
Fuzzy measure and probability distributions:

distorted probabilities

Yasuo Narukawa1, Vicenç Torra2
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Abstract

This work studies fuzzy measures and their application to data mod-

eling. We focus on the particular case when fuzzy measures are distorted

probabilities. We analyze their properties and introduce a new family

of measures (m-dimensional distorted probabilities). The work finishes

with the application of two dimensional distorted probabilities to a mod-

eling problem. Results of the application of such fuzzy measure to data

modeling using Choquet integral are discussed.

Keywords: Fuzzy measures, Distorted probabilities, Choquet inte-

gral, Model determination.

1 Introduction

Sugeno [25] and Choquet [4] integrals are well-known aggregation operators for

numerical data (see e.g., [12], [26], or [36] for details). Using them, aggregation

is defined as the integration of a function (the data to be aggregated) with

respect to a fuzzy measure (or capacity).
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However, although Sugeno and Choquet integrals are powerful operators,

their practical application is more difficult due to the fact that they require a

large number of parameters. In fact, fuzzy measures require 2|X| parameters

(where |X | is the number of information sources or input variables) because

they are functions from the power set of X (2X) into the unit interval.

To make the application of these integrals easy, several approaches have been

considered in the literature. We underline two of them. Namely, restricted fuzzy

measures and learning methods from examples.

Restricted fuzzy measures are those measures that require less than 2|X|

parameters because they are constrained to satisfy additional properties than

general or unrestricted fuzzy measures. This is e.g. the case of Sugeno λ-

measures [25], ⊥-decomposable measures (see e.g. [12]), k-additive fuzzy mea-

sures [10], p-symmetric [21], or hierarchically decomposable ones [29]. Among

these measures, we would like to underline k-additive fuzzy measures. They

define a family of measures (defined in terms of increasing values of k) and have

analogies with the measures considered in this work. The similarities on both

approaches are described in more detail in Section 2.

The use of learning (or parameter determination) methods are an alternative

approach to deal with the complexity of fuzzy measures. In this case, the

parameters are learnt from a set of examples (defined in terms of (input, output)

pairs). Work has been done in this direction, probably being [27] the first

published paper on this matter. Recent work in this area can be found in [16],

[20] and [27], to name a few.

In this work we study distorted probabilities or, equivalently, fuzzy mea-

sures that can be represented in terms of a probability distribution on X and

a non-decreasing function (a distortion function). The distorted probabilities

were suggested in experimental psychology [5]. Descriptive models that incor-

porate transformed or distorted probability distributions have been proposed

and studied in the field of Economics, e.g. [13, 17]. See also [1] for an acount of

the use of such measures in game theory.

More precisely, in this paper we show that every fuzzy measure can be rep-

resented as the difference of two distorted probabilities and introduce some

condition for a fuzzy measure to be a distorted probability. We also present a
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generalization of distorted probabilities to define m dimensional ones. Roughly

speaking, such measures are defined in terms of (i) a partition of X and one

probability distribution over each partition element and (ii) a distortion func-

tion to combine such probability distributions. Then, we describe an approach

to learn such measures from examples.

As it will be shown later, any fuzzy measure can be interpreted in terms of

a m dimensional distorted probability for a particular value of m. Thus, fuzzy

measures can be constructed in terms of probability distributions (a set of them)

and a function that distorts and/or combines these distributions.

The structure of the paper is as follows. In Section 2 we motivate the

interest of studying distorted probabilities. Then, in Section 3 we review some

definitions that are used through the paper. In Section 4 we introduce some

results that relate fuzzy measures and probability distributions. In particular,

we characterize distorted probabilities. Then, in Section 5 we generalize the

concept of distorted probabilities to m dimensional probabilities. This section

also studies some properties. Finally, in Section 6 we describe an approach for

learning two dimensional distorted probabilities and we apply it to a modeling

problem consisting on 8 variables. The paper finishes in Section 7 with the

conclusions.

2 Motivation

Distorted probabilities have proved to be useful and convenient fuzzy measures.

It is known that they generalize Sugeno λ-measures and ⊥-decomposable ones,

the former being a type of fuzzy measure widely used in the literature e.g.

[18]. Additionally, they have been used, in conjunction with Choquet integral,

for data modeling (see e.g. the algorithm in [31] and [15]). In this setting,

as well as when used with the Sugeno integral, distorted probabilities have a

simple interpretation. A distorted probability on a set of sources X can be

understood as an evaluation of the importance/reliability of the sources in X

(the probability distribution function) and a fuzzy quantifier (or a weighting

vector) that establishes the relative importance of the values themselves (instead

of the importance of the sources). This latter element, that corresponds to
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the distortion function permits to introduce compensation or optimism in the

Choquet integral. See e.g. [28] for details. Note that a Choquet integral with

distorted probabilities is equivalent to the WOWA operator [28] or to the OWA

with importances [34].

Additionally, distorted probabilities can be seen as complementary to other

families of fuzzy measures. This is due to the fact that they can offer, in some

cases, a compact representation that others cannot offer.

For illustration, we have compared a distorted probability with the well-

known family of k-additive fuzzy measures [10]. It is known that larger values

for k yield to larger sets of fuzzy measures. This can be formalized denoting by

KAFMk0,X the set of all k0-additive fuzzy measures. Then, it is known that

KAFM1,X ⊂ KAFM2,X ⊂ KAFM3,X · · · ⊂ KAFM|X|,X

where KAFM1,X equals the set of additive measures and KAFM|X|,X equals

the set of all fuzzy measures over X . In other words, KAFM|X|,X is the set of

unconstrained fuzzy measures.

Naturally, given a k0-additive fuzzy measure, the smaller is k0 the less pa-

rameters are required to define such measure. Therefore, in general, the smaller

the parameter, the simpler and more convenient for applications. This is so

because users can better define the measure and/or grasp their meaning. Also,

when the measure is learnt from examples, less examples are required. Never-

theless, it is clear that not all measures can be represented using small values

of k and, thus, some of them require complex definitions (complex in terms of

the number of parameters).

Now, we present an example where it is shown that a distorted probability

requires a k-additive fuzzy measure with k = |X | to be represented. This

means, that such measure that has a simple representation with a distorted

probability cannot have such simple representation when a k-additive fuzzy

measure formalism is used.

Example 1. Let us consider a distorted probability µp,w over X = {x1, x2, x3,

x4, x5} generated by the probability distribution p = (0.2, 0.3, 0.1, 0.2, 0.1) and

a distortion function (or fuzzy quantifier) generated from the vector w = (0.1,

0.2, 0.4, 0.2, 0.1). The measure for all Y ⊆ X is given in Table 1 (column
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µp,w).

Following the interpretation of WOWA and OWA with importances, when

such measure µp,w is used in a Choquet integral to aggregate f(xi), it corre-

sponds to a situation in which the importance of xi is pi and in which the

central values of {f(xi)}i have 4 times the importance of the extreme ones and

2 times the importance of medium values. This is, the relevance of the values

max f(xi) and min f(xi) is diminished, while the relevance of the central values

is increased.

The Möbius transform of µp,w is also given in Table 1. As the Möbius

transform is different from zero for all Y ⊆ X this means that µp,w is a 5

additive fuzzy measure. This is, there is no k additive fuzzy measure for k < 5

equivalent to µp,w.

This example shows that a distorted probability can be in some circum-

stances an adequate alternative to k-additive fuzzy measures. Nevertheless, the

modeling capabilities of such measures is limited. This is so because the propor-

tion of fuzzy measures representable by distorted probabilities is rather small.

The following example (from [14]) illustrates the case for X = {1, 2, 3}. It con-

siders the possible orderings on 2X of µ(Y ) for Y ⊆ X when a fuzzy measure

is either a distorted probability or an unconstrained one. For simplicity, the

example is restricted to measures such that µ({1}) < µ({2}) < µ({3}).

Example 2. Let µ be a distorted probability with µ({1}) < µ({2}) < µ({3}),

then either:

µ(∅) < µ({1}) < µ({2}) < µ({3}) < µ({1, 2}) < µ({1, 3}) < µ({2, 3}) < µ(X)

or

µ(∅) < µ({1}) < µ({2}) < µ({1, 2}) < µ({3}) < µ({1, 3}) < µ({2, 3}) < µ(X)

holds.

Instead, if µ is an unconstrained fuzzy measure with µ({1}) < µ({2}) <

µ({3}), then either:

∅ < µ({1}) < µ({2}) < µ({1, 2}) < µ({3}) < µ({1, 3}) < µ({2, 3}) < µ(X)

∅ < µ({1}) < µ({2}) < µ({3}) < µ({1, 2}) < µ({1, 3}) < µ({2, 3}) < µ(X)
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∅ < µ({1}) < µ({2}) < µ({3}) < µ({1, 3}) < µ({1, 2}) < µ({2, 3}) < µ(X)

∅ < µ({1}) < µ({2}) < µ({3}) < µ({1, 3}) < µ({2, 3}) < µ({1, 2}) < µ(X)

∅ < µ({1}) < µ({2}) < µ({1, 2}) < µ({3}) < µ({2, 3}) < µ({1, 3}) < µ(X)

∅ < µ({1}) < µ({2}) < µ({3}) < µ({1, 2}) < µ({2, 3}) < µ({1, 3}) < µ(X)

∅ < µ({1}) < µ({2}) < µ({3}) < µ({2, 3}) < µ({1, 2}) < µ({1, 3}) < µ(X)

∅ < µ({1}) < µ({2}) < µ({3}) < µ({2, 3}) < µ({1, 3}) < µ({1, 2}) < µ(X)

Thus, fuzzy measures in a proportion of 2/8 are distorted probabilities. Ta-

ble 2 gives the corresponding values for sets X of larger dimension. It can be

seen that the proportion of distorted probabilities decreases rapidly when |X |

increases (e.g. 14 over 70016 when |X | = 4).

In this paper we propose m-dimensional distorted probabilities. This family,

in a way similar to k-additive fuzzy measures, recovers for increasing values of

m the space between KAFM1,X and KAFM|X|,X . In other words, we try to

make a smooth transition between the columns two and three of Table 2.

Although this family of fuzzy measures has resemblance with k-additive

ones in the sense that they cover the whole space, as it has been said, the

sets of fuzzy measures they define are different and thus they would be used

in a complementary way in real applications. For a particular application, a

particular family would be selected with care and on the basis of clarity and

understandability.

3 Preliminaries

This section starts reviewing some basic definitions about fuzzy measures. In

particular, besides of the definition of (unconstrained) fuzzy measures, we define

distorted probabilities. Then, we review some results that are needed in the rest

of the paper.

For the sake of simplicity, we will consider X to be a finite set and we suppose

that X := {1, 2, · · · , n}.
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3.1 Definitions

Definition 1. A function µ on (X, 2X) is a fuzzy measure if it satisfies the

following axioms:

(i) µ(∅) = 0, µ(X) = 1 (boundary conditions)

(ii) A ⊆ B implies µ(A) ≤ µ(B) (monotonicity)

We use also the term unconstrained fuzzy measure to refer to measures sat-

isfying this definition. This is to distinguish them from other measures that

satisfy other constraints besides conditions (i) and (ii). Distorted probabilities

defined below are an example of constrained fuzzy measures.

Definition 2. Let f be a real valued function on X and let P be a probability

measure on (X, 2X). We say that f and P represent a fuzzy measure µ on

(X, 2X) if and only if µ(A) = f(P (A)) for all A ∈ 2X .

Definition 3. Let f be a real valued function on X. We say that f is strictly

increasing with respect to a probability measure P if and only if P (A) < P (B)

implies f(P (A)) < f(P (B)).

Accordingly, µ is a distortion of a probability measure P when f is strictly

increasing with respect to P . In general, when we know that there is such

probability measure P and a strictly increasing function f for µ, we will say

that µ is a distorted probability.

Definition 4. Let µ be a fuzzy measure on (X, 2X). We say that µ is a distorted

probability if it is represented by a probability distribution P on (X, 2X) and a

function f that is strictly increasing with respect to a probability P .

Remark. Since we suppose that X is a finite set, a strictly increasing

function f with respect to P can be regarded as a strictly increasing function

on [0, 1] if there is no restriction of the function f . Points except {P (A)|A ∈ 2X}

in [0, 1] are not essential in this paper.

3.2 Previous results

In this section we review some propositions and theorems that are used latter

on to give a representation theorem for distorted probabilities. First, we give a

lemma that is equivalent to the unique decomposition for integers.
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Lemma 5. Suppose that for integers 0 < n1 < n2 < · · · < nk and 0 < m1 <

m2 < · · · < ml

2n1 + 2n2 + · · · + 2nk = 2m1 + 2m2 + · · · + 2ml .

Then we have k = l and ni = mi for i = 1, 2, . . . , k.

Now, we turn into some theorems obtained by Dana Scott in [24].

Definition 6. Let L be a finite-dimensional real linear vector space, then a

linear functional on L is a real-valued, homogeneous, additive function defined

on L.

Definition 7. Let L be a finite-dimensional real linear vector space, then:

1. A subset X ⊆ L is symmetric if X = −X = {−x : x ∈ X}

2. A subset N ⊆ X is called realizable in X if there is a linear functional φ

on L such that for all x ∈ X

x ∈ N if and only if φ(x) ≥ 0

When N 6= X , this latter condition means that there is a half-space H of

L separating the sets N and X \ N so that X ∩ H = N ∩ H . Instead, when

N = X , the trivial 0 functional shows that N is realizable.

Following Scott [24], we use x � 0 to mean x ∈ N , and x � 0 to mean

−x � 0, and x � 0 for not x � 0.

Theorem 8. (Scott [24], Theorem 1.1) Let L be a finite-dimensional real linear

vector space, let X be a finite, symmetric subset of L. For a subset {x ∈ X :

x � 0} to be realizable in X it is necessary and sufficient that the conditions

x � 0 or x � 0

∑

i≤n

λixi = 0 implies x1 � 0

hold for all x ∈ X and all sequences x1, . . . , xn ∈ X, and all scalars λ1, . . . , λn

where λi > 0 and xi � 0, for i ≤ n, and n > 1.

� is realizable if there exists a linear function φ on L such that for all

x, y ∈ X we have that x � y if and only if φ(x) ≥ φ(y).
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Theorem 9. (Scott [24], Theorem 4.1) Let B be a finite Boolean algebra and

let � be a binary relation on B. For � to be realizable by a probability measure

on B it is necessary and sufficient that the conditions:

(1) 1 � 0

(2) x � 0

(3) x � y or x � y

(4) x1 + x2 + · · · + xn = y1 + y2 + · · · + yn implies x1 � y1,

hold for all x, y ∈ B and all sequences x1, . . . , xn, y1, . . . , yn ∈ B, where

xi � yi for i ≤ n, i > 1, and n > 1.

In this last theorem, x1 + x2 + · · · + xn corresponds to the algebraic sum of

characteristic functions and does not stand for the union of xi. As [24] points

out, this means that “every point (atom) belongs to exactly the same number

of the xi as the yi”.

4 Distorted probabilities

Now, we present some new results on distorted probabilities. In particular, we

give a characterization of such measures.

4.1 Polynomial representation and distorted probabilities

Theorem 10. For every fuzzy measure µ on (X, 2X), there exist a polynomial

f and probability P on (X, 2X) such that µ = f ◦ P

Proof. Define a probability measure P on (X, 2X) for all k ∈ X by

P ({k}) :=
2k−1

2n − 1
.

It follows from Lemma 5 that P (A) 6= P (B) if A 6= B for A, B ∈ 2X . Define

the (2n − 1) × (2n − 1) matrix by (assuming an ordering on 2X)

P =

















P ({1})2
n−1 P ({1})2

n−2 . . . P ({1})

P ({2})2
n−1 P ({2})2

n−2 . . . P ({2})

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P (X)2
n−1 P (X)2

n−2 . . . P (X)

















.
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Since P (A) 6= P (B) for A 6= B, A, B ∈ 2X , we have rankP = 2n − 1. Therefore

there exists the inverse P−1 of P. Denote




























a1

a2

·

·

·

a2n−1





























:= P−1





























µ({1})

µ({2})

·

·

·

µ(X)





























.

Then define the polynomial by

f(x) := a1x
2

n−1 + a2x
2

n−2 + · · · + a2n−1x.

This is the polynomial which represents the fuzzy measure µ. Indeed, we have

f(0) = 0 and µ(A) = f(P (A)) for all A ∈ 2X from the definition of coefficients

ak (k = 1, 2, . . . , 2n − 1).

Define bk by bk := ak ∨ 0, ck by ck := −(ak ∧ 0). Denote

f+(x) :=
∑

k

bkx2
n−k

and

f−(x) :=
∑

k

ckx2
n−k.

Then f+ and f− are strictly increasing. Therefore, we have the next corollary.

Corollary 11. For every fuzzy measure µ on (X, 2X), there exist strictly in-

creasing polynomials f+, f− and a probability P on (X, 2X) such that

µ = f+ ◦ P − f− ◦ P. (1)

Therefore, any fuzzy measure can be expressed as the difference of two dis-

torted probabilities.

If |X | = 2, every fuzzy measure on (X, 2X) is a distorted probability. This

is proven in the following corollary.

Corollary 12. Let µ be a fuzzy measure on (X, 2X) with X = {1, 2} and,

without loss of generality, 1 > µ({2}) ≥ µ({1}) > 0. Then, there exists a

strictly increasing function f and a probability P that represent a fuzzy measure

µ.
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Proof. If 0 < µ({1}) < µ({2}) < 1, then define a probability P as in Theo-

rem 10, that is,

P ({1}) :=
1

3
, P ({2}) :=

2

3
.

Then it follows from Theorem 10 that there exists a polynomial f that represents

µ. It follows from the definition of P that P ({1}) < P ({2}) < P ({1, 2}) = 1.

This means that f(P ({1})) < f(P ({2})) < f(P ({1, 2})) = 1. If 0 < µ({1}) =

µ({2}) < 1, then define a probability P by

P ({1}) = P ({2}) :=
1

2
.

Then, it is obvious that there exists a strictly increasing polynomial f that

represents µ.

However, neither any polynomial f in Theorem 10 nor any pair of polyno-

mials f+ and f− leads to fuzzy measures. Only non-decreasing polynomials f

in Theorem 10 are assured to lead to them.

4.2 Characterization of distorted probabilities

Definition 13. Let µ be a fuzzy measure on (X, 2X). If µ(A) < µ(B) ⇔

µ(A ∪ C) < µ(B ∪ C) for every A ∩ C = ∅, B ∩ C = ∅ A, B, C ∈ 2X , we say

that µ is a pre-distorted probability.

Proposition 14. Suppose that a function f and a probability P represent a

fuzzy measure µ.

If f is strictly increasing with respect to P , then µ(A) < µ(B) ⇔ µ(A∪C) <

µ(B∪C) for every A∩C = ∅, B∩C = ∅ A, B, C ∈ 2X . In other words, distorted

probabilities are pre-distorted probabilities.

If f is non-decreasing with respect to P , then µ(A) < µ(B) implies µ(A ∪

C) ≤ µ(B ∪ C) for every A ∩ C = ∅, B ∩ C = ∅ A, B, C ∈ 2X .

Proof. Suppose that µ(A) < µ(B) for A, B ∈ 2X and µ = f ◦ P . If f is strictly

increasing, we have P (A) < P (B). Then for every A ∩ C = ∅ and B ∩ C = ∅,

we have

P (A ∪ C) = P (A) + P (C) < P (B) + P (C) = P (B ∪ C).
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It follows from the fact that f is strictly increasing that f ◦P (A∪C) < f ◦P (B∪

C), that is, µ(A ∪ C) < µ(B ∪ C). It is much the same to prove µ(A ∪ C) <

µ(B ∪ C) ⇒ µ(A) < µ(B).

When f is non-decreasing, we have P (A) < P (B). Then for every A∩C = ∅

and B ∩ C = ∅, we have

P (A ∪ C) = P (A) + P (C) < P (B) + P (C) = P (B ∪ C).

It follows from the fact that f is non-decreasing that f ◦P (A∪C) ≤ f ◦P (B∪C),

that is, µ(A ∪ C) ≤ µ(B ∪ C).

Proposition 15. Let µ be a pre-distorted probability on (X, 2X). If µ(A) <

µ(B), then µ(Ac) > µ(Bc) for A, B ∈ 2X .

Proof. Let us consider two cases. First, we suppose that A ∩ B = ∅. Then,

since µ is a pre-distorted probability, we have A ⊂ Bc and B ⊂ Ac. Therefore

it follows from Ac = B∪ (Ac ∩Bc) and Bc = A∪ (Bc ∩Ac) that µ(Ac) > µ(Bc).

Second, we suppose that A ∩ B = D. Then, µ(A) < µ(B) if and only if

µ(A′) < µ(B′) where A′ = A \ D and B′ = B \ D. Therefore, using the case

above µ(A′c) > µ(B′c). Naturally, A′c = Ac ∪D and B′c = Bc ∪D. Therefore,

as µ is a pre-distorted probability, µ(A′c) > µ(B′c) if and only if µ(Ac) > µ(Bc).

We consider a condition that plays a central role in the characterization of

distorted and pre-distorted probabilities.

Definition 16. Let µ be a fuzzy measure on (X, 2X), µ satisfies Scott’s condi-

tion when for all Ai, Bi ∈ 2X condition (i) and condition (ii) below hold:

(i)
∑n

i=1
1Ai

=
∑n

i=1
1Bi

(ii) µ(Ai) ≤ µ(Bi) for i = 2, 3, . . . , n implies µ(A1) ≥ µ(B1)

Now, we give a characterization of distorted probabilities in terms of Scott’s

condition.

Theorem 17. Let µ be a fuzzy measure on (X, 2X), then µ is a distorted prob-

ability if and only if Scott’s condition holds.
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Proof. First, we prove that there exists a probability P such that P (A) ≤ P (B)

if and only if µ(A) ≤ µ(B). To do so, let us define the binary relation � on 2X

by

A � B ⇔ µ(A) ≤ µ(B)

for A and B ∈ 2X . It is obvious from this definition that ∅ � A and A � B

for all A, B ∈ 2X such that A ⊆ B. Then, we have ∅ ≺ X where A ≺ B

means A � B and not B � A. Also, from Scott’s condition it follows that
∑n

i=1
1Ai

=
∑n

i=1
1Bi

and Ai � Bi for i = 2, 3, . . . , n implies B1 � A1 for

Ai, Bi ∈ 2X . Therefore, conditions of Theorem 9 (Scott [24], Theorem 4.1) are

satisfied and, thus, there exists a probability measure P such that A � B if and

only if P (A) ≤ P (B). So, according to � definition, µ(A) ≤ µ(B) if and only if

P (A) ≤ P (B).

Now, let us assume that

0 < µ(A1) < µ(A2) < · · · < µ(Ak−1) < µ(X) = 1

0 < P (A1) < P (A2) < · · · < P (Ak−1) < P (X) = 1

where k (k ≤ (2n − 2)) is the maximum number so that the inequalities above

hold.

Then, define the following k × k matrix by

P =

















P (A1)
k P (A1)

k−1 . . . P (A1)

P (A2)
k P (A2)

k−1 . . . P (A2)

. . . . . . . . . . . . . . . . . . . . . . . .

P (X)k P (X)k−1 . . . P (X)

















,

Since P (Al) < P (Bm) for l < m, we have rankP = k. Therefore there exists

the inverse P−1 of P. Following the same approach considered in the proof of

Theorem 10, we define the polynomial

f(x) := a1x
k + a2x

k−1 + · · · + akx.

where (a1 . . . ak)T = P−1(µ(A1) . . . µ(Ak))T .

This polynomial represents the fuzzy measure µ. Indeed, we have f(0) = 0

and µ(A) = f(P (A)) for all A ∈ 2X .
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Since P (A) < P (B) implies µ(A) < µ(B), f is strictly increasing with

respect to P .

Chateauneuf [3] obtains results similar to Theorem 17 using the results by

Fishburn in [7]. In Theorem 17, the distortion function f is a strictly increasing

polynomial while Chateauneuf only presents necessary and sufficient conditions

for the existence of a non-decreasing distortion function.

4.3 Distorted and pre-distorted probabilities

Theorem 17 characterizes distorted probabilities. This theorem, together with

Proposition 14 implies the following proposition.

Proposition 18. Let µ be a fuzzy measure on (X, 2X) satisfying Scott’s condi-

tion, then µ is a pre-distorted probability.

The reversal of Proposition 18 is not true. Not all pre-distorted probabilities

are distorted probabilities. This can be seen in the next example.

Example 3. Let X := {1, 2, 3}, and let µ be the fuzzy measure on 2X defined

as:

µ({1}) :=
1

7
, µ({2}) := 0, µ({3}) :=

2

7
, µ({1, 2}) :=

3

7
, µ({2, 3}) :=

4

7
, µ({1, 3}) := 1.

Then, this measure is pre-distorted probability because:

µ({2}) < µ({1}), µ({2, 3}) < µ({1, 3})

µ({2}) < µ({3}), µ({1, 2}) < µ({1, 3})

µ({1}) < µ({3}), µ({1, 2}) < µ({2, 3}).

However, this measure does not satisfy Scott’s condition. To illustrate this,

let us consider the following sets: A1 := {1}, A2 := {2}, A3 := {3}, A4 := X

and B1 := {1, 2}, B2 := ∅, B3 := {2, 3}, B4 := {1, 3}. Then, it holds that

1A1
+ 1A2

+ 1A3
+ 1A4

= 1B1
+ 1B2

+ 1B3
+ 1B4

and

µ(A2) ≤ µ(B2), µ(A3) ≤ µ(B3), µ(A4) ≤ µ(B4)
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However,

µ(A1) < µ(B1).

Example 3 together with Theorem 17 illustrate that not all pre-distorted

probabilities are distorted probabilities. Nevertheless, although the measure in

Example 3 can not be represented using a strictly increasing distortion function

f it is representable using a non-decreasing f . The corresponding representation

is given in the following example.

Example 4. Let us consider X and the measure µ defined in Example 3, then,

there exists probability distributions P and non-decreasing functions f such that

µ = f ◦ P . Table 3 gives one of such probability distributions together with the

fuzzy measure µ.

Example 4 shows that there exists a non-decreasing function f on {A|A ∈

2X} and a probability distribution P such that µ = f ◦ P , but such f is no

longer a polynomial. In fact, since f is non-decreasing with f(0) = f(1/5.5) = 0,

there exist infinitely many a such that f(a) = 0. Therefore, because of Gauss’

fundamental theorem of algebra, a polynomial of this form is impossible.

Let µ be a fuzzy measure on (X, 2X). We define the equivalence relation ∼

on 2X by

A ∼ B ⇔ µ(A) = µ(B)

for A, B ∈ 2X . Note that this is the symmetric part of relation � in Theorem 17.

Then, let us consider the quotient set 2X/ ∼ (i.e., if [A] ∈ 2X/ ∼, B ∈ [A]

is equivalent to A ∼ B) and let Bµ denote its representatives (∅ and X are

considered in Bµ). Naturally, A, B ∈ Bµ implies either µ(A) < µ(B) or µ(B) <

µ(A). Let L be the real linear vector space generated by the set of characteristic

functions 1A : A ∈ 2X and let Xµ of L be defined by

Xµ := {1A − 1B|A, B ∈ Bµ}.

The function f : [0, 1] → [0, 1] is said to be strictly increasing with respect

to Bµ if and only if P (A) < P (B) implies f(P (A)) < f(P (B)) for A, B ∈ Bµ.

Now, we define Scott’s twin condition. This condition is analogous to Scott’s

condition (Definition 16) but restricted to sets in B ⊂ 2X .

15



Definition 19. Let µ be a fuzzy measure on (X, 2X) and let B be a subset of

2X , then µ satisfies Scott’s twin condition when for all Ai, Bi ∈ B conditions

(i) and (ii) below hold:

(i)
∑n

i=1
1Ai

=
∑n

i=1
1Bi

(ii) µ(Ai) ≤ µ(Bi) for i = 2, 3, . . . , n implies µ(A1) ≥ µ(B1)

Suppose that A, B ∈ Bµ and µ(A) ≤ µ(B). It follows from the definition of

Bµ that the equality occur if and only if A = B.

Theorem 20. Let µ be a fuzzy measure on (X, 2X). There exists a probability

P on (X, 2X) and a polynomial f which is strictly increasing with respect to Bµ

such that

µ = f ◦ P

if and only if Scott’s twin condition holds for Bµ.

Proof. Let L be the real linear vector space generated by the set of characteristic

functions 1A for all A ∈ 2X . Since ∅ ∈ Bµ, −1A = 1∅ − 1A ∈ Xµ. Therefore

−Xµ := {−f |f ∈ Xµ} = Xµ, that is, Xµ is a symmetric set. Then, let us define

the relation 0 � 1A − 1B on Xµ is defined by 0 � 1A − 1B ⇔ µ(A) ≤ µ(B) for

A, B ∈ Bµ. Then we have that for x ∈ Xµ, x � 0 means 0 � (−x) and 0 ≺ x

means that it is not true x � 0.

Suppose that Scott’s twin condition holds. Then, we have

n
∑

i=0

xi = 0 and 0 ≺ xi for i ≥ 1

implies x0 ≺ 0 for xi ∈ Xµ, (0 ≤ i ≤ n). Since the conditions of Theorem 8

(Scott [24], Theorem 1.1) are satisfied, there exists a linear function φ on L such

that for all x ∈ Xµ 0 ≺ x if and only if φ(x) > 0. Since φ(1X) > 0, we can

define a probability on 2X by

P (A) :=
φ(1A)

φ(1X)
.

Since φ is linear, P (A) < P (B) ⇔ φ(1B − 1A) > 0 ⇔ 1A ≺ 1B ⇔ µ(A) < µ(B)

for A, B ∈ Bµ. We may suppose the probabilities of the representatives A of Bµ

are maximal with respect to [A], that is, satisfying P (A) ≥ P (A′) for A′ ∈ [A],

where [A] is [A] ∈ 2X/ ∼, A ∈ [A]. In the same way as Theorem 18 we can show
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that there exists a strictly increasing polynomial f such that µ(A) = f ◦ P (A)

for A ∈ Bµ.

Remark. Since Bµ is not Boolean algebra, we cannot apply Theorem 9

directly.

Corollary 21. Let µ be a fuzzy measure on (X, 2X). If µ is represented by

a probability P on (X, 2X) and a non-decreasing function f , then Scott’s twin

condition holds.

Proof. Let us define Bµ as above. Then, suppose that µ(A) < µ(B) for A, B ∈

Bµ. Since f is non-decreasing we have P (A) < P (B). Conversely if P (A) <

P (B) for A, B ∈ Bµ, it follows from the definition of Bµ that µ(A) < µ(B).

Then there exists a polynomial f∗ that is strictly increasing with respect to Bµ

such that µ(A) = f∗ ◦ P (A) for B ∈ Bµ. Therefore it follows from Theorem 20

that Scott’s twin condition holds.

Example 5. Let X := {1, 2, 3}, µ(∅) = µ({1}) = µ({2}) = 0, µ({3}) = 0.5

µ({1, 2}) = 0.7, µ({1, 3}) = µ({2, 3}) = µ(X) = 1. Then Bµ = {∅, {3}, {1, 2}, X}.

Since we have

1{1,2} + 1{3} = 1∅ + 1X ,

µ({1, 2}) < µ(X) and µ({3}) > µ(∅). Therefore there exist a probability P and

a strictly increasing polynomial with respect to Bµ such that µ = f ◦ P

Example 6. Let X := {1, 2, 3, 4}, µ(∅) = µ({1}) = µ({2}) = µ({3}) =

µ({4}) = 0, µ({1, 2}) = 0.3, µ({2, 3}) = 0.2, µ({1, 4}) = 0.1 , µ({3, 4}) = 0.4,

and µ(A) = 1 otherwise. This fuzzy measure cannot be representable in terms

of a distortion function. There is no strictly increasing polynomial w.r.t. Bµ

and a probability P such that µ = f ◦ P . This is so because we have

Bµ := {∅, {1, 2}, {2, 3}, {3, 4}, {1, 4}, X},

such that

1{1,2} + 1{3,4} = 1{1,4} + 1{2,3},

with µ({1, 2}) > µ({2, 3}) and µ({3, 4}) > µ({1, 4}).
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Definition 22. Let a1, a2, . . . , am ∈ Rn. The convex cone [a1, a2, . . . , am] gen-

erated by {a1, a2, . . . , am} is defined by

[a1, a2, . . . , am] := {
m

∑

i=1

λiai|λi ≥ 0}.

Theorem 23. Let µ be a fuzzy measure on (X, 2X) with Bµ = 2X . If there exist

linearly independent vectors a1, a2, . . . , am ∈ Rn such that Xµ ⊂ [a1, a2, . . . , am]\

0, then µ is a distorted probability.

Proof. Since L := [a1, a2, . . . , am] − [a1, a2, . . . , am] is a linear space, we can

define the linear function ϕ(x) on L by

ϕ(x) :=
∑

i

λi

for x =
∑

i λiai. Since {a1, a2, . . . , am} is linearly independent, ϕ is well defined.

Since 1X ∈ Xµ, there exists λi such that λi > 0. It follows from Bµ = 2X that

we can define probability on (X, 2X) by P (A) := ϕ(1A)/ϕ(1X) for A ∈ 2X .

If µ(A) < µ(B), 1B − 1A ∈ Xµ. Therefore ϕ(1B − 1A) > 0, that is, P (A) <

P (B).

Corollary 24. Let µ be a pre-distorted probability on (X, 2X). If X = {1, 2, 3}

and Bµ = 2X , then µ is a distorted probability.

Proof. Since Bµ = 2X , we may suppose that µ(1) < µ(2) < µ(3). Since µ is

pre-distorted probability, we have µ({1, 2}) < µ({1, 3}) < µ({2, 3}). Suppose

that µ({1, 2}) < µ(3). Since Bµ = 2X ,

Xµ = {
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}

where











−1

−1

1











∈ Xµ means that 1{x3} − 1{x1,x2} � 0.

Denote a1 :=











1

0

0











, a2 :=











−1

1

0











and a3 :=











−1

−1

1











. We have

Xµ ⊂ [a1, a2, a3] \ 0.
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Suppose that µ({1, 2}) > µ(3). Since Bµ = 2X ,

Xµ = {
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Denote a1 :=











1

1

−1











, a2 :=











0

−1

1











and a3 :=











−1

1

0











. We have

Xµ ⊂ [a1, a2, a3] \ 0.

Corollary 25. Let µ be a pre-distorted probability on (X, 2X). If X = {1, 2, 3, 4}

and Bµ = 2X , then µ is a distorted probability.

Proof. We may suppose that

0 < µ({1}) < µ({2}) < µ({3}) < µ({4}).

Since µ is a pre-distorted probability, we have

µ({1, 2}) < µ({1, 3}) < µ({1, 4}).

It follows from Proposition 15 that

µ({2, 3}) < µ({2, 4}) < µ({3, 4}),

µ({1, 2, 3}) < µ({1, 3, 4}) < µ({2, 3, 4}) < 1.

Suppose that µ({4}) < µ({1, 2}) and µ({1, 4}) < µ({2, 3}). Denote a1 :=
















−1

1

1

−1

















, a2 :=

















1

1

0

1

















, a3 :=

















0

0

−1

1

















and a4 :=

















0

−1

1

0

















. Then we have

Xµ ⊂ [a1, a2, a3, a4] \ {0}.

In the other cases similarly we can define a1, a2, a3, a4 ∈ Rn such that

Xµ ⊂ [a1, a2, a3, a4] \ {0}.
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If |X | = 5, there exists a pre-distorted probability µ such that µ is not

distorted probability. The next example is based on [19].

Example 7. Let X := {1, 2, 3, 4, 5}. Define a fuzzy measure according to the

tables below.

It is easy to check that Bµ = 2X and µ is pre-distorted probability.

Suppose that there exists a strictly increasing function f and Probability P

such that µ = f ◦ P . Since f is non-decreasing, it follows from

µ({2, 3}) < µ({1}), µ({1, 2}) < µ({3, 4})and µ({1, 3}) < µ({2, 5})

that

P ({2, 3}) < P ({1}), P ({1, 2}) < P ({3, 4})and P ({1, 3}) < P ({2, 5}).

Then it follows from the additivity of P that P ({1, 2, 4}) < P ({3, 5}). Therefore

f ◦ P ({1, 2, 4}) ≤ f ◦ P ({3, 5}), that is µ({1, 2, 4}) ≤ µ({3, 5}). But we have

µ({1, 2, 4}) > µ({3, 5}) in the table.

Remark The example above shows that µ satisfies the condition: µ(A) ≤

µ(B) ⇒ µ(A ∪ C) ≤ µ(B ∪ C) for every A ∩ C = ∅, B ∩ C = ∅, A, B, C ∈ 2X ,

and there exists no non-decreasing function f such that µ = f ◦ P where P is

probability on (X, 2X).

5 m dimensional distorted probabilities

In this section, we introduce m dimensional distorted probabilities and give

some properties.

Definition 26. Let {X1, X2, · · · , Xm} be a partition of X (i.e., ∪Xi = X and

for all Xi and Xj it holds Xi ∩ Xj = ∅), then we say that µ is at most m

dimensional pre-distorted probability if for all Xi it holds:

µ(A) ≥ µ(B) ⇔ µ(A ∪ C) ≥ µ(B ∪ C) (2)

for all A, B, C ⊆ Xi such that C ∩ A = ∅ and C ∩ B = ∅. We say that at

most m dimensional pre-distorted probability µ is m dimensional pre-distorted

probability if µ is not at most m − 1 dimensional.
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From the above definition for pre-distorted probabilities, it is clear that:

Proposition 27. All fuzzy measures are at most |X | dimensional pre-distorted

probabilities.

Definition 28. Let {X1, X2, · · · , Xm} be a partition of X, then we say that µ

is at most m dimensional distorted probability if there exists a function f on

Rm and probability Pi on (Xi, 2
Xi) such that

µ(A) = f(P1(A ∩ X1), P2(A ∩ X2), · · · , Pm(A ∩ Xm)) (3)

where f is strictly increasing with respect to the i-th axis for all i = 1, 2, . . . , m.

We say that at most m dimensional distorted probability µ is m dimensional

pre-distorted probability if µ is not at most m − 1 dimensional.

From the above definition for distorted probabilities, we have the next propo-

sition.

Proposition 29. All fuzzy measures are at most |X | dimensional distorted

probabilities.

Proof. Define a function g : 2X → {0, 1}n by g(A) = (xA1, xA2, . . . , xAn) ,

xAi = 1 if xi ∈ A and xAi = 0 if xi 6∈ A for i = 1, 2, . . . , n. Then it is obvious

that g is a bijection. Therefore we can define the function f : {0, 1}n → R by

f(g(A)) := µ(A). Define probability Pi on {xi} by Pi(xi) = 1. Then we have

µ(A) = f(P1(A ∩ {x1}), . . . , Pn(A ∩ {xn})).

Example 8. The Grabisch fuzzy measure on X = {M, L, P} defined in [9]

(and reproduced in Table 4) is both a two dimensional pre-distorted probability

and at most two dimensional distorted probability. For building the distorted

probability, we need to consider two sets. One set corresponds to the science

subjects {M, P} and the other corresponds to the literary subject {L}. A graph-

ical interpretation of the measure is given in Figure 1. The figure represents the

measure considering two axes. The axes are to represent the partition elements.

Therefore, one axis corresponds to the set {L} and the other to {M, P}. The

figures represent the values of the measure. I.e., the figure for {L} × {M, P}
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{L} 0.3 0.9 0.9 1.0

∅ 0 0.45 0.45 0.5

∅ {M} {P} {M,P}

Figure 1: Graphical interpretation of Grabisch fuzzy measure as a two dimen-

sional distorted probability

corresponds to µ({L} ∪ {M, P}) = µ(X) = 1. It can be seen that the measure

is increasing in both axes. Using P1({L}) = 1 and P2({M}) = P2({P}) = 0.5

and f according to Figure 1, we have µ(A) = f(P1(A ∩ {L}), P2(A ∩ {M, P})).

It is very important for both theory and applications to know the dimen-

sion of a distorted probability. Although the definitive method is still an open

problem, using pre-distorted probability, we have the following results about

the dimension of distorted probabilities.

Definition 30. [22] Let P := {X1, X2, · · · , Xm} be a partition of X. We say

that P is an interadditive partition of X with respect to µ if

µ(A) =

n
∑

i=1

µ(A ∩ Xi).

Proposition 31. Let µ be m dimensional pre-distorted probability on (X, 2X)

and {X1, X2, · · · , Xm} be an interadditive partition of X.

If |Xi| ≤ 4 for all Xi, µ is at most m dimensional distorted probability.

Proof. Let g : Rm → R be g(x1, . . . , xm) = x1+· · ·+xm. Since {X1, X2, · · · , Xm}

is an interadditive partition, We have µ(A) = g(µ(A∩X1, . . . , µ(A∩Xm))). Ap-

plying Corollary 25, there exists a strictly increasing polynomial fi and a prob-

ability Pi such that µ(A ∩ Xi) = fi(Pi(A ∩ Xi)) for i = 1, . . . , m. Then define

the function f : Rm → R by f(x1, . . . , xm) := g(f1(x1), . . . , fm(xm)). Therefore

we have µ(A) := f(P (A ∩ X1), . . . , P (A ∩ Xm)). Since fi is strictly increasing,

f is strictly increasing with respect to the i-th axis for all i = 1, 2, . . . , m.
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Corollary 32. Let µ be a 2 dimensional pre-distorted probability on (X, 2X) and

{X1, X2} an interadditive partition of X. If |X | = 5, µ is at most 2 dimensional

distorted probability.

Example 9. Let X := {1, 2, 3, 4, 5, 6, 7, 8}, X1 := {1, 3, 5, 7} and X2 := {2, 4, 6, 8}.

Then, a 2-dimensional pre-distorted probability is at most 2-dimensional dis-

torted probability.

6 Learning two dimensional distorted probabil-

ity measures

This section is devoted to the learning of two dimensional distorted probabilities

for data modeling using Choquet integrals. Our approach is based on the algo-

rithm developed in [31] for learning distorted probabilities. Such algorithm is

in turn based on the results described in [6] and [30, 32] for learning OWA [35]

and weighted mean weights. The approach we follow is similar in nature to

Tanaka and Murofushi [27], Grabisch [8], Marichal and Roubens [20] and Imai

et al. [16] to name a few. These works deal with the process of fuzzy mea-

sure determination for Choquet integral (see [11] and [33] for reviews on this

subject).

In all these cases, the learning process assumes a set of M examples con-

sisting each one of N input values and the corresponding output value. Table 5

represents such examples. Each row (ai
1, a

i
2, . . . , a

i
N |bi) is an example, with ai

j

denoting the value supplied by the xj information source in the i-th example

and with bi denoting the output value also for the i-th example. Then, given a

particular aggregation operator C (for Consensus) with parameter p ∈ P , the

goal is to find p0 ∈ P that better fits the examples. Using means square error

to evaluate the fitting (the lesser the error, the larger the fitting and better

the model), this problem is stated as follows: find p such that the following

expression is minimized:

M
∑

i=1

(Cp(a
i
1, . . . , a

i
N ) − bi)2 (4)

Usually, this problem has to be solved using constrained optimization meth-
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ods because the parameter p has to satisfy some constraints (e.g. when p is a

fuzzy measure monotonicity is a required condition). See e.g. [2] for a descrip-

tion of techniques for solving such problem for particular aggregation operators.

[31] considers learning one dimensional distorted probabilities through the

learning of the WOWA operator [28]. This is, a distribution function p and a

function f interpolated from a weighting vector w (as in Example 1) are learned.

A gradient descent is applied from the optimal solution for the weighted mean

and OWA. As the Choquet integral generalizes both operators, a solution for

them is a feasible (usually non optimal) solution for the Choquet integral. An

outline of this method is as follows:

1. p = best parameter for weighted mean

2. w = best parameter for the OWA operator

3. (p∗, w∗) = best pair from (p, w)

4. Iterate gradient descent from p∗ and w∗

The best fittings for OWA and weighted mean were obtained using the meth-

ods described in [30, 32] and the gradient descent is based on [6]. See [31] for

details.

Our approach for learning two dimensional distorted probabilities starts from

the one dimensional distorted probability µ = f ◦ p. Then, for a given partition

of the variables X into two disjoint sets X1 and X2 we define a two dimensional

fuzzy measure µ2D that is equal to µ for all subsets of X .

Naturally, µ2D is defined in terms of two probability distributions p1 and p2

and a function f2D : [0, 1]× [0, 1] → [0, 1]. The probability distributions p1 and

p2 are defined as follows:

p1(xi) =
p(xi)

∑

x∈X1
p(x)

for all xi ∈ X1

p2(xi) =
p(xi)

∑

x∈X2
p(x)

for all xi ∈ X2

and the function f2D is defined as a piecewise linear function based on a

set of knots defining a grid structure. Such definition is based on the following

construction:
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Given S and T two finite and ordered sets of values in [0, 1] so that 0 = s1 <

... < sm = 1 and 0 = t1 < ... < tn = 1, and given F a function defined over the

pairs (s, t) ∈ S × T , we define fS,T,F in [0, 1] × [0, 1] as follows:

fS,T,F (s, t) = β∗(α∗F (si, tj)+(1−α)∗F (si+1, tj))+(1−β)∗(α∗F (si, tj+1)+(1−α)∗F (si+1, tj+1))

where,

• si ∈ S is such that si ≤ s ≤ si+1

• tj ∈ T is such that tj ≤ t ≤ tj+1

• α = (s − si)/(si+1 − si)

• β = (t − tj)/(ti+1 − ti)

Then, given the 1-dimensional distorted probability µ, and the probability

distributioins p1 and p2 defined above, we define the distortion function f2D as

fS,T,F with S, T and F defined as follows:

S = {0} ∪ {p|p ∈ [0, 1] and there exists Z1 ⊆ X1 and p =
∑

z∈Z1
p1(z)}

T = {0} ∪ {p|p ∈ [0, 1] and there exists Z2 ⊆ X2 and p =
∑

z∈Z2
p2(z)}

F (a, b) = f(a ·
∑

x∈X1
p(x) + b ·

∑

x∈X2
p(x))

Once p1, p2 and F and, thus, f2D have been defined we apply a learning

method for updating them and improving the fitting. The learning method

consists on a two step learning process. One step is for “improving” the prob-

ability distributions p1 and p2 and the other is for “improving” the function F

for the points in S × T . Probability distributions are updated using a gradient

descent approach and F is updated using a greedy method based on a random

perturbation. Both steps are detailed below:

Gradient descent for updating probability distributions: This method

is based on the method described in [6] for learning OWA weighting vec-

tors. In fact, a OWA vector is equivalent to a probability distribution

because weights are positive and add to one. The approach avoids dealing

with weight constraints reformulating the problem so that the constraints

are no longer needed. In particular, instead of considering the learning
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of the weighting vector w = (w1 . . . wN ), they consider the learning of a

vector Λ = (λ1 . . . λN ) from which weights are extracted as follows:

w = (eλ1/

N
∑

j=1

eλj . . . eλN /

N
∑

j=1

eλj )

As now any vector Λ ∈ RN leads to a weighting vector (positive values

adding one), gradient descent can be considered for Λ without any addi-

tional constraints on Λ. We apply this approach for both weighting vectors

p1 and p2.

Greedy method for updating the non decreasing function: This method

consists on a random perturbation of the values of F on the knots. Knots

(s, t) ∈ S × T are randomly selected and the corresponding values F (s, t)

are either increased or decreased also at random (but keeping monotonic-

ity). Changes in the function are accepted only when the error decreases.

6.1 Application

We have considered the learning of two dimensional fuzzy measures for data

modeling using the Choquet integral. Due to the fact that there are no public

repositories with files for learning aggregation operators or information fusion

models, we have used two examples taken from the machine learning reposi-

tory [23]: the “iris” and the “abalone” data files. These datafiles were already

used in [30], [31] and [32]. The “iris” data file consists on 150 examples each

one with four input variables and one output variable. The variable class was

recoded because it is a categorical one. The “abalone” data file consists on 4177

examples each one with 8 input variables and 1 output one. The variable Sex

was recoded because it is a categorical one.

For the “iris” data file the results obtained with our approach are not much

rellevant. Only a small improvement has been obtained (2.64903740 was the

best distance – according to Expression 4 – achieved using a one dimensional

distorted probability and 2.64903728 is our best result with a two dimensional

one). From our point of view, this small improvement is mainly due to the fact

that two of the four variables (x1, x4) result in probabilities equal to zero in the
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model based on 1 dimensional distorted probability and the same occurs for the

2 dimensional model.

For the “abalone” data file, the best results with a one-dimensional distorted

probability had a distance of 37.4931. This is achieved when four of the variables

(x2, x5, x6 and x7) had a probability equal to zero. The probabilities of the

variables is given in Table 6. We have considered all partitions for variables

with non-null probability and the best distance is given in Table 7. In such

partitions, null variables have also been included in one of the sets. The results

show that in all cases, the best 2 dimensional DP also assigns probabilities equal

to zero to such null variables.

Tables 8 and 9 give the probability distributions p1, p2 and the function F

for the best solution obtained. This corresponds to the partition defined by the

sets {x3, x8} and {x1, x2, x4, x5, x6, x7}. Its best distance was 37.1682. Table 8

corresponds to the measure before the iterative process described in this section

and Table 9 corresponds to the measure after the iterative process. The results

show that the probability distributions p1 and p2 have changed, distributing

part of the probability. In particular, in the dimension {x1, x4} the former has

lost importance and has been adquired by the latter. Similarly, the function F

has also been modified.

7 Conclusions

In this work we have studied distorted probabilities. We have studied their

properties and introduced a new family of measures (m-dimensional distorted

probabilities). Also, we have described a method for learning two dimensional

distorted probabilities and applied this method to a modeling problem. The

results obtained confirm the modeling capabilities of these measures.
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Y = {x1, x2, x3, x4, x5} µp,w Möbius transform

{ 0 0 0 0 0} 0.0 0.0

{ 0 0 0 0 1} 0.04296875 0.04296875

{ 0 0 0 1 0} 0.1375 0.1375

{ 0 0 0 1 1} 0.2375 0.05703125

{ 0 0 1 0 0} 0.06909722 0.06909722

{ 0 0 1 0 1} 0.1375 0.02543403

{ 0 0 1 1 0} 0.3 0.09340278

{ 0 0 1 1 1} 0.5 0.07456597

{ 0 1 0 0 0} 0.18333333 0.18333333

{ 0 1 0 0 1} 0.3 0.07369792

{ 0 1 0 1 0} 0.61666666 0.29583333

{ 0 1 0 1 1} 0.7625 -0.0278646

{ 0 1 1 0 0} 0.38333333 0.13090278

{ 0 1 1 0 1} 0.61666666 0.09123264

{ 0 1 1 1 0} 0.81666666 -0.0934027

{ 0 1 1 1 1} 0.9 -0.2537327

{ 1 0 0 0 0} 0.1 0.1

{ 1 0 0 0 1} 0.18333333 0.04036458

{ 1 0 0 1 0} 0.38333333 0.14583333

{ 1 0 0 1 1} 0.61666666 0.09296875

{ 1 0 1 0 0} 0.2375 0.06840278

{ 1 0 1 0 1} 0.38333333 0.03706597

{ 1 0 1 1 0} 0.70000000 0.08576389

{ 1 0 1 1 1} 0.81666666 -0.2537326

{ 1 1 0 0 0} 0.5 0.21666667

{ 1 1 0 0 1} 0.7 0.04296875

{ 1 1 0 1 0} 0.8625 -0.2166667

{ 1 1 0 1 1} 0.93090277 -0.2537326

{ 1 1 1 0 0} 0.7625 -0.0059028

{ 1 1 1 0 1} 0.8625 -0.2537326

{ 1 1 1 1 0} 0.95703125 -0.2537326

{ 1 1 1 1 1} 1.0 0.50746528

Table 1: Fuzzy measure µp,w and its Möbius transform. The first column

denotes the set (0: the element is not included; 1: the element is included)32



|X | Number of possible orderings for Number of possible orderings for

Distorted Probabilities Fuzzy Measures

1 1 1

2 1 1

3 2 8

4 14 70016

5 546 O(1012)

6 215470 –

Table 2: Possible orderings of the sets in 2X with respect to the measure con-

sidering µ({1}) ≤ µ({2}) ≤ . . . , where O(1012) is an estimation.

set ∅ {2} {1} {3} {1,2} {2,3} {1,3} {2,1,3}

P 0 1/5.5 2/5.5 2.5/5.5 3/5.5 3.5/5.5 4.5/5.5 5.5/5.5

µ = f ◦ P 0 0 1/7 2/7 3/7 4/7 7/7 7/7

Table 3: Probability and non-decreasing function f corresponding to Example 3

set {2} {3} {4} {2,3} {2,4} {1} {1,2}

µ 0.1 0.12 0.13 0.2 0.23 0.24 0.25

{3,4} {5} {2,3,4} {1,3} {1,4} {2,5} {1,2,3} {3,5} {1,2,4}

0.35 0.4 0.42 0.43 0.5 0.51 0.52 0.53 0.58

{4,5} {1,3,4} {2,3,5} {2,4,5} {1,5} {1,2,3,4} {1,2,5} {3,4,5}

0.60 0.61 0.62 0.63 0.65 0.70 0.73 0.76

{2,3,4,5} {1,3,5} {1,4,5} {1,2,3,5} {1,2,4,5} {1,3,4,5}

0.80 0.82 0.83 0.85 0.90 0.92
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µ(∅) = 0 µ(X) = 1

µ({M}) = 0.45 µ({P, L}) = 0.9

µ({P}) = 0.45 µ({P, M}) = 0.5

µ({L}) = 0.3 µ({L, M}) = 0.9

Table 4: Grabisch fuzzy measure in [9]

a1
1 a1

2 . . . a1
N | b1

a2
1 a2

2 . . . a2
N | b2

...
...

...
...

aM
1 aM

2 . . . aM
N | bM

Table 5: Data examples.

x1 x2 x3 x4 x5 x6 x7 x8

p 0.018 0.0 0.369 0.524 0.0 0.0 0.0 0.088

Table 6: Probability distribution for the variables in the “abalone” data file.

Partition Min. Distance

{x3, x4, x8}, {x1, x2, x5, x6, x7} 37.3569

{x4, x8}, {x1, x2, x3, x5, x6, x7} 37.2745

{x3, x8}, {x1, x2, x4, x5, x6, x7} 37.1682

{x3, x4}, {x1, x2, x5, x6, x7, x8} 37.2751

{x8}, {x1, x2, x3, x4, x5, x6, x7} 37.2866

{x4}, {x1, x2, x3, x5, x6, x7, x8} 37.2634

{x3}, {x1, x2, x4, x5, x6, x7, x8} 37.2810

Table 7: Partitions considered with the “Abalone” data file and minimum dis-

tance achieved
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1.0 0.457 0.475 0.981 1.0

0.806 0.369 0.387 0.893 0.911

0.193 0.088 0.106 0.612 0.630

0.0 0.0 0.018 0.524 0.542

0.0 0.033 0.966 1.0

p1 p1(x1) = 0.033 p1(x2) = 0 p1(x4) = 0.966 p1(x5) = 0 p1(x6) = 0 p1(x7) = 0

p2 p2(x3) = 0.806 p2(x8) = 0.193

Table 8: Initial function F on the knots defined by S = {0, 0.033, 0.966} and

T = {0, 0.193, 0.806, 1.0} (top) and probability distributions p1 and p2 (bottom)

for the partition defined by {x3, x8} and {x1, x2, x4, x5, x6, x7}

0.806 0.351 0.390 0.698 1.0

0.193 0.351 0.390 0.512 0.595

0.0 0.0 0.016 0.016 0.016

0.0 0.033 0.966 1.0

p1 p1(x1) = 0 p1(x2) = 0 p1(x4) = 1.0 p1(x5) = 0 p1(x6) = 0 p1(x7) = 0

p2 p2(x3) = 0.981 p2(x8) = 0.018

Table 9: Final function F on the knots defined by S = {0, 0.033, 0.966} and

T = {0, 0.193, 0.806, 1.0} (top) and probability distributions p1 and p2 (bottom)

for the partition defined by {x3, x8} and {x1, x2, x4, x5, x6, x7}
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