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Response inhibition is an important act of control in many domains of psychology and neuroscience. It
is often studied in a stop-signal task that requires subjects to inhibit an ongoing action in response to a
stop signal. Performance in the stop-signal task is understood as a race between a go process that
underlies the action and a stop process that inhibits the action. Responses are inhibited if the stop process
finishes before the go process. The finishing time of the stop process is not directly observable; a
mathematical model is required to estimate its duration. Logan and Cowan (1984) developed an
independent race model that is widely used for this purpose. We present a general race model that
extends the independent race model to account for the role of choice in go and stop processes, and a
special race model that assumes each runner is a stochastic accumulator governed by a diffusion process.
We apply the models to 2 data sets to test assumptions about selective influence of capacity limitations
on drift rates and strategies on thresholds, which are largely confirmed. The model provides estimates of
distributions of stop-signal response times, which previous models could not estimate. We discuss
implications of viewing cognitive control as the result of a repertoire of acts of control tailored to

different tasks and situations.
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The cognitive system can deploy many acts of control to direct
thought and action toward its goals. These acts include shifting
attention (Posner, 1980), changing task sets (Logan & Gordon,
2001), resolving and adapting to conflict (Botvinick, Braver,
Barch, Carter, & Cohen, 2001; Cohen, Dunbar, & McClelland,
1990), trading speed for accuracy (Forstmann et al., 2008, 2010;
Ratcliff, 2006), detecting and preventing errors (Holroyd & Coles,
2002), and inhibiting inappropriate responses (Logan & Cowan,
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1984). Theorists often address each act of control separately,
focusing on one empirical phenomenon and proposing the control
processes and subordinate processes that produce it. We present a
theory that allows us to address different acts of control within the
same mathematical framework and suggest constraints on the set
of acts of control in the cognitive system’s repertoire.

We address the acts of control underlying the ability to inhibit
inappropriate responses. We focus on the stop-signal paradigm, in
which subjects must respond to a go fask as quickly as they can but
inhibit their response to the go task when they hear an occasional
stop signal. The stop-signal paradigm is widely used in studies of
response inhibition, elucidating the underlying neural structures
(e.g., Aron & Poldrack, 2006; Hanes, Patterson, & Schall, 1998),
the development and decline of inhibitory ability over the life span
(e.g., Huizinga, Dolan, & van der Molen, 2006; Williams, Ponesse,
Schachar, Logan, & Tannock, 1999), individual differences in
inhibitory ability (e.g., Friedman et al., 2008; Miyake et al., 2000),
and the deleterious effects of psychopathology (e.g., Chambers,
Garavan, & Bellgrove, 2009; Schachar & Logan, 1990) and neu-
rological disorders (e.g., Aron, Fletcher, Bullmore, Sahakian, &
Robbins, 2003; Dimitrov et al., 2003).

The purpose of this article is to propose a theory of response
inhibition in the stop-signal paradigm that accounts for choice.
Choice is pervasive in stop-signal experiments (for reviews, see
Logan, 1994; Logan & Cowan, 1984; Verbruggen & Logan,
2008c¢), but no current theory of response inhibition accounts for it
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(for a review, see Verbruggen & Logan, 2009b). We account for
choice by integrating race models with stochastic accumulator
models (Usher & McClelland, 2001) to create general and special
theories of response inhibition in the stop-signal paradigm. We test
the theories by fitting them to data from a new experiment that
varied the number of choice alternatives and a previous experiment
that manipulated strategies (Verbruggen & Logan, 2009c).

The general theory is a race model. It describes stop-signal
performance as a race between a stop process and a go process
(Logan & Cowan, 1984), and it describes choice in the go process
as a race between alternative responses (Brown & Heathcote,
2005, 2008; Van Zandt, 2000b). It makes minimal assumptions
about the underlying processes, predicting relations among re-
sponse time (RT) distributions and response probabilities that hold
for all distributions. It accommodates but does not explain changes
in RT with strategies and conditions.

The special theories are stochastic accumulator models embed-
ded in a general race model. The special theories make specific
assumptions about the underlying processes: Each runner in the
race is a stochastic accumulator that accumulates information to a
threshold (Ratcliff & Smith, 2004; Teodorescu & Usher, 2013).
The special theories predict the shapes of the RT distributions and
explain changes in RT with strategies and conditions as the result
of changes in the parameters of stochastic accumulation: the rate of
approach to threshold (drift rate), the threshold, and the time for
perceptual and motor processing (nondecision time).

The special theories allow us to formulate alternative models
that test strong hypotheses about essential properties of subordi-
nate and executive processing. We develop models within each
theory that hold parameters constant or vary them between condi-
tions, and we compare their fit to the data to determine which
parameters produce which effects. The parameters map directly
onto psychological processes, and that allows us to test hypotheses
about which effects are due to subordinate processing and which
are due to executive processing. This is an advance over previous
models of the stop-signal paradigm, which have focused primarily
on a single condition or have described but not explained differ-
ences between conditions (Boucher, Palmeri, Logan, & Schall,
2007; Logan & Cowan, 1984).

We use the theory to explain two acts of control in the stop-
signal task. One act is the stop process that is the main focus of
much stop-signal research. It begins with the stop signal and ends
with an attempt to inhibit the current response that succeeds or
fails. The other act of control modulates the balance between
stopping and going, which is becoming a popular topic of research.
This act of control occurs before trials and between trials. It
appears as proactive slowing of go RT when stop signals become
relevant (Verbruggen & Logan, 2009¢) or occur more frequently
(Bissett & Logan, 2011; Logan, 1981; Ramautar, Kok, & Rid-
derinkhof, 2004) and as reactive slowing of go RT after a stop
signal occurs (Bissett & Logan, 2011; Emeric et al., 2007; Rieger
& Gauggel, 1999; Verbruggen, Logan, Liefooghe, & Vandieren-
donck, 2008).

Our theory explains the stop process as another runner in the
race (Logan & Cowan, 1984). We model its duration (stop-signal
response time or SSRT), and we model its effects on performance:
If it wins the race, the go response is inhibited; if it loses, the go
response is executed. Our theory explains modulatory acts of
control as adjustments of the parameters of stochastic accumula-

tion (Logan & Gordon, 2001). We model the effects of these acts
of control as changes in thresholds, drift rates, or nondecision
times in the subordinate processes, but we do not model the time
it takes to implement these effects. We hypothesize that experi-
mental manipulations will selectively influence parameters of the
stochastic accumulators (cf. Sternberg, 1969). Manipulations of
structure, like the number of choice alternatives, the difficulty of
perceptual processing, and the load on capacity, should affect drift
rate. Manipulations of strategies, such as those that produce pro-
active slowing, should affect threshold. We test the selective-
influence hypothesis by fitting special race models to data from an
experiment that manipulates the number of choice alternatives and
an experiment that manipulates strategies (Verbruggen & Logan,
2009c¢).

The special theories allow us to estimate the entire distribution
of SSRT. This has not been feasible in previous theories of
response inhibition (Colonius, 1990; De Jong, Coles, Logan, &
Gratton, 1990; Logan & Cowan, 1984; but see Matzke, Dolan,
Logan, Brown, & Wagenmakers, 2013). The distribution of SSRTs
may be useful in studies of neuroscience, life-span development,
individual differences, psychopathology, and neurological disor-
ders, as RT distributions have provided useful information in these
domains (Balota & Yap, 2011; Ratcliff & Smith, 2004; Van Zandt,
2000a).

The Stop-Signal Paradigm

The first stop-signal experiment was published in 1948 by
Margaret Vince. A few experiments were reported in the 1960s
and 1970s (Lappin & Eriksen, 1966; Ollman, 1973; Slater-
Hammel, 1960), but stop-signal research did not begin in earnest
until the 1980s, when it was organized around independent race
models of the stop and go processes (Logan, 1981; Logan &
Cowan, 1984; Osman, Kornblum, & Meyer, 1986). The 1990s saw
the first applications to clinical psychology (Schachar & Logan,
1990; Tannock, Schachar, Carr, Chajczyk, & Logan, 1989), de-
velopmental psychology (Kramer, Humphrey, Larish, Logan, &
Strayer, 1994; Schachar & Logan, 1990), neuroscience (De Jong et
al., 1990; Hanes et al., 1998), and individual differences (Logan,
Schachar, & Tannock, 1997). Since the turn of the century, stop-
signal research has gained momentum, and the stop-signal para-
digm is now a popular procedure for the study of response inhi-
bition and cognitive control in cognitive science, clinical science,
and neuroscience (see Verbruggen, Chambers, & Logan, 2013; for
reviews, see Logan, 1994; Logan & Cowan, 1984; Verbruggen &
Logan, 2008b). Stop-signal performance is considered to be an
endophenotype for attention-deficit disorder (Schachar et al.,
2005), drug addiction (Ersche et al., 2012), and obsessive-
compulsive disorder (Chamberlain & Sahakian, 2007).

The stop-signal paradigm requires the deliberate inhibition of a
voluntary response. Subjects are engaged in a go task that requires
a speeded response. The go task usually involves choice between
alternative responses, but some studies have addressed simple RT
tasks (Logan, Cowan, & Davis, 1984). Occasionally, a stop signal
is presented that instructs subjects to withhold their response on
that trial. The stop signal is usually a tone, but some studies have
used visual (Lappin & Eriksen, 1966; Verbruggen, Aron, Stevens,
& Chambers, 2010) or tactile stop signals (Akerfelt, Colonius, &
Diederich, 2006). The most important independent variable is the
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delay between the onset of the stimulus for the go task and the
onset of the stop signal (stop-signal delay).

When given a stop signal, subjects either inhibit their response
to the go task, producing a signal-inhibit trial, or fail to inhibit their
response, producing a signal-respond trial. The probability of
inhibiting the response—P(inhibit)—depends on stop-signal de-
lay. It decreases as stop-signal delay increases. Many researchers
plot the complementary probability of responding given a stop
signal—P(respondlsignal)—which increases as stop-signal delay
increases. The plot of either probability against stop-signal delay is
called the inhibition function. Typical inhibition functions are
plotted in Figure 1 (for a discussion of inhibition functions, see
Logan & Cowan, 1984; Verbruggen & Logan, 2009b).

The inhibition function is determined by stop-signal delay, but
it also depends strongly on RT in the go task; the probability of
responding given a stop signal is lower the longer the go RT
(Logan, 1981; Logan & Cowan, 1984). Differences in go RT shift
the inhibition function to the left or right along the stop-signal
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Figure 1. Top panel: Inhibition functions for three subjects plotted as a
function of stop-signal delay. Bottom panel: Inhibition functions for the
same three subjects replotted as a function of mean go response time minus
stop-signal delay. Data are taken from “On the Ability to Inhibit Thought
and Action: A Theory of an Act of Control,” by G. D. Logan and W. B.
Cowan, 1984, Psychological Review, 91, p. 298. Copyright 1984 by the
American Psychological Association.

delay axis. Often, shifts due to go RT differences between condi-
tions, strategies, tasks, and subjects can be compensated for pre-
cisely by replotting the inhibition function as a function of the
difference between go RT and stop-signal delay (Logan, 1981;
Logan & Cowan, 1984; cf. Salinas & Stanford, 2013). Researchers
have also adjusted stop-signal delay with a tracking procedure to
produce equivalent probabilities of inhibition in different condi-
tions, strategies, tasks, and subjects, essentially aligning the inhi-
bition functions (e.g., Logan et al., 1997; Osman et al., 1986).

The second panel of Figure 1 shows typical inhibition functions
plotted against RT minus stop-signal delay. Note that the functions
for J.C. and G.L. align better than the function for J.M. This
happened because J.M. had greater variability in go RT than J.C.
or G.L. Transformations that take go variability into account
produce better alignment (see Logan & Cowan, 1984, Figure 3).

The alignment of inhibition functions suggests that it is profit-
able to think of response inhibition as an act of control with a
specific latency. The difference between go RT and stop-signal
delay reflects the time that is available to execute the act of control,
that is, to detect the stop signal and heed it before inappropriately
executing the go response. The alignment also motivates race
models of stop-signal performance: The response can be inhibited
only if the act of control finishes before the go response (Logan,
1981).

Another important dependent variable is go RT on signal-
respond trials. It is usually faster than go RT on trials with no stop
signal and faster for shorter stop-signal delays than for longer ones.
When plotted as a cumulative distribution, the minimum go RTs
are about the same for signal-respond RTs from different stop-
signal delays and for go RTs from no-stop-signal trials. The
distributions fan out at the higher quantiles, rising more slowly the
longer the stop-signal delay (Osman et al., 1986). Example distri-
butions of go RTs from signal-respond and no-stop-signal trials are
plotted in Figure 2.

The relation between signal-respond RT and no-stop-signal RT
also suggests that the act of control underlying response inhibition
has a specific latency. Signal-respond RTs are the go responses
that are faster than the act of control that underlies response
inhibition. The shorter the stop-signal delay, the sooner the act of
control finishes, so the faster the go RT has to be in order to finish
before it. This relationship and the relationship between inhibition
functions and go RT motivated the development of race models of
stop-signal performance.

The Independent Race Model

Logan and Cowan (1984) proposed an independent race model
to account for stop-signal performance. The model assumes that a
stop process, initiated by the stop signal, races in parallel against
a go process, initiated by the go stimulus, and performance is
determined by the process that wins the race. If the stop process
wins, the go response is inhibited; if the go process wins, the go
response escapes inhibition. The finishing times of the stop process
and the go process are assumed to be independent random vari-
ables, whose probability density functions are f,,,,(f) and f, (1),
respectively. We assume f,,,,,(1) and f, (¢) are continuous and O for
all + < 0. The model predicts the probability of responding, P,,
given a stop signal at delay 7, as
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Figure 2. Quantile average response time distributions for no-stop-signal
trials and signal-respond trials with stop-signal delays (SSDs) of 153, 241,
and 329 ms. Data are taken from the two-choice condition of the multiple-
choice experiment reported later in the article.

Pyt = [ £ (1 = Fyplt = 1)d, (1)
0

where F,,,(t — t,) is the cumulative distribution function of
finishing times for the stop process at delay z,,.

Equation 1 predicts the inhibition function through the term 1 —
Fp(t — t,). Increasing stop-signal delay decreases F,,,(f — 1,),
which results in a higher probability of responding. Equation 1
also explains the effect of go RT on the inhibition function.
Increasing mean go RT will decrease the probability that the go
process will beat the stop process, so the inhibition function
will shift to the right, as observed (see Figure 1). The model
also predicts that changes in stop-signal delay can compensate
for changes in go RT to align inhibition functions from different
conditions, strategies, tasks, and subjects (Logan, 1981; Logan
& Cowan, 1984). This prediction justifies the common practice
of adjusting stop-signal delay with a tracking procedure to
produce a desired probability of inhibition (Logan et al., 1997;
Osman et al., 1986).

The independent race model also provides the distribution of
signal-respond RTs at a given stop-signal delay, f,,(lz,), as

fsr(Z | ty) :fgo(t)(l - Fstop([ = 1))/ P(ty). (2

The model explains why signal-respond and no-stop-signal RT
distributions share a common minimum and fan out at higher
quantiles with a steeper rise for shorter stop-signal delays. The
term 1 — F,, (1 — 1,) decreases monotonically as 7 increases and
acts as a filter that compresses the upper tail of the go RT
distribution, f, ,(¢). The longer the stop-signal delay, the less the go
RT distribution is compressed at a given value of ¢, so the shal-
lower the rise of the cumulative distribution. In the limit, the
signal-respond RT distribution will approach the no-stop-signal
RT distribution.

Perhaps the most important contribution of the independent race
model was to provide methods for estimating the time it takes to
inhibit a response (i.e., SSRT). Estimates of SSRT have served as
measures of cognitive control in studies of cognition, life-span
development, individual differences, psychopathology, and neuro-
pathology (for reviews, see Logan, 1994; Verbruggen & Logan,
2008b). This is an important contribution because SSRT is not
directly observable.

The mean method involves using the tracking procedure to tie the
race between stopping and going, so each wins 50% of the time
(Logan et al., 1997; Osman et al., 1986). When the race is tied, mean
go RT = mean stop-signal delay + SSRT. SSRT can be calculated by
subtracting mean stop-signal delay from mean go RT on no-stop-signal
trials. This method can estimate SSRT accurately, but it is susceptible
to distortion from skew and strategic slowing, and so it should be
interpreted with caution (Verbruggen et al., 2013).

The integration method is more general than the mean method.
It can be used no matter how stop-signal delays are set, and it is
more robust to skew and strategic slowing (Verbruggen et al.,
2013). It assumes SSRT is a constant, so any go RTs that finish
before stop-signal delay + SSRT will be executed, and any go RTs
that finish after it will be inhibited. Thus, the probability of
responding on a stop-signal trial equals the proportion of the go RT
distribution that is faster than stop-signal delay + SSRT:

SSRT+1,

Pay= [ fuod, 3)
0

where ¢, is stop-signal delay. The integration method inverts the
relationship in Equation 3, using the go RT distribution, the
probability of responding given a stop signal, and stop-signal
delay to identify SSRT. The go RT distribution is integrated
until the integral equals the probability of responding given a
stop signal. At that point, + = ¢, + SSRT, and SSRT is
estimated by subtracting 7, from ¢ (see Logan, 1994; Logan &
Cowan, 1984). In practice, calculating SSRT with the integra-
tion method involves rank-ordering the N go RTs in the no-
stop-signal distribution, finding the Mth go RT, where M = N X
P(respond|signal), and subtracting stop-signal delay from the
Mth go RT (see Logan, 1994).

The distribution method calculates the unobserved distribution
of SSRTs from the observed distributions of no-stop-signal RTs
and signal-respond RTs by rearranging Equation 2:

Foop(t — 1) = 1 = fi,(t| 1) P(1)/ f 3o(2) (C))

(Colonius, 1990; De Jong et al., 1990). Estimating SSRT distri-
butions with Equation 4 is impractical because it depends heavily
on accurate estimates of the tails of the distributions, which require
a lot of observations (Matzke et al., 2013). Our model allows us to
estimate the SSRT distribution more efficiently.

Independence Assumptions

The independent race model assumes two kinds of indepen-
dence: stochastic independence and context independence (Colo-
nius, 1990; Logan & Cowan, 1984). Stochastic independence
means that the finishing times of the stop process and the go
process are independent on a given trial. More precisely, it means
that
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P(Tg() < tg() m TA‘t()p < txt()p) = P(Tg() < tgn) ° P(TA't()p < t.\'tup) (5)

for all z,,, and t,,,,,. Context independence means that the distribu-
tion of finishing times for the go process is the same whether or not
a stop signal is presented. More precisely, it means that

P(T,, < tIno stop signal) = P(T,, <tlt,) (6)

for all 7 and ¢,.

The independent race model does not assume functional inde-
pendence of the stop and go processes (Ashby & Townsend,
1986). Functional independence means that factors that affect the
distribution of finishing times for the go process do not affect the
distribution of finishing times for the stop process and vice versa.
More precisely, functional independence means that

[fg()(tlA) 7& fg()(tlB)] /\ [fstop(tlA) = fsmp(tlB)] = True (73)

or

[fgo(tl C) = fgo(t|D)] /\ [fslop(” C) ?& fslop(tl D)] = True
(7b)

or both Equations 7a and 7b are true (where /\ denotes logical
conjunction). A and B are different conditions that affect the go
task but do not affect the stop task, and C and D are different
conditions that affect the stop task but not the go task. It is
important to note that violations of functional independence do not
imply violations of stochastic or context independence. Equations
5 and 6 could hold when Equation 7 is violated.

This article explores the functional independence of stop and go
processes by examining the hypothesis that they share capacity. Ca-
pacity sharing is a common explanation of dual-task interference
(Kahneman, 1973; Pashler, 1994; Posner & Boies, 1971), and several
studies have asked whether the stop process and the go process share
capacity (Logan, 1981; Logan & Burkell, 1986; Yamaguchi, Logan,
& Bissett, 2012). We ask the question more rigorously, using param-
eters of our stop-signal models to measure capacity and assess func-
tional independence (Townsend & Ashby, 1983).

Benefits and Costs of Generality

The independent race model is very general. This generality
allows the race model to apply to any stop-signal task in any
response modality, including keypresses (Logan, 1981), hand
squeezes (De Jong et al., 1990), wrist and arm movements (Bruna-
monti, Ferraina, & Paré, 2012), eye movements (Logan & Irwin,
2000), typewriting (Logan, 1982), and speech (Xue, Aron, &
Poldrack, 2008), or in any subject population, including children
(Schachar & Logan, 1990), the elderly (Kramer et al., 1994),
psychiatric and neurological patients (Aron et al., 2003; Thakkar,
Schall, Boucher, Logan, & Park, 2011), monkeys (Hanes et al.,
1998), and rodents (Eagle & Robbins, 2003). No parameters have
to be estimated.

The independent race model does not specify the mechanisms
that produce the finishing-time distributions, so it cannot explain
the effects of structural and strategic manipulations on stopping
performance and go RT. We address this limitation by proposing
special race models that address such effects. The independent race
model does not specify the mechanism that inhibits the response

after the stop process wins the race, so it cannot explain recent
investigations of the neural interactions that cause stopping (Aron
& Poldrack, 2006; Hanes et al., 1998; Paré & Hanes, 2003). We do
not address this limitation in this article. The interaction occurs in
a stage subsequent to the race, and the duration of that stage is very
brief (Boucher et al., 2007). Moreover, our current modeling of the
interactive stage suggests several viable mechanisms that are dif-
ficult to distinguish in behavioral and neural data, so we defer
questions about the nature of the interaction until we learn more
about it.

Alternative Models

The independent race model went unchallenged for 20 years and
is still used to estimate SSRT in virtually every published stop-
signal study. In the last few years, several alternative models have
been proposed. All of these models assume a race between stop
and go processes, so they predict inhibition functions and signal-
respond RTs, like the independent race model. The alternative
models focus more directly on mechanism, asking what the stop
process does to stop the go process.

Boucher et al. (2007) proposed an interactive race model, in
which the stop process has two stages: an afferent stage that
detects the stop signal and apprehends its significance and an
interactive stage that inhibits the go response. The go process is
modeled as a single diffusion to a threshold, and the interactive
stage of the stop process is modeled as a single diffusion that
inhibits the growth of activation in the go process. Responses are
inhibited if the interactive stage prevents the go process from
reaching threshold (cf. Salinas & Stanford, 2013). In fits of the
model to data from two monkeys, the afferent stage occupied most
of SSRT. The interactive stage was very brief, and the inhibition
from the stop process on the go process was very strong. Thus, the
race was independent for most of its duration, and the interaction
was brief and potent. Lo, Boucher, Paré, Schall, and Wang (2009)
developed a spiking-neuron version of the interactive race model,
and Wong-Lin, Eckhoff, Holmes, and Cohen (2010) developed a
version that explains the optimization of reward rate.

These models are important because they specify the underlying
mechanisms and connect mathematical models to underlying phys-
iology (also see Forstmann, Wagenmakers, Eichele, Brown, &
Serences, 2011; Gold & Shadlen, 2007; Purcell et al., 2010). They
all assume that responses are stopped by inhibiting go activation
(but see Salinas & Stanford, 2013). They all find that the afferent
stage of the stop process is much longer than the interactive stage,
so they all approximate the independent race model.

All of these models share a common limitation: They do not
deal with choice. The go task is represented by a single accumu-
lator that is guaranteed to reach threshold on every trial. There are
no errors of choice. This is an important limitation because go
tasks that involve choice RT are pervasive in the stop-signal
literature (Logan, 1994; Logan & Cowan, 1984; Verbruggen &
Logan, 2008b), and models of RT that address choice are perva-
sive in the mathematical modeling literature (Logan, 2004; Ratcliff
& Smith, 2004; Teodorescu & Usher, 2013).

The goal of this article is to develop and test general and special
independent race models that deal with choice in the stop-signal
paradigm. The general model assumes that choice involves a race
between all possible responses, including the go alternatives and
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the stop response. The special models assume that each runner is
a single diffusion process, whose duration depends on drift rate,
threshold, and nondecision time parameters. We test special mod-
els by fitting them to data from a new experiment that manipulated
the number of choices in the go task and a previous experiment
that manipulated strategic slowing in anticipation of stop signals
(Verbruggen & Logan, 2009c).

General Independent Race Model

The general independent race model extends the original inde-
pendent race model (Logan & Cowan, 1984), describing the go
task as a race between alternative responses. The general model
assumes a race between a set A of possible responses that includes
the stop response as well as each of the possible responses in the
go task. It assumes stochastic independence for all runners (see
Equation 5) and context independence for the stop process (see
Equation 6). Functional independence (see Equation 7) is an em-
pirical question, which we address through our tests of special race
models. The general independent race model includes the original
independent race model as a special case, in which the set A
contains just two members: the stop process and the go process.
The general independent race model addresses distributions of
finishing times without specifying the form of the distributions or
the processes that generate them. It provides a cognitive architec-
ture in which more specific models can be articulated.

Our decision to represent the go process as a race between
alternative responses represents a stronger commitment to cogni-
tive architecture than the original independent race model made,
and consequently, it is more controversial. On the one hand,
several successful models of RT assume a race between indepen-
dent runners (e.g., Brown & Heathcote, 2005, 2008; Logan, 1988;
P. L. Smith & Van Zandt, 2000; Van Zandt, 2000b; Van Zandt,
Colonius, & Proctor, 2000). On the other hand, other successful
models assume competition between alternative responses, includ-
ing random walk (e.g., Nosofsky & Palmeri, 1997), diffusion (e.g.,
Ratcliff, Van Zandt, & McKoon, 1999), and competitive leaky
accumulator models (Usher & McClelland, 2001). In direct com-
parisons, some specific race models have not accounted for be-
havioral data as well as some specific competitive models (Ratcliff
& Smith, 2004; Teodorescu & Usher, 2013), but in other contexts,
race models sometimes do a better job of accounting for behavioral
(Leite & Ratcliff, 2010) and physiological data (Ratcliff, Cherian,
& Segraves, 2003; but see Purcell et al., 2010). An important
virtue of race models for our present purposes is their mathemat-
ical simplicity and the transparent way they allow us to formulate
and test mathematical models that assume specific forms of sto-
chastic accumulation.

The general independent race model assumes that each runner in
the race is a stochastic accumulator (Ratcliff & Smith, 2004
Teodorescu & Usher, 2013). The model assumes that stochastic
accumulation proceeds independently for each response in the
response set A and that the chosen response and the time at which
it is chosen are determined by the accumulator that reaches its
threshold first. Let fi(f) be the probability density function of the
time 7 that accumulator i reaches its threshold. Let f,,,,(t — 7,) be
the probability density function of the time ¢ that the stop accu-
mulator reaches its threshold given that stop-signal delay is ?,.
Both f(n) and f,,,(t — 1,) are zero for values of their arguments

that are less than zero, and both depend on the specific stochastic
accumulator model that is proposed (diffusion, Poisson counter,
etc.). The general race model does not commit to any particular
stochastic accumulator model.

Given these assumptions, the probability that go response i will
occur is

Paespi)= [ fiw) I (1= Fa)(1 = Fopu— 1) du,  (82)
0 JEAj#i

where F(f) is the cumulative distribution function for go response
j. On no-stop-signal trials, z, = %, so the stop process has no
chance of winning the race. On stop-signal trials, #, << %, and the
probability that the stop process wins the race is

Pestop) = [ fuopu— 1 [] (1 = F@) du. (8b)
0 i€A

Thus, for the general race model, the inhibition function is

Pty = 1= P(stop) = 1 = [ fupp(u = 1) Il 0= Fyda.— ©
0 i

The general race model assumptions also allow us to specity the
joint probability density function of RT given response i, which is

faliy= [ﬁ(t)(l —Fupt—1) ] (1= F;(r))]/ﬂ(td). (10)

JEAj#i
If there is no stop signal, then ¢z, = o0, and Equation 10 gives the
distribution of RTs for response i. If there is a stop signal, then
t, << o, and Equation 10 gives the distribution of signal-respond
RTs for response i. Signal-respond RTs will necessarily be faster
than no-stop-signal RTs because the term 1 — F,, (1 — t,) will
compress the upper tail of the go distribution. The cumulative
distribution of SSRTs can be calculated with the Colonius-De Jong
method (see Equation 4), using

fo) = [ >

I€A,j#stop

ol

JEA,j#i,j#stop

(I = Fy®)

X(1= Fug(t = 1) |/ Pt (an
for the distribution f,,(f) of signal-respond RTs and
fo= 2 fo ] (I = Fy®) (12)
i€A, i#stop JEA, j#i,j#stop

for the distribution f,,,(#) of go RTs.

Special Independent Race Model:
The Diffusion Race Model

We developed special independent race models that describe the
racing processes as stochastic accumulators. Each model specifies
the finishing-time distribution for each runner in the race in terms
of three parameters that capture most of the important effects in the
RT literature: rate, threshold, and nondecision time (Ratcliff &
Smith, 2004). We use the best fitting parameter values to assess the
nature of capacity limitations and strategies in the stop-signal task.
Rates address capacity limitations, and thresholds address strate-
gies.
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We investigated three special independent race models: a dif-
fusion model (Ratcliff et al., 1999), a Poisson counter model (Van
Zandt et al., 2000), and the linear ballistic accumulator model
(Brown & Heathcote, 2008). We fit them to the multiple-choice
stop-signal task described below. All three models fit the data well,
and the model fits led to the same conclusions regarding process-
ing capacity and number of choices (see the online supplemental
materials). This suggests that the constraints in the general inde-
pendent race model were doing most of the work. We chose to
focus our investigation on the diffusion model. It fit better than the
other models in the majority of cases, and it has been investigated
more extensively.

Diffusion models are popular models of choice RT (e.g., Ratcliff
& McKoon, 2008; Ratcliff et al., 1999), accounting for RT and
error data in a wide variety of tasks from attention (P. L. Smith &
Ratcliff, 2009) and intelligence (van Ravenzwaaij, Brown, &
Wagenmakers, 2011) to lexical decision (Wagenmakers, Ratcliff,
Gomez, & McKoon, 2008) and recognition memory (Ratcliff,
1978). Our diffusion race model assumes a race between N inde-
pendent diffusion processes, each of which has a single boundary
(Usher, Olami, & McClelland, 2002). The finishing-time distribu-
tion for each runner is simply the Wald distribution (see below).
The finishing-time distribution for the winner of the race is not the
Wald but instead is the distribution of the minima of the Wald
distributions for all of the runners in the race.

The diffusion race model assumes that each stochastic accumu-
lator is a Wiener diffusion process with a drift rate &, a starting
point at 0, and a threshold (absorbing boundary) at z. We assume
a drift coefficient equal to 1. The accumulator for the stop process
does not begin until stop-signal delay expires. Under these as-
sumptions, the finishing-time distributions fi() are given by in-
verse normal (Wald) densities with parameters determined by the
drift rate and threshold. Thus, for the go process,

_1 1
fit) =z(2mr) 2 exp[— (& 27, (13)

and for the stop process,

_1
Fatop(®) = 22m(t — 1)°) 2 exp[— Et—-tp—21, (19

2(t— 1)

if t > t, and O otherwise.

The model expressed in Equations 13 and 14 assumes no vari-
ability in threshold across trials, although threshold variability is
important in accounting for fast error RT distributions (Ratcliff &
Smith, 2004). We investigated a diffusion race model with thresh-
old variability, to capture fast error RTs. We assumed threshold
was a uniform random variable ranging from z — a to z + a, with
a mean of z and a variance of a*/3. The finishing time of a runner
unconditioned over the variable threshold z is found by computing

stz = Q0" [ ftlzx) dz as)

where (2a)” ! is the probability density function of the uniform

threshold. The probability density function for Equation 15 can be
computing analytically. Noting that ¢(x) and ®(x) are the density
and cumulative distribution functions of the standard normal dis-

tribution, respectively, and letting a = —(z — a — t§)/\/tand B =
(z + a — t§)I\/t, then

gtz & a) = 2a) [d(a) — d(B) — EP(e) — D(B))]
(16)

for § > 0and a > 0. If a = 0, then g(71z,§) = fi(r) (see Equation
13) or f,,,,(t) (see Equation 14). If & = 0, then

top

gi(tlz,a) = 2a) '[d(a) — d(B)]. a7

We substituted Equations 16 and 17 for the generic distributions
in Equations 8 and 10 to generate likelihood functions to fit the
diffusion race model to the data. We used the best fitting param-
eters to estimate the distribution of SSRTs. This parametric
method for estimating SSRT distributions is less susceptible to
noise in the tails of the distributions than the nonparametric meth-
ods of Colonius (1990) and De Jong et al. (1990).

Our model fits yield estimates of drift rate, threshold, and
nondecision time parameters in each condition of the experiments
we fit. We assume that thresholds are determined mostly by
strategic factors, like expectancies of events and rewards (Ratcliff,
2006; Ratcliff & Smith, 2004). We assume that drift rates are
determined partly by structural factors, like capacity limitations,
the quality of stimulus information, and the quality of memory
representations (Nosofsky, Little, Donkin, & Fific, 2011; Ratcliff
et al., 1999), and partly by strategic factors, like division of
attention among stimuli (Logan, 1996; Logan & Gordon, 2001;
P. L. Smith & Ratcliff, 2009) or stimulus dimensions (Logan &
Gordon, 2001; Nosofsky & Palmeri, 1997). When there is no
competition for attention, we predict selective influence of exper-
imental manipulations on model parameters: Structural factors
should affect drift rates, and strategic factors should affect thresh-
olds. There is usually no competition for attention in the stop-
signal paradigm. The go stimulus is presented by itself without any
conflicting information from irrelevant distractors or stimulus di-
mensions to filter out. Thus, the predicted selective influence
should be observed.

Capacity Limitations in Stop and Go Processes

The concept of processing capacity has had a long history in
cognitive psychology. From Posner and Boies (1971) and Kahne-
man (1973) onward, researchers have proposed that central pro-
cesses share capacity, such that one process performs less effec-
tively when a concurrent process is active. There are many
demonstrations of dual-task interference in the literature that are
consistent with this proposal (for a review, see Pashler, 1994). Stop
and go processes do not seem to share capacity in this way. SSRT
is as fast as simple RT in many experiments and does not seem to
be affected much by the demands of the go task (e.g., Logan, 1981;
Logan & Burkell, 1986). Yamaguchi et al. (2012) measured SSRT
in a dual-task experiment, in which subjects had to stop one of two
go tasks. They found that SSRT was unaffected by the temporal
overlap of the two tasks and no different in single- and dual-task
conditions.

Previous stop-signal studies used estimates of mean SSRT to
test the hypothesis that stop and go processes share capacity. Here,
we test the hypothesis more rigorously, using the diffusion race
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model to measure capacity in terms of parameters of the underly-
ing stochastic accumulation processes.

Modeling Capacity Limitations

Townsend and colleagues formalized the concept of processing
capacity as a measure of the rate of processing, distinguishing
between unlimited, limited, and fixed capacity (Townsend &
Ashby, 1983). Processing capacity for an individual process, like
the ith runner in a race, can be measured as the rate v, at which the
process operates, and processing capacity for a set of N processes,
like a processing stage or a set of runners in a race, can be
measured as the sum of the rates of the component processes, 2.
v,. Unlimited capacity, limited capacity, and fixed capacity are
defined in terms of the rates for individual processes and the sum
of the rates over all processes.

A process has unlimited capacity if its rate is unchanged when
another process enters the race. Thus, the rate of processing for the ith
process is the same whether there are N or N + 1 runners. That is,

Vin = ViN+1- (18)

A set of processes has unlimited capacity if the sum of the rates of
the components increases without limit as more components are
added to the race. Thus,

1

N
vi<21v,~+v,-w+l. 19)
“

M=

A set of processes has fixed capacity if the sum of the rates of
the runners is fixed at a constant value, C, regardless of the number
of runners. Thus,

N +1

2";‘:

i=

v =C. (20)

i=1

A process has fixed capacity if its rate decreases when another
runner is added to the race but the sum of the rates for all the runners
remains the same. If capacity is divided equally among all runners
in the race, then

C C

Vi|N_N>Vi|N+l = m 21

Limited-capacity processes fall between unlimited- and fixed-
capacity models. The rate of processing for an individual process
decreases as more runners enter the race, but the decrease is not as
great as it would be if capacity were fixed. The sum of the rates of
processing over all runners in the race increases as more runners
enter the race, but the increase is not as great as it would be if
capacity were fixed (also see Bundesen, 1990; Eidels, Donkin,
Brown, & Heathcote, 2010). Since RT depends on processing
rates, fixed capacity and limited capacity are essentially violations
of context independence.

Capacity Limitations in the Diffusion Race Model

Equations 18-21 apply to situations in which we can identify
the processing rate associated with a particular stage of processing.
This is not always possible. Townsend and colleagues (Townsend
& Altieri, 2012; Townsend, Houpt, & Silbert, 2012; Townsend &
Wenger, 2004; Wenger & Townsend, 2000) developed techniques

for assessing capacity limitations from RT distributions, which
reflect the sum of the durations of all stages of processing. We do
not need to use such general techniques. Our diffusion race model
allows us to assess the rate of processing in the perceptual and
conceptual stages of the stop and go processes, which are the
processes whose capacity limitations are at issue, so we can apply
Equations 18-21 to estimated rate parameters from fits of the
models to data. Changes in the rate parameter with number of
choices tell us whether capacity is unlimited, limited, or fixed.
These assessments of capacity limitations allow us to assess the
functional independence of stop and go processes.

Capacity Limitations in Multiple-Choice RT Tasks

It has been known since the 19th century that RT increases mono-
tonically with the number of alternative responses (Merkel, 1885).
The increase is important because it means that RT depends not only
on the stimulus that is actually presented but also on the set of
alternative stimuli that could have been presented (see Garner, 1962).
The increase is linear with the logarithm of the number of choice
alternatives, which led Hick (1952) and Hyman (1953) to formulate a
law that describes this increase, couched in terms of information
theory. They interpreted the slope of the linear increase with the
logarithm of the number of choice alternatives as the maximum rate
at which humans could process information—the capacity for pro-
cessing information. The link to capacity is supported by converging
operations: Dual-task interference increases with the number of alter-
native responses in a choice RT task (Logan, 1979; M. C. Smith,
1969; Van Selst & Jolicoeur, 1997).

The idea that multiple-choice RT reflects capacity limitations is
supported by modeling: Schneider and Anderson (2011) accounted
for multiple-choice RT in terms of interference from memory
retrieval, which increased with the number of alternatives and
lowered the rate of processing for the chosen alternative. This is
consistent with fixed capacity. Leite and Ratcliff (2010) fitted a
large family of stochastic accumulator models to multiple-choice
RTs and found that the models that fit the best allowed processing
rate for the chosen alternative to decrease as the number of
alternatives increased, consistent with limited capacity. However,
the best fitting models also allowed nondecision time and response
threshold to vary with number of alternatives. Usher and McClel-
land (2001) accounted for multiple-choice RT by holding input
constant for the chosen alternative and varying the number of
competing alternatives, which reduced the effective processing
rate for the chosen alternative (also see Bogacz, Usher, Zhang, &
McClelland, 2007). This is consistent with limited capacity. Usher
et al. (2002) showed that multiple-choice RT could be accounted
for by changes in response threshold with no changes in processing
rate. This is consistent with unlimited capacity.

Our interpretation of rate parameters as measures of processing
capacity allows a precise test of the hypothesis that stop and go
processes share capacity. If they do, then the stop process is another
runner in the same race that competes for capacity with the runners for
each go response. The rate parameter for the stop process should
decrease with the number of alternative responses, just as the rate
parameters for the go processes do. If the stop process does not share
capacity with the go process, then the rate of stop processing should
not vary with the number of alternative responses.
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The hypothesis that stop and go processes share capacity should
be distinguished from the hypothesis that the stop process is
limited in capacity. The stop process may have its own capacity
limitations even if it does not share them with the go process. The
stop process rate parameters must depend on the discriminability
and intensity of the stop signal (Cavina-Pratesi, Bricolo, Prior, &
Marzi, 2001; Salinas & Stanford, 2013), and that could be inter-
preted as a capacity limitation (see Bundesen, 1990; Logan, 2002).

To evaluate the diffusion race model and test the hypothesis that
stop and go processes share capacity, we conducted an experiment
in which six subjects each performed a multiple-choice RT task
combined with a stop-signal task for 12 sessions. The multiple-
choice task required subjects to identify a single visually presented
five-letter word by pressing a key on a computer keyboard. Each
session, subjects performed three blocks of 240 trials, one with two
choice alternatives, one with four choice alternatives, and one with
six choice alternatives, for a total of 8,640 trials per subject. The
stop signal was a tone that was presented on 25% of the trials at
stop-signal delays that were set separately for each subject and
each choice condition to correspond to the 15th, 35th, 55th, 75th,
and 95th percentiles of the subject’s go RT distribution for that
condition. The stop-signal delays were based on a practice block
with no stop signals in the first session and remained the same
throughout all 12 sessions. New words were used each session to
keep go RT relatively constant (Logan, 1979). Further details of
the procedure are presented in Appendix A.

We manipulated the number of choice alternatives to vary the
load on capacity in the go task. If the stop task shares capacity with
the go task, then SSRT should increase as the number of choice
alternatives increases. If the stop task does not share capacity with
the go task, then SSRT should not vary as the number of choice
alternatives increases. We tested this hypothesis more rigorously
by fitting the diffusion race model to the data.

If the number of choice alternatives affects the load on capacity,
then the rate parameters for the go process in the diffusion race
model should decrease as the number of choice alternatives in-
creases. This would imply that the go process has limited capacity.

If the rate parameters decrease such that their sum remains
constant over the number of choice alternatives (see Equations
20-21), then the go process has fixed capacity.

If the go process has limited or fixed capacity, we can ask
whether it shares capacity with the stop process. If the go process
and the stop process share capacity, then the rate parameters for the
stop process should decrease as the number of choice alternatives
in the go task increases. If the go process and the stop process
share a fixed capacity, then the sum of the rate parameters for the
stop process and the go processes should remain constant over the
number of choice alternatives (see Equations 20-21).

Alternatively, if the go process and the stop process do not share
capacity, then the rate parameter for the stop process should not be
affected by the number of choice alternatives in the go task, and
the sum of the rate parameters for the stop process and the go
processes need not be constant over choice alternatives.

Results: Behavioral Data

Mean RTs for correct responses, collapsed across subjects and
sessions, are plotted as a function of number of choice alternatives
in Figure 3. Mean no-stop-signal RT increased with number of
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Figure 3. Mean observed (points) and predicted (lines) go response time,
signal-respond response time, stop-signal response time (SSRT), and error
rate—P(Error)—for diffusion race model as a function of number of choice
alternatives in the multiple-choice experiment. Error bars are 95% confi-
dence intervals.

choice alternatives, as is typical in multiple-choice tasks, increas-
ing by 132 ms from two to four alternatives and by 101 ms from
four to six alternatives (Hick, 1952; Hyman, 1953). Error rate
increased with the number of alternatives as well (Brown,
Steyvers, & Wagenmakers, 2009). These effects were stable across
sessions (see Appendix A) because we introduced a new set of
words each session to reduce item-specific learning (Logan, 1988),
and they were stable within sessions because we include 72 prac-
tice trials before collecting data. These effects were stable across
subjects: Go RT increased with number of alternatives for each
subject. The increase in go RT with number of alternatives is
important because it suggests that the go process has limited or
fixed capacity. Demonstrating a limited- or fixed-capacity go
process is the first step in asking whether the stop process shares
capacity with the go process. However, increases in go RT with the
number of alternatives can also occur if the go process is unlimited
in capacity (i.e., by increasing threshold; see Usher et al., 2002), so
we need to analyze the processing rates in the underlying stochas-
tic accumulators to reach firm conclusions.

The data from stop-signal trials were typical of stop-signal
experiments. Inhibition functions across subjects and sessions are
plotted as a function of the number of choice alternatives in Figure
4. The probability of responding given a stop signal increased with
stop-signal delay in each choice condition (Logan, 1981; Logan &
Burkell, 1986; Logan & Cowan, 1984; Logan et al., 1984). Mean
signal-respond RTs were faster than no-stop-signal RTs (Logan &
Cowan, 1984). Their distributions had similar lower tails and
differed primarily in their upper tails (see Figure 5; Osman, Korn-
blum, & Meyer, 1990). Mean signal-respond RTs also increased
with the number of choice alternatives, by 94 ms from two to four
alternatives and by 64 ms from four to six alternatives.

The effect of number of choice alternatives on SSRT is impor-
tant theoretically because it addresses whether the stop process
shares capacity with the go process. We calculated mean SSRT for
each subject using the integration method (see Equation 3; Logan,
1994; Logan & Cowan, 1984) and plotted the means across sub-



gical Association or one of its allied publishers.

1t is copyrighted by the American Psycholo

This docu

is not to be disseminated broadly.

ended solely for the personal use of the individual user anc

This article is

GENERAL AND SPECIAL MODELS OF RESPONSE INHIBITION 75

11

0.8 -
=
©
&
50.6 1 # 2 Observed
'E =2 Predicted
304 | A 4 Observed
3 . =4 Predicted
=4
= B G Observed

02 - - =0 Predicted

@
0
0 200 400 600 800
Stop Signal Delay in ms

Figure 4. Observed (points) and predicted (lines) inhibition functions for
diffusion race model averaged over subjects as a function of number of
choice alternatives (2, 4, 6) and stop-signal delay in the multiple-choice
experiment.

jects as a function of number of choice alternatives in Figure 3.
Mean SSRT was not affected much by the number of choice
alternatives, increasing by 7 ms from two to four choices and by 5
ms from four to six choices. These differences are small compared
to the differences in no-stop-signal and signal-respond RT, sug-
gesting that the stop task and the go task do not share capacity.

Analysis of individual-subject data showed that SSRT increased
with number of choice alternatives in two of the six subjects (see
Appendix A). For Subject 1, SSRT increased by 77 ms from two
to six choices. For Subject 2, SSRT increased by 20 ms from two
to six choices. These differences suggest the stop process was
limited in capacity (but see Usher et al., 2002). Analysis of the
rates of stochastic accumulation will be necessary to rule out
unlimited-capacity processing. For the remaining subjects, SSRT
did not increase with number of alternatives (differences between
two and six choices were 0, —11, 7, and —33 ms for Subjects 3-6,
respectively). Their results are consistent with an unlimited-
capacity stop process. Analysis of the rates of stochastic accumu-
lation will provide stronger evidence.

Results: Diffusion Race Model Fits

To evaluate the nature of capacity limitations in the stop and go
processes, we fit eight versions of the diffusion race model to the
multiple-choice data for correct and error responses (see Table 1).
To fit the diffusion race models, we used Equations 16 and 17 to
generate likelihood functions. For each model, we assumed there
was one runner in the race for each choice alternative in the go task
and one runner for the stop task. Each go runner was characterized
by a rate and a threshold parameter. Within a set of choice
alternatives, the correct response had a rate parameter of &; and
each incorrect response had a rate parameter of €,. The rates were
the same for each incorrect response in the set. There was one
threshold z; for all responses in a set of choice alternatives, though
in different models the threshold could vary between sets of choice
alternatives. The stop process had one rate parameter, §,,,, and

one threshold, z,,,. There were two separate nondecision time
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Figure 5. Diffusion race model fits to response time distributions for
correct trials from the multiple-choice experiment. Quantile average re-
sponse time distributions for no-stop-signal and signal-respond trials for
the three middle stop-signal delays (153, 241, and 329 ms for two choices;
227, 358, and 488 ms for four choices; 281, 441, and 602 ms for six
choices). The points represent the observed data. The lines represent
predictions from the best diffusion race model, which assumed a limited-
capacity go process and an unshared-capacity stop process. A: Two choice
alternatives. B: Four choice alternatives. C: Six choice alternatives.
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Table 1
Models Fitted to the Multiple-Choice Data
Go Stop Go Stop Aggregate N

Model threshold Go rate threshold Stop rate capacity capacity Param BIC fit best
1 Varied Varied Varied Varied Limited Shared 17 590,976 0
2 Varied Varied Fixed Fixed Limited Unshared 13 590,736 2
3 Varied Varied Varied Fixed Limited Unshared 15 590,964 0
4 Varied Varied Fixed Varied Limited Shared 15 590,881 1
5 Varied Fixed Varied Varied Unlimited Shared 13 594,388 0
6 Fixed Fixed Varied Varied Limited Shared 15 591,510 0
7 Varied Fixed Fixed Fixed Unlimited Unshared 9 593,518 2
8 Fixed Varied Fixed Fixed Limited Unshared 11 591,367 1

Note. The best fitting model in the aggregate fits is in bold italic font. Varied = parameter is allowed to vary with number of choice alternatives; Fixed =
parameter is held constant across number of choice alternatives; Param = number of parameters; BIC = Bayesian information criterion.

parameters, one for the stop process and one for the go process,
because stop and go stimuli were presented in different modalities.
Within each process, nondecision time was not allowed to vary
with number of choice alternatives (cf. Leite & Ratcliff, 2010). The
threshold of the stop and go diffusions was allowed to vary uniformly
between z — a and z + a to capture error RT distributions.

The eight versions of the diffusion race model differed in their
assumptions about whether rates and thresholds for the go and stop
processes were fixed or varied with the number of choice alterna-
tives. We tested hypotheses about capacity limitations in the go
process by comparing models in which go rates were fixed (un-
limited capacity) or varied (limited capacity) with the number of
choice alternatives. We tested hypotheses about shared capacity
limitations in stop and go processes by comparing models in which
stop rates were fixed (unshared capacity) or varied (shared capac-
ity) with the number of choice alternatives. The models and their
assumptions are presented in Table 1.

The fitting procedure found the parameter values that maxi-
mized the likelihood of the data (Myung, 2003; Van Zandt, 2000a).
Each version of the model was fitted to the distributions of correct
and error no-stop-signal RTs, the distributions of signal-respond
RTs at each stop-signal delay, and the inhibition function. Each
subject’s data were fitted separately. Details of the fitting process
are presented in Appendix B. Model fits were evaluated with the
Bayesian information criterion (BIC; Raftery, 1995; Schwarz,
1978; Wagenmakers, 2007),

BIC= —2log L; + k;log N, (22)

where L; is the maximized likelihood for model i, k; is the number
of parameters in model i, and N is the number of data points.
Models with more parameters have greater flexibility and gener-
ally produce lower (i.e., better) negative maximum-likelihood val-
ues (—2 log L;). The last term in Equation 22 penalizes models
with greater flexibility, adding k; log N to the negative maximum-
likelihood value. Models with lower BIC scores are preferred over
models with higher BIC scores. We calculated aggregate BIC
values over subjects by summing likelihoods, summing parameters,
and summing numbers of observations and then applying Equation
22. Our use of aggregate BIC values assumes that the same model fit
best for all subjects and that all subjects are independent of one
another. We also calculated separate BIC values for each individual
subject. The individual-subject BIC values allow us to evaluate con-
sistency in the model fits across subjects.

The aggregate BIC values for each model are presented in Table
1. The model with the lowest aggregate BIC score assumed a
limited-capacity go process and a stop process that did not share
capacity with the go process (i.e., varied go rate and threshold,
fixed stop rate and threshold; see Row 2 in Table 1). The predicted
mean go RTs, mean SSRTs, and error rates (lines) are plotted with
the observed values (points) in Figure 3. The model predicts
no-stop-signal RT and signal-respond RT well, but it overpredicts
error rate for six-alternative choices. The predicted inhibition
functions (lines) are plotted with the observed inhibition functions
(points) in Figure 4, showing close agreement. The predicted RT
distributions (lines) are plotted with the observed values (points) in
Figure 5. Like the observed values, the predicted values fanned out
from a common minimum, with longer upper tails for longer
stop-signal delays. This follows from the race model: The faster go
RTs are fast enough to win the race regardless of the stop-signal
delay, but the longer go RTs can be fast enough to win only when
stop-signal delay is longer.

The values of the best fitting rate and threshold parameters for
the model with the best aggregate fit (limited-capacity go,
unshared-capacity stop), averaged across subjects, are presented in
Table 2 and Figure 6. The rate parameters for the go process
decreased as number of choice alternatives increased, indicating
limited capacity (see Equation 17). The sum of the rates decreased
from two choices (§,,, + €,,, = 0.252) to four choices (§,,, +
3e,,, = 0.205) to six choices (&5, + 5&4,, = 0.153), indicating
stronger capacity limitations than a fixed-capacity model would
predict (see Equation 18). One interpretation of this hyperlimited
capacity is that it takes capacity to share capacity: Preparing and
coordinating several response alternatives consume capacity that
could be used for processing information (e.g., Logan, 1978, 1979;
Pashler, 1994). Whatever the interpretation, the model fits suggest
the go process is limited in capacity, and that allows us to ask whether
the stop process shares the same capacity. In the best fitting model, the
rate parameters for the stop process were constrained to be the same
for each number of choice alternatives, suggesting that the stop
process and the go process do not share capacity.

The fits to the individual-subject data were consistent with the
aggregate fits. The number of subjects fit best by each model is
presented in Table 1. The models of the go task differed between
subjects: Some required rate changes, some required threshold
changes, and some required both. The models of the stop task were
more consistent: Five of the six subjects were fit best by an
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Table 2

Mean Values Across Subjects for the Best Fitting Diffusion Race Model Parameters for the Multiple-Choice Data in the Aggregate

Fits and for the Best Fitting Models for Individual Subjects

Go Threshold Incorrect Nondecision Stop Threshold Nondecision
Choice threshold variability Correct rate rate time threshold variability Stop rate time
Best aggregate fit
2 64.265 5.735 0.210 0.042 164 5.107 0.837 0.068 241
4 66.848 6.403 0.157 0.016 164 5.107 0.837 0.068 241
6 68.606 6.335 0.134 0.004 164 5.107 0.837 0.068 241
Best fit for individual subjects
2 61.890 2.139 0.200 0.039 160 4.882 8.837 0.089 241
4 66.375 3.086 0.154 0.016 160 4.882 8.837 0.082 241
6 68.173 3.155 0.134 0.004 160 4.882 8.837 0.077 241

unshared-capacity stop model. A shared-capacity stop model fit
best for Subject 2, whose “observed” SSRTs (estimated from the
data with the integration method; Equation 3) increased with
number of choice alternatives, indicating a shared-capacity stop
process.

The aggregate and individual-subject fits required similar
changes in parameters to account for the data. We selected the best
fitting model for each subject and averaged the best fitting param-
eter values across subjects. The average rate and threshold param-
eters for the stop and go processes are presented in Figure 6. As
with the aggregate fits, the rate parameters for the go task change
the most with the number of choice alternatives. Thus, go task
capacity is limited. The rate parameters for the stop task do not
change much with the number of choice alternatives. Thus, the
stop task does not share capacity with the go task (Logan &
Burkell, 1986; Yamaguchi et al., 2012).

The threshold parameter for the go task increases slightly with
number of alternatives in both the aggregate fits and the average of
the best fits to individual subjects. We interpret this as an adjust-
ment subjects make to keep error rate low. The variability in
stochastic evidence increases as drift rate decreases, and subjects
may adjust threshold strategically to compensate for the increased
noise.

SSRT distributions. The diffusion race model assumes that
SSRT is a random variable, so the model fits allow us to estimate
the distribution of SSRT. Two SSRT distributions are relevant.
One is the parent distribution of SSRT from which runners in the
race are sampled. The other is the winning distribution of SSRTs
that are faster than the go process on individual runs of the race
(i.e., on individual trials). The rate, threshold, and nondecision
times for the stop process give the parent distributions. We calcu-
lated the winning distributions for the middle three stop-signal
delays, using parameters from model with the best aggregate fit
and Equations 10, 13, and 14, and we plotted them as cumulative
distribution functions in Figure 7. The winning SSRT distributions
shift to the left as stop-signal delay increases; the race is more
biased against the stop process the longer the delay, so only the
faster SSRTs win. This trend is opposite to the rightward shift in
signal-respond RT distributions (see Figures 5 and 6), where
increasing stop-signal delay biases the race in favor of the go
process, allowing progressively slower go RTs to win the race.

The ability to estimate SSRT distributions is an important ad-
vance. Previously, Colonius (1990) and De Jong et al. (1990)

proposed a nonparametric method for estimating SSRT distribu-
tions (see Equation 4), but their method is not practical. It requires
very large amounts of data to produce stable estimates because
calculations depend on the tails of the observed distributions,
which are noisy. Matzke et al. (2013) developed a parametric
method, which assumes that the SSRT distribution is ex-Gaussian.
They provided powerful Bayesian methods that allow accurate
estimation of ex-Gaussian parameters even with small amounts of
data. However, their approach is descriptive, aimed at character-
izing SSRT distributions and not the processes that generate them.
Our method assumes a parametric form for the SSRT distributions
(see Equations 13—17), and the parameters (rate and threshold) are
readily interpretable as psychological processes.

Error RTs. The ability to fit error probabilities and RTs has
become an important criterion for evaluating models of RT. The
diffusion race model predicted error probabilities relatively well
but could not capture the distribution of error RTs (see Figure 8,
top panel). In developing the current model, we first fit a diffusion
race model that assumed no variability in threshold. The diffusion
model with no threshold variability predicted error probability
relatively well but predicted error RTs that were much longer than
observed error RTs. Then we fit the current diffusion race model
that assumes variability in threshold, which often allows models to
capture error RT distributions (Ratcliff & Smith, 2004). However,
the diffusion race model with threshold variability did not do much
better than the model with no threshold variability. Predictions
from the current diffusion race model, which assumes threshold
variability, are shown in the top panel of Figure 8. The estimated
threshold variability was small—less than 10% of the threshold in
the best fit to the aggregate and less than 5% of the threshold in the
average of the individual-subject fits (see Table 2).

We suggest two interpretations of this failure to fit error RT
distributions. One interpretation is that the diffusion race model
does not fit the data well and should be rejected. Another inter-
pretation is that there were not enough error data to allow the
model to fit the errors. The overall error rate was less than 2%, so
the contribution of error likelihood to the overall likelihood was
very small. The fitting routine will be dominated by the vast
majority of correct responses. To illustrate, we plotted the correct
and error RT data as defective distributions in the bottom panel of
Figure 8. Defective distributions are analogous to cumulative
frequency distributions but describe the probabilities of observing
an RT less than some value and the response is correct or incorrect.
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Figure 6. Values of the best fitting rate and threshold parameters for the stop
process and the go process in diffusion race model fits to the multiple-choice
data. The top panel contains parameters from the model that fit the aggregate
data best (limited-capacity go, unshared-capacity stop). The bottom panel
contains the average of the parameters for the best fitting model for each subject.

Rather than ranging from O to 1, they range from 0O to the proba-
bility of the response being correct or incorrect. The defective
distributions for correct response rise nearly to 1.0, while the
defective distributions for error responses barely reach 0.02. At
this scale, the failure to predict error RT distributions does not look
very substantial.

We also tried fitting the data with a version of the linear ballistic
accumulator model, which has fit error RT distributions success-
fully (Brown & Heathcote, 2008). The model assumed each runner
involved a linear increase to a threshold, and the slope of the linear
increase for each runner was drawn from a normal distribution
with a mean of §; and a standard deviation of 1.0. The model fit the
data set about as well as the diffusion race model but also failed to
fit the error RT distributions. Predicted error RTs were much
longer than observed error RTs. The linear ballistic accumulator
model has fit error data well in other contexts (Brown & Heath-
cote, 2008), so we interpret its failure to capture error RTs as a
limitation of our data set rather than the model.

We ran simulations of the diffusion race model and found that
it could predict fast errors when threshold variability was high. In
Appendix C, we report the results of one simulation in which we
reduced the difference between correct and error drift rates to
produce a mean error rate of 36% and set threshold variability
equal to 75% of the threshold. Error RTs were faster than correct
RTs. We then fit the model to the simulated data and found that it
accounted for fast errors and recovered the parameters accurately.
Thus, we conclude that the diffusion race model is capable of
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Figure 7. Distributions of stop-signal response times (SSRTs) that won
the race against the go process estimated from the limited-capacity go,
unshared-capacity stop diffusion race model in the multiple-choice exper-
iment. Top panel: Two-choice go task. Middle panel: Four-choice go task.
Bottom panel: six-choice go task. SSD = stop-signal delay.
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Figure 8. Distributions of correct and error response times for no-stop-
signal trials for two-, four-, and six-choice alternatives in the multiple-
choice experiment. The top panel presents cumulative distribution func-
tions that asymptote at 100%. The bottom panel presents defective
distribution functions that asymptote at the response probability.

producing fast errors, and we interpret the poor fits to the current
error RTs as indicating that error rate was too low to allow us to
evaluate error RTs properly.

Discussion

The analysis of the data and the analysis of the models suggest
that the stop process does not share capacity with the go process.
Go RT increased dramatically as the number of choice alternatives
increased, suggestive of limited capacity (Townsend, 1971, 1990;
Townsend & Ashby, 1983), but mean SSRT increased only
slightly. The fits of the diffusion race model allowed us to interpret
the increase in go RT with the number of choice alternatives as
evidence of capacity limitations because limited-capacity models
of the go process were necessary to fit the data. The same fits
allowed us to conclude that the stop process did not share capacity
with the go process. The best fitting models assumed that the stop
processing rates were constant across numbers of choice alterna-
tives, indicating that the stop process did not share capacity with

the go process. This conclusion is consistent with functional inde-
pendence between go and stop processes (see Equation 6).

Our finding that the stop process does not share capacity with
the go process is remarkable because many processes share capac-
ity (Pashler, 1994), especially control processes (Logan, 1978,
1979; Shiffrin & Schneider, 1977). It is worth speculating on
reasons why the stop process may escape the limitations that apply
to other processes. One possibility is that the stop task is given
higher priority than other tasks, and high priority tasks are given
first access to limited processing capacity (Meyer & Keiras, 1997).
In everyday life, the act of control underlying stop-signal inhibi-
tion is recruited to compensate for errors, for sudden changes in
input, or for sudden changes in goals that make the current course
of action inappropriate or irrelevant. Compensating for these
changes should have a higher priority than continuing an inappro-
priate or irrelevant course of action. This suggests that stop signals
might produce dual-task interference in processing subsequent go
stimuli (e.g., Horstmann, 2003), which might explain post-stop-
signal slowing (Bissett & Logan, 2011; Rieger & Gauggel, 1999).
Further research is required to explore this possibility.

Another possibility is that control is hierarchical and stop-signal
inhibition is recruited by a higher level system that is not subject
to the same capacity limitations as the lower level system that
chooses responses and executes them (Logan & Cowan, 1984;
Logan & Crump, 2011). However, the evidence for hierarchical
control is controversial despite the widespread appeal of the idea
(see Cooper & Shallice, 2000, 2006, vs. Botvinick & Plaut, 2004,
2006), and it is not clear that higher level processes rely on
different capacities than lower level ones (see Logan, 1979). More
research is required to evaluate this possibility.

A third possibility is that the versions of the stop and go tasks that
we have investigated are not sufficiently demanding to show evidence
of capacity limitations. The stop task involves a single response to a
single tone, like a simple RT task, and so may not demand much
processing capacity. More difficult stop tasks that require discrimina-
tion among stop signals produce longer SSRTs (Bedard et al., 2002)
and sometime produce violations of the race model (Bissett & Logan,
2013). Change tasks that require an overt response to the stop signal
in addition to inhibiting the go response also increase SSRT (Logan &
Burkell, 1986). Go tasks that require inhibition of competing alterna-
tives also produce longer SSRTs, suggesting capacity limitations
(Kramer et al., 1994; Ridderinkhof, Band, & Logan, 1999; Verbrug-
gen, Liefooghe, & Vandierendonck, 2004; but see Verbruggen,
Liefooghe, Szmalec, & Vandierendonck, 2005; Verbruggen,
Liefooghe, & Vandierendonck, 2005). Thus, the conditions under
which SSRT is affected by complexity in the stop task and go task
require further research. The special race models developed in this
article may be useful in determining whether the increased SSRTs
reflect capacity limitations or strategies.

Control Strategies in the Stop-Signal Task

The stop-signal task presents subjects with diametrically oppos-
ing demands. The faster they perform the go task, the less likely
they are to succeed at stopping; the slower they perform the go
task, the more likely they are to succeed at stopping. Subjects often
cope with these demands by strategically slowing performance on
the go task to increase their likelihood of stopping: Go RT is
slower when stop signals occur more frequently (Bissett & Logan,
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2011; Logan, 1981; Logan & Burkell, 1986; Ramautar et al., 2004)
and when subjects are given signals that indicate that stop signals
are likely (Chikazoe et al., 2009; Verbruggen & Logan, 2009c).
This strategic slowing may be severe enough to subvert the experi-
ment (Leotti & Wager, 2010), invalidating estimates of SSRT (Ver-
bruggen et al., 2013). Researchers try to eliminate strategic slowing by
introducing the go task before the stop task so subjects can learn how
quickly they can respond to it without competing demands, by in-
structing subjects to avoid slowing, or by rewarding fast go responses.
However, subjects often slow strategically when stop signals are
introduced despite these precautions (Ramautar et al., 2004; Verbrug-
gen, Liefooghe, & Vandierendonck, 2004, 2006).

Researchers have assumed that slowing in anticipation of a stop
signal is strategic because it is proactive and occurs rapidly in
response to changes in stop-signal probability and cues. Our dif-
fusion race model addresses the mechanism underlying strategic
slowing, attributing the slowing to parameters of the model that the
executive system can adjust strategically. Thus, we expect proac-
tive slowing to be explained by threshold adjustment and not by
changes in drift rate. Proactive slowing may also be explained by
delaying the onset of stochastic accumulation (Pouget et al., 2011),
measured as an increase in nondecision time.

Explicitly Cuing Stop-Signal Relevance

We fit the diffusion race model to an experiment by Verbruggen
and Logan (2009c) that showed strategic slowing in response to
explicit cues indicating whether subjects had to stop when stop
signals occurred. Eighteen subjects were given the explicit cues all
or none that told them how many of the stop signals required
stopping in the next four to eight trials. The go task involved
classifying characters (discriminating Z and/). The stop signal was
a tone. Tones occurred on 33% of all trials. Stop-signal delay was
adjusted by a tracking algorithm that produced successful stopping
on 50% of stop-signal trials. The cue was presented for 1,000 ms
before the first trial in a run and remained on the screen throughout
the run. Each subject performed 576 trials, divided evenly between
all and none conditions.

Verbruggen and Logan (2009¢) designed their experiment to
evoke strategic slowing. The blocks of all and none trials were
cued explicitly and were very short (four to eight trials). This led
to very rapid changes in RT on the first trial after a cue change.
Thus, we should expect differences in diffusion race model pa-
rameters that executive processes control strategically, like thresh-
old and maybe onset. We should expect no differences in diffusion
race parameters that reflect structural and informational limita-
tions, such as drift rate.

Results. The observed go RTs, signal-respond RTs, SSRTs,
and error rates from Verbruggen and Logan (2009¢) were averaged
across subjects and plotted in Figure 9. The data show that subjects
responded in accord with the cues. They inhibited responses on
53% of the trials when the stop signal was relevant (al/ cues) but
only on 2% of the trials when the stop signal was irrelevant (none
cues). Subjects also slowed strategically following the cues: Go
RT was 501 ms when stop signals were relevant and 408 ms when
stop signals were irrelevant. The slowing was accompanied by an
increase in accuracy, suggestive of a threshold adjustment: Accu-
racy was 97% when stop signals were irrelevant and 99% when
stop signals were relevant. Further analysis showed that slowing

Verbruggen & Logan, 2009
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Figure 9. Mean observed (points) and predicted (lines) go response time
(RT), signal-respond response time, stop-signal response time (SSRT), and
error rate—P(Error)—for diffusion race model for conditions in which
none of the stop signals were relevant and all of the stop signals were
relevant in Verbruggen and Logan (2009c). Error bars are 95% confidence
intervals.

occurred on the very first trial in a run after the cue changed,
supporting the idea that the slowing was strategic. When stop
signals were relevant, SSRT was 263 ms.

Verbruggen and Logan (2009c¢) fit the Fast-dm version of the
two-choice diffusion model (Voss & Voss, 2007) to the no-stop-
signal go data and found that threshold and nondecision time
changed with stop-signal relevance but drift rate did not. These
results are consistent with our hypothesis that strategies in the
stop-signal task affect threshold but not drift rate. Our modeling
addresses more of the data.

Diffusion race model fits. We fit a set of eight diffusion race
models to the data (see Table 3), fitting no-stop-signal RT distri-
butions for correct and error responses when stop signals were and
were not relevant and signal-respond distributions for correct
responses as a function of stop-signal delay. The set of models was
generated from the factorial combination of fixing versus varying
threshold, rate, and nondecision time between the relevant stop-
signal and irrelevant stop-signal conditions (see Table 3). We also
fixed and varied the variability in a uniform distribution of thresh-
olds, in an attempt to capture error RTs. We fixed variability in
threshold between conditions whenever we fixed threshold be-
tween conditions and let it vary between conditions whenever we
let threshold vary between conditions. We did not see much
theoretical value in allowing threshold variability to vary while
threshold was fixed between conditions, so we excluded those
conditions to reduce the number of models we fit from 16 to eight.

For each of the eight models, we assumed there was one runner
in the race for each of the two choice alternatives in the go task and
one runner for the stop task, and each runner was characterized by
arate and a threshold parameter. The correct go response had a rate
parameter of &, and the incorrect response had a rate parameter of
€,. There was one mean threshold z; for both go responses. The stop
process had one rate parameter, §,,,,, and one threshold, z,,,,. Both
stop and go thresholds were allowed to vary uniformly between
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Table 3
Models Fitted to the Verbruggen and Logan (2009¢) Data
Go Go threshold Go nondecision Aggregate N fit
Model threshold Go rate variability time Param BIC best
1 Fixed Fixed Fixed Fixed 9 97,954 0
2 Fixed Fixed Fixed Varied 10 96,920 0
3 Varied Fixed Varied Fixed 11 96,438 9
4 Varied Fixed Varied Varied 12 96,595 5
5 Fixed Varied Fixed Fixed 11 96,712 2
6 Fixed Varied Fixed Varied 12 96,674 1
7 Varied Varied Varied Fixed 13 96,622 1
8 Varied Varied Varied Varied 14 96,785 0
Note. The best fitting model in the aggregate fits is in bold italic font. Param = number of parameters; BIC = Bayesian information criterion.

z; — a; and z; + a; to capture error RT distributions. The stop and
go processes had separate nondecision times. The eight models
differed in whether these parameters were fixed or were allowed to
vary between all and none trials.

We fit the models to the data by maximizing the likelihood
using the methods described in Appendix B. We used BIC to
evaluate goodness of fit, calculating an aggregate BIC and BICs
for individual subjects.

The BIC values for the aggregate fits are presented in Table 3.
The best fitting model was one in which threshold varied but rate
and nondecision time stayed constant as stop-signal relevance was
manipulated (see Row 3 in Table 3). This model fit best in nine of
the 18 individual-subject fits. The next most popular model, which
fit best in five of the 18 subject fits, was one in which threshold
and nondecision time varied but rate remained constant as stop-
signal relevance was manipulated (see Row 4 in Table 3). This
model is similar to the one that Verbruggen and Logan (2009c) fit
to their data. Overall, 15 of 18 subjects were fit best by a model
with variable threshold, 14 of 18 were fit best by a model with
fixed rate, and 12 of 18 were fit best by a model with fixed
nondecision time.

The mean go RTs, signal-respond RTs, SSRTs, and error rates
predicted from the best fitting model (threshold varied, rate, and
nondecision time fixed) are plotted along with the observed values
in Figure 9. There is good agreement between predicted and
observed values for all measures, except for SSRT. All predicted
values fell within the 95% confidence intervals of the observed
values, except for predicted SSRT, which was 41 ms faster than
observed SSRT (estimated from the data with the integration
method).

The predicted and observed RT distributions for correct no-stop-
signal RTs in the all and none conditions and for signal-respond
RTs in the all condition are plotted in Figure 10. There is good
agreement between predicted and observed values.

The values of the best fitting parameters for the go task are
plotted as a function of stop-signal relevance in Figure 11. The top
panels present the parameters from the model that fit the aggregate
best, which assumed varied threshold, constant rate, and con-
stant nondecision time. The bottom panels present the average
parameter values for the best fitting model for each subject as
a function of condition. The patterns are similar: Threshold and
threshold variability were larger in the all condition than in the
none condition in both aggregate and individual-subject fits.
Drift rate and nondecision time were the same for al/l and none

in the aggregate fits. They both decreased from none to all in
the individual-subject fits, trading off their effects on RT: The
reduced drift rate would slow RT but the reduced nondecision
time would speed it. Altogether, these results are consistent
with selective influence and our hypothesis that strategies affect
thresholds more than rates.

The predicted distribution of SSRT is plotted in Figure 12. For
the best aggregate fit, the mean stop rate and threshold were 0.160
and 0.684, respectively. For the individual-subject fits, the mean
stop rate and threshold were 0.153 and 0.998, respectively.

The predicted and observed distributions for correct and error
RTs are presented in Figure 13. The top panel presents cumulative
distribution functions, which asymptote at 1.0. The bottom panel
presents defective distributions, which asymptote at response prob-
ability. As before, the model captured correct RT distributions and
error probabilities well but overpredicted error RTs. Again, we
note that error rate was very low (2%), so there may not have been
enough errors to allow the model to fit the error RTs (see Appen-
dix C).
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Figure 10. Diffusion race model fits to response time distributions for
correct trials from Verbruggen and Logan (2009c). Quantile average re-
sponse time distributions for no-stop-signal trials in the condition in which
none of the stop signals were relevant and for no-stop-signal and signal-
respond trials in the condition in which all of the stop signals were relevant.
The points represent the observed data. The lines represent predictions
from the best diffusion race model.
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Figure 11. Values of the best fitting rate and threshold (left panels) and threshold variability and nondecision
time (right panels) parameters for the diffusion race model fits to the Verbruggen and Logan (2009¢) data. The
top panels contain parameters from the model that fit the aggregate data best. The bottom panels contain the
average of the parameters for the best fitting model for each subject.
Discussion. The model fits suggest that the strategic slowing slower as percentage of stop signals increased (also see Logan,

reported by Verbruggen and Logan (2009c¢) is best described by a
model in which threshold and threshold variability change when
stop signals become relevant but rate and nondecision time stay
constant. This model fit is consistent with our hypothesis that
executive processes adjust threshold and perhaps onset of accu-
mulation strategically but do not adjust drift rate. The present
results, together with the multiple-choice results, show a predicted
selective influence of experimental manipulations on diffusion
model parameters. Manipulations that loaded capacity changed
drift rate but not threshold. Manipulations that shifted strategies
changed threshold but not drift rate.

Percentage of Stop Signals

Bissett and Logan (2011, Experiment 1) conducted an experi-
ment in which 24 subjects performed a stop-signal task in which
stop signals occurred on 20% or 40% of the trials, pitting the
priority of the go task against the priority of stopping. RT became

1981; Logan & Burkell, 1986; Ramautar et al., 2004; Verbruggen
& Logan, 2009¢). We modeled this slowing by fitting a set of 16
diffusion race models to the data. The set of models was created
from the factorial combination of fixing versus varying go rate, go
threshold, go nondecision time, and stop process parameters be-
tween the 20% and 40% stop-signal conditions. Summaries of the
results and model fits are presented in the online supplemental
materials.

The fits were good, but there was not much consensus on the
best fitting model. Ten of the 16 models fit best for at least one
subject; no model fit best for more than four subjects. Collapsing
across models, there was consistency for the stop process: Twenty
subjects were fit best by models with stop rates and thresholds
fixed for 20% and 40% stop signals. There was less consistency for
the go process: Nine subjects were fit best with go rates fixed, and
11 were fit best with go thresholds fixed. This inconsistency
challenges the selective-influence hypothesis: For some subjects,
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Verbruggen & Logan, 2009
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Figure 12. Distributions of stop-signal response times (SSRTs) that won
the race against the go process estimated from the diffusion race model
with the best aggregate fit to the Verbruggen and Logan (2009c) data.

strategies were mediated by changes in drift rate. We discuss
possible top-down influences on drift rate in the online supple-
mental materials.

General Discussion

We developed a general independent race model that construed
the go process as a race between alternative responses and the stop
process as another runner in the race (see Equations 8—-10). We
developed special race models in which each runner in the race is
a single diffusion process (see Equations 13—17) whose parameters
are selectively influenced by structural and strategic factors.

We tested the selective influence of capacity limitations on drift
rate in a new multiple-choice stop-signal task. Increasing the
number of choice alternatives decreased drift rate but had little
effect on threshold, consistent with selective influence. Analysis of
drift rates showed that the stop process and the go process did not
share capacity (Logan & Burkell, 1986; Yamaguchi et al., 2012).
The stop process may have had its own capacity limitations, but it
did not share them with the go process.

We tested selective influence of strategy on threshold by fitting
data from an experiment by Verbruggen and Logan (2009c¢) in
which the relevance of stop signals was manipulated. Increasing
stop-signal relevance increased threshold but had little effect on
drift rate or nondecision time, consistent with selective influence.
We note that selective influence was not strongly evident in the fits
to Bissett and Logan (2011; see the online supplemental materials).

More generally, the studies of selective influence illustrate the
use of the special model to generate specific hypotheses about the
stop and go processes and test them rigorously by competitive
model fitting. The independent race model (Logan & Cowan,
1984) described stop-signal performance in terms of relations
among observed RT distributions. The special diffusion race
model explains stop-signal performance in terms of changes in its
parameters between experimental conditions. This is an important
advance over previous theories.

An important strength of both general and special race models is
that they deal with choice in the go task. No previous model of

stop-signal performance has dealt with choice in the go task
(Boucher et al., 2007; Lo et al., 2009; Logan & Cowan, 1984;
Wong-Lin et al., 2010). Some of these models dealt with stopping
saccadic eye movements, where choice errors almost never hap-
pen. However, most stop-signal tasks use keypress responses,
where most subjects make choice errors. Thus, the ability to deal
with choice is an important step forward, and our manipulation of
the number of choice alternatives was a significant challenge. The
general model characterizes choice as a race and defines the race
architecture. The special model characterizes each runner as a
diffusion process and specifies its parameters.

SSRT Distributions

The diffusion race model provides an estimate of the distribu-
tion of SSRT and relates it to the parameters of stochastic accu-
mulation of evidence about the stop signal. This is an important
advance. Previous models provided point estimates of SSRT (Lo-
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Figure 13. Distributions of correct and error response times for no-stop-
signal trials for the none and all conditions from Verbruggen and Logan
(2009¢c). The top panel presents cumulative distribution functions that
asymptote at 100%. The bottom panel presents defective distribution
functions that asymptote at the response probability.
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gan & Cowan, 1984) and nonparametric methods for estimating
SSRT distributions that required impractical numbers of trials to
overcome noise in the tails of the distributions (Colonius, 1990; De
Jong et al., 1990). The ability to account for RT distributions is an
important desideratum in developing models of cognitive pro-
cesses (Balota & Yap, 2011; Ratcliff & Smith, 2004; Van Zandt,
2000a).

The diffusion race model estimates of SSRT distributions com-
plement recent Bayesian hierarchical methods for estimating
SSRT distributions developed by Matzke et al. (2013). Their
methods also parameterize the stop and go processes, characteriz-
ing their finishing-time distributions as ex-Gaussian (i.e., the con-
volution of an exponential distribution and a normal, or Gaussian,
distribution). The ex-Gauss describes RT distributions accurately
and is used widely in the literature (Balota & Yap, 2011; Ratcliff
& Murdock, 1976). However, its parameters do not map directly
onto psychological processes, like rates and thresholds in stochas-
tic accumulators (Matzke & Wagenmakers, 2009), so the ex-Gauss
fits provide limited insight into the underlying stop and go pro-
cesses. The diffusion race model provides greater insight.

An advantage of Matzke et al.’s (2013) Bayesian hierarchical
method is that it can be applied to rather small data sets provided
there are lots of subjects. The diffusion race model did well with
large (multiple-choice) and small (Verbruggen & Logan, 2009c¢)
data sets. It would be interesting to see how few data it requires. It
should be possible to implement the diffusion race in Bayesian
hierarchical modeling to gain the same advantages as the Matzke
et al. model.

Go RT Distributions

The diffusion race model accurately predicted response proba-
bilities and go RT distributions for correct responses on no-stop-
signal trials and signal-respond trials. It accurately predicted error
probability, but it overpredicted error RT distributions. The fit to
the correct RT distributions and response probability is an impor-
tant advance (cf. Boucher et al., 2007; Lo et al., 2009; Logan &
Cowan, 1984; Salinas & Stanford, 2013; Wong-Lin et al., 2010).
Moreover, the model captured the relation between no-stop-signal
and signal-respond RT distributions accurately in most of the fits.
Most likely, this follows more from the general race architecture
than the special diffusion race model. It is a general property of an
independent race (Logan & Cowan, 1984).

The overprediction of error RT is troublesome because the
ability to predict error RT distributions is an important criterion for
evaluating stochastic accumulator models (Ratcliff & Smith, 2004;
Teodorescu & Usher, 2013). We interpret the overprediction as a
result of error rates that were too low to influence goodness of fit.
They were 2% in the multiple-choice experiment and 2% in
Verbruggen and Logan (2009c). The model can simulate and fit
fast errors in data with a higher error rate (36%) and larger
threshold variability (see Appendix C).

Overprediction of error RT is not unique to the diffusion race
model. We found it when we fit the Poisson race model (Van
Zandt et al., 2000) and the linear ballistic accumulator model
(Brown & Heathcote, 2008) to the multiple-choice data. The linear
ballistic accumulator model accounts for error RT distributions in
conditions with higher error rates, so its failure to account for error

RT distributions here should not be viewed as a limitation of the
model.

Our analysis in Appendix C suggests the overestimation can be
overcome by running stop-signal experiments with higher error
rates, for example, by manipulating the discriminability of the go
stimuli (Logan, 1981). However, the stop-signal task is used with
many special populations whose cognitive capacities are impaired
or have not yet developed, and these populations work best with go
stimuli that are easy to discriminate and so produce low error rates.
Hence, it may be better to use the standard tasks to get high-quality
data and set aside concerns about predicting error RT distributions.

Other Special Race Models?

The general independent race model places two main constraints
on the special race models implemented within it: The stop process
must race with the go process, and the go process must also be a
race among choice alternatives. Many special race models are
possible within these constraints, with different assumptions about
the stochastic accumulators for each runner. We tried a Poisson
counter model (Van Zandt, 2000b) and the linear ballistic accu-
mulator model (Brown & Heathcote, 2008), but we focused on a
diffusion to a single threshold. We hope to explore other alterna-
tives. The leaky competing accumulator model (Usher & McClel-
land, 2001) is promising because it applies to multiple-choice
tasks. It assumes interaction between alternative responses instead
of an independent race, so the stop-signal task would have to be
modeled as a race between two runners: the stop process and the
go response that wins the competition in the leaky competing
accumulator model. Townsend and Wenger (2004) provided a
useful analysis of channel interactions in this model. It would also
be tempting to model the go process as the standard two-choice
diffusion model that pervades much of the literature (Ratcliff,
1978; Ratcliff & McKoon, 2008). However, the standard diffusion
model cannot deal with more than two choices, so it could not
account for our multiple-choice data (but see Leite & Ratcliff,
2010). It assumes competition between the two alternative re-
sponses, so the stop process would race against the go response
that wins the competition.

We are most strongly committed to the assumption that the stop
process races with the go process. It follows from the original
independent race model (Logan & Cowan, 1984). We are less
strongly committed to the assumption that the go process is a race.
We prefer race models, but we have no problem with special
models in which the go process is interactive (Ratcliff & McKoon,
2008; Usher & McClelland, 2001). We are least strongly commit-
ted to the assumption that each runner in the race is a diffusion
process, and we are open to the possibility that other stochastic
accumulator models may fit better. Our theory addresses the pa-
rameters of stochastic accumulators—thresholds, rates, and non-
decision times—that are common to all models. We are committed
to the assumption that the runners in the race are stochastic
accumulators, but we are not strongly committed to any specific
model.

Acts of Control

We believe we can understand cognitive control by understand-
ing the acts of control that implement it (Logan, 1985; Logan &
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Cowan, 1984; Logan & Gordon, 2001). We can characterize the
acts of control in the executive’s repertoire by listing all of them or
by describing features that are common to all of them. We see
merit in both approaches.

Acts of control are like other acts a person performs. They are
like the perceptual-motor acts in typical RT experiments. They are
instigated by a condition of the external or internal environment;
they have a duration, which we assume depends primarily on
stochastic accumulation; and they end with an action that changes
the state of a subordinate process (Logan, 1985). Acts of control
are different from other acts in that some of their inputs and all of
their outputs are changes in states of subordinate processes. Thus,
acts of control must be grounded in a theory of the subordinate
processes they control (Logan & Gordon, 2001).

Our theory of executive processing is grounded in our theory
that subordinate processes are stochastic accumulators. The pa-
rameters of the stochastic accumulators are the points of contact
that allow the executive to control the subordinates. Some param-
eters are set by the executive, and some are set by the environment
and the person’s history. A task set is a set of drift rate, threshold,
and nondecision time parameters that program the stochastic ac-
cumulator to make a task-relevant choice. Changes in task set are
accomplished by acts of control that change these parameters
(Logan & Gordon, 2001).

It is tempting to suggest a taxonomy of acts of control, depend-
ing on the immediacy and extremity of their effects (cf. Norman,
1981). Stopping is immediate and extreme. SSRT is short, and the
response is either inhibited or executed. Shifting attention is im-
mediate but less extreme. Attention shifts quickly, but it modulates
ongoing responses rather than preventing or enabling them. Pro-
active slowing is less immediate and less extreme. It occurs before
or between trials, and it modulates performance on the next trial.

However, commonalities among acts of control may be more
important than the differences. In our theory, all acts of control
have an instigating condition, a duration, and an effect, and all
effects are the same: They change the parameters of the stochastic
accumulators. The change may be more or less extreme, but
parameters always change. The act of control that stops a response
requires a change in drift rate that is large enough to keep the
accumulators from reaching threshold (Boucher et al., 2007; Sali-
nas & Stanford, 2013). The act of control that shifts attention
requires smaller a change in drift rate to facilitate processing at the
cued location (Logan & Gordon, 2001). The act of control that
produces proactive slowing requires a change in threshold or
nondecision time (Dutilh et al., 2012; Pouget et al., 2011).

Our theory suggests further commonalities between acts of
control and the controlled subordinate actions they govern. They
are built on the same substrate—stochastic accumulator models.
They differ primarily in the conditions that trigger them and the
actions they take—in content rather than form. Acts of control
represent and change the state of the cognitive system, whereas
controlled acts represent and change the state of the world. They
both act in the same way, by stochastic accumulation to a thresh-
old.

In this respect, our theory is similar to production system the-
ories of cognitive control, in which performance is modeled as the
application of “if . . . then” rules to perceptual, memory, and motor
systems (Anderson et al., 2004; Meyer & Keiras, 1997; Newell,
1990). All productions have the same structure. There is a condi-

tion (if) that triggers the production and an action (then) that is
taken when the production is triggered. The difference between
productions representing acts of control and productions represent-
ing controlled acts is in content, not form.

It may be profitable to think of stochastic accumulator mod-
els and production rules as different perspectives on the same
mental operations. The condition term in the production rule
specifies the input that drives the stochastic accumulator. The
action term in the production rule specifies the action that is
taken when the stochastic accumulator hits threshold. The two
perspectives provide a more complete description that may be
useful in identifying, measuring, and cataloging acts of control
(and controlled actions).

Our theory that acts of control and controlled acts are both
implemented as stochastic accumulators suggests they should
be affected similarly by habit and strategy. Controlled actions
show Stroop (1935) and Stroop-like effects that are modulated
by strategy (Logan & Zbrodoff, 1979; Tzelgov, Henik, &
Leiser, 1990). We see similar effects in acts of control. SSRT is
faster when stop signals repeat (Bissett & Logan, 2012), and
SSRT is slower when the stop signal is “GO” than when it is
“STOP” (Verbruggen & Logan, 2009a). Acts of control can be
associated with stimuli and processing episodes, just as con-
trolled actions are (Logan & Etherton, 1994), suggesting short-
term and long-term priming effects. Subjects associate stopping
with go stimuli that are paired with stop signals and show
longer go RTs when the go stimuli repeat, even at long retention
intervals (Lenartowicz, Verbruggen, Logan, & Poldrack, 2011;
Verbruggen & Logan, 2008b, 2009a; Verbruggen, Logan,
Liefooghe, & Vandierendonck, 2008). Subjects may even au-
tomatize control (Verbruggen & Logan, 2008a) and transfer it
to other situations (Verbruggen, Adams, & Chambers, 2012).
All of these effects are readily interpretable as changes in drift
rates, thresholds, and nondecision times in stochastic accumu-
lators.

Our theory suggests that cognition and cognitive control are
driven by events. Some events trigger acts of control. Other
events trigger controlled acts. Our theory suggests that cogni-
tion and cognitive control involve discrete acts that begin with
some event (like a go stimulus) and end with another (like a
keypress). The reaction time experiment is its paradigm case: a
stimulus followed by a response (Donders, 1969/1868; Stern-
berg, 1969). We do not address more continuous control or
hierarchical control (Logan & Crump, 2011). We do not believe
that all cognitive control is event driven and discrete, but it may
be a useful alternative hypothesis in searching for more con-
tinuous hierarchical control. At present, we know the act of
control triggered by a stop signal is event driven and discrete.
Future research will address other acts and other kinds of
control.

Limitations

There are two major limitations to our theory: We have no
theory of drift rate, and we have no theory of how top-down
parameters should be set. A theory of drift rate would allow us to
separate structural factors, like similarity and discriminability (Lo-
gan, 2002; Nosofsky & Palmeri, 1997), from strategic factors, like
attention and task set (Logan & Gordon, 2001; P. L. Smith &
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Ratcliff, 2009). For now, drift rate is a free parameter. We allow it
to vary to optimize the fit to the data. We do not constrain it with
a theory that says how it is calculated. A theory of drift rate is an
important step in the future development of special race models.

A theory that explains how top-down parameters are set would
be an important step toward a theory of executive control. The
diffusion race model tells us how much the threshold increases
when stop signals become relevant, but that quantity reflects what
is required to optimize the fit. It does not come from a theory that
says what information the executive considers in deciding the
value of the threshold and how the executive chooses a value based
on that information. We need a theory that explains these phenom-
ena. That is an important goal for future research.

Conclusions

The general and special independent race models extend the
original independent race model in important directions. They
account for choice, which is an important advance over previous
stop-signal models (Boucher et al., 2007; Lo et al., 2009; Logan &
Cowan, 1984; Salinas & Stanford, 2013; Wong-Lin et al., 2010).
They predict RT distributions and response probability, so they can
be compared with models of RT (Ratcliff & Smith, 2004; Teodo-
rescu & Usher, 2013). They provide estimates of SSRT distribu-
tions, which have been elusive until recently (Matzke et al., 2013).
They allow precise tests of hypotheses because of their commit-
ment to stochastic accumulators. They frame hypotheses in terms
of drift rates, thresholds, and nondecision times, and they test
hypotheses with RT distributions and response probabilities. We
implemented a special race model that assumed each runner was a
diffusion process, and we fit it to two data sets to test hypotheses
about selective influence of capacity limitations on rate parameters
and strategies on threshold parameters. The model fit well, and the
parameters behaved as expected.
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Appendix A

Experiment 1 Method and Results

Method

Subjects

Six people from the Vanderbilt University (Nashville, TN)
community participated for monetary compensation ($12/hour).
All subjects had normal or corrected-to-normal vision, and all were
naive as to the purpose of the experiment.

Apparatus and Stimuli

The experiment was run on a Pentium 4 PC running Tscope
(Stevens, Lammertyn, Verbruggen, & Vandierendonck, 2006).
The stimuli were presented on a 21-in. cathode ray tube mon-
itor. In the go task, subjects indicated which word in a set of
two, four, or six was presented by pressing one key on a
QWERTY keyboard. The words were presented centrally in a
white uppercase Courier font (size = 24) on a black back-
ground. In the two-choice condition, subjects pressed F for one
word and J for the other word; in the four-choice condition,
subjects pressed D, F, J, or K; in the six-choice condition,
subjects pressed S, D, F, J, K, or L. We used different words in
each session and in each condition to reduce practice effects. In
all conditions, the mapping of words onto response keys was
randomized. On stop-signal trials, a loud and clear auditory
signal (80 dB, 100 ms, 500 Hz) was presented through closed
headphones (Sennheiser eH150), using stop-signal presentation
functions of STOP-IT (Verbruggen, Logan, & Stevens, 2008).

Procedure

The experiment consisted of 12 sessions. At the beginning of the
first session, instructions were given orally by the experimenter.
Subjects were instructed to respond as quickly and accurately as
possible. In each session, there were three conditions: two-choice,
four-choice, and six-choice. Each condition started with the presentation
of the words that could occur in the block and the word-key mapping. The
order of the conditions within each session was randomized.

Table Al

Summary Tables for One-Way Analyses of Variance Evaluating
the Effects of Number of Choice Alternatives on Go Response
Times, Signal-Respond Response Times, Stop-Signal Response
Times, and Error Rates in Experiment 1

Degrees of
Dependent variable Fratio  freedom MSE p
Go response time 28.0 2,10 2,920 <.001
Signal-respond response
time 37.7 2,10 1,344 <.001
Stop-signal response time 2.2 2,10 305 >.16
Error rate 27.5 2,10 0.00008 <.001
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Figure AI. Mean response time for no-stop-signal trials as a function of

number of choice alternatives and session (top panel) and block within
session (bottom panel).

All trials started with the presentation of a fixation sign
(++++++), which was replaced by a single word after 250 ms.
The word remained on the screen for 2,000 ms, regardless of response
time (RT). The following trial started 250 ms after the offset of the
word. On 25% of the trials, a stop signal was presented at a variable
delay after the onset of the go stimulus. The delay was based on
performance in the signal practice block in Session 1 (see below). In
each choice condition, stop-signal delay was 15%, 35%, 55%, 75%,
or 95% of the corresponding mean RT in the practice phase. Delays
were randomized and occurred with equal probability.

(Appendices continue)
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Each choice condition started with a practice block of 36 trials
without stop signals. This no-stop-signal block was followed by
another practice block of 36 trials with stop signals. After the two
practice blocks, there were two experimental blocks of 120 trials.
At the end of each block, we presented the number of no-stop-
signal errors, the mean RT, and the probability of stopping. Sub-
jects had to pause for 10 s between each block.

Results

Mean no-stop-signal RTs, signal-respond RT, stop-signal RTs
(SSRTs), and error rates, collapsed across subjects and sessions,
appear in Figure 3 in the main text. SSRTs were estimated using
the integration method (Logan, 1994; Logan & Cowan, 1984;
Verbruggen & Logan, 2009b). For each number of choice alter-
natives, the no-stop-signal RTs were rank-ordered, and the Mth RT
was selected, where M was obtained by multiplying the number of
RTs in the distribution by P(respondlsignal) at a given delay. To
estimate SSRT, stop-signal delay (SSD) was subtracted from the
Mth RT. This process was repeated for each SSD for each subject.

The results were then averaged across SSDs for which
P(respond'signal) was larger than .05 but smaller than .95.

We subjected the go RTs, signal-respond RT, SSRTs, and error
rates to separate one-way analyses of variance (ANOVAs) with
number of choice alternatives (two, four, six) as within-subject
factor. Summary tables for these ANOVAs appear in Table Al.
Number of choice alternatives affected go RT, signal-respond RT,
and error rate but did not affect SSRT.

The top panel of Figure Al plots go RTs from no-stop-signal
trials for two, four, and six choices as a function of session. The
figure shows that performance was quite stable across sessions,
most likely because we changed the words in each choice set
each session. The bottom panel of Figure A1 plots go RTs from
no-stop-signal trials for two, four, and six choices as a function
of block within a session. The figure shows that performance
was quite stable across blocks within a session, most likely
because the 72 trials of practice at the beginning of each choice
condition absorbed initial changes in performance due to learn-
ing.

Appendix B

Fitting Models to Data

To understand how the models were fit to the data, we must
expand the simplified notation used in the text. Each subject
provides response times (RTs) in each condition ¢ (two, four, or
six choices in the multiple-choice experiment; none vs. all condi-
tions in Verbruggen & Logan, 2009¢) under different stop-signal
delays 7,,. A trial can be either a go trial or a stop trial. To simplify
exposition, we will set stop-signal delay 7, equal to infinity for go
trials. On any trial, a response may be correct, incorrect, or
inhibited, and the RT of that response will depend on a set of
parameters 0, that are appropriate for condition ¢ and stop-signal
delay 7,, We can then write the finishing-time distribution of
response i under condition c as f(10, t,). We write an observed RT
from an individual subject on trial j in Experiment 1 as T,. We
also define R,,. = 1 if a response is made on trial j (if 7}. > 0) and
0 otherwise. Let Ay;. = 1 if the response k is correct on trial j and
0 otherwise, so that a number (two, four, or six) of Ay;s are
defined for each trial j. An individual subject’s data can then be
written as the set of vectors {7, R.{A.}}.

The models were fit to the data in the multiple-choice task and
Verbruggen and Logan (2009¢) using maximum likelihood
(Myung, 2003; Van Zandt, 2000a). The likelihood is a function
that reflects the probability of the data given a set of parameter
values. We define the likelihood by way of Equations 8—12 in the
main text, the probability of a response P,(f,), and the joint
probability f{#; i) of response i at time 7. Expanding the notation of
Equations 812, we write the probability of a response on a stop
trial as P (t,10,.) and the joint probability of response i at time # as

lc.

Sra(t; 116, t,), making explicit the dependence of these probabil-
ities on the model parameters 0. on trial j and the stop-signal
delay ¢, on trial j.

For the diffusion race model in the multiple-choice experiment
and the Verbruggen and Logan (2009¢) experiment, the parameters
0. for condition c include the thresholds z,,. and z,,. for the go and
stop processes, respectively; the correct drift rates &, and §;,. for
the go and stop processes, respectively; the incorrect drift rate €_
for the go process; and the nondecision times 7, and f, for the go
and stop processes, respectively. If response i is observed on trial

J at time T;,. = 1, the joint likelihood of that response is

Stlt4:0,0) = filt =t 2g0 AijcEgre + (1 = Agj)€0)
X (1= Fstop([ — I = td|Zs|c’ gﬂc))

x}{g}(l = Filt = 1) 290 A + (1 = Agi)€0).-
1

sle

The likelihood of an inhibited response on trial j is
1 - Pr(td) = ff\‘t()p(t — = tdlzs|cs Es\c)
0

X ]k](l — Fylt = tol2ges Agjege + (1 = Apjo€))dt.

The likelihood for the model, for the data from condition ¢ and
stop-signal delay ¢,, is

L(ecl Tw Rc’Acv td) = H (1 - Pr(td))l_RﬂCf(tjltd’ ej|c)R‘/.|C-

JjEC
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The total likelihood across all conditions in the experiment is
LOIT,R,A) =[[[] LO.IT,.R.. A, 1).
c d

Model fits were obtained by minimizing the negative log total
likelihood —logL(8IT, R, A) over all conditions and stop-signal
delays simultaneously. We used the Nelder-Mead simplex al-
gorithm as programmed in R’s optim function. We obtained
starting values by minimizing —logL(0.7,, R, A.) (multiple-
choice experiment) or —logL(07,, R, A_) (Verbruggen & Lo-

gan, 2009¢) separately for each condition c. We then used those
values to minimize —logL(0I7, R, A) over all conditions, re-
peating until there was no further change in the final values
of —logL(0IT, R, A) or —logL(0IT, R, A, P). Outliers faster than
150 ms were excluded but were very rare. Observations that
returned likelihoods of 0 (log likelihoods of —) were given log
likelihoods of —750 (a value orders of magnitude larger than
those obtained when the parameters assumed reasonable val-
ues). Nondecision time was bounded between 0 and the mini-
mum RT.

Appendix C

Diffusion Race Model Can Produce Fast Errors

The best fitting diffusion race models predicted error response times
(RTs) that were slower than observed error RTs and often slower than
correct RTs. We attributed this to the low frequency of errors (2% or less),
so error RTs had little influence on the fitting routine. Here, we report a
simulation of the diffusion race model that produces fast errors, and we
show that the fits of the diffusion race model to the simulated data predict
fast errors and recover the parameters of the simulation.

We began with the parameters of the best fitting model in the
aggregate fits, in which go threshold and rate varied with the
number of choice alternatives but stop threshold and rate did
not (see Table 2 in the main text). We increased error rate by
reducing the difference in drift rate between correct and incor-
rect response alternatives to simulate the effect of reducing the
discriminability of the choice alternatives in the go task. We
produced fast errors by fixing threshold variability to equal
75% of the threshold. We simulated 8,640 trials to produce data
similar to individual-subject data in the multiple-choice exper-
iment. The simulated (observed) RT distributions for correct
and error responses are plotted in Figure C1. The simulated
mean RTs for correct and error responses and simulated error
probabilities are presented in Table C1. The parameters used to
generate the simulated data are presented in Table C2.

Overall, the simulated error RTs were 115 ms faster than the
simulated correct RTs. Figure C1 shows that the distributions of

error RTs were consistently faster than the distributions of correct
RTs. This simulation demonstrates that the diffusion race model
can predict fast errors. The simulated error rate was 0.36.

We fit a diffusion race model, in which go rate and threshold
varied with choice alternatives but stop rate and threshold did
not, to the simulated data. The predicted distributions are plot-
ted with the observed distributions in Figure C1. The means for
correct RT, incorrect RT, and error rate appear in Table C1. The
best fitting parameter values appear in Table C2. The model fit
the simulated data well, recovering the parameters accurately
and predicting error RTs that were faster than correct RTs. The
fit demonstrates that the model can fit fast errors when error
rate is high (0.36). Threshold variability was fixed in the
simulation that generated the data, but it was a free parameter
in the fits. The fits produced estimates of threshold variability
that were close to those in the simulated data (see Table C1),
indicating that our model fits can recover threshold variability
well when there are enough errors to contribute significantly to
the likelihood.

The simulation and the fit demonstrate in principle that the diffu-
sion race model can generate and fit fast errors when error rate is high.
Whether the diffusion race model can fit error RTs in real data with
high error rate is a question we will address in future research.
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Figure C1. Observed (simulated) and predicted response time distributions for correct and error responses from

a diffusion race model with limited capacity in the go task and unshared capacity in the stop task for two-choice
(top panel), four-choice (middle panel), and six-choice (bottom panel) alternatives.
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Table C1
Mean Correct and Incorrect Response Times, Error Rates, and Error Rates as a Function of Number of Choice Alternatives (2, 4, 6)
for Observed (Simulated) and Predicted (Fitted) Data Generated From a Diffusion Race Model With a Limited Capacity Go Process

and an Unshared Capacity Stop Process

2 4 6
Measure Predicted Observed Predicted Observed Predicted Observed
Correct response time 707 702 811 812 945 941
Error response time 627 652 692 701 742 758
P(Error) 0.206 0.204 0411 0.410 0.450 0.447
Table C2

Parameters From a Diffusion Race Model With a Limited-Capacity Go Process and an Unlimited-Capacity Stop Process Used to Generate
Simulated Data (Observed) and Parameters (Predicted) From Fitting a Model With the Same Structure to the Simulated Data

Go Threshold Correct Incorrect Nondecision Stop Threshold Stop Nondecision
Choice threshold variability rate rate time threshold variability rate time
Observed (simulated)
2 64.000 48.000 0.105 0.040 132 5.000 3.750 0.070 164
4 67.000 50.250 0.080 0.020 132 5.000 3.750 0.070 164
6 69.000 51.750 0.065 0.004 132 5.000 3.750 0.070 164
Best fit
2 61.363 45.750 0.101 0.036 156 9.816 0.000 0.0904 193
4 65.347 48.721 0.078 0.019 156 9.816 0.000 0.0904 193
6 68.646 51.181 0.066 0.004 156 9.816 0.000 0.0904 193
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