.. a;
. FUSED
OPINIONS
a;
AGGREGATION
OPERATOR
INPUTS
(ousy

b, €[0,1
OUTPUTS + ¢[04]
TRANSFORMATION TRANSFORMATION
INTERMEDIATE =
FUNCTIONS DOMAIN FUNCTIONS
b, €S

Figure 1: Schema of the Fusion Operator



Definition 4. Let ' = {e;, i = 1,...,m} be a group of experts, and let A = {(a;,¢;),i=1,....,m}
be their respective opinions to be combined, such that, ¢; € {0,1}, and if ¢; =1 then a; € S and
if ¢; =0 then a; € [0,1]. A fusion operator of linguistic and numerical information, w, is defined
according to:

w: (([0,1] U S)x{0,1}H™ — (S x [0,1])
wl(ar, er), (ag, €2)y ooy (Qmy em)] = (b1, b2),

such that, by € S is a linguistic output given by

by =7 r‘[/\(aq ce1)y Alagy ea)y oy Mam, ¢m)],

oyt ifej=1
Mag,c;) = { qb"(a,j) otherwise

with 27 an aggregation operator of linguistic information, and by € [0,1] is a numerical output

obtained as by = PN (by).

As we mentioned above, regarding the application of fusion operators in GDM problems, we
use a particular fusion operator based on the LOWA operator guided by fuzzy majority (i.e.,

71 = ¢g), symbolized by ngOWA.

4 A GDM Process under Numerical and Linguistic Assessments

Here, we present a direct choice process developed from the fuzzy and linguistic preference re-
lations provided by the experts, called Non-Dominance Based Choice Process. 1t is based on a
quantifier guided choice degree of alternatives, i.e., the non-dominance property guided by a fuzzy
linguistic quantifier, as in [4].

A direct process is developed along three steps, as it is shown in Figure 3 [15].

1. Fzploitation State. The goal of this state is to calculate the non-dominance degree of each
alternative according to each individual preference relation.

2. Aggregation State. The goal of this state is to aggregate individual non-dominance degrees
obtained in the above step with view to calculate the non-dominance degree of each altern-
ative according to the global opinion of group of experts. To do that, we apply the proposed
fusion operator based on the LOWA operator, ngOWA.

3. Selection State. The goal of this state is to find the solution. We choose those alternatives
with global maximum non-dominance degree.

We should point out that in the exploitation state, as well as in the aggregation state, the
concept of fuzzy majority is used, but with a different meaning. In the first one because the
individual degrees are calculated, the fuzzy majority of alternatives (of non-dominance) is used
[14]. Tn the second one, since individual degrees of different experts are aggregated, the fuzzy
majority of experts is used [14]. Therefore, we can use different fuzzy linguistic quantifiers in
each state.

Assuming that we have a label set, S, two transformation functions {¢", "} with their char-
acteristic functions C'F = {f;, j = 1, ..., z}, and the concepts of fuzzy majority of non-dominance
and fuzzy majority of experts represented by means of the two fuzzy linguistic quantifiers, 4
and (s, respectively, the choice process is described in the following steps:



(Step 1) (Step 2) (Step 3)
EXPLOITATION individual Slobal SOLUTION
Degrees |AGGREGATION| Degrees SELECTION ALTERNATIVE(S)
STATE STATE STATE

Individual
Linguistic
or Fuzzy
Preference
Relations

Figure 2: Three Steps of a Direct Choice Process

1. Exploitation State.

In this state we have to calculate the quantifier guided non-dominance degree of each alternative
according to the preference relation of each expert, P*, called individual quantifier quided non-
dominance degree. Tt quantifies the degree to which each alternative is not dominated by the
fuzzy majority of the remaining ones. It is calculated on the basis of concept of non-dominated
alternatives defined by Orlovski [17] as follows:

Definition 5. [19] Tet A = {aq,...,a,,}, be a set of numerical values to be aggregated, then the
OWA operator, F, is defined as

Flat,...,a,] =W - BT = STy - b,
where W and B are like in Definition 3.

Definition 6. Given an alternative, x; € X, the Individual quantifier guided Non-Dominance
Degree of z;, INDD?Y, is defined:

o from a fuzzy preference relation, P* (p];; € 10,1]), provided by the expert, ey, according to
the following expression [4]:

: s,k . . .
[N]—)Df - FQ1[(] 77)77 )77 = ‘17“-777/7.7# 7/]7

where Fo, is the OWA operator guided by fuzzy majority, and p';;k represents the degree to

which x; 1s strictly dominated by x;, and it is obtained as p';;k = mam{p];; — pfj, 0}, Yi,7;

e from a linguistic preference relation, P* (p]; € S), according to the following expression
[15]:
k s,ky . . .
[NDD7 = ¢Q1 [NP(](Z)“ )77 — ]7 N (2 # 7/]7

where ¢g, is the LOWA operator guided by fuzzy majority and
s,k . k
P, = so if pij > i
or p';;k =s, €85 if p];; > pﬁj with p];; = 9, pﬁj =g andl =1t 4+ h.

More specifically, TNDD;“ expresses the degree to which an alternative, x;, is not dominated by
the fuzzy majority of the remaining alternatives according to one expert’s opinions, ey.



2. Aggregation State.

From the sets of individual quantifier guided non-dominance degrees obtained for each altern-
ative, x;, {INDD¥ Vk}, and by means of the fusion operator, wcg‘g)WA, we calculate the Global
quantifier guided Non-Dominance Degrees for each alternative. Tt is formed by two components,
the first one, GNND{‘7 has a linguistic nature, whereas the second one, GNND;V, is purely nu-
merical. In this way, we obtain the degree to which an alternative, z;, is not dominated by the
fuzzy majority of the remaining alternatives according to all the experts’ opinions. It is defined
as follows:

(GNDD]\GNDDN) = w0V AUTINDDE ¢4), k=1, ...,m].

3. Selection State.

Finally, when the choice degrees of alternatives, (GNDD{‘7 GNDD;V), are calculated we ob-
nd

mar?

tain the set of solution alternatives, X as follows:

Xpt ={r; € X)GNDD} = MAX;,{GNDD}, j=1,...,n}}
which is formed by the alternatives with maximum linguistic global quantifier guided non-dominance
degree. Then, the solution is shown to each expert in his respective expression domain using the
linguistic or numerical component.

We should point out that if all the alternatives have the same maximum non-dominated degree
or this maximum is zero, we need either that the experts provide more information to decide among
them, or the development of a negotiation and consensus process among the experts, which allows
them to exchange information to update their preferences [2, 13]. On the other hand, if the choice
procedure leads to an undesired solution we need either a method to include the experts’ undesired
degrees in the choice process or a negotiation process.

5 Example

Let’s suppose an investment company, which has an amount of money to invest. There are four
possible options to invest an amount of money, {x1, 29, x3,24}: a car factory, a food company,
an atomic weapons factory, and a computer company, respectively. In the company, all the
decisions are made according to the opinions provided by the managers of four departments,
{e1, 69, €3, e4}: business department, social-policy department, risk analysis department and the
environment department. Given that these experts come from different areas of knowledge such as
economics, biology, law, ... some may have more facility to express their opinions with numbers,
while others may prefer to express their opinions by means of linguistic assessments. Assuming
that the experts, {e1,es}, use the numerical domain, [0, 1], and the remaining ones the linguistic
domain, S, given in Section 2, i.e., a set of nine labels.

Without loss of generality, let us assume that we work with reciprocal preference relations,
which, in the case of fuzzy preference relations, implies (i) pﬁj —l—p];; =1, and p;; = unde fined(—);
and, in the case of linguistic preference relations, implies (i) pﬁj = Neg(p?i), and (i) py =
unde fined(—). Consider that preference relations provided by the experts are:

~ 03 0.7 0.1 - IM C EU
pl_ | 0T — 06 06|, |IM - EU C
“ 103 04 — 02 |1 FEL - VIC

09 04 08 - KL T MI —



— 05 07 0 — M FL T

P _ 0.5 — 0.8 04 p_ M — I/ FTL
0.3 02 — 0.2 KU C — VILC
1 0.6 0.8 — C rU ML -

Considering that both @1 and ()2 are the fuzzy linguistic quantifier "as many as possible” with
the pair, (0.5,1), assuming the transformation functions {11, ¥} presented in Examples 1 and

LOW A

2, and using the fusion operator, wg’ , the choice process is applied as follows:

1. Exploitation State.
From the aforementioned preference relations, { P', P2, P?, P*}, we obtain the respective strict
preference relations:

0 04 0 - cooT
a1 |04 — 02 02 .0 | T - I C
PP=10 0 - o P ML — T
0.8 0 0.6 — ML T M —
— 0 040 - I ML T
0 — 06 0 I — 1 M,
S$,3 __ s,4
P7=10 o o [P o &
1 02 06 — c 1 IM -

We calculate the individual quantifier guided dominance degrees, TNDDf, by means of the
OWA and LOWA operators, F, and ¢g,, with the weighting vector, W = [0,0.334,0.666]. The
result is shown in Table 1.

|NDDI§ € €2 €3 €4
X7 | 0336 MC 0.336 sc
Xy 1 MC 0.8668 sc
X3 | 0.4668 | EU 0.4 sc
X4 | 0.8668| SC 1 MC

Table 1: Individual Quantifier Guided Non-Dominance Degrees

2. Aggregation State.

Assuming that the linguistic intermediate domain is the label set, S, and aggregating the
said individual degrees by means of the fusion operator, wcg‘g)WA
vector, W = 10,0, 0.5,0.5], we obtain the global quantifier guided non-dominance degrees for each

alternative, (GN DD, GGNDDN), as shown in Table 2.

, but now with the weighting

L N
(GNDD, ,GNDD, )

X9

X

X3

X4

(sc, 0.29)

(1M, 0.49)

( VLC, 0.138)

(M, 0.49)

Table 2: Global Quantifier Guided Non-Dominance Degrees



3. Selection State.

Finally, we find the set of solution alternatives X% = {25, 24}, since GNDD} = GNDD} =
IM and IM = MAX;{GNDD}}.

Therefore, according to the different experts’ opinions, the food and computer companies are
the best options to invest the money. Then, the experts receive that information in the following
way:

e experts ey and esg: {(22,0.49), (24,0.49)}, and

e experts ey and eq: {(w9, IM), (24, ITM)}.

6 Concluding Remarks

Depending on their background, people give information about their personal preferences in many
different ways. Particularly, we have shown that it is possible to combine linguistic and numerical
information. We have studied the case in which experts provide their opinions by means of nu-
merical or linguistic assessments. We have proposed a fusion operator of numerical and linguistic
information, which allows us to combine numerical values assessed in [0,1] and linguistic values
assessed in a label set S. To build this fusion operator we have designed two transformation
methods between the numerical and linguistic domains based on the concept of characteristic
values. Later, we have shown the application of this fusion operator in a GDM problem in which
the experts provide their preferences by means of fuzzy and linguistic preference relations.

In the future, we plan to study the case in which the experts provide their opinions by means
of linguistic assessments with multi-granularity term sets.
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