
Abstract—Innovative applications become feasible with solu-
tions for remotely controlling mobile devices over the air. To
realize these applications, efficient technologies for transferring
the devices’ user interfaces are required. Existing remote user
interface (UI) solutions however were not built for the mobile
world. Rich, touchable user interfaces on battery-powered devic-
es combined with low available bandwidth and high network
latency will highlight their problems. We propose a new solution
called RemoteUI, which works with abstract UI descriptions and
their remote replication. Experiment results show that RemoteUI
significantly outperforms the existing popular Virtual Network
Computing (VNC) approach, and it is highly efficient in terms of
required bandwidth when compared with VNC.

I. INTRODUCTION
Today we are facing a growing mobile computing market,

and solutions for remote control of mobile equipment such as
smartphones or other consumer electronic devices introduce
numerous promising applications. Fig. 1 shows such an appli-
cation in the car integration industry. The driver controls
his/her sophisticated smartphone via the car’s onboard “thin
client” computer with larger screen. The latter mirrors the mo-
bile phone’s user interface, transmitted via Bluetooth or WiFi,
and allows controlling it with touch gestures. Whilst providing
a safer and more convenient way for the driver
to enjoy the applications running in the mobile

phone, the thin client computer is affordable since no expen-
sive cellular communication facilities or other smart function-
ality is required.

The aim of our RemoteUI project is to develop technologies
for realizing a high-performance remote user interface system
and protocol for mobile scenarios. In these scenarios special
conditions like low available bandwidth, high network latency
and low energy availability exist. Under these conditions ex-
isting protocols do not perform well enough because they were
designed for mouse and keyboard based input methods and
wired networks. In this paper we prove the concept that a mo-
bility-optimized protocol can outperform an existing solution
regarding bandwidth requirements while still transferring the
rich user interfaces of modern smartphone applications.

Currently only remote UI server implementations based on
Virtual Network Computing (VNC) [1] are available for all
major mobile platforms. VNC uses the Remote Framebuffer
Protocol [2] to transmit the server’s frame buffer content as
pixel information to the client. For the in-car scenario shown
above the CE4A consortium specified a VNC-based solution
called Terminal Mode [3]. In this context, VNC is the most
reasonable technology to compare with our implementation.

II. THE REMOTEUI SYSTEM
The RemoteUI system is designed to optimally fit into the

mobile world. As a first approach for reducing the required
bandwidth of the system, we use view descriptions and graph-
ic primitives to describe and transfer the user interface. These
graphical objects build the so-called UI-tree, which is replicat-
ed between server and client. The replication process typically
starts with the initial transfer of the complete tree, e.g. when a
new screen is opened on the server. Each node in the tree is
carrying a unique ID with which server- and client-initiated
manipulations are realized. Fig. 2 exemplifies the process of
remote tree manipulation. The left tree is transformed into the
right by replacing text and image information in different

nodes. To accomplish this, the IDs and the corresponding at-
tributes of the nodes are addressed in the commands.

Additionally the commands carry priority information. The
server transmits objects with high priority first, which inten-
tionally causes a delay for lower prioritized objects especially
in low bandwidth scenarios. Because the client sequentially
processes received objects this results in an incremental ren-
dering of the remote user interface. The aim of this technology
is to increase the speed with which the system reacts on user
input. Part of our research is the development of algorithms to
determine the optimal priority from input parameters such as
visibility, data amount, operational importance and available
bandwidth. An example for a possible prioritization is shown
in Fig. 3.

RemoteUI: A High-Performance Remote User Interface System
for Mobile Consumer Electronic Devices

Daniel Thommes*†, Student Member, IEEE, Qi Wang*, Member, IEEE,
Ansgar Gerlicher†, Member, IEEE, Christos Grecos*, Senior Member, IEEE

*University of the West of Scotland, Paisley, UK and †Stuttgart Media University, Germany

LinearLayout

TextView1
id=1

text="Daniel Thommes"

ImageView1

id=2

width=200

height=200

image=

Button1
id=3

text="Call"

Button2
id=4

text="Send Text Message"

Button3
id=5

text="Cancel"

LinearLayout

TextView1
id=1

text="Bruce Willis"

ImageView1

id=2

width=200

height=200

image=

Button1
id=3

text="Call"

Button2
id=4

text="Send Text Message"

Button3
id=5

text="Cancel"

Commands

priority=1

SetData
id=1

text="Bruce Willis"

SetData

id=2

image=@id2

width=200

Commands

priority=2

SetData

id=2

image=

Fig. 2. UI-tree and tree manipulation

Fig. 1. In-car-remote scenario

!"#$%&$'

()*+,%-.-()/#01-.-2#3%

45-67)89&:-;7&<&%&"#1

2#3%,7#-.-;&3#0-67)89&:1

=$&<)%&+$-5#1:7&8%&+$1

!"#$%"&'()*$%$+$,

=,>&+

?&>#+

@)1#-()*#7

A8#:&)0-;,78+1#-
()*#71

B8%&+$)0
()*#71

;7
&+
7&
%*

Fig. 3. Example of prioritization in RemoteUI's hierarchical protocol

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS
We have developed a RemoteUI framework for the Android

platform. Applications that shall be remotely controlled must
be linked and compiled with the RemoteUI App Library. The-
se “remotable” applications on startup locally connect to the
RemoteUI Server, which handles all network connections.
Remotable applications give the RemoteUI Server access to
their user interfaces. The system this way works without root
privileges. The RemoteUI Client application is used to connect
via network to a RemoteUI Server and is able to control its
remotable applications. For the serialization of the UI-tree and
manipulation commands, we use the Hessian 1.0 protocol [4],
which is platform independent and produces very compact
binary representations.

To demonstrate the advantages of the UI-tree approach over
existing solutions, we carried out an experiment comparing the
required bandwidth of the RemoteUI protocol with that of
VNC. For this experiment, we implemented two exemplary
Android applications: a simple calculator application and a list
demo application displaying a list of 50 items. We then simul-
taneously connected to the device over WiFi using RemoteUI
and VNC. We executed the test applications and captured the
data traffic between servers and clients.

Both applications were started as part of the experiment
causing the initial transfer of their UIs to the connected clients.
The calculator was used to carry out a simple equation, whilst
the list demo application was used to scroll down the list of
items. Both actions were taken on the serving device to ex-
clude traffic from touch events on one of the clients only.

The results of the bandwidth consumption and data meas-
urements are shown in Fig. 4, Fig. 5 and Table 1. The experi-
ments show that the RemoteUI protocol has significantly low-
er bandwidth requirements than VNC does. One reason for
this is the usage of the UI-tree description and tree manipula-
tion mechanisms instead of transferring pixel information.
Additionally the server-initiated updates used by RemoteUI
are a superior approach compared with VNC’s request-
response mechanism that caused traffic during our experi-
ments even if there were no server side updates.

While Fig. 4 shows small peaks in the RemoteUI curve that
result from the calculator’s text field being updated when en-
tering the equation (seconds 15-40), Fig. 5 only shows one
peak produced by the initial transfer of the list view. This can
be explained with RemoteUI’s smart handling of lists. All
items, also the invisible ones, are transferred initially. Scroll-
ing down the list does not cause any network traffic and can

be executed independently on the client and server side. VNC
in contrast has to transmit many pixel data for this use case.

IV. CONCLUSION
We have presented a new system for remote user interfaces

specialized for mobile scenarios. We have shown that the pro-
posed RemoteUI system outperforms the existing solution
VNC substantially. The experiments show that our protocol
used only 0.78-1.3% of VNC’s bandwidth.

In our future work, we will continue with the implementa-
tion of prioritization, caching and prefetching mechanisms.
The latency problem will be addressed by introducing special
client-only view variants for a better usability in high-latency
scenarios. We also assume that there is a relation between re-
quired bandwidth and energy consumption. Analyzing this
relationship will also be a part of our future work.

REFERENCES
[1] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual net-

work computing”, IEEE Internet Comput., vol. 2, no. 1, pp. 33-38, 2002.
[2] T. Richardson and J. Levine, “The Remote Framebuffer Protocol”, IETF

RFC 6143, Mar 2011.
[3] Nokia Inc. and CE4A, “TerminalMode v1.0 Specification.” [Online].

Available: http://www.terminalmode.org/files/Zipped_Release.zip. [Ac-
cessed: 26-Jul-2011].

[4] Caucho Technology, Inc., “Hessian 1.0.2 Specification.” [Online].
Available: http://hessian.caucho.com/doc/hessian-1.0-spec.xtp. [Acces-
sed: 25-Jul-2011].

Picture credits:
• Fig. 1: Car dashboard W123 230 Automatic from 1977, first series, Wi-

kipedia user HLW, licensed under CC-BY 3.0
• Fig. 2: Bruce Willis at a premiere in London, Caroline Bonarde Ucci,

licensed under CC-BY 3.0

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

B
an

dw
id

th
 [k

bp
s]

t [s]

VNC
RemoteUI

Fig. 4. Bandwidth comparison for the calculator application

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

B
an

dw
id

th
 [k

bp
s]

t [s]

VNC
RemoteUI

Fig. 5. Bandwidth comparison for the list demo application

TABLE 1 . ABSOLUTE DATA REQUIREMENTS OF VNC AND REMOTEUI

Experiment Duration
[s]

VNC data
[bytes]

RemoteUI
data [bytes]

RemoteUI /
VNC ratio

Calculator 42.08 1,503,311 11,814 0.79%
List demo 51.56 1,047,687 13,265 1.30%

