
An Overview of Lutess
A Specification-based Tool for Testing Synchronous Software�

L. du Bousquet N. Zuanon

LSR-IMAG, BP 72, 38402 Saint Martin d’Hères, France

E-mail:fldubousq, zuanong@imag.fr
Abstract

Test data generation and test execution are both time-
consuming activities when done manually. Automated test-
ing methods promise to save a great deal of human effort.
This especially applies to reactive programs which have
complex behaviors over time and which require long test
sequences.

In this article, we present Lutess, a testing environment
for synchronous reactive software. Lutess produces auto-
matically and dynamically test data with respect to some
environment constraints of the program under test. More-
over, it allows to trace the test execution and spot the situa-
tions where the program violates its properties.

Lutess offers several specification-based testing meth-
ods. They aim at simulating more realistic environment be-
haviors, producing relevant data to test thoroughly a given
property or driving the program under test into interesting
situations. To produce the test data, the methods use dif-
ferent types of guides: statistical distribution of the input
generation, properties, or behavioral patterns.

Lutess proved to be powerful and easy to use in indus-
trial case studies. Lutess won the Best Tool Award of the
first Feature Interaction Detection Contest. The tool is de-
scribed hereafter from a practical point of view.

1 Introduction

A reactive system must continually respond to signals
from its environment, and must satisfy temporal constraints
so that it can capture all the external events of concern.

Synchronous programs are a sub-class of reactive soft-
ware programs. The synchrony hypothesis [2] states that ev-
ery reaction of the software application to external eventsis
theoretically instantaneous (actually, fast enough to guaran-
tee that the environment remains invariant during the com-
putation of the reaction).

Reactive and/or synchronous systems are often safety-
critical and must be thoroughly validated to ensure that they
meet their requirements. Since formal verification is often
impracticable because of lack of memory and/or time, alter-
native solutions such as testing are needed.

Several points make synchronous system testing specific.
First, since the validation of a reactive system requires that
the latter does maintain its relation with its environment
over long sequences of exchanges, the number of input-
output relations (test cases) to be managed is really large.
These relations can’t be computed by hand, since the reac-
tive system output usually depends on the system history
(and not only on its current input). Besides, the system
specifications can be only partial. It is therefore very dif-
ficult to calculate the input-output relations needed to eval-
uate the test results. These facts discard the choice of a
testing process based on human involvement. Thus, testing
should be automated in order to make it easier, improve its
quality and lower its cost.

We have developed Lutess, a testing environment that
supports highly automated testing of synchronous reactive
systems [14]. Lutess offers different testing methods in or-
der to fit the tester needs as well as possible. Indeed, we
are convinced that a single testing method cannot meet all
the needs of a tester. For instance, some methods produce
test data so that the most used operations would receive
the most testing [13], others produce data randomly and/or
based upon an input partition [11]... The foundations of
Lutess (the formal description of its testing methods) can
be found in [8].

The aim of this paper is to provide an overview of the
tool and to show how it is easy to use. The usefulness of
each method is illustrated with a single example. This ex-
ample concerns the validation of a telecommunication fea-
ture specification, namely the Call Forwarding No Reply.

The paper is organized as follows. Section 2 gives a brief
description of the principles of our tool Lutess. Section 3
provides an example of synchronous program. In sections 4
and 5, we detail the test data generation methods provided

1

by our tool. Section 6 is devoted to the implementation of
the tool. Section 7 explores the advantages, scope and limi-
tations of the tool. Section 8 introduces related work.

2 Lutess

2.1 Architectural overview

The validation process of reactive systems consists in
showing that the system under consideration satisfies its re-
quired properties, provided that its environment meets some
given requirements. An important point is that the valida-
tion is done under assumptions about the possible environ-
ment behaviors. When one is not concerned with the system
robustness, it makes no sense to take into account impossi-
ble environment behaviors. For example, it is physically
impossible for the user of a telephone to go on the hook
twice without going off the hook in between. When con-
sidering a telephony system, only sequences among which
“go off” et “go on” actions alternate are meaningful with
respect to testing.

Communication link Object provided by the user

test

verdict

LUTESS
oracle

dynamically produced input data

program output

system underdescription
Environment

input data
generator

collector
trace

Figure 1. Lutess

For this reason, Lutess requires three elements: thesys-
tem under test, itsenvironment descriptionand anoracle(as
shown in figure 1). Lutess constructs automatically the test
harness which builds a test data generator, links the gener-
ator, the system under test and the oracle, coordinates their
executions and records the sequences of input-output rela-
tions and the associated oracle verdicts (test sequences).

The test is operated on a single action-reaction cycle,
driven by the generator. The generator randomly selects an
input vector for the system under test and sends it to the
latter. The unit under test reacts with an output vector and
feeds back the generator with it. The generator proceeds by
producing a new input vector and the cycle is repeated. The
oracle observes the program inputs and outputs, and deter-
mines whether the software requirements are violated.

The test data generator is automatically built by Lut-
ess from an environment description written in Lustre1 [3].
This description is provided as a single syntactical unit,

1Lustre is both a synchronous programming language and a temporal
logic.

called atestnode[15]. Examples of environment descrip-
tion and oracle properties are given in section 3.

The unit under test and the oracle are both synchronous
executable programs with boolean inputs and outputs.
Optionally, they can be supplied as Lustre programs.

To begin the test data generation, one has to feed Lutess
with a probability seed, which is used to initialize a classi-
cal C random number generator. Keeping in mind that the
behavior of a synchronous program is deterministic, i.e. in
a given state, its response to a given input vector is always
the same, one can note that the use of such a generator al-
lows to reproduce any experiment, by using the same seed.
For a given program and a given environment description,
Lutess requires different seeds in order to produce different
test sequences.

Moreover, the user has to specify the number (n) and the
length (l) of the test sequences Lutess has to produce. The
process which produces then test sequences ofl values is
called atest run. During a test run, the program is reset in
its initial state at the beginning of each new test sequence
(while the random number generator is not).

Test data generation is not stopped when the oracle de-
tects an error. It is stopped when the last sequence of the
test run has been fully generated. This enables a same test
sequence to reveal several different errors.

Lutess includes a “trace collector” which provides 3
functions: a data recorder, a data translator and a data ana-
lyzer. The recorder saves the input, output and oracle data
(boolean values) into specific files. The translator displays
the boolean values in a textual mode (defined by the user).
This makes the manual trace analysis more comfortable
than the analysis of sequences of boolean vectors. The ana-
lyzer allows the user to replay a test sequence with different
oracles.

2.2 Lutess testing methods

During a test run, at each cycle (or step), the Lutess gen-
erator randomly selects an input vector for the system under
test. Basically, the input is selected using the environment
description (black-box testing), and assuming that the data
distribution is uniform. But the user can also define:� an input statistical (partial) distribution; the generator

will produce inputs according to the given distribution;� some (safety) properties; the generator will select
preferably inputs which potentially drive the system
under test toward those properties violation;� some scenarios (behavioral patterns); the generator
will select preferably inputs which follow the scenario.

These methods are described in sections 4 and 5.

3 Example

As an illustration of Lutess application, we consider an
executable specification of a telephony system offering the
Call Forwarding No Reply feature (CFNR)2. This feature
allows a subscriber to have his incoming calls redirected
when he does not answer within a given delay. The feature
is dynamically activated and deactivated. The number to
which calls are redirected is also dynamically set.

...

Telephony system executable specification

environment

Figure 2. Telephony System Model

The telephony system is modeled from the users’ view-
point. Its environment includes the physical telephones
which are linked to the system (figure 2). The system we
consider is composed of 4 users (calledA ,B,C,D).

System inputs (produced by the environment) are events
describing the actions performed on the phones : Oni, Offi,
Diali(j), CFoni(j), CFoffi, with i andj 2 fA ,B,C,Dg). The
event CFoni(j) indicates that useri requires the activation
of his CFNR feature to forward his calls towardsj; the event
CFoff(i) means that useri demands his CFNR feature to be
deactivated.

Outputs are signals which produce specific tones at the
terminal (such as Busy-Tone, Ringing-Tone, ...). Each
output signal identifies the state of the phone. In this
example, a phone has 7 states, which areidle (I), dialing
(D) waiting (W), alerting (A), talking (T), ringing (R), and
exception(E)3.

In order to perform the validation of this system, the hu-
man tester has to exhibit the environment description and
the system requirements (oracle properties).

Lustre [3] is a programming language for synchronous
programs, which is declarative and data-flow oriented. It
corresponds to a linear past temporal logic which offers
usual arithmetic, boolean and conditional operators and two
specific temporal operators :pre, the “previous” opera-
tor, and�> the “followed-by” operator. LetE and F be
two expressions of the same type denoting the sequences
(e0; e1; : : : ; en : : :) and (f0; f1; : : : ; fn : : :); pre(E) de-
notes the sequence (nil; e0; e1; : : : ; en�1 : : :) where nil

2This example is taken from a case study aiming at modeling feature
specifications from their ETSI descriptions [6].

3A phone is waiting when a numberhas been dialed and the connection
has not been established yet. It is alerting when the connection is estab-
lished but the party has not gone off the hook yet.

is an undefined value.E � > F denotes the sequence
(e0; f1; : : : ; fn : : :).

Lustre allows the specifier to define its own logi-
cal or temporal operators to express invariants. For
example, in this paper, we use the temporal operator
Once from to(A,B,C) to specify that property A must hold
at least once between the instants where B and C occur.

Environment description

1. At most one event can be produced at each instant of
time. The events beingOni, Offi, Diali(j), CFoni(j),
CFoffi, with i andj 2 fA ,B,C,Dg, this contraint is writ-
ten in Lustre as below:
(E1) #(OnA,OffA, DialA, ... ,CFoffD)
where # is the Lustre operator which is true when “at
most one element of the parameter list is true”.

2. A user can’t go off (resp. on) the hook twice without
going on (resp. off) the hook in between:
(E2) once from to(Oni, pre Offi, Offi) and
once from to(Offi, pre Oni, Oni).

3. A user can dial only if his telephone is in the stateDi-
aling, which is identified by theDialingTone:
(E3) Diali ==> DialingTonei

4. A user can (try to) activate and deactivate the CFNR
service only when his telephone emits thedialing tone:
(E4) (CFoni or CFoffi) ==> DialingTonei

The environment constraints E1, E2, E3, E4 have to be
inserted in a testnode.

A testnode is a description of the test data generator
characteristics. Hereafter is an example of a testnode.
As it can be noted, the testnode inputs (resp. outputs)
are the system’s outputs (resp. inputs). This should be
understood as “the generator receives the program outputs
as inputs, and generates (i.e. returns) input data for the
programs”. The use of local variables to express more
easily environment properties is possible.

testnodeEnvironment (o1, o2,.., om : program outputs)
returns (i1, i2,.., in : program inputs)

var l1, l2,.., lk : local variables;
let

environment(E1, E2, E3, E4);
tel

Oracle properties (system requirements)

As a preliminary definition, we say that the CFNR fea-
ture isinvokedfor a user, if the latter is a CFNR subscriber
which has activated this service, and if he/she does not an-
swer a call within the time delay.

1. A call will be forwarded if (1) the callee feature is in-
voked and (2) the maximum number of forwards is not
reached. This bound is a service provider option which
was set to 3 for our example.

2. A call can be forwarded only if the service has been
previously activated by the callee, and if the latter did
not deactivate the service in the meantime.

3. A forwarded call will be redirected to the last user
which has been designated by the subscriber.

Using Lustre, it is easy to build an oracle program from
these properties. First, one has to express each property
in Lustre. This can be easily done, by defining intermedi-
ary variables and by using Lustre classical operators. For
instance, for the last property, we defined a predicateLas-
tUser(x)that takes into account the last activation of the fea-
ture by userx:LastUser(x) = if CFon(x; y) then y else pre LastUser(x)
We then used this predicate to express the property:p3 = (CallForward(x; y) => LastUser(x) = y)
CallForward(x,y) is a predicate which is true whenever a
call forx is forwarded toy (x; y 2 fA;B;C;Dg). For sake
of simplicity, we don’t detail its definition.

Then, from the Lustre expressions of these properties,
sayp1; p2 andp3, we build a Lustre program. The inputs of
the latter are the program under test inputs and outputs. Its
unique output is a single boolean variable, whose value is
the conjunction of the oracle properties expressed in Lustre:

nodeOracle (programinputs; programoutputs)
returns (res : boolean)

let
res =p1 and p2 and p3 ;

tel

This Lustre program has then to be compiled to ob-
tain the executable oracle.

4 Random Testing by Environment Simula-
tion

4.1 Basic random specification testing

Test data are generated only with respect to the environ-
ment constraints (black-box testing). This is the weakest
test data selection criterion one can define for synchronous
software. The test data generation is performed in such
a manner that the data distribution is uniform. Table 1
gives an example of trace that Lutess has produced with this
method.

1: - - - - - - - - I I I I True
2: OffA - - - - - - - D I I I True
3: CFonA (D) - - - - - - E I I I True
4: - - - - - - - - E I I I True
5: - - - - - - OffD - E I I D True
6: - - - - - - DialD (D) E I I W True
7: - - - - OffC - - - E I D W True
8: - - - - CFonC (B) - - E I E E True
9: - - OffB - - - - - E D E E True
10: - - DialB (A) - - - - E W E E True
11: - - - - OnC - - - E W I E True
12: - - - - - - OnD - E E I I True
13: OnA - - - - - - - I E I I True
14: - - - - - - - - I E I I True
15: OffA - - - - - - - D E I I True
16: CFonA (C) - - - - - - E E I I True
17: - - OnB - - - - - E I I I True
18: - - OffB - - - - - E D I I True
19: - - CFonB (D) - - - - E E I I True
20: - - - - OffC - - - E E D I True
21: - - - - OnC - - - E E I I True
<a><------------------- b ----------------><--(c)--><d >

(a) step number;
(b) user actions (Offx,Onx, Dialx (y), CFonx(y), CFoffx; x; y 2 fA;B; C;Dg);
(c) Phone state (Idle, Dialing, Waiting, Alerting, Talking, Ringing, Exception);
(d) Oracle verdict (issued by the oracle defined in section 3).

Table 1. A trace generated by Lutess

Empirical observations

For complex systems, a uniform distribution is far from
the reality. Indeed, test data in table 1 show that some users’
phones stay off the hook for long periods of time in Excep-
tion state (i.e. after receiving a Busy Line indication), e.g.
user A between states 4 and 13. In reality, a user would
have quickly gone on the hook in such a situation. Simi-
larly, many generated behaviors consist in alternating going
off and on the hook, performing no action in between (user
C, step 20 and 21), which is not a common behavior. We
also noticed that, on the whole, every user tries to call him-
self/herself as often as any other user (user D, step 6) or to
activate the CFNR feature several times in a row (user A,
steps 3 and 16). In the real world, such behaviors rarely
occur, and are most of the time the result of wrong actions.

In order to test or analyze more realistic simulations, one
may want to specify its own statistical environment distri-
bution. With Lutess, this is possible thanks to conditional
probabilities that one can associate with program inputs.

4.2 More realistic random specification testing

Lutess offers facilities to define in the testnode a mul-
tiple probability distribution [17] in terms of conditional
probabilities associated with the unit under test input
variables [5]. The variables which have no associated
conditional probabilities are assumed to be uniformly
distributed. A conditional probability assignation defines,
for an input variable, its probability to be set to true
when a given condition is met. The conditions are Lustre
expressions. An algorithm is implemented in Lutess to

automatically translate a set of conditional probabilities
into an operational profile (and vice versa).

Let us try this method on our example. The conditional
probabilities are chosen in order to overcome the problems
exhibited by the previous empirical observations. For in-
stance, to decrease the time spent by one user’s phone in
the Exception state, one can specify that the probability to
go on the hook is high while the phone is in the Exception
state. hO�A; 0:9;preExceptionAi

Let c1; c2:::; cs be a list of conditional probabilities.
Similarly to the environment constraints, the conditional
probabilities have to be declared in the testnode, in the
following way:

testnodeEnvironment (o1, o2,.., om : program outputevents)
returns (i1, i2,.., in : program input events)

var l1, l2, : : : , lk : local variables;
let

environment(E1, E2, E3, E4);
proba(c1; c2; :::; cs);

tel

Empirical observations

Regarding the last unrealistic aspect mentioned in the
previous subsection, we defined about 60 conditional prob-
abilities (15 for each user). There are 5 possible actions for
each user, and approximately 3 conditional probabilities per
action. Indeed, an action may have different probabilities
depending on the phone states. For instance, the probability
to go on the hook is usually different in the states Exception,
Dialing and Talking.

5 Guided testing

A realistic environment simulation may not produce data
which test rare but important and interesting features of the
program. To overcome this problem, Lutess has two dif-
ferent methods which consist in testing in a more relevant
manner some given properties or to drive the program into
interesting situations. These methods produce data accord-
ing to two types of guides: (invariant) properties and behav-
ioral patterns.

5.1 Property-oriented testing

The property-oriented testing method is aimed at select-
ing test data which facilitate the detection of property vio-
lations. At each cycle, this method automatically generates
values which are relevant to test the considered properties.

We say that a input data is relevant to test a property,
when the program reaction is liable to cause an instanta-
neous failure with respect to this property. For instance,
let’s consider the simple propertyP : i) o, wherei (resp.o) is an input (resp. output) of the unit under test. Wheni
is false, the unit under test cannot falsifyP. Wheni is true,
the unit under test will falsifyP if it returns the value false
for o. Hence,i =true is relevant to testP.

Input values which are relevant to the considered
properties are favored over the values only associated with
the environment. But the random selection process is fair
enough to let those latter values be exercised. In Lutess,
the properties chosen to guide the generator (s1; s2:::; sz)
have to be defined with the environment description, in
the testnode. Conditional probabilities can also be used in
combination with this method.

testnodeEnvironment (o1, o2,.., om : program outputevents)
returns (i1, i2,.., in : program input events)

var l1, l2,.., lk : local variables;
let

environment(E1, E2, E3, E4);
proba(c1; c2; :::; cs);
safety(s1; s2; :::; sz);

tel

Empirical observations

One property of the telephony system is that the user’s
phone goes back to its idle state every time its user goes on
the hook. Driving the generation with such a property led
to favor the considered action, thus improving the tester’s
confidence in the system’s reaction to this input. However,
this resulted in every user tending to go on the hook as soon
as possible; thus, many more realistic behaviors are never
tested.

5.2 Behavioral Pattern-based Testing

As complexity grows, reasonable behaviors for the en-
vironment may reduce to a small part of all possible ones
with respect to the constraints. Some interesting featuresof
a system may not be tested efficiently since their observa-
tion may require sequences of actions which are too long
and complex to be randomly frequent.

The behavioral pattern-based method aims at guiding
further the input generation so that the most interesting se-
quences are produced. A behavioral pattern characterizes
those sequences by listing the actions to be produced, as
well as the conditions that should hold on the intervals be-
tween two successive actions (fig. 3). Regarding input data
generation, all sequences matching the pattern are favored
and get higher chance to occur. To that, desirable actions ap-
pearing in the pattern are preferred, while inputs that do not

satisfy interval conditions get lower chance to be chosen.
The generation method is usually invoked with environment
constrained test data. Patterns are stated using graphicalno-
tations; Lutess automatically translates them into Lustreex-
pressions.

In Lutess, the behavioral patterns have to be defined with
the environment description, in the testnode.

Empirical observations

To avoid loops in the forwarding, specifying the CFNR
feature requires that no more than 3 redirections are ever
performed on a single call in a row. When checking what
could happen in the case of more then 3 redirections, we
noticed that this situation had little chance to occur. On the
contrary, the use of a pattern has proved that it increases
the situation likelihood in shorter test sequences. Figure3
shows the graphical representation of such a pattern.

Lower conditions are interval conditions.
Upper conditions describe the sequence of actions to be produced.

CFon(B,C)CFon(A,B) CFon(C,A) Dial(D,A)

not CFoff(C)

not CFoff(A) and
not CFoff(B) and

not CFoff(A) not CFoff(A) and
not CFoff(B)

Figure 3. Example of a behavioral pattern

6 Tool implementation and validation

The tool code represents 26000 lines of C++. Lut-
ess has been used intensively during several case studies,
among which the “Feature Interaction Detection Contest”
held in association with the 5th Feature Interaction Work-
shop [7, 9]. The goal was to detect possible and unde-
sired interactions between twelve telecommunication ser-
vices. For this case study, the test process for each of the
78 configurations involved 10 to 20 sequences of 1000 to
10000 steps each. On the whole, each configuration has
been tested for around 1 million test cases. The Lutess tool
was run over 1500 times.

For this case study, we also considered applying a model-
checker Lesar [10] to evaluate the ability of verification
method to detect feature interactions [4]. Preliminary re-
sults show that the model-checker cannot deliver a result
in most of the 78 configurations, because of lack of time
and/or memory amount. On the contrary, Lutess always re-
turns a verdict.

The generator obtained by compiling the environment
constraints is coded using a symbolic notation in which the

states are represented by a set of variables, and the tran-
sitions by boolean functions. These functions are imple-
mented as a single Binary Decision Diagram (BDD) [1].
Building the BDD structure corresponding to a given en-
vironment is the most expensive part of the testing pro-
cess. In our experiments, environments included between
32 and 45 constraints, plus up to 8-step patterns or 40 con-
ditional probabilities. It was always possible to perform this
computation and to run the test on a Sparc Ultra-1 station
with 128 MB of memory. Maximum of required virtual
memory amounts to 100 MB. Though, as the number of
constraints describing the environment increases, the BDD
complexity rises and its generation lasts longer. For the less-
constrained environments that we produced, 6 seconds on
CPU were necessary, while the most-constrained environ-
ments required 33 minutes for the corresponding BDD to
be generated. As a comparison, a 1000 test run lasts 120
seconds once the BDD has been generated4. So, the more
the environment is constrained, the more relevant is the test
(since the whole test case is more realistic), but the longer
is the BDD generation.

Several�2 tests were performed in order to check that
the statistical methods produce data according to the dif-
ferent assumptions. Those assumptions are that the ba-
sic statistical method produces data in an equally-probable
way, and that the method guided with conditional probabil-
ities produces data with respect to the defined probabilities.
Those assumptions appear to be valid.

7 Advantages, scope and limitations

In this section, we summarize the advantages we see to
use Lutess. Then, we address the scope of the tool, and
finally, we explore some of its limitations.

7.1 Advantages

The three components required by Lutess (the system
under test, the environment description and the oracle) are
just connected to one another and not linked into a single ex-
ecutable code. The construction of the test harness doesn’t
take much time.

Lutess offers a unified framework for synchronous pro-
gram testing. Basically, a generator produces test data
which satisfy an environment description. Lutess proposes
different types of guidelines the user can use to describe
a more realistic environment or make the test more rele-
vant. Unlike the environment description, these additional
guidelines are not to be strictly enforced. As a result, all
valid behaviors are still possible, while the more reasonable

4This second phase of the testing process is proportional to the se-
quence length.

ones are more frequent. The model of the environment is
thus more “realistic”. The environment description and the
guidelines have to be described in the same language (Lus-
tre) and in the same framework (the testnode).

The use of conditional probabilities or patterns proved to
be highly profitable when prototyping the application: these
techniques allow to have a quick feedback on the correction
of the implementation. Then, when it comes to validate the
implementation (test its conformance to the specification),
these techniques drive the environment to follow a realistic
evolution. Meanwhile, thanks to the probabilistic aspect in-
troduced in both methods, the behaviors of the environment
may vary and involve rare and unforeseen scenarios. Such
cases, close to the expected behavior -yet unexpected- are
realistic and thus worth to be tested.

Lutess has a user-friendly interface (fig. 4). It offers the
user an integrated environment:� to define the environment description, the oracle and

the unit to be tested, (in the fieldsProgram under test,
Oracle,andEnvironment);� to command the construction of the test harness, and
to build constrained random generators, (withBegin,
StopandContinuebuttons;� to set the random seed, the number and the length of
the data sequences,� to compile Lustre programs, to format the sequences
of inputs, outputs and verdicts and to replay a given
sequence with a different oracle, (withToolsmenu and
Redobutton);� to visualize the progression of the testing process, (in
the message box, in the lower part of the interface).

Figure 4. Lutess interface

7.2 Scope

Lutess is a testing environment for synchronous reactive
systems. Since an executable program (resp. oracle) is re-
quired, the unit under test (resp. oracle) source code lan-
guage doesn’t matter. If the program (resp. oracle) is de-
veloped in Lustre, Lutess can also be used to edit and to
compile it.

Moreover, Lutess can be applied at different stages of
the development. For instance, in the example given in this
paper and during the FIW contest [9], we used Lutess to
validate an executablespecificationof a telephony system.

7.3 Limitations

Lutess can only generate data for boolean input and out-
put synchronous programs. We have always been able to
by-pass this potential drawback yet, by using boolean vec-
tors for enumerated data types.

For the moment, it is possible to use property-oriented
testing in combination with conditional probabilities. But
it isn’t possible to use behavioral patterns with conditional
probabilities. We are currently working on this point.

Specifying the software environment by means of in-
variant properties is a rather delicate task. Indeed, one
should adequately choose a set of properties which do not
“overspecify” the environment. Overspecifying may pre-
vent some realistic environment behaviors from being gen-
erated.

It is difficult to evaluate when the test should be stopped.
In fact, it is quite impossible to define a meaningful cover-
age criterion. For instance, classical coverage criteria (cov-
erage of code instructions or branches of control flow graph)
are very loosely related to the set of the possible program
behaviors.

8 Related work

Jagadeesan et al. have presented a technique and a
toolset that represent the most similar work to Lutess [12].
Compared to Lutess, this approach appears to be limited in
several respects. The testing process is solely directed to-
wards safety violations, and, thus, finds only errors related
to this paradigm. Environment constraints are only taken
into account to restrict the size of the input space. Inputs
are selected with uniform weights. The whole process is
based on the compilation of the oracle, the application and
the test harness into one single executable code; recompil-
ing is necessary after each modification, which caused the
biggest dissatisfaction, according to what the authors said.

As we said before, Lutess can only generate data for
synchronous programs with boolean inputs and outputs. In

[16], Halbwachs et al. describe another synchronous test-
ing tool Lurette, which was built to take into account nu-
merical data. Lurette requires also three elements, and like
Lutess, needs a Lustre environment description. Lurette has
no elaborated strategies for boolean data generation, but has
a strategy for integer and real data generation.

9 Conclusion and future work

In this article, we presented Lutess, a highly automated
testing environment for synchronous software and illus-
trated its use on an example. This automation allows to
transfer the human efforts from the classical tester’s chores
(selecting the data, determining the result validity) to more
defect prevention tasks (e.g., developing specifications).

Lutess offers several specification-based testing methods
in order to fit the tester needs as well as possible. These
methods aim at simulating more realistic environment be-
haviors, producing relevant data with respect to some prop-
erties or interesting situations. These methods produce test
data using different type of guides, which are conditional
probabilities, properties, and behavioral patterns.

We mainly conducted two experiments: a first case
study of feature specification validation based on the ETSI
recommendations [6], and a second one in the framework
of the FIW contest [7]. Experience has confirmed that this
approach is highly cost-effective. Both case studies showed
that the guiding techniques were excellent at finding
problems involving rare scenarios. This positive experience
was reinforced by the valuable application of Lutess in the
software specification stage, which helped get confidence
in these specifications. All this has certainly contributedto
make Lutess the “best tool” of the FIW contest [9].

Trace analysis is an important task, even if the verdict
is automatic, since it can reveal unsuspected problems. Be-
sides, writing relevant specifications in the appropriate for-
mat for test data generation should be facilitated. An en-
vironment to support these tasks is under consideration. It
should integrate proving techniques to decide on formulae
equivalence. Future directions also include criteria to de-
termine when to stop testing and a notion of error coverage
associated with the existing testing techniques.

References

[1] S. Akers. Binary Decision Diagrams.IEEE Transactions on
Computers, C-27:509–516, 1978.

[2] A. Benveniste and al. Synchronous technology for real-time
systems. InThe 1994 Real-Time Conferences, pages 104–
122, Teknea, 1994.

[3] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE,
a declarative language for programming synchronous sys-
tems. In14th Symposium on Principles of Programming

Languages (POPL 87), Munich, pages 178–188. ACM,
1987.

[4] L. du Bousquet. Feature interaction detection using testing
and model-checking, experience report. InFormal Method,
Toulouse, France, September 1999.

[5] L. du Bousquet, F. Ouabdesselam, and J.-L. Richier. Ex-
pressing and implementing operational profiles for reactive
software validation. In9th International Symposium on Soft-
ware Reliability Engineering, Paderborn, Germany, 1998.

[6] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
N. Zuanon. Incremental feature validation : a synchronous
point of view. In Feature Interactions in Telecommunica-
tions Systems V, pages 262–275. IOS Press, 1998.

[7] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
N. Zuanon. Feature interaction detection using synchronous
approach and testing.Computer Networks and ISDN Sys-
tems, to be published, 1999.

[8] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
N. Zuanon. Lutess: a specification-driven testing environ-
ment for synchronous software. In21st International Con-
ference on Software Engineering. ACM, May 1999.

[9] N. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Otha.
Feature interaction detection contest. In K. Kimbler and
L. Bouma, editors,Feature Interactions in Telecommunica-
tions Systems V, pages 327–359. IOS Press, 1998.

[10] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and
Verifying Real-Time Systems by Means of the Synchronous
Data-Flow Programming Language LUSTRE.IEEE Trans-
actions on Software Engineering,pages 785–793, september
1992.

[11] D. Hamlet and R. Taylor. Partition Analysis Does Not In-
spire Confidence.IEEE Transactions on Software Engineer-
ing, pages 1402–1411, december 1990.

[12] L. Jagadeesan, A. Porter, C. Puchol, J. Ramming, and
L. Votta. Specification-based Testing of Reactive Software:
Tools and Experiments. In19th International Conference on
Software Engineering, 1997.

[13] J. Musa. Operational Profiles in Software-ReliabilityEngi-
neering.IEEE Software, pages 14–32, march 1993.

[14] F. Ouabdesselam and I. Parissis. Testing Synchronous Crit-
ical Software. In5th International Symposium on Software
Reliability Engineering, Monterey, USA, 1994.

[15] I. Parissis.Test de logiciels synchrones spécifiés en Lustre.
PhD thesis, Université Joseph Fourier, Grenoble, France,
september 1996.

[16] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Au-
tomatic testing of reactive systems. In19th IEEE Real-Time
Systems Symposium (RTSS’98). IEEE, 1998.

[17] J. Whittaker. Markov chain techniques for software testing
and reliability analysis. PhD thesis, University of Tenessee,
1992.

