The Dark Side of the Chessboard:
an Assistant to Play Kriegspiel over the ICC

Paolo Ciancarini and Gian Piero Favini

Department of Computer Science, University of Bologna

Abstract. Kriegspiel is a variant of the game of Chess, introduced to
make it more similar to wargames. It mainly differs from Chess in that
players can only see their own pieces: they have to refer to a neutral agent
— the umpire, or referee — to acquire additional, but always incomplete,
information. This paper deals with the development of a visual interface
to play Kriegspiel over the Internet Chess Club. The interface is intel-
ligent insofar as it is able to interpret the referee’s messages obtained
by the ICC server, offering the player an intuitive visualization of such
messages, in terms of graphic abstractions which represent the invisible
pieces of the opponent. In this sense the interface is able to let light into
the dark side of the chessboard.

1 Introduction

When the first chess playing programs where designed, their interfaces were
textual. The advent of graphical user interfaces allowed to design more natural
interfaces. In fact, all modern chess playing programs offer a 2-D or 3-D interface
simulating a chessboard.

In this paper we study the development of a graphical user interface for
Kriegspiel. Kriegspiel differs from Chess by hiding from each player his oppo-
nent’s moves: in fact the two players play on different boards. A player only
knows the position of its own pieces, while his opponent’s pieces are “in the
dark”, ie. they are invisible. A referee evaluates a player’s try and replies to
both players with a message that contains some information, but not the real
move.

Kriegspiel was invented more than one century ago, and it is currently quite
popular on the Internet Chess Club (ICC). We intend to design a special inter-
face for playing Kriegspiel over the ICC. Why this is an interesting problem?
Kriegspiel, also called sometimes Invisible Chess, has several features which re-
quire a sophisticated interface.

Kriegspiel is very similar to Chess. In fact, most Chess rules are valid in
Kriegspiel [7]. Thus an interface to play Kriegspiel can be trivially obtained
adapting an interface for Chess. In fact, on the ICC the interface to play Kriegspiel
is similar to the one for playing Chess: the only difference is that the opponent
pieces are not shown.

Thus, what a Kriegspiel player typically sees when he starts to play a game
as White is the diagram shown in Fig.1, where Black pieces are invisible.

Fig. 1. A trivial interface for Kriegspiel: the opponent pieces are invisible.

Then there is the issue of the referee. The first programs for Kriegspiel fo-
cussed on designing a referee for playing over a local area network [2,9,10]. The
current implementation of the referee in the Internet Chess Club is in some sense
a descendant of those programs. Thus, a Kriegspiel interface usually requires an
additional window to display the announcements from the referee (which are
always broadcast to both players).

Each player has to keep in mind all the information received from the referee.
When playing Over The Board (OTB) Kriegspiel, the players can use a complete
set of pieces, which are used to build hypotetic positions compatible with the
referee’s announcements. In fact, in actual OTB Kriegspiel games the players
are allowed to place the opponent pieces as they prefer, trying to infer useful
information from the referee’s messages.

Thus, we try to design a more effective Kriegspiel interface: it should be
able to interpret the referee’s announcements offering a graphical interpretation
in order to help its user. Our aim in this design effort is to fully specify the
behavior of a Kriegspiel agent able to interpret the referee’s messages in terms
of constraints on chess positions. Such an agent will be a module of a more
general program able to play a complete game of Kriegspiel.

This paper has the following structure: In Sect. 2 we describe the rules of
Kriegspiel; in Sect. 3 we offer a graphical interpretation of the referee’s mes-
sages; in Sect. 4 we define the specification of the user interface; In Sect. 5 we
describe the low-level interface to the ICC server; finally, in Sect. 6 we draw our
conclusions.

2 Kriegspiel

We will describe shortly the rules enacted on the Internet Chess Club [5]. Every
rule in orthodox Chess also applies to Kriegspiel, with two exceptions: the game
will not result in a draw because of a position being repeated three times, nor will

a draw occur due to the lack of captures or pawn actions for 50 moves in a row.
Aside from these exceptions, the major innovation of Kriegspiel over orthodox
Chess is that players cannot see their opponent’s pieces, and they have to make
guesses concerning their location.

Given the incomplete-information nature of Kriegspiel, a new agent is intro-
duced to act as a broker between the players: the umpire, or referee. Only the
umpire has access to complete information, and it performs all communication
with players (players cannot directly interact with each other in any way). Be-
fore each player’s turn, the umpire transmits a message containing additional
information (note that, although the message concerns the current player, both
players actually receive the message). This information includes:

— Number of pawn tries for the player on move. This is defined as the “number
of legal capturing moves using pawns”. Pawn tries include possible en passant
captures.

— A capture happened as a result of the last move. The message specifies where
the capture took place and whether the captured piece was a pawn or another
piece (in this case, the actual piece is not revealed).

— The current player’s King is in check. The message also reveals the check
type, which can be “rank”, “file”, “short/long diagonal” (from the King’s
point of view), or “knight”.

A whole game could be displayed to the White player as follows:
2.e5 3.Qh5

3
2

A DRy Wi, ey

a b cde f gh a b cde f gh

One pawn try, Check on short diagonal

Pawn captured in eb

=N W s U N ®

One pawn try, Pawn captured in h5
Piece captured in hb Check on short diagonal
Checkmate

The last diagram shows the final position which appears when the game
terminates.

In addition, if a player attempts an illegal move, the umpire refuses such a
move and will notify that player that he should make another move instead.
Thus, illegal moves are a means to acquire information on the state of the chess-
board, and it is possible to deliberately try a move which is likely illegal, with
the purpose of gaining such an information. On the ICC the opponent will re-
ceive no notification of a player’s illegal moves, and this increases the asymmetry
between the players, meaning that either player knows what he knows, but he
does not know what his opponent knows.

3 The interface

We have developed a Java visual interface for playing Kriegspiel over the ICC. It
consists of an extensible three-layer framework, JVariant [8], aimed at providing
specific support for as many variants of chess as possible. JVariant was developed
with Kriegspiel as its primary focus, but its flexibility makes it easy to develop
visual support for completely different chess variants by simply implementing a
single Java interface. The three layers allow to decompose the tasks into logical
sublevels, thus separating the visual aspects from other, behind the scenes issues,
such as rules management and communication protocols.
As shown in Fig. 2, the layers are as follows:

GameBoard
1 N
7 \
1 \
«use» 7/ \ «use»
1 \
7 \
7 \
1 H \
Kriegspiel F- > «interface» .t -4 OrthodoxChess
\ GameController '
\ 7
\ 1
\ I
«use» 1 «use»
\ 17
\ 1
\ «interface» v
Communicator

A A

InternetChessClub | _ _'

GenericlCS

Fig.2. UML class diagram representing the three-layer architecture of JVariant

— Communicator. This interface rules information exchange with the remote
communication endpoint. For example, an implementation of this interface

provides protocol support for the ICC server. The higher levels remain obliv-
ious to the inner workings of the implementing class; they only use abstrac-
tions such as moves and other game-specific information (sets of tag-value
pairs listing additional information that does not fit in a move, like pawn
tries in Kriegspiel).

— GameController. This interface provides the contract for dealing with a
chess variant. Implementing classes will have to specify rule enforcement
mechanisms and user feedback behaviors that are specific to the variant being
played. Computer-assisted Kriegspiel is one of the most complex variants,
and its GameController contains, among other things, the algorithms for the
visual feedback described in the remainder of this paper.

— GameBoard. The actual object manipulated by the end user. A Game-
Board is a passive object provided with the basic behaviors of a normal
chessboard; it will delegate all decisions to the underlying GameController,
which can also heavily customize the board’s graphical skeleton to adapt
it to the variant being played. For example, a minimum requirement for a
Kriegspiel interface is to have a counter to keep track of captured enemy
pieces. This is created by the GameController and attached to the Game-
Board.

4 Visual feedback for Kriegspiel

Kriegspiel makes for a tough challenge as far as visual interfaces are concerned.
An intelligent interface should provide as much information as possible, and in
an intuitive, unobtrusive, constructive manner. There is no point in filling a
window with data if the player finds it distracting enough to cancel its benefits.
The aim of a Kriegspiel interface should be that of keeping the player focused
on the game, and relieving him of as much memory effort as possible.

At the same time, we intend the specification of our interface as a study
in the semantics of the referee’s announcements. In another paper [4] we have
defined and discussed the notion of Information Set, that is the set of pieces of
information that a player can logically infer from the referee’s messages. Our
main requirement is that all messages from the referee must have a graphical
interpretation on the interface, consistent at least with the position of visible
pieces. The consistency should be enforced also with respect to the past messages
got from the referee, but this is more difficult, as we will see. Interestingly,
Kriegspiel is used in a recent book on object oriented design [11] as a case study,
but no analysis of the interface is given. In any case, we intend our study as an
exercise in knowledge engineering similar to the one described in [6].

Last but not least, we require that the interface is able to play othr Kriegspiel-
like variants, like Invisible Chess [1], where only single pieces can become invis-
ible, or ShadowChess [3], where the enemy pieces which come under attack are
made visible.

To address these requirements, we developed a module that extends the tradi-
tional iconography of the game of Chess by introducing three new pseudo-pieces,
called guess tokens, as shown in Table 1.

Piece Check King

wie O @
Black . e

Table 1. Kriegspiel guess tokens, as implemented in JVariant.

Guess tokens are all circular in shape. Also, some guess tokens, specifically
Piece tokens, may appear at various degrees of transparency on the chessboard.
The more opaque the token, the higher chance there is that an enemy piece
actually be in that square.

— The Piece token, carrying no other distinguishing sign, simply informs that

a generic enemy piece might be hiding there. It is activated in response to
pawn tries and captures: in the former case, all the possible target cases are
highlighted; in the latter, a fully opaque token is put on the case where the
capture takes place, meaning that the presence of an enemy piece there is
now certain.
Let us demonstrate the usage of Piece tokens in regards to pawn tries. Figure
3 depicts what JVariant would show to the White player, if the referee says
"Two pawn tries”. This diagram, as well as the following ones, portrays
what JVariant displays, knowing the position of its pieces as well as the
most recent umpire message.

Fig. 3. The umpire says: " Two pawn tries”.

— The Check token warns a player that his King is in check, and the offending
piece might be found on the selected case. For example, in Figure 4, the
White King finds itself threatened by a Knight. Later we will show that it is
sometimes possible to narrow down the choices and highlight a lower number
of cases.

In order to facilitate players in using the interface, the Check token is iden-
tified by a '+’ sign, which is universally known as the symbol for check
positions in all literature and game transcriptions.

Fig. 4. The umpire says: ”Knight Check”.

— The King token is the counterpart to the Check token; when a player
puts the enemy King in check, these tokens list the locations where it might
be hiding. As it is described later, placing this kind of token raises the
most problems. Figure 5 depicts a possible disposition for the Black pieces,
causing the check in Figure 4.

Now that the basic icons for the interface have been introduced, remains to
show how they can be used to provide non-trivial, immediate information to the
user. Our interface supports the following results with a few small exceptions
that will be explicitly pointed out, and the implementation of these properties
took the better part of the time resources devoted to the project. In fact, the
complexity of the situations originating from the seemingly laconic messages of
the umpire was somewhat underestimated at the beginning of the development
cycle; while the umpire can only generate a handful of messages (eight including
the five check types, plus the notification of illegal moves), they can assume
different hidden meanings and their combinations make for additional interesting
cases. This partly explains why strong artificial players for this discipline have
not been programmed yet.

Fig. 5. Black plays ... Nh7-f6, the umpire says: ”Knight Check”.

4.1 The Piece Token

As stated above, this token makes its appearance whenever pawn tries or enemy
captures take place. Pawn tries are vital tools in finding out the disposition
of opponent pieces, which makes pawns extremely precious in Kriegspiel: they
are the only piece able to gather information on their surroundings without
attempting to move.

The trick of putting Piece tokens wherever pawn captures might happen is
a trivial, but effective one. It provides immediate information, and the player
can often guess, if not the exact capturing move, at least the most likely area
on the chessboard. This method is partially inaccurate in the case of en-passant
captures, since the location of the captured piece does not actually coincide with
that of the token, but for the purposes of Kriegspiel, this is rather unimportant.

It would be possible to highlight opponent pawn tries as well. Each time
the opponent receives a pawn try notification, the program would then place
a token on every legal case which might host the pawn. However, this would
probably clobber the chessboard with pawn tokens, so it was decided not to
implement this function. JVariant will still warn a player textually whenever his
or her opponent gets pawn tries.

The other instance of Piece token insertion happens upon opponent capture.
A token with a 100% likelyhood (fully opaque) replaces the captured piece. This
token will then fade out with each subsequent move, representing the odds of
the piece still being on the same case reducing over time. Since the opponent is
aware that the location of the offending piece is now well-known, he or she will
tend to move it again if possible, in order to return it to the shadows. Because
of this tendency, this type of token fades out quickly, its opacity being halved
on every opponent move. When a fixed threshold is crossed, or a friendly piece
”explores” the case, the token is removed from play.

Pawn tries, or lack thereof, can also interact with the other two tokens to help
narrow down choices. These techniques are described in the following sections.

4.2 The Check Token

The Check token highlights the possible locations of the piece attacking the
player’s King. Its basic behavior is quite trivial: the program simply stamps
tokens starting from the cases adjacent to the King until a friendly piece or an
edge of the chessboard are met. As it is easily seen, Knight checks work in a
slightly different way, and only compatible empty cases get touched in this case.

However, if one remembers the rules of chess, there is much more information
which can be extracted from a check notice.

— If a capture took place on the last move... Here, there are two basic
cases. The former happens when the capturing piece lands into a case and
directly threatens the player’s King. The latter happens when the capturing
piece uncovers another piece behind itself, clearing its ’line of sight’ towards
the player’s King. These two cases seem to be easily recognizable from one
another; it suffices to determine whether the case in which the capture
took place is compatible with the check type being revealed by the
umpire. In other words, if the player is told his or her King is under File
check and the capture did not happen in the same file as that of the King,
then that piece has nothing to do with the check. On the other hand, if the
capture actually took place in the right File, then the offending piece must
be responsible for the check, and only the target square must be lit with the
Check token, as exemplified in Figure 6. It is to be noted that, while our
Kriegspiel interface will display what is shown in the diagrams, this is by
no means the most detailed information we can achieve. In fact, it will be
readily seen that in the diagram to the right, the offending piece cannot be
anywhere but in el, and the piece that performed the capture in h5 must be
a Bishop. The reasoning is as follows: the only legal moves originating from
column "¢’ and ending in h5 are 2 ®e5-h5 or £ %e2-h5. But neither a Rook
nor a Queen could have been there, or we would have been in check already!
Therefore, only £e2-h5 is plausible.

— If pawn tries are possible, then the attacking piece, and only it, can
be captured. As stated in the rules of chess, there are three ways a player
can react to a check: by moving the King out of enemy range, by moving a
piece to cover the King, or by capturing the offending piece. This means that,
if pawn tries can be performed, the attacking piece can be the only target.
This narrows down the possible locations to those that are compatible with
the current check type and a possible target of a pawn try. Most of the time,
only one or two cases will meet these requirements, and the location of the
enemy piece can be accurately described.

An example of this technique is given in Figure 7.

— As an additional rule, if pawn tries are not possible, the attacking

piece cannot be in a capturing position for any pawn, unless that

Fig. 6. In both diagrams, the umpire announces a capture in h5. In the left diagram,
the umpire says ”short diagonal check”. In the right diagram, the umpire says "file
check”.

pawn is protecting the King from another piece. The wording of the
previous sentence is actually more complicated than the rule itself: it simply
means that, if no pawn tries are announced by the referee, and the player’s
King is in check, in general the attacking piece cannot be attacked by the
player’s pawns unless that pawn is being blocked by another piece. Because
a picture is worth a thousand words, Figure 8 explains this fact intuitively,
showing that, in Kriegspiel, nearly every rule has its exceptions. The red
pawn might be blocked by the possible presence of a Bishop or a Queen on
the King’s diagonal. On the other hand, the blue pawn has no constraints
binding it to its King, and as such the lack of pawn tries attests that the
piece giving check cannot be found in c5.

This particular case has not been implemented in the current release of
JVariant, as its benefits did not justify the time resources needed for its
coding. It is being explained here to convey the subtlety and complexity
of the information that one could elaborate basing themselves on umpire
messages.

4.3 The King Token

The King token is complementary to the Check token; while the latter shows up
whenever the player’s King is in check, the former makes its appearance if the
opponent’s King is in check. As mentioned earlier, the King token offered a
harder challenge to the interface developer, because the check notifications sent
by the umpire are King-centered, that is, they describe the type of check basing
on the location of the attacked King, which is, of course, generally unknown

Fig. 7. The umpire says ”"Rank check, 1 pawn try”

to the opponent and their playing interface as well. This raises a number of
problems, most of which occur when diagonals are involved.

— The first problem consists of determining what allied piece is attacking
the opponent’s King. Note that this problem is in many ways specular to
the one pointed out in the last section, when dealing with captures (Figure
6). Only, this time the dilemma does not limit itself to the ’capture+check’
combination; it is a constant presence that the interface has to deal with.

— The basic approach to this issue is analogous to the one adopted in the last
section; that is, the program checks whether the last moved piece is
compatible with the umpire’s information. In other words, if the player
moves a Rook and the umpire notifies a long diagonal check, then there is no
way a Rook could have caused such a check. There must be another allied
piece capable of a long diagonal check, previously hidden by the Rook.
Unfortunately, what if the Rook was hiding two Bishops on two different
diagonals? In general, it is not always possible to determine what
piece is causing a check. See Figure 9 for a visual example. In cases such
as this, the interface will have to select all applicable pieces and consider all
the possible choices.

— While the previous statement proves that the placement of King tokens is
significantly more challenging than that of Check tokens, it is often possible
to rule out several location through relatively simple algorithms. First and
foremost, any diagonal check can be either short or long, and if a location
belongs to the wrong diagonal, it has to be discarded. Additionally, if the
attacking piece is the one which has just been moved (or so believes the
program), the diagonal along which it has moved is to be ruled out,
since the diagonal was already under friendly control. It should be noted
that this does not apply if a capture took place after the last move,

Fig. 8. The umpire says "File Check”.

since the King might be found beyond the captured piece. In this case, only
the half diagonal between the original position and the new position of the
attacking piece is to be excluded, as shown in Figure 10.

— A very peculiar case occurs whenever the umpire announces a double check.
This happens if a King is threatened by two pieces at the same time, and
leads to an interesting, and possibly unexpected, result. Under these circum-
stances, it is often possible to pin-point the exact position of the
enemy King. The reason is quite simple: the two sets of King tokens gen-
erated by the two pieces (one of which might actually be the union of two
different pieces, because of the undecidibility shown in Figure 9) have to
be intersected, which will usually narrow the choice down to one or two
cases at most. For instance, in Figure 11, the umpire announces two ongo-
ing checks at the same time, thus mercilessly revealing the location of the
opponent’s King.

5 The Communication Layer

The Communicator layer is the lowest level in the JKrieg hierarchy. As the
name implies, this interface is able to communicate with another entity, called
an endpoint. Depending on the actual endpoint, the communication protocol
and techniques will vary. We have used socket data transmission to play over the
Internet Chess Club, but virtually anything is possible so long as the Communi-
cator interface is respected, that is, if all the required methods are implemented.

One of the main aims of the Communicator layer is to consume incoming
move notifications, in turn producing standardized diagrams which can be con-
sumed by the higher layers, hiding the nature of the remote endpoint to the over-
lying GameController. This is accomplished through the VirtualBoard class. A

Fig. 9. Following Rd4-a4 ...the umpire says ”Long diagonal check”. Which one is
guilty, the Bishop or the Queen?

VirtualBoard object provides an internal, uniform representation of the pieces on
a chessboard at any given time. It also provides a few additional useful features,
like telling whether a given case is being controlled by a player.

VirtualBoard objects are the medium through which incoming moves are
shipped to the GameController. Instead of just notifying about the move, the
Communicator sends the updated chessboard. The goal here is to ensure max-
imum scalability and expandability: there are a few chess variants where the
concept itself of "move” is a very peculiar one. Kriegspiel is one example of it,
as the player technically receives no moves at all, but there are more situations
where this issue shows up. For instance, in Progressive Chess, the first player
performs a move, then the opponent makes two, then three, and so forth. So
long as a few rules are followed (for example, only the last move in a sequence
may give check), any array of moves can be played. However, VirtualBoard ob-
jects alone may not be sufficient to describe the situation on the gaming board.
There might be additional information that cannot be directly stored within
such objects, such as the remaning time, or the umpire messages in the case of
Kriegspiel.

5.1 The ICCDriver class

The ICCDriver class is the Communicator implementation allowing play over
the Internet Chess Club. After a brief overview of the ICC’s history and features,
further details shall be given concerning the inner working of this class.

The ICC is the oldest of Internet Chess Servers, dating back to the eighties,
when a small community of chess players foresaw the dramatic impact that the
Net could have on the game of chess. Today, it is by far the largest chess commu-
nity to be found online, often symultaneously hosting over two thousand players.

Fig. 10. In both diagrams, White plays Bfl-d3 and the umpire says ”Long diagonal
check”. In the diagram to the right, the umpire also announces a capture in d3.

Its code was completely rewritten in 1992, still mantaining full backwards com-
patibility, to improve in efficiency and compensate for the ever growing number
of players.

Basically, the ICC is a server that allows players to log on and find opponents
to challenge. It supports player rating using the ELO rating system, which
lets a player keep track of his or her performance in time. Aside from orthodox
chess, over twenty variants can be played, and it is also possible to watch and
review other people’s games. On top of that, it offers the full capabilities of
an TRC-like chat system. Most of these features are only available to registered
members who pay a monthly fee, though login as a guest is allowed, thus letting
anyone play an unrated game.

The Internet Chess Club makes use of a human-readable protocol. In fact,
it is perfectly possible to log on and play games via a telnet client without the
need for a graphical interface, even though the user experience is bound to be
lacking and incomplete. Of course, the programmers introduced a mechanism to
make data transmission a more program-friendly process; this is accomplished
through the concept of datagram. In order to have the server send datagrams
instead of the usual stream of messages (which is much harder for a program to
parse), the following command has to be issued.

set level 1!

After the server has been instructed to do so, it will start to format its messages
in a different fashion. The structure of a datagram is as follows.

[command-number player message]

! Level 2 datagrams are available on ICC, but their purposes and usage go beyond
the scope of this paper.

Fig. 11. White plays Rc4-f4 ..., the umpire says ”File check, Long diagonal check”.

Here, command-number is an opcode representing the incoming message type,
player indicates the username of the player the message come from, and message
contains the actual message text. This way, the program can figure when a mes-
sage ends, what it is meant to do, and who sent it in the first place. There is
a number of available opcodes, though JKrieg only handles a handful of these,
simply trashing and ignoring the rest, as they are of little relevance to the game
itself. Table 5.1 shows a selection of command opcodes implemented in JKrieg,
together with their meaning.

Opcode|Meaning

2 Move. Represents a chessboard update during a game.

19 Disconnection. Opponent has disconnected from the game.
101 Tell. Privately sends a message to a single user.

108 Forfeit. User forfeits due to lack of time.

110 Say. Sends a message to everyone in channel.

121 Issuing. Match request sent to selected opponent.
123 Accepted. User has accepted match request.
207 Draw. Game has ended in a draw.

208 Resign. User resigns and concedes the game.

Table 2. Some ICC opcodes, as implemented in JKrieg.

The message body contains all the relevant information. When the datagram
transmits a move (more precisely, a ply or half-move), the body is an ASCII
representation of a chessboard, with letters such as K and P standing for the
various pieces. Uppercase letters represent White pieces, whereas lowercase let-

ters are Black pieces. The datagram also contains time information, showing the
clock for both players.

There is a method, produceBoardFromText, that transforms the ASCII-
based chessboard into an equivalent VirtualBoard, ready to be consumed by
the higher levels. This method, as well as other methods in the ICCDriver class,
makes use of a support class, RegexpChecker, which implements a very simple
parser for a subset of regular expressions. The RegexpChecker never needs to
be instantiated, because all of its methods are declared as static.

The ICCDriver receives datagrams from the Internet Chess Club via the
Socket class inside the doIOLoop method, required by the interface contract.
The socket returns bytes as they become available from the network connection,
sleeping while the connection is idle (a useful feature of Java, preventing the
program from polling the socket and wasting precious processor cycles). These
bytes are then stored in a temporary buffer until a complete datagram can be
extracted from it. The datagram is delivered to the parseMessage method, which
will take appropriate action and usually invoke the driver’s GameController.

In addition to Communicator, ICCDriver also implements the Runnable in-
terface. This basically means that ICCDriver can be run as a separate thread,
and it will just execute the doIOLoop method (which is basically the typical
infinite input/output loop) until the thread itself is killed by the user quitting
the application.

6 Conclusions and Future Works

Our work is motivated as a study on the importance of an intuitive visual system
as a way of delivering information that can then be used as a factor in higher-
level decision making. We have showed that even a small set of possible messages
can lead to unexpected complexity that is best left to the computer to handle,
so that the human player can focus his attention on the overall strategy. This
being said, we have done little more than just scratching the surface of what
JVariant can potentially do. At this time, for instance, the program is only able
to acquire a subset of the information a human mind can infer from a given set
of positions and umpire messages. The Kriegspiel module is currently limited
in two important areas: it can derive very little information from illegal moves,
and it has no memory of the past, that is, it bases its assumptions on the latest
position alone.

Illegal moves are what makes Kriegspiel intriguing as a metaphor of real world
incomplete information situations involving conflict and competition. A legal
move, when it does not trigger a message (that is, the umpire stays ’silent’), adds
very little information to the player’s knowledge base, aside from the obvious
fact that there were no enemy pieces in between (and not even this in the case
of a Knight). An illegal move, on the other hand, can potentially probe the
chessboard not unlike a radar, to the point that attempting moves that are
almost certainly illegal in order to discover more of the chessboard may become
a viable strategy, though it involves some risk.

References

1.

®

10.

11.

A. Bud, D. Albrecht, A. Nicholson, and I. Zukerman. Playing “Invisible Chess”
with Information-Theoretic Advisors. In Proc. 2001 AAAI Spring Symposium on
Game Theoretic and Decision Theoretic Agents, pages 615, California, USA, 2001.
American Association for Artificial Intelligence.

. J. Burger. UMPIRE: An automatic kriegsspiel referee for a time-shared computer.

In Proc. 22nd ACM National Conference, pages 187-193, Washington, USA, 1967.
Association for Computing Machinery.

Dark Chess. http://www.itsyourturn.com.

P. Ciancarini, F. Dalla Libera, and F. Maran. Decision Making under Uncertainty:
A Rational Approach to Kriegspiel. In J. van den Herik and J. Uiterwijk, editors,
Advances in Computer Chess 8, pages 277-298. University of Limburg, Maastricht,
The Netherlands, 1997.

The Internet Chess Club. http://www.chessclub.com.

A. Kierulf, K. Chen, and J. Nievergelt. Smart Game Board and Go Explorer.
A Study in Software and Knowledge Engineering. Communications of the ACM,
33(2):152-166, 1990.

David Pritchard. The Encyclopedia of Chess Variants. Games & Puzzles Publica-
tions, 1994.

The Sourceforge JVariant project page. http://sourceforge.net/projects/jvariant/.
C.S. Wetherell, T. Buckholtz, and K.S. Booth. A Director for Kriegspiel, A Variant
of Chess. The Computer Journal, 15(1):66-70, 1972.

C.S. Wetherell, T.Buckholtz, and K.S. Booth. A Program to Referee Kriegspiel
and Chess. The Computer Journal, 18, 1975.

R. Wirfs-Brock and A. McKean. Object Design. Roles, Responsibilities, and Col-
laborations. Addison Wesley, 2003.

