An Overview of Lutess
A Specification-based Tool for Testing Synchronous Softwate

L. du Bousquet N. Zuanon
LSR-IMAG, BP 72, 38402 Saint Martin d’'Heres, France

E-mail: {| dubousq, zuanon}@ mag. fr

Abstract Reactive and/or synchronous systems are often safety-
critical and must be thoroughly validated to ensure that the

Test data generation and test execution are both time-meet their requirements. Since formal verification is often
consuming activities when done manually. Automated test-impracticable because of lack of memory and/or time, alter-
ing methods promise to save a great deal of human effort.native solutions such as testing are needed.

This especially applies to reactive programs which have Several points make synchronous system testing specific.
complex behaviors over time and which require long test First, since the validation of a reactive system requiras th
sequences. the latter does maintain its relation with its environment

In this article, we present Lutess, a testing environment over long sequences of exchanges, the number of input-
for synchronous reactive software. Lutess produces auto-output relations (test cases) to be managed is really large.
matically and dynamically test data with respect to some These relations can’t be computed by hand, since the reac-
environment constraints of the program under test. More- tive system output usually depends on the system history
over, it allows to trace the test execution and spot the situa (and not only on its current input). Besides, the system
tions where the program violates its properties. specifications can be only partial. It is therefore very dif-

Lutess offers several specification-based testing meth-ficult to calculate the input-output relations needed td-eva
ods. They aim at simulating more realistic environment be- uate the test results. These facts discard the choice of a
haviors, producing relevant data to test thoroughly a given testing process based on human involvement. Thus, testing
property or driving the program under test into interesting should be automated in order to make it easier, improve its
situations. To produce the test data, the methods use dif-quality and lower its cost.
ferent types of guides: statistical distribution of the uip We have developed Lutess, a testing environment that
generation, properties, or behavioral patterns. supports highly automated testing of synchronous reactive

Lutess proved to be powerfu| and easy to use in indus-systems [14] Lutess offers different testing methods in or
trial case studies. Lutess won the Best Tool Award of theder to fit the tester needs as well as possible. Indeed, we
first Feature Interaction Detection Contest. The tool is de- are convinced that a single testing method cannot meet all
scribed hereafter from a practica| point of view. the needs of a tester. For instance, some methods produce
test data so that the most used operations would receive
the most testing [13], others produce data randomly and/or
based upon an input partition [11]... The foundations of
Lutess (the formal description of its testing methods) can
be found in [8].

A reactive system must continually respond to signals The aim of this paper is to provide an overview of the
from its environment, and must satisfy temporal constgint tool and to show how it is easy to use. The usefulness of
so that it can capture all the external events of concern. each method is illustrated with a single example. This ex-

Synchronous programs are a sub-class of reactive soft-ample concerns the validation of a telecommunication fea-
ware programs. The synchrony hypothesis [2] states that ev+ture specification, namely the Call Forwarding No Reply.
ery reaction of the software application to external evets The paper is organized as follows. Section 2 gives a brief
theoretically instantaneous (actually, fast enough togua description of the principles of our tool Lutess. Section 3
tee that the environment remains invariant during the com- provides an example of synchronous program. In sections 4
putation of the reaction). and 5, we detail the test data generation methods provided

1 Introduction

by our tool. Section 6 is devoted to the implementation of called atestnodg15]. Examples of environment descrip-
the tool. Section 7 explores the advantages, scope and limition and oracle properties are given in section 3.

tations of the tool. Section 8 introduces related work. The unit under test and the oracle are both synchronous
executable programs with boolean inputs and outputs.
2 Lutess Optionally, they can be supplied as Lustre programs.

To begin the test data generation, one has to feed Lutess
with a probability seed, which is used to initialize a classi
cal C random number generator. Keeping in mind that the
behavior of a synchronous program is deterministic, i.e. in
quired properties, provided that its environment meetsesom a given state, its response to a given input vector is always

the same, one can note that the use of such a generator al-

given requirements. An important point is that the valida- lows to reorod NV experiment. by using the same seed
tion is done under assumptions about the possible environ-2Ws 10 Feproduce any experiment, by 9)

For a given program and a given environment description,

ment behaviors. When one is not concerned with the systemL ¢ requires different seeds in order to produce diffiere
robustness, it makes no sense to take into accountimpossi-u €ss requires ditierent seeds in ordertop

: : . : test sequences.
ble environment behaviors. For example, it is physically .
impossible for the user of a telephone to go on the hook Moreover, the user has to specify the numbgrand the

twice without going off the hook in between. When con- length () of _the test sequences Lutess has to produce_. The
sidering a telephony system, only sequences among whicHProcess which produces thetest sequences ofvalues is

“go off” et “go on” actions alternate are meaningful with called atest run During a test run, the program is reset in
respect to testing its initial state at the beginning of each new test sequence

(while the random number generator is not).
Test data generation is not stopped when the oracle de-

2.1 Architectural overview

The validation process of reactive systems consists in
showing that the system under consideration satisfies-its re

Environment _ _ : tects an error. It is stopped when the last sequence of the
el dynamically produced InPUt d2@ ___| <ystem under test run has been fully generated. This enables a same test
. H test .
Dot program output ¢ : sequence to reveal several different errors.
Lutess includes a “trace collector” which provides 3

S verdict trace
. Lutess | |oracler— >@ 3 functions: a data recorder, a data translator and a data ana-

lyzer. The recorder saves the input, output and oracle data
(boolean values) into specific files. The translator display
the boolean values in a textual mode (defined by the user).
This makes the manual trace analysis more comfortable
than the analysis of sequences of boolean vectors. The ana-
lyzer allows the user to replay a test sequence with difteren
oracles.

— Communication link] Object provided by the user
Figure 1. Lutess

For this reason, Lutess requires three elementssyke
tem under tesits environment descriptioand aroracle(as
shown in figure 1). Lutess constructs automatically the test .
harness which builds a test data generator, links the gener2-2 ~ Lutess testing methods
ator, the system under test and the oracle, coordinates thei]
executions and records the sequences of input-output rela- During a testrun, at each cycle (or step), the Lutess gen-
tions and the associated oracle verdicts (test sequences). €rator ran_domly self_ects an input vector for the system under

The test is operated on a single action-reaction cycle, test. I_3a_5|cally, the input is selected using 'Fhe envirortmen
driven by the generator. The generator randomly selects arfescription (black-box testing), and assuming that the dat
input vector for the system under test and sends it to thedistribution is uniform. But the user can also define:
latter. The unit under test reacts with an output vector and
feeds back the generator with it. The generator proceeds by
producing a new input vector and the cycle is repeated. The
oracle observes the program inputs and outputs, and deter- ¢ some (safety) properties; the generator will select
mines whether the software requirements are violated. preferably inputs which potentially drive the system

The test data generator is automatically built by Lut- under test toward those properties violation;
ess from an environment description written in Lus{@j.
This description is provided as a single syntactical unit,

e an input statistical (partial) distribution; the generato
will produce inputs according to the given distribution;

e some scenarios (behavioral patterns); the generator
will select preferably inputs which follow the scenario.

ILustre is both a synchronous programming language and acteinp))]
logic. These methods are described in sections 4 and 5.

3 Example is an undefined value.E — > F denotes the sequence
(60,f1,... ,fn)

As an illustration of Lutess application, we consider an ~ Lustre allows the specifier to define its own logi-
executable specification of a telephony system offering the€@l Or temporal operators to express invariants. For
Call Forwarding No Reply feature (CFNR)This feature ~ €x@mple, in this paper, we use the temporal operator
allows a subscriber to have his incoming calls redirected Oncefrom to(A,B,C) to specify that property A must hold
when he does not answer within a given delay. The feature@t l€ast once between the instants where B and C occur.
is dynamically activated and deactivated. The number to

which calls are redirected is also dynamically set. Environment description
E 1. At most one event can be produced at each instant of
o time. The events bein@n;, Off;, Dial;(j), CFon(j),
...... i R ¢ .. environment . i e CFoff;, withi andj € {A,B,C,D}, this contraint is writ-
ten in Lustre as below:
Telephony system executable specificatipn (E1) #0Ona,Off4, Dialy, ... ,CFoffp)

where # is the Lustre operator which is true when “at

. most one element of the parameter listis true”.
Figure 2. Telephony System Model P

2. A user can't go off (resp. on) the hook twice without
The telephony system is modeled from the users’ view- going on (resp. off) the hook in between:
point. Its environment includes the physical telephones (E2) oncefrom _to(On;, pre Off;, Off;) and
which are linked to the system (figure 2). The system we oncefrom _to(Off;, pre On;, On).
consider is composed of 4 users (calked,c,D).) o o _
System inputs (produced by the environment) are events 3. A_user can d_la_l only |_f his telephol_ne is in the stRie
describing the actions performed on the phones;, Off;, aling, which is identified by th®ialingTone
Dial;(j), CFon(j), CFof;, with i andj € {A,8,c,D}). The (E3) Dial; = DialingTone
event CFop(j) indicates that userrequires the activation
of his CFNR feature to forward his calls towargshe event
CFoff(z) means that userdemands his CFNR feature to be
deactivated.
Outputs are signals which produce specific tones at the The environment constraints E1, E2, E3, E4 have to be
terminal (such as Busy-Tone, Ringing-Tone, ...). Each inserted in a testnode.
output signal identifies the state of the phone. In this A testnode is a description of the test data generator
example, a phone has 7 states, whichidfe (1), dialing characteristics. Hereafter is an example of a testnode.
(D) waiting (w), alerting (A), talking (T), ringing (R), and As it can be noted, the testnode inputs (resp. outputs)
exception(E)°. are the system’s outputs (resp. inputs). This should be
understood as “the generator receives the program outputs
In order to perform the validation of this system, the hu- as inputs, and generates (i.e. returns) input data for the
man tester has to exhibit the environment description andprograms”. The use of local variables to express more
the system requirements (oracle properties). easily environment properties is possible.
Lustre [3] is a programming language for synchronous
programs, which is declarative and data-flow oriented. It t€StnodeEnvironment(ol, 02,..,,0: programoutputs)
corresponds to a linear past temporal logic which offers €UMS (i1,i2.... b - programinputs)
)) L. var 11, 12,.., I : local_variables;
usual arithmetic, boolean and conditional operators amd tw

4. A user can (try to) activate and deactivate the CFNR
service only when his telephone emits thalingtone:
(E4) (CFon or CFoff)) = DialingTong

N “ 1 ” Iet
specific temporal operators E)re, the “previous” opera- environment(E1, E2, E3, E4);
tor, and—> the “followed-by” operator. Let and F be tel
two expressions of the same type denoting the sequences
(eo,€1,...,en...) and (fo, fr,..., fn...); pre(¥) de-) .
notes the sequencew, e, e1,...,en1...) wWherenil Oracle properties (system requirements)
2This example is taken from a case study aiming at modelingifea As a preliminary definition, we say that the CFNR fea-

specifications from their ETS descriptions [6]. . ture isinvokedfor a user, if the latter is a CFNR subscriber
A phone is waiting when a number has been dialed and the cbanec

has not been established yet. It is alerting when the cofumeistestab- ~ Which has ac_tivfated th_is service, and if he/she does not an-
lished but the party has not gone off the hook yet. swer a call within the time delay.

. . .. 1. - I 11 1 True

1. A call will be forwarde_d if (1) the callee feature ISin- 5 ora - - DI 11 Trﬂe

voked and (2) the maximum number of forwardsis not 3: GFonA (D) - El 11 True

. 4: - - - - - EIl I | True

reached. This bound is a service provider option which g OfD - EI1 1 D True

was set to 3 for our example. 6: - DialD (D EIl | WTrue

7: ofCc - - - E Il D WTrue

. . 8: - CFonC (B) - E |l E E True

2. A call can be forwarded only if the service has been . ofB - - () . EDEE True

previously activated by the callee, and if the latter did ﬂf DialB (A e E le E E ue

not deactivate the service in the meantime. 12: - - - - oD EEI | True

13: OnA - - - - - - I EI I True

3. A forwarded call will be redirected to the last user 1% - =~ - - DEL | e

which has been designated by the subscriber. 16: CFonA (O - EEI I True

17: - - nB EIl I | True

. P . 18: - - OfB - - EDI I T

Using Lustre, it is easy to build an oracle program from 15" - | Gong (p) - EEL | True

these properties. First, one has to express each propertyo: - - - - ofc EEDI True

in Lustre. This can be easily done, by defining intermedi- 2*° -~ - -~ - ~o&¢ - - - E (EC)'__'XT(;“i

ary variables and by using Lustre classical operators. For

instance, for the last property, we defined a preditais (a) step number;

; i i - (b) user actions (Off,On,, Dial. (y), CFon,(y), CFoff,; z,y € {A, B, C, D});
tUser(x)that takes into account the last activation of the fea (0 Phone state (1dl6, Dialing. Waiting, Aloring. Talkiinaing, Exception)

ture by userw: (d) Oracle verdict (issued by the oracle defined in section 3)

LastUser(z) = if CFon(z,y) then y else pre LastUser(z) Table 1. A trace generated by Lutess

We then used this predicate to express the property:
Empirical observations

ps = (CallForward(x,y) => LastUser(z) = y)

For complex systems, a uniform distribution is far from
the reality. Indeed, test data in table 1 show that some’users
phones stay off the hook for long periods of time in Excep-
tion state (i.e. after receiving a Busy Line indicationy.e.
user A between states 4 and 13. In reality, a user would
have quickly gone on the hook in such a situation. Simi-
arly, many generated behaviors consist in alternatinggjoi
off and on the hook, performing no action in between (user
C, step 20 and 21), which is not a common behavior. We

CallForward(x,y)is a predicate which is true whenever a
call for z is forwarded tay (z,y € {A, B, C, D}). For sake
of simplicity, we don’t detail its definition.

Then, from the Lustre expressions of these properties,
sayp1, p» andps, we build a Lustre program. The inputs of
the latter are the program under test inputs and outputs. It
unique output is a single boolean variable, whose value is
the conjunction of the oracle properties expressed in keustr

nodeOracle (programinputs; programoutputs) also noticed that, on the whole, every user tries to call him-
returns (res : boolean) self/herself as often as any other user (user D, step 6) or to
let activate the CFNR feature several times in a row (user A,
res =p; and p; and ps ; steps 3 and 16). In the real world, such behaviors rarely
tel occur, and are most of the time the result of wrong actions.
This Lustre program has then to be compiled to ob- In order to test or analyze more realistic simulations, one
tain the executable oracle. may want to specify its own statistical environment distri-

bution. With Lutess, this is possible thanks to conditional
. . . robabilities that one can associate with program inputs.
4 Random Testing by Environment Simula- P Prog P

tion 4.2 More realistic random specification testing

4.1 Basic random specification testing Lutess offers facilities to define in the testnode a mul-
tiple probability distribution [17] in terms of conditioha
Test data are generated only with respect to the environ-probabilities associated with the unit under test input
ment constraints (black-box testing). This is the weakestvariables [5]. The variables which have no associated
test data selection criterion one can define for synchronousconditional probabilities are assumed to be uniformly
software. The test data generation is performed in suchdistributed. A conditional probability assignation define
a manner that the data distribution is uniform. Table 1 for an input variable, its probability to be set to true
gives an example of trace that Lutess has produced with thisvhen a given condition is met. The conditions are Lustre
method. expressions. An algorithm is implemented in Lutess to

automatically translate a set of conditional probabiitie
into an operational profile (and vice versa).

We say that a input data is relevant to test a property,
when the program reaction is liable to cause an instanta-
neous failure with respect to this property. For instance,

Let us try this method on our example. The conditional let’s consider the simple proper#y: ¢ = o, wherei (resp.
probabilities are chosen in order to overcome the problemso) is an input (resp. output) of the unit under test. When
exhibited by the previous empirical observations. For in- is false, the unit under test cannot falsfty When: is true,
stance, to decrease the time spent by one user’'s phone ithe unit under test will falsify? if it returns the value false
the Exception state, one can specify that the probability tofor o. Hence; =true is relevant to tes?.
go on the hook is high while the phone is in the Exception Input values which are relevant to the considered
state. properties are favored over the values only associated with
the environment. But the random selection process is fair
) - o enough to let those latter values be exercised. In Lutess,

_ L_et €1,€9...,Cs be_ a list of cond|t|_onal probablll_tl_es. the properties chosen to guide the generator ..., s.)
Slmllarl_y_ _to the environment const_ralnts, the condlt_lonal have to be defined with the environment description, in
probabilities have to be declared in the testnode, in thehe testnode. Conditional probabilities can also be used in

(OffA, 0.9, pre ExceptionA)

following way:

testnodeEnvironment (01, 02,..,,9 : programoutputevents)
returns (i1, i2,.., i, : programinputevents)

combination with this method.

testnodeEnvironment (01, 02,..,,9 : programoutputevents)
returns (i1, i2,.., i, : programinputevents)

var 11,12, ..., | : local_variables; var 11, 12,.., I : local_variables:
let let
environment(E1, E2, E3, E4); environment(E1, E2, E3, E4);
probag:, cz; ..., ¢:); probagi, cz, ..., cs);
tel safetyéi, sz, ..., 52);
tel

Empirical observations
Empirical observations
Regarding the last unrealistic aspect mentioned in the
previous subsection, we defined about 60 conditional prob- One property of the telephony system is that the user’s
abilities (15 for each user). There are 5 possible actions fo phone goes back to its idle state every time its user goes on
each user, and approximately 3 conditional probabiliteesp the hook. Driving the generation with such a property led
action. Indeed, an action may have different probabilities to favor the considered action, thus improving the tester’s
depending on the phone states. For instance, the prolyabilit confidence in the system’s reaction to this input. However,
to go on the hook is usually different in the states Exception this resulted in every user tending to go on the hook as soon
Dialing and Talking. as possible; thus, many more realistic behaviors are never
tested.

5 Guidedtesting 5.2 Behavioral Pattern-based Testing

A realistic environment simulation may not produce data
which test rare but important and interesting features ef th

program. To overcome this problem, Lutess has two dif- it respect to the constraints. Some interesting feamires

ferent methods which consist in testing in a more relevant 5 system may not be tested efficiently since their observa-
manner some given properties or to drive the program into 50 may require sequences of actions which are too long
interesting situations. These methods produce data accordgp,q complex to be randomly frequent.

ing to two types of guides: (invariant) properties and behav The behavioral pattern-based method aims at guiding

ioral patterns. further the input generation so that the most interesting se
guences are produced. A behavioral pattern characterizes
those sequences by listing the actions to be produced, as
well as the conditions that should hold on the intervals be-
The property-oriented testing method is aimed at select-tween two successive actions (fig. 3). Regarding input data
ing test data which facilitate the detection of property-vio generation, all sequences matching the pattern are favored
lations. At each cycle, this method automatically genarate and get higher chance to occur. To that, desirable actions ap
values which are relevant to test the considered properties pearing in the pattern are preferred, while inputs that do no

As complexity grows, reasonable behaviors for the en-
vironment may reduce to a small part of all possible ones

5.1 Property-oriented testing

satisfy interval conditions get lower chance to be chosen.states are represented by a set of variables, and the tran-
The generation method is usually invoked with environment sitions by boolean functions. These functions are imple-
constrained test data. Patterns are stated using graploical mented as a single Binary Decision Diagram (BDD) [1].
tations; Lutess automatically translates them into Lustre Building the BDD structure corresponding to a given en-

pressions. vironment is the most expensive part of the testing pro-
In Lutess, the behavioral patterns have to be defined withcess. In our experiments, environments included between
the environment description, in the testnode. 32 and 45 constraints, plus up to 8-step patterns or 40 con-
ditional probabilities. It was always possible to perfohist
Empirical observations computation and to run the test on a Sparc Ultra-1 station

with 128 MB of memory. Maximum of required virtual

. . . . memory amounts to 100 MB. Though, as the number of
To avoid I_oops in the forwarding, speufylng the CFNR constraints describing the environment increases, the BDD
feature requires that no more than 3 redirections are ever

. . ; complexity rises and its generation lasts longer. For tsele
performed on f_;lsmgle call in a row. When ch_eckmg what constrained environments that we produced, 6 seconds on
cou_ld happen n t_he case of more then 3 redirections, Wecpu were necessary, while the most-constrained environ-
noticed that this situation had little chance to occur. Gn th ments required 33 minutes for the corresponding BDD to
contrary, the use of a pattern has proved that it increasesDe generated. As a comparison, a 1000 test run lasts 120
the situation likelihood in shorter test sequences. Figure !

h th hical o ¢ such " seconds once the BDD has been genefat&d, the more
shows the graphical representation of such a pattern. the environment is constrained, the more relevant is the tes

(since the whole test case is more realistic), but the longer

CFon(A,B) CFon(B,C) CFon(C,A) Dial(D,A) is the BDD generation.
} N } < } N } Severaly? tests were performed in order to check that
not CFoff(A) ot CFoff(A) and not CFoff(A) and the statistical methods produce data according to the dif-
not CFoff(B) ng(t) Egggféf?():fmd ferent assumptions. Those assumptions are that the ba-
sic statistical method produces data in an equally-prababl
Upper conditions describe the sequence of actions to be produced. way, and that the method guided with conditional probabil-
Lower conditions are interval conditions. ities produces data with respect to the defined probatsilitie

: . Th ti t lid.
Figure 3. Example of a behavioral pattern Ose assumptions appear to be vali

7 Advantages, scope and limitations

6 Tool implementation and validation _ _ .
In this section, we summarize the advantages we see to

] use Lutess. Then, we address the scope of the tool, and
The tool code represents 26000 lines of C++. Lut- fing|ly, we explore some of its limitations.

ess has been used intensively during several case studies,
among which the “Feature Interaction Detection Contest”
held in association with the 5th Feature Interaction Work-

shop [7, 9]. The goal was to detect possible and unde-) h
sired interactions between twelve telecommunication ser- The three components required by Lutess (the system

vices. For this case study, the test process for each of thémder test, the environment descriptio_n and_the orc'_:lcle) are
78 configurations involved 10 to 20 sequences of 1000 tolustconnected to one another and not linked into a single ex-

10000 steps each. On the whole, each configuration hasecutable code. The construction of the test harness doesn't

been tested for around 1 million test cases. The Lutess toofake much time. "
was run over 1500 times. Lutess offers a unified framework for synchronous pro-

|.gram testing. Basically, a generator produces test data
which satisfy an environment description. Lutess proposes
different types of guidelines the user can use to describe
a more realistic environment or make the test more rele-
vant. Unlike the environment description, these additiona
guidelines are not to be strictly enforced. As a result, all
valid behaviors are still possible, while the more reastamab

7.1 Advantages

For this case study, we also considered applying a mode
checker Lesar [10] to evaluate the ability of verification
method to detect feature interactions [4]. Preliminary re-
sults show that the model-checker cannot deliver a result
in most of the 78 configurations, because of lack of time
and/or memory amount. On the contrary, Lutess always re-
turns a verdict.

The generator obtained by compiling the environment ~ 41his second phase of the testing process is proportionaieose-
constraints is coded using a symbolic notation in which the quence length.

ones are more frequent. The model of the environment is7.2 Scope
thus more “realistic”. The environment description and the

guidelines have to be described in the same language (Lus- | ytess is a testing environment for synchronous reactive
tre) and in the same framework (the testnode). systems. Since an executable program (resp. oracle) is re-
The use of conditional prObab”itieS or patterns proved to quired' the unit under test (resp_ 0rac|e) source code lan-
be highly profitable when prototyping the application: #1es guage doesn’t matter. If the program (resp. oracle) is de-
techniques allow to have a quick feedback on the correctionyeloped in Lustre, Lutess can also be used to edit and to
of the implementation. Then, when it comes to validate the compile it.
implementation (test its conformance to the specification) \oreover, Lutess can be applied at different stages of
these techniques drive the environment to follow a realisti ¢ development. For instance, in the example given in this
evolution. Meanwhile, thanks to the probabilisticaspeet i paper and during the FIW contest [9], we used Lutess to

troduced in both methods, the behaviors of the environmenty5jigate an executabkpecificatiorof a telephony system.
may vary and involve rare and unforeseen scenarios. Such

cases, close to the expected behavior -yet unexpected- a% 3 |imitations
realistic and thus worth to be tested. '

Lutess has a user-friendly interface (fig. 4). It offers the i
user an integrated environment: Lutess can only generate data for boolean input and out-

fine th) . put synchronous programs. We have always been able to

» to define the environment description, the oracle and) yaqs this potential drawback yet, by using boolean vec-
the unit to be tested, (in the fiel#sogram under test, tors for enumerated data types.
?racle,andgrl\rl]lronmen); _ £ th h q For the moment, it is possible to use property-oriented

* to Eonman ¢ gcc()jnstrlacnon of the test \c;:\lénes_s, aNGtesting in combination with conditional probabilities. Bu
Sot u d?nst-ra”;g ttran .om generators, (Witkgin it isn’t possible to use behavioral patterns with conditibn

opandt-ontinuebuttons, 1probabilities. We are currently working on this point.

* :ﬁ szt ;[he random seed, the number and the length o Specifying the software environment by means of in-
‘ € aa_lseqLue:lces, o f t th variant properties is a rather delicate task. Indeed, one

¢ o compiie Lustre programs, 10 format tn€ SequeNces g, 4 adequately choose a set of properties which do not
of inputs, OL_Jtputs_and verdicts and to replay a given “overspecify” the environment. Overspecifying may pre-
SRee(llL:)ele(;E)\r,wv)lj[h a different oracle, (witbolsmenu and vent some realistic environment behaviors from being gen-

. A . . . _erated.

* tovisualize the progression of the testing process, (in Itis difficult to evaluate when the test should be stopped.

the message box, in the lower part of the interface). In fact, it is quite impossible to define a meaningful cover-

T S T age criterion. For instance, classical coverage critega

Cie Parameter Tosls erage of code instructions or branches of control flow graph)
are very loosely related to the set of the possible program
Program under test ISlmSG— Browse behaViOFS.
Oracle W Browse
Environment W Browse
Working directory ¥nephtys/lsr/ptl/ldubousg/LUTESS/DEMO/PROFILOP 8 Related Work
Sequence number ” e Jagadeesan et al. have presented a technique and a
Sequence length : x 100 [o] toolset that represent the most similar work to Lutess [12].
Probability sesd frases Compared to Lutess, this approach appears to be limited in
Test typs * St o sLs several respects. The testing process is solely directed to
wards safety violations, and, thus, finds only errors relate
Begin | | | to this paradigm. Environment constraints are only taken
into account to restrict the size of the input space. Inputs
are selected with uniform weights. The whole process is
based on the compilation of the oracle, the application and
] the test harness into one single executable code; recompil-
N ! ing is necessary after each modification, which caused the
biggest dissatisfaction, according to what the authoik sai
Figure 4. Lutess interface As we said before, Lutess can only generate data for

synchronous programs with boolean inputs and outputs. In

[16], Halbwachs et al. describe another synchronous test- Languages (POPL 87), Munictpages 178-188. ACM,

ing tool Lurette, which was built to take into account nu- 1987. _ _ _ o
merical data. Lurette requires also three elements, aed lik [4] L. duBousquet. Feature interaction detection usingrigs
Lutess, needs a Lustre environment description. Lurete ha and model-checking, experience report.Formal Method

Toulouse, France, September 1999.

[5] L. du Bousquet, F. Ouabdesselam, and J.-L. Richier. Ex-
pressing and implementing operational profiles for reactiv
software validation. 19th International Symposium on Soft-

no elaborated strategies for boolean data generationaisut h
a strategy for integer and real data generation.

9 Conclusion and future work ware Reliability EngineeringPaderborn, Germany, 1998.
[6] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
In this article, we presented Lutess, a highly automated N. Zuanon. Incremental feature validation : a synchronous
testing environment for synchronous software and illus- point of view. InFeature Interactions in Telecommunica-

tions Systems,\pages 262-275. IOS Press, 1998.

trated its use on an example. This automation allows to [7] L. du Bousquet F. Ouabdesselam, J-L. Richier. and

transfe_r the human efforts f_ro_m the classical t_es_tersehor N. Zuanon. Feature interaction detection using synchrenou
(selecting the Qata, determining the re_zsult vall_d_lty) _toreno approach and testingComputer Networks and ISDN Sys-
defect prevention tasks (e.g., developing specifications) tems to be published, 1999.

Lutess offers several specification-based testing methods [8] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and
in order to fit the tester needs as well as possible. These N. Zuanon. Lutess: a specification-driven testing environ-
methods aim at simulating more realistic environment be- ment for synchronous software. Bist International Con-
haviors, producing relevant data with respect to some prop- ference on Software Engineerin§CM, May 1999.
erties or interesting situations. These methods produste te [9] N. Griffeth, R. Blumenthal, J.-C. Gregoire, and T. Otha.
data using different type of guides, which are conditional Feature interaction detection contest. In K. Klmbler_ and
probabilities, properties, and behavioral patterns. L Bouma, editorsFeature Interactions in Telecommunica-

We mainly conducted two experiments: a first case tions Systems,\pages 327-359. [0S Press, 1998.

A o) [10] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and
study of feature specification validation based on the ETSI

. " Verifying Real-Time Systems by Means of the Synchronous
recommendations [6], and a second one in the framework Data-Flow Programming Language LUSTRIEEE Trans-

of the FIW contest [7]. Experience has confirmed that this actions on Software Engineerifgages 785-793, september
approach is highly cost-effective. Both case studies sdowe 1992,

that the guiding techniques were excellent at finding [11] D. Hamlet and R. Taylor. Partition Analysis Does Not In-
problems involving rare scenarios. This positive expezéen spire ConfidencdEEE Transactions on Software Engineer-
was reinforced by the valuable application of Lutess in the ing, pages 1402-1411, december 1990.

L. Jagadeesan, A. Porter, C. Puchol, J. Ramming, and
L. Votta. Specification-based Testing of Reactive Software
Tools and Experiments. [19th International Conference on
Software Engineerind 997.

[13] J. Musa. Operational Profiles in Software-Reliabiliggi-

software specification stage, which helped get confidence [12]
in these specifications. All this has certainly contributed
make Lutess the “best tool” of the FIW contest [9].

Trace analysis is an important task, even if the verdict neering.IEEE Softwarepages 14—32, march 1993.
is automatic, since it can reveal unsuspected problems. Be{14] F. Quabdesselamand |. Parissis. Testing Synchronous C
sides, writing relevant specifications in the appropriate f ical Software. In5th International Symposium on Software
mat for test data generation should be facilitated. An en- Reliability EngineeringMonterey, USA, 1994.

vironment to support these tasks is under consideration. It [15] 1. Parissis_.Test (_je Io_giciels synchron(_es spécifiés en Lustre
should integrate proving techniques to decide on formulae PhD th(;Sls,lggrgversute Joseph Fourier, Grenoble, France,
equivalence. Future directions also include criteria to de september 1996.

¢ . hen to stop testi d ti f [16] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Au-
ermineé when to stop testing and a notion ot error coverage tomatic testing of reactive systems.18th IEEE Real-Time

associated with the existing testing techniques. Systems Symposium (RTSS'9BEE, 1998.
[17] J. Whittaker. Markov chain techniques for software testing
References and reliability analysis PhD thesis, University of Tenessee,
1992.

[1] S. Akers. Binary Decision Diagram¥EE Transactions on

ComputersC-27:509-516, 1978.
[2] A.Benveniste and al. Synchronous technology for remét

systems. InThe 1994 Real-Time Conferencpages 104—

122, Teknea, 1994.
[3] P.Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. LUSTRE,

a declarative language for programming synchronous sys-
tems. Inl14th Symposium on Principles of Programming

