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ABSTRACT
This paper is a preliminary exploration of secure distributed
human computation. We consider the general paradigm of
using large-scale distributed computation to solve difficult
problems, but where humans can act as agents and provide
candidate solutions. We are especially motivated by prob-
lem classes that appear to be difficult for computers to solve
effectively, but are easier for humans; e.g., image analysis,
speech recognition, and natural language processing. This
paradigm already seems to be employed in several real-world
scenarios, but we are unaware of any formal and unified at-
tempt to study it. Nonetheless, this concept spawns inter-
esting research questions in cryptography, algorithm design,
human computer interfaces, and programming language /
API design, among other fields. There are also interesting
implications for Internet commerce and the B24b model. We
describe this research area and suggest a basic framework
for the design of such systems. We analyze security and
reliability against malicious parties using standard proba-
bility theory tools. We then derive design principles using
standard decision-theory concepts. Finally, we list various
extensions and open problems.

“Now we have in our hands a method for going
beyond the computed, leapfrogging it, passing
through it. We will combine the mechanics
of computation with human thought; we will
have the equivalent of intelligent computers,
billions of them. I can’t predict what the
consequences will be in detail, but they will
be incalculable.”

Congressman Brant, from Isaac Asimov’s
Feeling of Power ; taken from [5].

1. INTRODUCTION
As an example of the advantages of human computation,

consider the Cyphermint PayCash system [9], which allows
people without bank accounts or credit cards (a sizeable seg-
ment of the U.S. population) to automatically and instantly
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cash checks, pay bills, or make Internet transactions. Since
PayCash offers automated financial transactions, and since
the system uses publicly-accessible kiosks in (unprotected)
public locations, security is obviously critical. For example,
in the check-cashing application, the system must decide
whether the person at the kiosk cashing the check is indeed
the person to whom the check was made out. At first, one
might expect that the kiosk employs sophisticated biometric
tools, advanced facial recognition algorithms, and the like.
This thought is unsettling since such schemes produce false
positives, and can often be outwitted by a clever adversary;
e.g., someone can try to hold a photograph up to the cam-
era on the kiosk. However, the Cyphermint solution is much
simpler – a “human computer” at the back end. Specifically,
the kiosk simply takes a digital picture of the person cash-
ing the check and transmits this picture electronically to a
central office, where a human worker compares the kiosk’s
picture to one that was taken when the person registered
with Cyphermint. If the two pictures correspond to the
same person, then the human worker authorizes the check
to be cashed; otherwise, the check is rejected.

In this example, a human assists in solving problems which
are easy for humans but still difficult for powerful comput-
ers, even when they have state-of-the-art algorithms. Many
problems fall into this category; e.g., so called “AI-complete”
problems which occur in fields such as image analysis, speech
recognition, and natural language processing. Motivated
by the above example, this paper undertakes a preliminary
study of the concept of secure distributed human computa-
tion (DHC). At first, DHC might sound far-fetched. How-
ever, it turns out that there are a number of situations today
that exemplify this paradigm.

• Collaborative Filtering for Spam Prevention:
Some anti-spam mechanisms such as SpamNet [23] and
Vipul’s Razor [26] use human votes to determine if a
given email is spam; these ideas extend to the P2P set-
ting [28]. This approach may be effective given that
humans can more easily identify junk mail than com-
puters can; e.g., [28] claims 0% false positives in ex-
periments. Each email recipient presses a button if it
receives what it considers to be spam. If enough peo-
ple vote that a given email is spam, then it is flagged
as such, and either not delivered to other users, or de-
livered into a special spam folder. The system is also
robust enough to handle spam messages that are not
exactly the same, but are highly similar; e.g., some
words in the body are different.

• CAPTCHA Solution Gathering: Although DHC



can help eliminate spam, spammers can hypothetically
use DHC to further their goal (see [1], [2]). Con-
sider free email providers who have incorporated spe-
cial puzzles, known as CAPTCHAs, that are easily
solved by humans, but challenging for computers, dur-
ing the account creation phase to prevent spammers
from automatically creating thousands of email ac-
counts; spammers, in turn, can farm these CAPTCHAs
out to humans in exchange for access to illicit web con-
tent. While this example is a malevolent use of DHC,
there are more constructive uses.

• The ESP Game: In the ESP Game [3], two players
are randomly paired over the Internet; they are not
permitted to communicate, but both view the same
image on their respective web browsers. Each player
types in words that describe the image. As soon as
both players enter the same word, they get a new im-
age. The goal is to get through fifteen images in 2 1

2
minutes, and the players’ scores increase according to
various factors. The players derive utility from the
entertainment value the game provides. The game or-
ganizers derive utility since the game’s results are used
to label images on the Web, which is valuable for im-
proving image search.

• Distributed Proofreaders: The distributed proof-
readers project [10] is geared towards eliminating op-
tical character recognition errors in Project Guten-
berg [22] electronic books. The idea is to give a (small)
portion of the image file and corresponding text (gen-
erated by OCR) side-by-side to a human proofreader.
The proofreader in turn provides edited text to fix any
errors. By giving the same piece of text to several
proofreaders, errors can be reliably eliminated.

• Other examples: Open source software development
loosely falls into the DHC paradigm; here the difficult
problem is not something crisp like image recognition,
but instead that computers have a hard time automati-
cally generating source code. Similarly, building Wikis
is also related to this area. Recall that Wikis are online
encyclopedias that are written by Internet users; the
writing is distributed in that essentially almost anyone
can contribute to the Wiki.

Applications to Internet Commerce and B24b. Web
sites today typically rely on three revenue sources: adver-
tisements, subscription fees, and e-commerce. Outside of e-
commerce, it is challenging to earn sustainable revenue from
the first two sources. Indeed, click-through rates on adver-
tisements are around 0.7% [11], and outside of specific niche
industries, very few people are willing to pay subscription
fees for premium Internet content.

However, DHC could yield another revenue source; namely,
companies who want specific problems solved can farm them
out to the hundreds of millions of Internet users. In exchange
for solving the problem, some service or good is provided.
We note that DHC has several benefits compared to tradi-
tional credit card transactions. First, it might be faster for
a user to solve a human computation problem as compared
to actually getting their credit card out and typing in a
16-digit credit card number, expiration date, and billing ad-
dress. Second, credit card information can be compromised

(e.g., if the merchant web server is compromised); this is
not an issue with DHC. Finally, credit card transaction fees
are substantial, and make it impossible to offer low-value
content. In a sense, then, human computation can form a
new type of online currency or bartering system.

As an example, such a mechanism might be useful on the
New York Times web site [20] which provides free access to
the day’s news articles, but charges a fee for archived arti-
cles. Such a fee (while necessary from a business perspec-
tive) might deter users – especially since it may be possible
to (illegally) obtain the article text from some other Inter-
net location; e.g., it was posted to a newsgroup or mail-
ing list. However, instead of charging a fee, the New York
Times could give the user a human computation problem –
e.g., transcribing an audio feed into text. In exchange for
solving the problem, the archived article can be provided.
This concept extends to other service offerings; e.g., music
downloads or long-distance minutes for solutions. DHC may
also enable the Business-to-Four-Billion (B24b) model [21]
which aims to provide digital services (wireless communi-
cation, Internet, etc.) to the world’s four-billion poorest
people. Individually these people have annual incomes less
than $1500 – yet their collective buying power is quite large.
Although the economic feasibility of B24b is still very much
an open question, providing services in exchange for solving
DHC problems seems like a useful approach, since it depends
on an abundance of human resources, while avoiding cash
transactions.

The Human Factor. Because we are talking about human
computation, there are numerous social and ethical issues
to consider. For example, as with any human service (and
especially one that global reach), we should ensure that the
market for human computation is not unduly exploitative.
Along the same lines, it is important to consider human ca-
pabilities in solving problems. For example, image process-
ing tasks might be difficult for those with impaired sight. In
a similar vein, human capabilities differ from time-to-time.
For example, a person may not be as able to drive a car
safely and solve human computation problems at the same
time. While such “human” issues seem interesting in their
own right, we limit our discussion to more technical points
in this paper.

Relevance to other fields. DHC is relevant to a num-
ber of computer science research disciplines, including algo-
rithms (how can one design algorithms that leverage human
computation to solve specific problems?), programming lan-
guages (how can we better specify programming languages
or interfaces so that human input can be provided more
naturally?), human-computer interaction (what kinds of in-
terface designs are best suited for incorporating human in-
puts?), distributed systems (if a single problem is parceled
out to multiple individuals, how can we reliably agree on
a correct answer?), and cryptography/security (how can we
protect a human computation system from malicious behav-
ior?).

With respect to distributed systems, there is a relation
to the distributed consensus problem, which roughly asks
how distinct processes can agree on a single (binary) value
based on the votes of each process, where at least one of the
processes actually voted for the agreed upon value. In dis-
tributed consensus, one is concerned with different types of
failure models (e.g., in a Fail-stop failure, a process simply
ceases all activities, but in a Byzantine failure, a process



might be intentionally operating in a malicious manner.)
as well as different types of communication models (e.g.,
in an asynchronous model, we cannot assume any bounds
on communication delay or processor speed, whereas in a
synchronous model, we can assume bounds). In an asyn-
chronous model, if at least one process misbehaves then
there is no guarantee that a consensus can be reached [12].
For more information on the consensus problem, see Lynch’s
text [18]. In synchronous networks, the general problem of
having multiple (untrusted) parties securely compute an ar-
bitrary function (where each party provides its own private
input to the function) has been studied in the cryptographic
literature under the term secure multi-party computation
(see, e.g., [27, 14]).

These areas bear relevance since solving a DHC problem
may involve multiple human computations; however, the dif-
ferences appear more striking than the similarities. First,
the parties are human beings instead of computers; sec-
ond, the parties are themselves not providing actual multi-
party computation inputs, but are instead providing candi-
date answers (which themselves can be construed as inputs
into a group decision-making process); third, the “function”
to be computed may not always have a clear-cut answer;
fourth, the computation may be facilitated by a server that
is trusted, but computationally weak in the sense that it is
not capable of providing answers itself;1 fifth, we may not,
in general, be restricted by privacy concerns, although they
are important in a number of motivating applications. To
analyze security, we may consider the case where the adver-
saries are rational, and use game-theoretic tools.

Drawing further relations to cryptography, we also remark
that since DHC is a form of currency, we may use crypto-
graphic tools that have been developed in connection with
e-cash. Finally, much of the related work to be discussed
below ([16], [17], [2], [1]) has appeared in cryptographic lit-
erature. Overall, however, we are well-aware that “security”
is less of a cut-and-dried issue in the human computation
context than in the cryptographic context, but we view this
as an interesting research challenge.

Related work. Much work has been done in building a
giant distributed computer system by harnessing idle CPU
cycles on the Internet. Examples include SETI@HOME’s
search of extra-terrestrial life through large-scale data min-
ing [13], Entropia.com’s GIMPS project for finding large
Mersenne Primes [15], and Distributed.Net’s attempts to do
exhaustive key search on cryptosystems. Golle-Mironov [16]
and Golle-Stubblebine [17] have considered how one can add
security measures into such systems in cases when some type
of payout is provided in exchange for computation time. We
refer to this as distributed computing with payout (DCP).
Many of the ideas and analysis from [16] [17] have analogues
in the DHC setting. Of course, there are fundamental dif-
ferences. First, in DCP computers provide all answers, so
the assumption is that they are either correct with prob-
ability 1, or else are cheating. In DHC, it is possible for
there to be an honest mistake, or for there to be no clear-
cut “correct” answer to a given problem. Second, DCP gives
a payout to all participating computers (so long as they are
not cheating) that have demonstrated some proof of the ef-
fort undertaken2. In DHC, it does not seem to make sense
1Server trust can be minimized by augmenting a DHC sys-
tem with a voter and results-verifiable voting protocol [8].
2The concept of proof of work applies especially to exhaus-

to pay everyone – instead, it seems that one should only pay
clients who provided an answer that is “good” according to
some measure. Third, in DCP, all clients can typically com-
pute the same functions; this does not apply to DHC where
human agents can have differing skill sets; e.g., to solve a
text translation problem, one must have abilities in two for-
eign languages. Finally, DCP leverages otherwise idle CPU
cycles; in DHC it seems harder to justify a notion of idle hu-
man time since one might always be able to find something
else to do that time – of course there are situations such
as waiting in line or taking the train where “human cycles”
might be construed as idle.

Another line of related work is CAPTCHAs ([2], [1]),
which also involve problems that humans can solve easily,
but which computers cannot. In essence, the problems we
consider for our human distributed computation setting are
like CAPTCHAs, but with two exceptions. First, automatic
problem generation may be infeasible. Second, the solution
may not be known a priori, but must be inferred from an-
swers given.

Our Contributions. The primary contribution of this pa-
per is to suggest what appears to the best of our knowledge
to be a new line of research. We further suggest a basic
framework and corresponding architecture for an example
DHC system. We use basic probability tools to analyze how
many malicious parties such a system can tolerate (as a func-
tion of how well the honest parties perform). Interestingly,
our analysis shows that in the presence of lurking adver-
saries standard tools like Bayesian inference are worse than
simple approaches like majority vote for combining individ-
ual answers. Next, we use some basic decision theory tools
(e.g., utility functions) to derive design principles for a se-
cure DHC system. We also identify open issues and areas
for future work. We remark that since our primary aim is
a preliminary exploration of an untapped research area, we
have not attempted to solve all possible problems that arise.
Instead, we hope that our paper will inspire further research
– either by improving upon or extending the observations we
made, by addressing the open issues we have suggested, or
by identifying other issues we have not addressed.

Paper Organization. The next section gives the frame-
work and an architecture. Sections 3 and 4 do some pre-
liminary analysis based on simple probability and decision
theory tools. Section 5 describes a number of open prob-
lems. Finally, Section 6 concludes.

2. FRAMEWORK
We describe one framework for a secure distributed human

computing (SDHC). While we have tried to be general, one
can imagine numerous variations on what we present.

Organizing principles. An SDHC system is a four tuple
(S, C,D, F), where:

• S is a set of problem suppliers who wish to have specific
problems solved within a budget B.

• C is a set of (human) problem-solving clients.

tive search type problems (e.g., finding the pre-image of a
given output of a one-way function) where only a single ma-
chine will return the correct answer, but all participating
machines should be compensated according to their effort.



• D is a distributor or broker who matches elements of
S with elements of C. Elements of S might pay D to
have specific problems solved.

• F is a set of storefronts; D makes problems available
to elements of C via elements of F. We imagine that
elements of C visit elements of F to gain some utility;
e.g., to obtain a specific product or service, or simply
for intangible value like entertainment, voluntarism,
etc. D may pay members of F or C for help in solving
problems (using perhaps payment received from S).

See fig. 1 for a high-level depiction. Note that S (resp. C, F)
represents a set. In the sequel we will use the notation S
(resp. C,F) to represent a single element of this set. The
elements of this framework have analogues to what happens
presently in Internet advertising. Here F represents a typ-
ical web site (e.g., NewYorkTimes.com) and D is analogous
to a service that manages banner advertisements (e.g., Dou-
bleClick or 24/7 Real Media). This way F need not know
anything about the problems being solved. It is simply a
channel for allowing problems to be seen by as many clients
as possible. Of course, we can easily allow F = D (i.e.,
C directly talks to D), but we believe that F 6= D is the
more general case, and in practice will result in more clients
looking at more problems.

Between C and D, there is an interactive protocol that
aims to obtain the correct answer to various problem in-
stances with high probability. We envision that the protocol
involves two phases: a registration phase and an operation
phase. The latter phase involves several processes: problem
management, scheduling, monitoring, payout, and account
management (by C or D). Details follow.

Clients

Distributor

Suppliers

Store Fronts

Figure 1: A high-level depiction of an example se-
cure distributed human computing system.

Registration phase. The registration phase is an inter-
active protocol that occurs between C and D, when C first
decides he would like to participate in the SDHC system. C
might provide basic information (name, etc.) to D. There-
after, C might go through training (i.e., explaining what task
needs to be performed). Next, C might be tested on actual
problem data; the answers to these problems could be known
in advance or could be unknown (e.g., we can use live prob-
lem instances). The latter prevents C from using a dictio-
nary of known answers, and provides some “free” work to D.
The training phase may also incorporate CAPTCHAs [1] [2]
to ensure that C is not running a software agent for auto-
matic account creation. The output of the registration phase
might be a provisional rating for C (corresponding to an es-
timated likelihood that it answers problems correctly) – this
rating may later be updated during the operation phase. In

addition to training C and estimating his accuracy, the train-
ing phase also serves as an opportunity cost to discourage
C from establishing a new account after abusing his current
account.

Operation Phase. We envision this phase comprising sev-
eral processes: problem management, scheduling, monitor-
ing, payout, account management and termination.

• Problem Management: The problem management pro-
cess involves a multi-phase (interactive) probabilistic
polynomial time algorithm (PPTA) that takes as input
a problem instance Π, an accuracy parameter ε and S’s
problem budget B. From B it derives its own budget β
containing time bounds t, t′ and another integer bound
n; i.e., B specifies a cap on the dollar amount to spend,
which translates into how long clients can take, how
many clients to ask, etc. The output is a set of n three
tuples (Π1, ε1, t1), . . . (Πn, εn, tn), as well as a descrip-
tion for a (probabilistic) reconstruction algorithm R
with the following properties. First, client Ci ∈ C can
provide a candidate answer αi to “sub-problem” Πi

which is correct with probability εi in time ti, where
we require ti ≤ t. Second, the reconstruction algo-
rithm R on input α1, . . . , αn outputs an answer α to
Π which is correct with probability at least ε, using at
most t′ steps3. Finally, the partitioning scheme must
operate within the budget B.4 If the algorithm can-
not produce a solution meeting the budget constraints,
then it outputs ⊥. With respect to performance, we
would like εi, ti (1 ≤ i ≤ n) to be as small as possible.
Similarly, we would like the algorithm to not produce
the answer ⊥ with only a small budget (e.g., t, t′, n
are also small). The algorithm might involve several
(recursive) phases – e.g., in which elements of C assist
with the “meta-problem” of decomposing a problem
into sub-problems. The problem management algo-
rithm interacts with the scheduling algorithm we now
describe.

• Scheduling: The scheduler is a multi-phase (interac-
tive) PPTA that takes as input the problems Π1, . . . , Πn

provided by the problem management algorithm as
well as information about the subset of C who are
currently available (possibly together with information
about their past performance and skill sets) and out-
puts a subset of clients C1, . . . , Cn ∈ C to whom to give
these problems. The scheduler then waits to receive
responses from the clients, after which it runs R to
obtain the final answer. The scheduler should enforce
the requirement that answers be provided within some
time bound to be valid; otherwise, it may not be able
to arrive at a final answer.

3We remark that R might also be “online” in the sense that
it can still be executed, and provide some guarantees, even
if only a subset of the answers are available.
4Here B is an overall resource budget specifying how many
users a sub-problem can be given to, how much time these
users take, and how much time the reconstruction algorithm
must take. It is not clear how to sensibly define the notion of
time complexity of problem solving for humans, but the pur-
pose of including a time bound here is to design the problem
management algorithm so that no sub-problem takes “too
long.”



• Payout: Payout involves a PPTA that takes as input C,
as well as the transcript of the scheduler’s interaction,
a description of the scheduler (and its inputs), a de-
scription of R, and a payout budget B. It outputs the
description of a payout function p : C → R which spec-
ifies how much to pay C1, . . . , Cn. The payout function
must respect the budget:

∑n
i=1 p(Ci) ≤ B. We remark

that in some cases, there may be no payout (e.g., if a
DHC problem is solved for entertainment value). We
also remark that the algorithm may be randomized
(e.g., payout could be done in the form of a “lottery
ticket” scheme). The payout function should have a
positive evaluation only when an answer is “correct”
as determined by some type of Bayesian inference,
weighted majority vote, or some other mechanism5.
On the other hand, it may be possible that there is no
preferred answer; i.e., the votes are evenly divided or
there are multiple valid answers. Payout must be made
accordingly. The payout function should be designed
to pay only for “reasonable” answers (those that seem
consistent with others’ answer) as opposed to unrea-
sonable ones (those that seem to stem from cheating or
answering randomly). Additionally, as we will see in
the analysis of Section 4, one should design the scheme
so that the payout amount is proportional to C’s per-
ceived skill level; i.e., if C tends to get many correct
answers, we pay him more. This incentivizes C to an-
swer reliably and therefore deters cheating.

• Monitoring Process: The monitoring process is a PPTA
that takes as input the transcript of the execution of
the other algorithms and protocols and outputs ele-
ments of C who might be cheating. For example, the
monitoring process might:

– Monitor C’s payout account to see if there is a
minimum balance; as we will see in the decision
theory analysis of Section 4, a minimum balance
requirement benefits D.

– Monitor C’s success rate to see if there are any
sharp drop offs.

– Determine if multiple account creation requests
stem from the same source.

• Account Management: The account management pro-
cess involves an (interactive) PPTA which takes as in-
put the database of long-term system variables and
updates them:

– C’s ratings can be updated in accordance with
performance.

– C may specify the types of problems he prefers to
solve; e.g., some users may prefer image analysis
problems whereas others may prefer natural lan-
guage processing. Similarly, users may indicate
specific skills; e.g., if users are fluent in several
languages, D may wish to provide them problems
involving text or speech translation.

– C’s account may be terminated; the termination
request may either come directly from C or it may

5We also remark that we could permit negative payout,
wherein clients are penalized for wrong answers.

be initiated by D itself. In the former case, we
may want to pay out the balance. In the lat-
ter case, we may want to investigate the behav-
ior which resulted in termination; e.g., if C was
caught cheating, then the final payout may be
withheld.

Threat Model. Threats to an SDHC system include those
directed to the registration phase, operation phase, or some
combination. The registration phase is subject to automated
attacks possibly resulting in new user accounts that might
be exploited later. CAPTCHAs have been used to counter
online scripted attacks [1, 2]. However, CAPTCHAs fall
short from protecting against semi-automated attacks such
as those where an unsuspecting person is lured into assisting
an attack (i.e., relay attacks). Recent research results give
specialized protocols using CAPTCHAs that increase pro-
tection against relay attacks [25]. Threats to the operation
phase include a lurking adversary who is benign until he at-
tacks. By their nature, lurking adversaries are difficult to
detect before they strike. Lurking adversaries may be more
problematic in the context of SDHC because a few malicious
acts might be attributed to human error. An inconsistent
adversary responds to tasks in an inconsistent manner.6 Our
approach generally detects the inconsistent adversary since
we are able to monitor the accuracy of the adversary over
various time windows. Although we tend to assume other-
wise, it possible that D might cheat; e.g., by claiming that
solutions were wrong and not providing payout. This prob-
lem can be mitigated with a voting protocol that provides
voter and results verification (by either the individual voter
or by anyone); e.g., see [8].

Architecture. An SDHC system architecture depends on
the media capabilities of C (e.g., text only web based, audio
only cell phone, or some combination of visual and audio).
For a web-based access device, the architecture can be simi-
lar to the system that brokers interactive advertisements on
the web. Storefronts provide a URL associated with a prob-
lem “payment” mechanism associated with human compu-
tation. Upon selecting the URL, C passes a cookie to D if
it is registered and C receives a human computation prob-
lem. (Otherwise, C is required to go through the registration
process.) In response to receiving C’s cookie, a human com-
putation problem is directed to C. C responds back to D
with a solution. Upon completion, F receives an authenti-
cated confirmation (possibly passed through C) that C has
made sufficient “payment” and C receives the product or ser-
vice. The distribution network consists of computers that
primarily host problems and schedule these problems to C.
The scheduler identifies the next problem to be distributed
and the associated skill level with the problem. Upon re-
quest of a problem by C, a process retrieves C’s skill level
and validity. C is passed a URL associated with next avail-
able problem as determined by the scheduler.

3. PROBABILISTIC ANALYSIS OF RELIA-
BILITY IN AN SDHC SYSTEM

We now use simple tools from probability theory to an-
alyze the reliability of votes in an SDHC system. We are

6As an example, an inconsistent adversary might simply be
lazy, truly inconsistent, or may even employ expert pro-
grams in an attempt to answer correctly most of the time.



interested in what happens when clients each vote on the
same problem. Our analysis also considers the presence of
malicious parties. We consider both standard majority vote
and Bayesian inference to combine answers from different
clients. We uncover that while Bayesian inference is the de-
facto standard for traditional settings, it actually performs
worse than majority vote in the presence of malicious par-
ties. We also analyze the impact of ringers [16].

Preliminaries. Suppose that problem Π has t possible
answers, denoted by the numbers 1 through t. Further-
more let P be a discrete random variable whose value is
equal to the actual answer. Let πi

def
= Pr[P = i] and as-

sume that we know πi for 1 ≤ i ≤ t. Suppose Π is looked
at by s different clients C1, . . . , Cs, and and let Ci ∈ [1, t]
denote a discrete random variable representing the answer
provided by Ci (for 1 ≤ i ≤ s). Let ~C = (C1, . . . , Cs). Let
pi = Pr[Ci is correct], 1 ≤ i ≤ s. Now, for a problem Π and a
client Ci, we define Xi to be 0 if Ci gave the incorrect answer
on Π and 1 otherwise. Moreover, suppose that Ci actually
gave answer αi. Let ~α = (α1, . . . , αs). We further assume
that these responses are independent of each other.7 We
can actually model independence by conservatively assum-
ing that adversaries give the wrong answer with probability
1.

Majority Vote (with Adversaries). We now ana-
lyze the reliability of a majority vote strategy for combining
answers. We use the simplified Chernoff-Hoeffding bound
presented in [19].

Theorem 1. Let p
def
= 1

n
· ∑n

i=1 pi. Then, the majority

vote strategy fails with probability at most e−np(1−1/2p)2/2.

Proof sketch: This follows from a direct application of the
Chernoff-Hoeffding bound: if X1, . . . , Xn are outcomes of
independent Bernoulli trials where Pr[Xi = 1] = pi (1 ≤ i ≤
n), then for 0 < δ ≤ 1, Pr[X < (1− δ) · µ] < e−µδ2/2, where
X =

∑n
i=1 Xi and µ = E[X] ( =

∑n
i=1 pi). Now,

Pr[Xi = 1] = Pr[ci is correct] = pi.

Also, µ − E[X] = np. The result follows from setting δ =
1/2.

Now, observe that for p > 1/2, the probability of an in-
correct answer decreases exponentially in n. Suppose there
are h honest parties and the honest parties have an aver-
age probability ph of providing the correct answers. Let us
also conservatively estimate that malicious parties answer
incorrectly with probability 1. Then, to maintain the expo-
nentially decreasing property, we require that h > n/(2ph).
As ph approaches 1, we require that the majority be hon-
est. The honest majority requirement is not unreasonable,
and is typical in the secure general multiparty computation
literature [14].8 Note that in the case of human computa-
tion problems, we expect honest parties to provide answers

7In the presence of a malicious adversary, this may not
be true since the adversary might try to control several
clients; however, if in the worst case, malicious adversaries
get clients under their control to provide only incorrect an-
swers, then the answers are technically independent.
8Of course secure general multiparty computation protocols
only require that active adversaries be in the minority; these
protocols can usually tolerate even more passive (i.e., honest
but curious) adversaries.

with probability very close to 1 (since such problems are
usually very easy for humans, but much more difficult for
machines); therefore not much more than an honest ma-
jority is required. Also note that if at least two-thirds of
the clients are honest, then the probability with which these
clients must supply correct answers only has to be above 3/4.
Now, if we solve for δ as function of ε in the Chernoff-Bound

equation, we find that having a p ·
(
1−

√
(2 ln 1/ε)/(np)

)

portion of the votes guarantees that the probability of a
majority vote failing is at most ε.

Bayesian Inference (with Adversaries). Bayesian in-
ference is a standard method for combining classifiers – in
this case, the individual clients are “classifiers” or experts.
We can use it to estimate argmaxj∈[1,t] Pr[P = j| ~C = ~α].
Set ρij equal to pi, if Ci = j, and 1 − pi otherwise. Then,
the Bayesian likelihood probability is computed as follows:

Pr[P = j | ~C = ~α] =
Pr[ ~C = ~α | P = j] · πj∑t

k=1(Pr[ ~C = ~α | P = k] · πk)

=
πj∑t

k=1((
∏s

i=1 ρik) · πk)

This follows since Pr[ ~C = ~α|P = j] =
∏s

i=1 ρij . Now con-
sider when classifiers are malicious; i.e., clients deliberately
give wrong answers. We are unaware of any previous work
in this setting. This may be especially devastating if the ma-
licious clients have hitherto performed well, and thus given
us reason to believe in them. We assume that the number
of possible answers t is 2. Consider the standard Bayesian
formula for determining if the answer to a problem Π is 1:

Pr[P = 1 | ~α] =
Pr[~α | P = 1] · π1

Pr[~α | P = 1] · π1 + Pr[~α | P = 2] · π2
(1)

Suppose that P is indeed 1, and that we have m malicious
parties and h honest parties. For simplicity, suppose that
the malicious parties trick us into thinking that they give
a correct answer with probability pm (e.g., they might per-
form well initially, then deviate; alternately, star performers
might be sought out and bribed to encourage cheating). Let
ph denote the probability with which the honest parties are
correct. Finally, suppose that among the h honest parties,
hr give the right answer, and hw mistakenly give the wrong
answer. We are interested in the situation when eqn. 1 is
greater than 1/2 (i.e., D can determine the correct answer
despite the presence of malicious parties):

phr
h (1− ph)hw (1− pm)m · π1

phr
h (1− ph)hw (1− pm)mπ1 + (1− ph)hr phw

h pm
mπ2

> 1/2

⇐⇒
(

ph

1− ph

)∆h

>

(
pm

1− pm

)m
π2

π1
,

where ∆h
def
= hr − hw. If we assume π2 ≥ π1,

9 then a
sufficient condition for security is:

∆h

m
>

log(pm) + log(1− pm)

log(ph) + log(1− ph)
(2)

If pm = ph (in which case for π1 = π2, Bayesian classification
of a binary value is equivalent to standard majority vote),

9Note that this is the more conservative estimate; if π1 > π2,
then the we are in a situation where the more likely prior
is correct – in which case fewer honest clients are needed to
derive the correct outcome.



then the security condition is reduced to hr > m+hw, which
is consistent with our intuition that if everyone performs
identically up to now, then we need an honest majority.
The expected value of hw is (1 − p)h, so if ph is high, then
with high probability, hw is small, in which case a little more
than an honest majority is sufficient for security. We now
analyze eqn. 2 to better reason about it. Assume that pm

is close to 1. We wish to consider the less desirable case
that pm > ph. For a small real number δ ≪ 1, and a real
number k > 1, we can denote:

pm = 1− δ and ph = 1− kδ ≈ (1− δ)k = pk
m.

Then, the right hand side of eqn. 2 reduces to:

log(pm) + log(1− pm)

log(ph) + log(1− ph)
≈ log(pm) + log(δ)

k log(pm) + log(kδ)

≈ log δ

log k + log δ
,

which follows since pm is close to 1, making log(pm) ≈ 0.
Now, let ρ = ∆h/m denote the ratio of honest and correct
clients to dishonest clients. Then, a sufficient condition for
security is: kρ = δ1−ρ. For ρ = 2 (i.e., a two-thirds ma-

jority), we get k =
√

1/δ. If, for example, δ = 0.01, then
k = 0.1. This yields pm = 0.99 and ph = 0.9. That is, even if
the malicious parties have thus far outperformed the honest
parties by 99% to 90%, a two-thirds majority of honest and
correct clients is sufficient for obtaining the right answer.
This makes intuitive sense since receiving an answer from
one person who is right 99% of the time is as useful as receiv-
ing two (identical) answers from two independent sources
who are right 90% of the time; i.e., 1 − (1 − 0.9)2 = 0.99.
Interestingly, from this one can see that the majority vote
strategy outperforms Bayesian inference. In particular a ma-
jority vote strategy requires a two-thirds honest majority to
be correct with probability greater than 0.75 rather than 0.9
(and the likelihood of an error goes down exponentially in
the number of users asked). In hindsight, it is not surprising
that majority vote can outperform Bayesian inference in the
presence of malicious parties. After all, if malicious parties
have performed well up to a certain point, then their vote
may be more heavily weighted in the Bayesian case, whereas
majority vote makes no such assumptions.

Ringers. One way to mitigate the risk of cheaters is to use
ringers as suggested by Golle-Mironov [16], who considered
distributed computing with payout for inverting a one-way
function. Ringers are questions to which the answer is al-
ready known. Including them allows us to determine if a
(previously cooperating) client decided to defect (e.g., he
suddenly starts using a computer program to reap a payout
with little work). Ringers are a more natural fit for tra-
ditional distributed computing tasks since answers are well
defined – if a computer is wrong, then it is cheating. In
DHC, answers are not always clear cut, and an honest user
may simply be wrong on occasion. Moreover, it’s not clear
how one can cheaply design DHC ringers (as we discuss in
Section 5). Nonetheless, suppose R ringers are included in
a DHC problem for client C. As before, Xi is an indicator
variable for whether C gives the correct answer on problem
i. Now, suppose that we estimate E[Xi] = pi based on C’s

past performance, and let p = (
∑R

i=1 pi)/R. Then, we are

interested in

Pr[p−R−1
R∑

i=1

Xi > ε],

for ε > 0. Setting δ = ε/p, and massaging the equation al-

lows us to bound this expression by e−Rε2/2p via a straight-
forward application of the Chernoff-Hoeffding bound. The
distributor can observe an ε from the actual computation,

and compute e−Rε2/2p; if it is below some threshold, then
we can flag the client as a potential cheater, and discount
his contribution. For a typical user who behaves honestly
up until a certain point, we expect p to be very close to 1.
Therefore, even a small deviation is unlikely and suggests
cheating.

4. DERIVING DESIGN PRINCIPLES FROM
BASIC DECISION THEORY

We use basic decision theory tools to derive design princi-
ples for an SDHC system. The analysis assumes that the
human clients are rational and either risk averse or risk
neutral, but not risk seeking.10 We can think of a DHC
process as a multi-party game.11 The actions constitute the
clients’ responses on the given problem, and the utility corre-
sponds to the benefit from taking the given action. Below we
use utility and expected utility interchangeably. If client Ci

makes an earnest attempt to answer the problem correctly,
we say that he cooperates; otherwise, we say that he defects.
Let Ti(Πt) (respectively Di(Π)) denote the reward that Ci

(i ∈ [1, n]) receives for cooperating (respectively defecting)
on problem Πt issued at time t. Then, we are interested in
ensuring that E[Ti(Π)]−E[Di(Π)] > 0. We let Ai denote a
function that computes Ci’s ability (where ability is defined
in some sensible way, based on past performance); this func-
tion takes as input a history H corresponding to the answers
given by all the clients on the various problems. For a given
problem, we have a budget B corresponding to how much
can be paid out (in terms of money or other services) for an-
swers. We have a payment function P(A(Hi), Π,B), known
to all Ci, that computes the amount paid to Ci for a given
answer. We only consider the payment function in situations
where Ci provided what is believed to be the correct answer.
When it is clear from context, we will drop the arguments
and subscripts associated with T ,D,P. Now, a simple first
approximation of the expected gain from cooperation versus
defection E[Ti(Π)]−E[Di(Π)] is:

P(Ai, Π,B) · pi,Π

+
∑
τ>t

E[Ti(Πτ )]−E[Ti(Πτ ) | H = H ′]

+ p ·R− P, (3)

where H ′ is an alternate history in which Ci defects on prob-
lem Π, R denotes the balance in Ci’s account, p denotes the

10Of course, it’s conceivable that clients may be irrational
or risk-seeking. This is immaterial for our purposes since
our goal is merely to derive design principles to deter cheat-
ing/defection for at least the rational users.

11In a technical game-theoretic sense, however, the model in
our exposition is under-specified since we have not demon-
strated an equilibrium – however, this is not a limitation
since our present goal is merely to derive design principles
rather than a prediction or a preference for a particular
strategy.



probability that Ci gets caught, and P denotes what Ci might
gain from cheating. This formulation captures:

1. the expected reward P(Ai, Π,B, κ) · pi,Π for answering
Π correctly (with probability pi,Π), and

2. the incremental benefit
∑

τ>t E[Ti(Πτ )]−E[Ti(Πτ )|H =
H ′] associated with future payments since these are a
function of A(Hi) which would be modified if Ci de-
cided to defect.

Of course, there may be some ancillary benefit for answer-
ing correctly; for simplicity, we ignore that in the analysis.
Note that we implicitly assume that if Ci cheats, then it has
provided an incorrect answer, in which case D pays nothing
to Ci. Moreover, if Ci is caught cheating, then it is kicked
out and it loses whatever balance has been accumulated.
Now, eqn. 3 is a simple approximation. Yet, it provides in-
sight into SDHC system design. We would like eqn. 3 to
be greater than 0, and there are mechanisms to make this
more likely. First, we can control the incremental benefit∑

τ>t E[Ti(Πτ )]−E[Ti(Πτ ) | H = H ′] in eqn. 3 through two
measures (which are valid regardless of which mechanism –
majority vote or Bayesian inference – one uses to combine
answers):

1. Payout should be an increasing function of a client’s
ability. This increases the incremental benefit, which
increases E[Ti(Π)], and thereby discourages defection.

2. We should penalize the ability heavily for a mistake
and offer only a smaller increase in ability for correct
answers. Therefore, if a client gives an incorrect an-
swer, it will take longer to get its ability back to where
it was before this answer was given. This also increases
the incremental benefit, which increases E[Ti(Π)] and
discourages defection.

Additionally, we can increase R by requiring that Ci main-
tains a minimum reserve. Finally, we can find ways to in-
crease p or limit P . Naturally, Ci’s gain from cheating may
not be easily computed, and it could be situation specific.
However, in some cases, we may be able to estimate when
P could be large; e.g., in a facial recognition problem from
an automated check cashing application, if a large check
is to be cashed, then E[Di(Π)] could be substantial if the
client is in cohoots with the check casher. In such cases, the
distributor can take extra measures to mitigate the risks as-
sociated with defecting; e.g., the problem could be given to
more participants. We also note that P itself represents an
“expected” value in the sense that Ci is less likely to bene-
fit from cheating if it was unable to actually sway the final
outcome. This suggests making it hard for any single client
to have “swaying power” which cements the argument made
in the previous section that majority vote mechanisms may
be preferable to Bayesian inference in the presence of lurk-
ing adversaries. Of course, we may not want to discount
weighted schemes, such as Bayesian inference, since they
are better able to extract the full skill set of problem solv-
ing clients. However, if we use a weighted scheme, then it
makes sense to require higher minimum balances for peo-
ple with more weight (i.e., people with higher ratings) since
they are in a better position to sway the outcome.

To recap, our simplified calculations suggest several de-
sign principles: directly relate payout to the client’s ability;

decrease ability substantially for incorrect answers, and in-
crease it slowly for correct ones; required Ci to maintain a
minimum reserve (possibly based on his rating); and finally,
take extra measures to mitigate risk for large P .

5. OPEN AREAS
Because DHC seems relatively untapped, our goal was to

informally introduce it, provide some motivating examples,
and suggest ideas for designing and analyzing such systems.
To further convince the reader that this area suggests a rich
set of problems, we provide some sample open problems ar-
eas which we hope will inspire future work on this topic.

Frameworks. Outside of what we presented, what other
frameworks for an SDHC system are possible? How can we
evaluate and compare these frameworks? What tradeoffs ex-
ist between various criteria? Can we optimize frameworks
for specific applications? For example, rather than having a
central problem broker, it may make sense to distribute this
functionality. This may make sense if an application needs
to run over a (truly) P2P network or over a multi-hop ad hoc
network, neither of which are especially amenable to central-
ized control. These networks may be more appropriate for
the spam prevention via collaborative filtering example we
described in the Introduction.

Problem Space. Our analysis considered the straw-man
case of easily expressible problems with one correct answer.
But, many problems fall outside this category; e.g., in text
translation, there may be several equally acceptable answers.
How can we handle such problems? One possibility is via
two-phase problem scheduling. The first phase solicits an-
swers from different parties and the second phase votes on
these answers. We might have to use plurality vote instead
of majority vote for determining an answer; however, we
may still want to reward clients for reasonable (albeit not
the most popular) answers. So, some questions are: how
many “votes” are needed for a reliable answer, how should
the votes be aggregated, and how do we structure payouts?
For the second item, we encounter Arrow’s impossibility re-
sult – basically, that for two or more voters with three or
more choices, there is no social choice function that aggre-
gates the votes fairly and consistently – but we may still
hope for a “good” (non-ideal) voting method [4].

Problems like text translation pose another challenge. In
particular, they may be “too big” for one person to tackle
in a short time, especially if the piece being translated is
long. On the other hand, it is not clear how to break this
problem down since translation is context dependent; e.g.,
it’s not sufficient to give each client one sentence to trans-
late since the translation of one sentence may depend on
the contents of another one. Perhaps one can attempt a so-
lution in which each user is given a different piece of text,
but with some overlap. In general, how can one design al-
gorithms to solve problems knowing that the algorithm can
receive human aid (and what other kinds of “AI-complete”
problems can we solve using DHC)? Starting with the DHC
paradigm in mind might make the task easier; e.g., it seems
less complex to construct a DHC system for identifying the
parts of speech for various words in a sentence as this is a
discrete problem. With such information at its disposal, an
algorithm for another natural language processing task (e.g.,
speech recognition, translation, etc.) might produce answers
more reliably. Along the same lines, one can first try to solve



a problem computationally, and use human feedback to cor-
rect errors; e.g., the distributed proofreader’s approach of
first using OCR to convert an image into text, and then
having proofreaders edit the resulting text [10].

Improving Reliability. There are a number of open is-
sues whose resolution can yield more reliable DHC systems.
For example, can we introduce a notion of “confidence”?
Here clients can not only indicate what they believe the cor-
rect answers to be, but also how confident they are in their
belief. Over time, one can even correlate this confidence
to how a given user performed after making similar judge-
ments. Along the same lines, can we find a way to determine
problem difficulty and use that to schedule the problem ap-
propriately? One possibility is to give the problem to a few
clients, and observe the extent to which the answers deviate
from a unanimous vote. The more they do, the more likely
the problem is hard (or that there are a number of cheaters).
Similarly, how should we analyze the received answers given
that they may not be independent (e.g., if some type of collu-
sion is involved)? Certainly, Chernoff-Hoeffding bounds no
longer apply for correlated random variables. Perhaps one
can try to use a variant of the Chernoff-Hoeffding bound
that permits limited dependence [24].

All of these questions are part of a more generic question:
how can we better determine correctness? While majority
vote is beneficial in certain settings, perhaps there are bet-
ter things one can do. For example, work on self-checking
/ correcting functions is nice for crisp mathematical prob-
lems, such as determining whether a function is linear (given
a faulty oracle) [6] [7]. Can a similar tactic work for hu-
man computation problems? Along the same lines, there
are some problem classes (such as producing a witness for
membership of an element in an NP-hard language) where
finding the answer is (presumably) difficult, but verifying
correctness is very simple. Perhaps one can achieve some-
thing similar for specific classes of AI-complete problems.

Improving Security. This paper suggested two mecha-
nisms for catching cheaters. The first is to calculate when
the distribution of C’s given answers and the correct answers
are statistically “far” apart. Here “far” might be measured
relative to C’s overall performance. The second is to incor-
porate ringers (this can be viewed as a special instance of
the first approach). What other mechanisms exist for catch-
ing cheaters? The mechanisms we suggested do not distin-
guish between honest human error and malicious behavior.
Along the same lines, how can one build a reputation sys-
tem for this problem? From a security perspective, this is
tricky since one has to be careful of attacks from people who
“build” good reputations and then try to exploit this later
for malicious gain. With reference to ringers, how can one
efficiently design DHC ringers? Simply recycling old prob-
lems can result in replay attacks, but generating new ringers
from scratch has its own problems; namely, ringer genera-
tion by (trusted) humans might be expensive and automated
ringer generation by a computer may be challenging since
we do not want another computer to be able to recognize a
ringer.

A related problem is how we can achieve privacy. In par-
ticular, the data provided to a specific user may be confiden-
tial (e.g., a problem involving the transcription of medical
records). One natural way to “mitigate” this problem is
by only distributing sensitive data to a small set of (semi-

trusted) individuals. But, this solution is not satisfying since
it requires the involvement of additional trusted parties.

Economics and Motivations. The economics of DHC
seems to require that clients be compensated far less then
what they ordinarily would if they were “in-house” employ-
ees. This may primarily be due to the increased cost of as-
signing a problem to multiple entities when the purpose is to
catch dishonest clients. Redundant problem assignment for
the purposes of catching dishonest clients is different from
adding redundancy to catch inaccurate responses from hon-
est clients. On the other hand, differences in global labor
rates may help make the DHC approach more economical
than an in-house approach.

Another open question is whether the trustworthiness and
reliability of online clients will roughly match that of one’s
own “in-house” employees over time. Our intuition is that
over time the reliability and trustworthiness of an online
client will approximate that of an in-house employee. How-
ever, an employee who performs a malicious act at the job-
site might be easily caught whereas an online client might
operate beyond the reach of prosecution. What techniques
can we use to make the threat of getting caught similar to
that in a face-to-face employment scenario? Finally, what
alternative techniques exist to incentivize clients to do more
work without additional compensation? One approach may
be to create irrational motivations – e.g., the chance of win-
ning a lottery might incentivize clients even though the ex-
pected value of winning may be small compared to the hu-
man computation required to obtain a “ticket,” or the prob-
lems may be packaged in a way that gives clients entertain-
ment value (as in the ESP Game).

Designing Interfaces. There are two types of interfaces
in question: human-computer interfaces and programming
language interfaces. What kinds of human-computer inter-
faces should one design for enabling humans to solve prob-
lems most effectively? In the simplest case, we may imagine
that a human is sitting at a desktop. However, we may also
want to consider a number of other settings such as solving
problems using a mobile phone, or solving problems while
driving to work. The interface may not necessarily be a com-
puter screen, but instead the process could be voice driven.
Also, how would one design programming languages or APIs
if part of the computation is being performed by a human?
One may even desire a meta-language for incorporating such
computation.

6. CONCLUSION
We did an initial exploration of what appears to be an

untapped line of research on secure distributed human com-
putation. The general paradigm involves using a large-scale
distribution mechanism, such as the Internet, to farm prob-
lems out to humans. Our motivation is the class of “AI-
complete” problems which computers have a hard time solv-
ing, but which pose little difficulty for humans. We noted
several real-world scenarios employing this paradigm and
some interesting implications for Internet commerce and
B24b.

Our paper put forth a basic framework and architecture
for such systems. We then used simple tools from probability
theory and game theory to analyze reliability and derive de-
sign principles. Our probabilistic analysis showed how many
dishonest parties the scheme could tolerate, and described



how you might want to catch them using ringers. We also
observed that while a tool like Bayesian inference is the one
most commonly used for combining answers, it can perform
worse than a simple majority vote, especially in the pres-
ence of adversaries. Our game-theoretic analysis suggested
four design principles for mitigating the risk of defection by
malicious parties: directly relate payout to a client’s rat-
ing; decrease rating substantially for incorrect answers, and
increment it slowly for correct ones; require clients to main-
tain a reserve; and finally, take extra measures when the
utility for defection is especially high. We also mentioned
numerous open problems in areas such as cryptography, al-
gorithms, human-computer interaction, and programming
language / API design. This is just a starting point. We
believe that this notion of distributed human computation
will spawn numerous areas of research interest.
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