
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/228369526

An	architecture	for	virtual	solution	composition
and	deployment	in	infrastructure	clouds

Article	·	June	2009

DOI:	10.1145/1555336.1555339

CITATIONS

49

READS

51

6	authors,	including:

Alexander	V.	Konstantinou

Google	Inc.

25	PUBLICATIONS			331	CITATIONS			

SEE	PROFILE

Michael	Kalantar

IBM

19	PUBLICATIONS			566	CITATIONS			

SEE	PROFILE

W.C.	Arnold

IBM

11	PUBLICATIONS			489	CITATIONS			

SEE	PROFILE

Ed	Snible

Association	for	Computing	Machinery

7	PUBLICATIONS			130	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Ed	Snible

Retrieved	on:	17	May	2016

https://www.researchgate.net/publication/228369526_An_architecture_for_virtual_solution_composition_and_deployment_in_infrastructure_clouds?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_2
https://www.researchgate.net/publication/228369526_An_architecture_for_virtual_solution_composition_and_deployment_in_infrastructure_clouds?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Alexander_Konstantinou?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Alexander_Konstantinou?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Google_Inc?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Alexander_Konstantinou?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Michael_Kalantar?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Michael_Kalantar?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Michael_Kalantar?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Wc_Arnold?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Wc_Arnold?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Wc_Arnold?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Ed_Snible?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Ed_Snible?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Association_for_Computing_Machinery?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Ed_Snible?enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng%3D%3D&el=1_x_7

An Architecture for Virtual Solution Composition and
Deployment in Infrastructure Clouds

Alexander V. Konstantinou, Tamar Eilam, Michael Kalantar,
Alexander A. Totok, William Arnold, Edward Snible

IBM Research
19 Skyline Dr

Hawthorne, NY, USA
{avk, eilamt, kalantar, barnold, snible}@us.ibm.com, aatotok@ieee.org

ABSTRACT
The combination of virtual server technology and the Infra-
structure-as-a-Service (IaaS) approach to utility computing
promises to revolutionize the way in which distributed soft-
ware services are deployed. Server virtualization technology
can be used to capture complete reusable software stacks,
shifting the complexity of middleware installation and con-
figuration from deployment to packaging. IaaS clouds pro-
vide a set of interfaces for controlling virtual machines and
configuring their hardware and network environment, sub-
stantially reducing the complexity of service provisioning.
In this paper we identify and tackle a few of the remaining
challenges in fulfilling the promise of radical simplification
of distributed software service composition and deployment.
We propose an approach and architecture for composition
and deployment of virtual software services in cloud envi-
ronments. We introduce a virtual appliance model which
treats virtual images as building blocks for composite solu-
tions. Virtual appliances use a port abstraction to negoti-
ate their communication parameters. A solution architect
creates a virtual solution model by composing virtual ap-
pliances and defining requirements on the environment in a
cloud-independent manner. The virtual solution model is
transformed to a cloud-specific virtual solution deployment
model used to generate a parameterized deployment plan
that can be executed by an unskilled user. We validated our
approach through a prototype implementation demonstrat-
ing flexible composition and automated deployment in our
local lab virtualization infrastructure and in Amazon EC2.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software con-
figuration management

General Terms
Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VTDC’09, June 15, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-580-2/09/06 ...$5.00.

Keywords
Cloud computing, virtualization, model-driven deployment

1. INTRODUCTION
The deployment of a software service typically involves the

installation of software artifacts, the installation and config-
uration of middleware containers such as web servers, appli-
cation servers, databases, messaging engines and directories,
and the configuration of the infrastructure for communica-
tion, isolation, and security. Server virtualization technol-
ogy has provided a powerful solution to the challenge of as-
sembling software stacks. Deployers can now utilize virtual
images capturing complete and functional stacks that have
been assembled by middleware experts. The emergence of
the cloud computing paradigm supporting the provisioning
of an Infrastructure-as-a-Service (IaaS) has similarly rad-
ically simplified the provisioning of hardware resources to
run virtual images and the configuration of their placement
and network connectivity. The combination of virtualization
and IaaS therefore holds the potential to revolutionize soft-
ware service life-cycle management. However, several key
challenges are yet to be addressed to fulfill the promise:

Challenge 1: Solution Design. The structure of a
multi-machine virtual software service depends on a large
number of cross-cutting functional and non-functional con-
cerns such as availability, security, performance, and cost.
Solution architects must make architectural decisions on the
use and type of application server clustering technology, au-
thentication services, data storage, as well as the grouping of
components into network zones, and the selection of deploy-
ment site. Leveraging pre-built virtual machines as solution
components reduces the solution design space, but the num-
ber of possible combinations and concerns is still high, and
their interplay complicated.

Challenge 2: Software Stack Cross-Configuration.
The service architecture and topological structure dictate
multiple cross-configurations of the virtual machines com-
prising the service. Application servers will have to be con-
figured to use authentication servers, access databases, and
be federated in clusters and cells. Cross-machine configura-
tions cannot be statically captured (“freeze dried”) on the
combined set of virtual machines, since they will vary across
solutions. Therefore, the needed configurations must be in-
ferred and implemented at deployment time based on the
solution design. Dependencies must be respected to con-
sistently configure all components of a service. Often, the
value of a property exposed by one component must be used

9

to configure multiple other components. Parameterized val-
ues, satisfying all component constraints, must be selected
consistently. Therefore configuring the dynamic parts of a
solution is still complex and error prone.

Challenge 3: Cloud Environment Configuration.
The cloud infrastructure, including the virtual hardware,
network, and storage, must be configured for communica-
tion, security, availability and isolation based on the so-
lution’s requirements. The capabilities and interfaces for
environment configuration vary significantly across clouds.
Solution-level environment requirements must be translated
to cloud-specific configurations and interface calls. Certain
clouds may offer functionality too weak to meet the require-
ments of the service. Thus, the relationship between ser-
vice requirements and cloud capabilities must be analyzed
to identify the cloud most suitable for deployment.

Challenge 4: Automating the Deployment. Deploy-
ing a distributed software service requires the determination
and execution of a non-trivial sequence of cloud interface
calls to load and control images and to configure the cloud
environment. The calls and their parameters are specific
to each service and cloud environment configuration. Tem-
poral dependencies must be taken into account to correctly
implement the deployments.

In this paper we introduce a novel approach and archi-
tecture leveraging virtualization and IaaS for software ser-
vice composition and deployment which addresses the above
challenges. In our approach, we reduce the design space by
leveraging coarse-grained image building blocks. We enable
the cloud-agnostic modeling of solution environment require-
ments which can be transformed into cloud-specific configu-
rations and be used to automatically generate a deployment
plan. We have implemented a prototype of our approach
where we compose and deploy distributed virtual software
services in Amazon’s EC2 [2] cloud, and in our own lab’s
Xen infrastructure.

This paper is structured as follows. In section 2, we de-
scribe our approach and architecture. In section 3, we dis-
cuss the concept of virtual appliances used as solution build-
ing blocks. In section 4, we detail the process of compos-
ing images and constraining their deployment in a cloud-
independent manner. In section 5, we outline the process
of transforming the solution model into a deployment model
that is cloud-specific. In section 6, we discuss the transfor-
mation of the deployment model into an executable plan. In
section 7, we describe our prototype. We conclude with a
section on related work, and future work.

2. A MODEL-DRIVEN APPROACH
In our approach, depicted in figure 1, domain experts

construct virtual appliances which are implemented by vir-
tual images with pre-built configurability points for self and
cross-configuration. The virtual appliance model exposes
these configurability points declaratively in a manner which
admits simple composition with other virtual appliance mod-
els. Solution architects create a declarative virtual solu-
tion model (VSM) by selecting virtual appliance models,
and specifying configurability choices (based on the man-
ifested options). Solution architects can further describe
deployment requirements that will affect and drive virtual
machine placement and network configuration. The require-
ments are specified in a cloud-independent manner using ab-
stractions such as availability zones, network zones, place-

Domain
Expert

Virtual
Image

Configuration
Operations

Virtual Appliance

Create

Solution
Architect

Virtual Solution
Model

Compose

Virtual Solution
Deployment Plan

Deployment
Architect

Appliance
Model Zone 1 Zone 2

Virtual Solution
Deployment Model

Amazon

Security

Group 1

AMI AMI
Elastic

IP

Amazon

Security

Group 2

Transform

Generate

Deployer /
User

Parameterize &
Execute

Figure 1: Virtual Solution Design and Deployment

ment constraints, and resource consumption constraints and
requirements. Deployment architects consume a VSM and
transform it to a cloud-specific virtual solution deployment
model (VSDM) that can be further customized with addi-
tional cloud-specific configurations. Finally, the deployment
model is transformed to a cloud-specific virtual solution de-
ployment plan (VSDP). The plan can be executed by a nor-
mal user, such as a software tester. The VSDP operates
in two layers: (1) it invokes the cloud operations to con-
figure the environment and control (load, allocate, reserve,
activate) the virtual machines, and (2) it exercises the vir-
tual appliance built-in configuration logic to configure the
software stack based on the VSM.

Our approach is focused on a clear separation of roles to
enable the scalable capturing of deployment logic across the
rich space of possible software service solution topologies and
layers. We leverage virtualization to assign the role of stack
creation to the operating system, security, middleware, and
scripting experts. The resulting virtual images are hardened
and expose limited customization parameters at deploy time,
such as host name selection. A cloud image expert will be
responsible for uploading and registering each such image in
clouds which can support it. Each such image self-describes
the configurability choices through an appliance model that
acts as an interface. Note that a single interface may be
associated with multiple implementation choices, such as a
VMware ESX image or an Amazon Machine image.

The complexity and risk faced by the solution architect is
greatly reduced: instead of having to deal with fine grained
installation and complex fine-grained middleware configura-
tion choices, the solution architect operates within the re-
duced space of the options exposed by the available virtual
appliances. This reduced space allows the solution architect
to focus on key aspects (tiered architecture, technology selec-
tion, etc) rather than worry about fine-grained middleware
configuration complexity, individual stack tuning options,
and version compatibility issues. The VSM constructed by
the solution architect is used to seamlessly calculate the ac-
tivation parameters of the image and to ensure consistent
composition with other images, with configuration parame-
ters or properties of one image seamlessly propagated and
used to cross-configure other dependent images.

The role of the deployer is then restricted to binding the
VSM to one or more clouds and then generating and execut-
ing the deployment plan. We have implemented a prototype

10

of this approach in a model-driven deployment platform we
developed and that was recently released as part of IBM’s
RSA 7.5 product[18]. We have demonstrated this prototype
in our local Xen-based virtualization lab, as well as in Ama-
zon EC2, which we describe in section 7.

The technology that we have developed and is described in
this paper can be offered as a service, termed Composition-
as-a-Service on top of an IaaS platform. Such a service could
be used by large organizations, interested in harnessing the
power of cloud computing in order to reduce their infras-
tructure expenses (administration costs, hardware cost, etc).
Typically, such large organizations have advanced IT needs
that go beyond usage of single software stacks captured in
individual virtual machines. Such large organizations typi-
cally develop and maintain thousands of in-house composite
applications (e.g. J2EE). These applications are typically
tested in a sequence of test environments (integration, stress,
staging) before they can be rolled into production.

Leveraging the IaaS platform, enhanced with our com-
position service for application testing is a strong match:
First, security requirements on testing environments are less
stringent than production, thus, businesses will be inclined
to move into the cloud for testing first. Second, complete
test environments have to be temporarily provisioned only
for the duration of the testing. Third, these environments
need to be frequently and easily updated with new versions
of the source code (a future piece of our work deals with
the update of virtual appliances as part of a nightly build
process). Fourth, different topologies will be needed based
on the application structure and testing needs. Last, it is
crucial to reduce the time to provision and configure the
test environments (today 35% of testing time is spent on
just configuring the test environment). Note that current
Platform-as-a-Service (PaaS) offerings may be too restrictive
for large organizations since they dictate specific technolo-
gies (e.g. the .Net model in Microsoft’s Azure) or application
programming model (e.g. Google App Engine). Thus, large
organizations will be forced to work in the IaaS layer, and
could benefit from a Composition-as-a-Service layer, that
can greatly reduce deployment complexity without compro-
mising flexibility.

3. VIRTUAL APPLIANCES
A virtual appliance consists of three inter-related parts:

(1) a virtual image, (2) a virtual appliance model, and (3) a
set of configuration operations. The virtual appliance model
declaratively captures the ways in which the virtual image
can be customized at deploy time. The configuration op-
erations are the means by which the values configured in
the appliance model are applied to the image. It is pos-
sible to use the same appliance model for multiple images
with the same customization features. For appliance mod-
els corresponding to more than one image, the configuration
operations may also be the same, or differ based on their
compatibility with the images.

3.1 Virtual Appliance Model
The virtual appliance model declaratively captures deploy

time parameters in the image’s internal configuration, such
as the root password, and configuration of its external con-
nectivity to other images in the virtual solution or other
external resources. Our virtual appliance model consists of
two parts: packaging and composition. The packaging part

.

.

.

VirtualSystem
name=IBM LDAP Server

ProductSection
• product = SLES Linux v10
• Properties

• hostname =
• fooPassword=bar

ProductSection

• product = ITDS server
• version = 6.1
• Properties

• port =

Service VPort

.

.

.

.

.

.

.

.

port > 1023

LDAP Port
host=
port=
user=foo
passwd=bar

.

.

.

.

.

VirtualSystem
name=IBM WAS

ProductSection
• product = SLES Linux
• Properties

• hostname =
ProductSection
• product = WAS server
• version = 6.1
• Properties

• dirType =
• dirHost =
• dirPort =

• dirUser =
• dirPassword =

Client VPort
rule=XOR
optional=true

File Port
file=

LDAP Port
host=
port=
user=
passwd=

[u]

[u]

[u]

[u] [u]

[u]

[u]

[u]

[u]

Figure 2: Virtual Appliance Model

contains meta-data about the virtual machine in a platform-
independent manner. The packaging data includes product
sections with the configuration attributes of different prod-
ucts installed on the image, such as the operating system,
and identifies the ones which the user can modify at deploy
time, such as the host name. The composition part specifies
how the appliance can be connected to other appliances. We
introduce the concept of a virtual port (VPort) to capture
how the image can be linked. A VPort is a typed object
which encapsulates all the properties required to effect a
specific type of communication. The VPort properties often
cross product sections and may overlap in their coverage
with other VPorts on the same image.

We’ll illustrate our modeling of virtual appliances with
examples of an IBM Tivoli Directory Server (ITDS) virtual
appliance (an LDAP server), and an IBM WebSphere Ap-
plication Server (WAS) virtual appliance (a J2EE server).
The ITDS appliance model is pictorially represented on the
right side of figure 2. The packaging part exposes two prod-
uct sections, for the operating system (OS) and the ITDS
LDAP server. The OS section exposes two user configurable
attributes: the host name of the image and the password of
the “foo” user. The ITDS section exposes one user con-
figurable attribute specifying the LDAP network port. The
model for the WAS appliance is shown on the left side of the
same figure. The WAS appliance also has two sections, one
for the OS and another for the the WebSphere server. The
section on the WAS server includes user settable attributes
for optionally delegating configuration to a directory server.

We use VPorts to capture the composition parts of the
ITDS and WAS appliances of figure 2. Each VPort cap-
tures all the properties required to effect a specific linkage
independent of where they are defined in the product sec-
tion. We have identified a number of reusable VPort pat-
terns. For the specific example, a basic client-server commu-
nication pattern, we will model the ITDS server as a “Ser-
vice VPort” and the WAS authentication client as a “Client
VPort”. The ITDS Service VPort contains a single LDAP
VPort. The LDAP VPort exposes the host name and port
number of the network service as well as the user name and
password with which to authenticate using the LDAP pro-
tocol. The values for the host, port and password properties
are propagated from the product sections, while the user
name is hard-coded as it is not exposed as a product sec-
tion attribute. In contrast, the WAS Client VPort contains
two ports: an LDAP VPort and a File VPort. The Client
VPort is marked as optional, to indicate that it need not
be configured. Its containment semantics are declared as
Boolean XOR, meaning that only one of the two contained
ports may be connected. The LDAP VPort properties are
propagated to the WAS product section parameters. The

11

<serviceVPort>
<ldapAtomicPort host="" port="1099" user="foo" passwd="bar">
<attributeMetaData attribute="user" mutable="false"/>
<attributeMetaData attribute="passwd" mutable="false"/>
<rangeConstraint attribute="port" minValue="1024"/>

</ldapAtomicPort>
</serviceVPort>
<clientVPort containmentRule="XOR" optional="true"

connected="false">
<ldapAtomicPort host="" port="" user="" passwd=""/>
<fileAtomicPort file=""/>

</clientVPort>

Figure 3: VPort XML Representation

dirType parameter is set based on the type of the connected
contained VPort (LDAP or File). The XML representation
of the VPorts in this example is listed in figure 3.

Service VPorts are used to model a server offering a shared
access point that does not require per-client customization.
A Service VPort contains a single atomic port, which is a
typed object representing an individual non-divisible con-
nectivity specification. Because Service VPorts represent a
service to which multiple clients may connect, its proper-
ties must be consistently propagated to all clients. Where
there is choice, such as the protocol to use, the model can
expose multiple Service VPorts. Client VPorts are used to
represent the client side in the client-server communication
pattern that must be configured for communication with the
server. A Client VPort is associated with a connection state:
when disconnected, some of the properties may be blank,
while when it is connected, its properties are expected to be
set through a negotiation progress discussed in the next sec-
tion. A client VPort may be “optional” if the virtual image
can function with the VPort in a disconnected state. Client
VPorts can have a nested port structure to allow modeling
of complex port connection strategies. The containmen-

tRule property specifies how the Client VPort connection
state relates to the connection state of the contained atomic
ports. When an individual atomic port is connected to an
atomic port on the target Service VPort, their types must
match and there should be a set of negotiated atomic port
property values that satisfies the constraints on both sides.
Due to space limitations, we defer a more detailed discussion
and presentation of additional VPort patterns to a separate
publication.

VPorts and their properties may be associated with con-
straints. For example, a constraint on the WAS server may
state that the LDAP server to which it is connected be lim-
ited to a specific set of supported products. Another type
of constraint may express requirements on the communica-
tion infrastructure between the two servers. For example,
the ITDS port will require TCP communication over the
specified port to the LDAP server. For ports which depend
on link-layer dynamic configuration protocols, a constraint
may require collocation of the two endpoints over the same
LAN (or VLAN). The values of properties may also be con-
strained, for example if the LDAP server is running as a
non-root user, a constraint may restrict user port selection
to over 1023.

For the representation of the packaging part of our vir-
tual appliance model we have adopted the Open Virtualiza-
tion Format (OVF) specification[9]. We use the OVF En-
velope document to capture the virtual appliance hardware
attributes, such as memory, number of CPUs, I/O interfaces,
disks, and network interfaces as well as the product sections.

The OVF model is extensible, and therefore we can easily
embed our VPort XML models, examples of which are shown
in figure 3, as an additional element of the OVF envelope.
As a result our combined packaging and composition virtual
appliance model can be represented in a single XML docu-
ment that is standard compliant (OVF explicitly supports
extensions of the type we are proposing).

3.2 Configuration Operations
Every product section containing user configurable at-

tributes must be associated with one or more configuration
operations (COs) that will reconfigure the image. The set of
operations does not only depend on the individual products
whose configuration is exposed, but may also depend on the
composition of the stack. For example, some middleware
containers cache the host name of a server, and can break if
a change at the OS level configuration is not accompanied
by middleware-level configuration changes. The domain ex-
pert must capture such internal propagations in the process
of associating configuration operations to product sections.
There are three types of configuration operations based on
the context of their execution: (1) local COs must be exe-
cuted within the image, and thus necessitate its deployment,
(2) remote COs can be executed on another host, but re-
quire the image to be reachable in order to perform remote
management calls, and (3) off-line COs are executed on a
separate host and operate on the image contents at the file-
level. The mapping of CO parameters to virtual appliance
model objects will be discussed in section 6 on planning.

The price for the flexibility afforded by an IaaS approach
to cloud computing is that beyond a limited set of dynamic
protocols, such as DHCP, the configuration of the image con-
tents is the responsibility of the user. For local COs, IaaS
clouds typically support the passing of opaque user data
from the deployer to the image to enable deploy time cus-
tomizations. The domain expert can embed a configuration
operation engine in the image that will evaluate the data
passed by the deployer (e.g. [17]). The user data will include
an environment document with property section values, and
may include COs that are not already present on the image.
Local execution of COs greatly simplifies the process of im-
age customization, and is the approach we’ve taken in our
current prototype. In contrast, the execution of remote and
off-line COs requires the availability of a workflow engine,
and a set of management hosts.

4. VIRTUAL SOLUTION MODELING
A virtual solution model (VSM) is used to capture the

composition of one or more virtual appliance models and the
logical configuration of their deployment environment. The
VSM is logical in the sense that the virtual appliance mod-
els can potentially be realized by images stored in different
repositories or clouds. Moreover, the environment is defined
using high-level concepts such as placement zones, network
zones, and storage volumes. The logical environment con-
cepts are cloud-independent and admit realization in more
than one kind of an infrastructure cloud. The realization
of some logical environment concepts may not be possible
in all infrastructure clouds, and their requirement will limit
the range of valid deployment options. In this section we
will outline how the virtual appliance models are composed,
and provide examples of logical cloud environment models.

12

Web

Browser

W eb Net Zone Auth Net ZoneInternet Zone

WAS DMGR

WAS Node

+ I HS

WAS Node

I TDS

Negotiate
host,port,user

Negotiate
port

Negotiate
host, protocol, port

Figure 4: Virtual Solution Model

4.1 Appliance Composition
Consider the creation of a logical topology for deploying

a Sun J2EE enterprise application which utilizes directory
authentication. The application artifacts will include the
application EAR archive, and an LDAP Data Interchange
Format (LDIF) file to populate the directory server with
application-specific schemas and users. Deployment of this
application will therefore require a J2EE application server
and an LDAP directory server. We present an example
based on the virtual appliance models we described in the
previous section. To develop a more interesting solution
example, we will represent two types of WAS servers: an
application server node, and a deployment manager node
which can federate any number of nodes into a cell which
can host an application cluster. In addition, we model a port
for HTTP connectivity and represent an “external” resource
that is independently deployed and associated with a read-
only VPort model to represent an HTTP client accessing the
cloud. An example of a VSM is illustrated in figure 4. In this
topology the HTTP Client VPort has been connected to the
HTTP Service VPort of a WAS Node which is configured to
spray requests over the cluster it participates in. The cluster
is configured via its Federate Client VPort connectivity to
the deployment manager. Finally, the deployment manager
is connected through its LDAP Client VPort to the ITDS
Service VPort.

There are multiple ways in which such a logical topology
can be constructed. A user may utilize a diagramming editor
packaged as an application or a Web 2.0 service. The editor
would support the addition of virtual appliance models, and
their graphical composition using linking or error resolution
gestures. Alternatively, the topology can be created through
a wizard interaction in which a user is queried about the
types of appliances to be added, with possible links created
or auto-suggested. Finally, such a topology can be created
manually by editing the low level XML representation. We
have experimented with all three types of construction which
we report in section 7.

Independent of the manner in which the topology is con-
structed, a key underlying mechanism of composition is VPort
negotiation. When two VPorts are linked, they must negoti-
ate a consistent configuration. VPorts are designed to encap-
sulate all properties needed to effect configuration. There-
fore the negotiation can be localized to the two endpoints.
When configuring communication, users often think of clients
adjusting to the configuration of the server. Especially for
new deployments, client configuration constraints may ac-
tually be more restrictive. For example, in the topology of
figure 4, the HTTP connection between the web browser
and the J2EE server will negotiate the TCP port value. If
the client has been fixed to port 80, then the selected server
configuration must match, or be changeable.

Negotiation may not settle on a specific configuration value,
but only on the fact that it will be a shared value provided
at deploy time. For example, depending on the cloud infras-
tructure, the host name may be user selectable or may be
chosen by the cloud. In either case, at the time of negotia-
tion the value will not be known. Instead, the negotiation
will focus on checking that any known constraints are sat-
isfiable. Constraint satisfiability is a difficult problem even
when the language for expressing constraints is highly re-
stricted[30]. In such cases negotiation may either defer to
the runtime, or ask the user for a representative sample to
test. In our initial prototype we have used very limited set
of constraints, such as range and enumeration constraints
for which efficient algorithms exist.

4.2 Environment Specification
The functions and services of IaaS clouds are still far from

standardized. Due to the similarity of function, however,
there are some common configuration abstractions that can
be generalized. For example, clouds often support constrain-
ing deployment to specific geographical regions, or segment
their data centers into independent availability zones to sup-
port highly available deployments. IaaS clouds will also typ-
ically allow users to constrain the protocols and ports which
are exposed in their deployed images. We will next out-
line three core cloud abstractions that we have developed to
logically model cloud deployments.

We define a model of a Placement Zone that can group any
number of image models. The placement zone can be con-
strained to be realized in one or more geopolitical regions
such as continents, political and trade associations, coun-
tries, states, and so on. A zone may be further constrained
to identify the level of sharing that the customer is permit-
ting whether it is at the data-center level, the rack/switch
level, or the physical machine level. Constraint relation-
ships can be established between zones to establish anti-
collocation properties. Two zones may be constrained to be
realized in different cloud providers, in different availability
zones within the same provider, or across geopolitical zones
in the same or different clouds.

The links between VPorts represent communication con-
straints that must be satisfied by the cloud network infras-
tructure. We complement these communication constraints
with a model of a Network Zone that can group any number
of appliances. Zones enable designers to express additional
communication constraints that will apply to multiple im-
ages. For example, they can be used to open communica-
tion paths that may not have been explicitly modeled using
VPorts. Moreover, network zones can be used to relax com-
munication constraints between member images. At deploy
time, network zones may be realized by zones already de-
fined in the infrastructure. The realization of network zones
may require the creation of multiple zones in the cloud if
functions such as intra-zone communication constraints are
not supported.

We introduce the logical model of a Storage Volume that
can be linked to any number of images. The storage volume
can be a member of a placement zone. Its realization can be
constrained in terms of the level of sharing of physical stor-
age with other customers, the use and level of encryption,
its physical mapping properties (e.g. whether its bootable),
and its I/O performance characteristics. Users can associate
an artifact to populate the device, such as an ISO file.

13

https://www.researchgate.net/publication/220690138_Foundations_of_Constraint_Satisfaction?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==

VSMs must be validated for internal consistency to de-
tect link endpoint type mismatches, inconsistent VPort and
product section values, constraint violations, and contradic-
tory environment requirements. In our prototype we used
the deployment validation framework we have contributed
to RSA 7.5 to register domain validation logic, and report
errors to the users [12].

5. SOLUTION DEPLOYMENT MODELING
The virtual solution model determines the composition of

virtual appliances at the interface level and constrains their
deployment environment in a platform-independent manner.
In order to enable deployment of the virtual solution, the
virtual appliance interfaces must be bound to specific im-
plementations and the platform independent environment
models must be realized by cloud specific configuration mod-
els. This transformation is performed by a deployment ar-
chitect and its result is a virtual solution deployment model
(VSDM). The deployment model is platform specific and
can be used to generate a parameterized deployment plan to
provision it in one or more clouds, as will be outlined in the
next section.

In selecting one or more clouds to deploy a virtual solu-
tion, the deployment architect must consider the availabil-
ity of virtual appliance implementations and the capabil-
ities of the clouds selected to implement the environment
constraints. If the images are available in an external asset
repository, then the deployer will need to upload and regis-
ter them with the cloud. If the format and content of the
images is not directly compatible with the cloud then a do-
main expert may need to be involved. In this paper we will
restrict our discussion to deployments of virtual appliances
where matching images can be found in the targeted cloud.

Consider the transformation of the virtual solution model
from the previous section for deployment on the Amazon
Elastic Compute Cloud (EC2)[2]. The first step of the trans-
formation, which is depicted in figure 5 involves identifying
the Amazon Machine Image (AMIs) for each of the three
types of virtual appliances in the solution. The appliance
models for the AMIs may extend the solution appliance
models with additional configuration properties and VPorts
that are Amazon EC2-specific. For example, an AMI in-
stance can be linked to an Amazon EC2 Elastic Block Stor-
age volume for device level access to storage. Similarly, an
AMI instance can be associated with an Elastic IP to main-
tain a static address that can be reassigned in case of failure.
Domain-specific validation rules will also apply, such as that
an AMI instance must be on the same availability zone as
its EBS volumes. Finally, the mapping of an appliance in-
terface may be more complex if its implementation involves
additional resources such as a block storage device for per-
sistent storage. Depending on the implementation, a new
block storage device may need to be allocated and config-
ured for mounting, or an existing one may need to be cloned
and mounted. In the figure we show how the ITDS appli-
ance model is realized by an AMI configured to mount a new
storage volume.

The second step of the transformation is to realize the
virtual solution environment constraints in the target cloud
infrastructure. In the case of Amazon EC2, network isola-
tion zones are modeled as security groups that are associated
with AMI instances and configured with IP permission rules.
The rules open specific protocol port ranges and can apply

Elastic

I P

Web

Browser

W eb Net Zone Auth Net Zone

Virtual
Solution

Model

Virtual
Deployment

Model

(Amazon)

WAS DMGR

AMI
I TDS AMI

WAS Node

AMI

WAS Node

AMI

Group: W eb

*:TCP[80]

W eb:TCP[8881]

Mem bers:W AS * AMIs

Group: Auth

W eb:TCP[398]

Mem bers: ITDS AMI

Internet Zone

WAS DMGR

WAS Node

+ I HS

WAS Node

I TDS

EBS

Figure 5: Virtual Solution Deployment Model

to specific IP addresses, IP subnets, or members of a security
group. The default policy is to deny all traffic from outside
or inside the zone. The transformation of the virtual solution
model’s communication constraints and network zones into
Amazon EC2 availability zones can be assisted by tooling as
we have reported in [11]. For each network zone a security
group is created. The VPort connectivity at the virtual solu-
tion model level implies network connectivity requirements.
Each VPort configuration link must be transformed into its
corresponding network layer connections. For example, the
WAS Nodes are configured to be federated by the WAS De-
ployment Manager using the JMX protocol over TCP port
8881. As all three image instances will be in the same zone
(Web) an IP permission rule can be defined to allow intra-
zone TCP communication on port 8881. Similarly, the Web
security group can be configured to expose TCP port 80 for
Internet traffic, and the Auth security group to expose TCP
port 398 for LDAP traffic from the Web group.

From a functional perspective, there may be multiple re-
alizations of a virtual solution into a set of clouds. In such
cases, deployment architects will consider non-functional mea-
sures such as cost, time to deploy, latency, scalability and
availability. The discussion of algorithms for availability
and performance analysis is beyond the scope of this paper.
See [32] for an example of how our model-driven transforma-
tion approach was applied to high-availability pattern anal-
ysis. Specific mechanisms for solution to deployment model
transformation are outside the scope of this paper. We have
previously reported on a deployment model transformation
approach based on a search through a set of pattern-based
transformations[12, 11].

6. SOLUTION DEPLOYMENT PLANNING
Once the Virtual Solution Deployment Model has been

finalized the deployment architect must generate a plan to
provision it in the cloud. The deployment plan is a partial
order of cloud and image configuration operations. When
local image configuration operations are used, the execution
of the plan will occur at two levels. The top execution level
will invoke the cloud APIs to configure the environment (e.g.
create security groups), and to deploy the images. The de-
ployment of each image will be parameterized by user data
containing an environment document with parameter val-
ues, such as the root user password, and any configuration
operations that are not present in the image. The second
level of execution will occur inside the image at the time it is

14

https://www.researchgate.net/publication/4149761_Reducing_the_complexity_of_application_deployment_in_large_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4149761_Reducing_the_complexity_of_application_deployment_in_large_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4354504_Availability_weak_point_analysis_over_an_SOA_deployment_framework?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==

Deploy ITDS AMI

Attach Volume

Deploy WAS Node Deploy WAS Node Deploy WAS DMGR

Config LDAP User

Config LDAP Conn

Federate Node

Federate Node

Config Elastic IP

Config Web Grp Config Auth Grp Create Elastic IP

host=${dmgr.hostname}
protocol=JMX
port=8881

Figure 6: Deployment Plan Example

started when the configuration operation engine will invoke
the operations specified in the environment document.

There are two challenges to generating such a deployment
plan. The first challenge is to identify the operations which
will “cover” the deployment model, and map their param-
eters to deployment model object attributes. The second
challenge is to identify the temporal dependencies between
operations to determine the partial order of execution. We
have previously reported on an AI planning-based approach
to deployment plan generation in [13]. The general AI plan-
ning approach is necessitated where the transition from ini-
tial to goal state involves creation of transient configura-
tions. Due to the simpler nature of the deployment models
associated with virtual solutions, it is possible to apply more
restricted planners for a gain in performance and reduced al-
gorithm complexity.

Our simplified planning approach is based on our work
on deployment patterns [4]. We capture the mapping of a
configuration operation against a conceptual model of the
objects which it configures, including the propagation of at-
tributes from the model to the operation. We then search
through the realizations of configuration operation patterns
on the VSDM topology to find a complete covering of all
of the objects that need to be provisioned. The realization
mapping identifies the operation and the relation of its pa-
rameters to the model attributes. In our prototype work we
created operation patterns for the Amazon EC2 operations,
such as image instantiation, security group creation, elastic
IP creation and so on. To determine the order of the op-
erations, we associate VPorts with a constraint indicating
that their linkage implies a deploy order dependency. We
then project the deployment model ordering constraints on
the operation model we have created. The details of this
approach will be covered in a future publication.

Figure 6 depicts a plan for the deployment model of fig-
ure 5. Based on the VPort link constraints, the plan spec-
ifies that the groups and elastic IPs have to be configured
before the AMIs are instantiated. The images can be de-
ployed in parallel, however, the configuration of the VPorts
is associated with temporal constraints (not shown in the
figure). One constraint is that the deployment manager can
only federate one node at a time. For WAS security to be
enforced, the ITDS server must be up and configured with
the WAS admin user entry. Finally, the Elastic IP can only
be assigned to the WAS Node AMI after it has been de-
ployed. Every operation has parameters which are bound
to constants or to values from the model. For example, the
operation to federate a WAS node will be assigned the spe-
cific host name at deploy time, whereas the protocol type
and port are fixed because the VPort does not expose them
as a parameter.

7. PROTOTYPE IMPLEMENTATION
We have implemented a prototype of our architecture for

virtual solution deployment. Our prototype is built on the
commercialized version of our deployment modeling research
platform[12] which is now a component of IBM Rational
Software Architect (RSA) version 7.5. The platform pro-
vides an extensible framework for capturing deployment do-
mains including schemas, templates, and associated valida-
tion and resolution rules. The platform can be extended
with model providers for objects stored in external repos-
itories. The product ships with a number of deployment
domains including middleware, operating system, servers,
networks, and others. Model transformers and publishers
may also be registered to assist users in their model-driven
workflow. These functions are exposed through a rich graph-
ical editor that is part of an Eclipse[10] workbench.

In our prototype, we created a domain to capture the
different types of VPort models we have identified. Our
VPort types are associated with negotiation policies which
can be customized at the instance level and are contributed
in the form of validations and resolutions. When two VPorts
are graphically linked, a negotiation engine we have created
uses these validation and resolution rules to broker a con-
figuration that is valid for both endpoints. We leveraged
the virtualization domain that we had contributed to RSA
and extended it with models for Amazon EC2. We also
extended the platform with a graphical navigator for EC2
resources such as images, security groups, and elastic IPs.
We wrote the transformation logic to map EC2 resource in-
stances into our EC2 model enabling deployment architects
to design complex EC2 topologies. For the generation of the
deployment plan we wrote a custom pattern-based planner
which we outlined in the previous section. We modeled the
Amazon EC2 SOAP API and mapped it to the EC2 domain
types. Finally, we developed a graphical wizard to support
the role of the deployer in collecting the solution instance
parameters and executing the deployment workflow.

To demonstrate our prototype we created four virtual ap-
pliances: (1) a WAS application server appliance to host the
TPC-W benchmark J2EE application[29], (2) an IBM DB2
database appliance, (3) an Oracle Express database appli-
ance, and (4) a IBM ITDS directory appliance. Our TPC-W
appliance requires database connectivity in the form of an
out VPort and supports custom DDLs for either DB2 or
Oracle. Neither the DB2 nor the Oracle appliance has any
knowledge of the TPC-W appliance. In our demonstration,
solution architects can connect the TPC-W appliance to ei-
ther DB2 or Oracle, resulting in appropriate bindings being
generated on both endpoints. The TPC-W appliance can
also optionally be connected to the ITDS directory server.
The connection captures the passing of the LDIF informa-
tion to create the appropriate users on the LDAP server
at deploy time. A sample screen-shot of a virtual solution
created in our editor is shown in figure 7.

Our virtual appliances have been implemented as SUSE
v10 Xen Linux virtual images containing local configuration
operations as IBM Activation Engine [17] scripts. The im-
ages were tested on our local research Xen virtualization
infrastructure, and also ported as Amazon Machine Images
(AMIs) in EC2. The same models for the configuration op-
erations were used for both infrastructure targets, enabling
us to test alternate appliance implementations. For our local
deployment we generated an IBM Solution Assembly Toolkit

15

https://www.researchgate.net/publication/225227220_Pattern_based_SOA_deployment?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221461406_Model_Driven_Provisioning_Bridging_the_Gap_Between_Declarative_Object_Models_and_Procedural_Provisioning_Tools?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==

Figure 7: Prototype Composition Example

workflow to execute the Xen image copy and deployment op-
erations. For our EC2 deployment we utilized the Eclipse
job manager to execute the Amazon EC2 SOAP calls neces-
sary to create the security groups and to deploy the images.

In our demonstration, we show how a solution architect
can assemble a virtual solution model by adding virtual ap-
pliance models and simply linking their VPorts. For ex-
ample, for a topology with TPC-W + DB2 + ITDS, this
can be achieved in just five simple user gestures. All the
negotiations over port parameters are performed automat-
ically as part of the linking gesture. We then show how a
deployment architect can realize the appliances with exist-
ing Amazon EC2 images, and add additional EC2-specific
configurations, such as security groups and Elastic IPs, by
dragging and dropping from the EC2 navigator, and using
link gestures to the virtual appliances. Finally, we show how
a deployer can start a simple wizard to deploy an instance
of the solution by supplying parameters such as the Amazon
machine type (most parameters are associated with valid de-
fault values). When the wizard completes, it generates the
activation profiles to be passed as user data at image de-
ployment, and invokes the Amazon SOAP API operations
identified by the planner in the right order.

8. RELATED WORK
Cloud computing is an emerging technology which promises

to revolutionize software and business life-cycles. It is a sub-
ject of fierce debate in forums and on-line communities, with
rapid technological developments, and intense business anal-
yses and speculations. As a research field, cloud computing
is a derivative of several established research areas, including
Service Oriented Architecture, grid computing, and virtual-
ization.

Work in this area can be categorized by layer. At the
base layer, there is a massive body of work on mechanisms
for server virtualization in the form of software and hard-
ware hypervisors[5, 24, 31], and control and monitoring of
virtual machines[21, 22]. In the next layer, virtualization
technology is leveraged for development of cloud software
infrastructure offering compute services on demand[2, 16, 6,
26]. Multiple works attempt to define a unified taxonomy for
cloud computing[33], or provide an open source implemen-
tation[26, 25]. Other works focus on the life-cycle aspects
of individual virtual machines. Automatic or tool-aided as-
sembly of individual virtual machines is explored in[20], and
offered by companies such as CohesiveFT[7] and rPath[28].
Efficient transfer, scheduling and deployment of virtual ma-
chines is described in [19].

We are not aware of other academic publications on com-
posing distributed virtual services consisting of multiple vir-
tual machines that are similar to the approach proposed in
this paper. Our work can be generally positioned in the area
of cloud management. Companies such as RightScale[27]
and Elastra[14], operate in the same space. RightScale al-
lows users to identify scripts that will be automatically ex-
ecuted on activated virtual machines in a cloud environ-
ment. Elastra proposes an approach very similar to ours
where virtualization is leveraged for the creation of modular
application infrastructure components. 3Tera[1] is another
interesting company that takes a model-driven approach to
design and provisioning of virtual hosting infrastructure per
individual distributed application requirements. Other com-
panies offer Platform-as-a-Service solutions that provide ser-
vices and tools for the entire software life cycle but are tar-
geted to support a very specific application programming
model (e.g., Google’s App Engine[3] assumes a Web appli-
cation model), or platform (e.g., Microsoft’s Azure[23] based
on .Net). Composition is also a key aspect of the Service Ori-
ented Computing paradigm[8], but in contrast to our work,
in SOA the composition elements are web services and the
composition model drives runtime behavior[15], not deploy
time software configuration.

9. FUTURE WORK
Having demonstrated the advantage of using virtual ap-

pliance models to construct virtual solutions, our team is
working on simplifying the task of creating virtual appli-
ances. In parallel, we are extending our work on logical
cloud environment specification, and are examining different
approaches to cloud selection, and platform-independent to
platform-specific transformations. High-availability require-
ments, combined with the emergence of private clouds and
the concept of “surge computing” raise interesting challenges
in multi-cloud deployments. Re-deployment of running ser-
vices across clouds in reaction to failures, changes in utiliza-
tion, or cost is also an area which we plan on investigating.
The standardization of cloud interfaces and concepts is at a
very early stage. In our work, we aim to influence the man-
ner in which virtual solutions are designed and deployed in
an IaaS cloud, and the representation of virtual appliance
models.

10. REFERENCES
[1] 3Tera. http://3Tera.com/.

[2] Amazon EC2. http://aws.amazon.com/ec2/.

[3] App Engine. http://code.google.com/appengine/.

[4] W. Arnold, T. Eilam, M. Kalantar, A. Konstantinou,
and A. Totok. Pattern based SOA deployment. In
ICSOC, volume 4749 of LNCS. Springer, 2007.

[5] B. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. 2003.

[6] J. Chase, D. Irwin, L. Grit, J. Moore, and S. Sprenkle.
Dynamic virtual cluster in a grid site manager. In
HPDC, 2003.

[7] CohesiveFT. http://cohesiveft.com/.

[8] F. Curbera, D. Ferguson, M. Nally, and M. L.
Stockton. Towards a programming model for
Service-Oriented Computing. In ICSOC, volume 3826
of LNCS, pages 33–47. Springer-Verlag, 2005.

16

https://www.researchgate.net/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221050852_Toward_a_Programming_Model_for_Service-Oriented_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/37434658_Optimizing_Network_Virtualization_in_Xen?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/224367196_Toward_a_Unified_Ontology_of_Cloud_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220623821_Virtualization_for_high-performance_computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/225227220_Pattern_based_SOA_deployment?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/225227220_Pattern_based_SOA_deployment?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/225227220_Pattern_based_SOA_deployment?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220941635_The_Eucalyptus_Open-Source_Cloud-Computing_System?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220941635_The_Eucalyptus_Open-Source_Cloud-Computing_System?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4021695_Dynamic_virtual_clusters_in_a_Grid_Site_Manager?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4021695_Dynamic_virtual_clusters_in_a_Grid_Site_Manager?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4021695_Dynamic_virtual_clusters_in_a_Grid_Site_Manager?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4021695_Dynamic_virtual_clusters_in_a_Grid_Site_Manager?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==

[9] DMTF. Open Virtualization Format Specification.
Technical Report DSP0243, DMTF, 2009.

[10] Eclipse. http://eclipse.org, 2009.

[11] T. Eilam, M. Kalantar, A. Konstantinou, and
G. Pacifici. Reducing the complexity of application
deployment in large data centers. In IM, 2005.

[12] T. Eilam, M. Kalantar, A. Konstantinou, G. Pacifici,
J. Pershing, and A. Agrawal. Managing the
configuration complexity of distributed applications in
internet data centers. IEEE Communication
Magazine, 44(3):166–177, 2006.

[13] K. El Maghraoui, A. Meghranjani, T. Eilam,
M. Kalantar, and A. Konstantinou. Model driven
provisioning: Bridging the gap between declarative
object models and procedural provisioning tools. In
Middleware, volume 4290 of LNCS. Springer, 2006.

[14] Elastra. http://elastra.com/.

[15] C. Emig, K. Krutz, S. Link, C. Momm, and S. Abeck.
Model-driven development of SOA services. Technical
report, Forschungsbericht, Apr. 2007.

[16] Enomaly. http://enomaly.com/.

[17] L. He, S. Smith, R. Willenborg, and Q. Wang.
Automating deployment and activation of virtual
images. Technical Report 0708, IBM WebSphere
Journal, 2007.

[18] IBM. Rational Software Architect (RSA), 2008.

[19] G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss,
and T. Delaitre. Automatic service deployment using
virtualization. In 16th Euromicro PDP, 2008.

[20] I. Krsul, A. Ganguly, J. Zhang, J. Fortes, and
R. Figueiredo. VMPlants: Providing and managing
virtual machine execution environments for grid
computing. In ACM/IEEE Supercomputing, 2004.

[21] A. Menon, A. Cox, and W. Zwaenepoel. Optimizing
network virtualization in Xen. In USENIX, 2006.

[22] M. Mergen, V. Uhlig, O. Kireger, and J. Xenidis.
Virtualization for high performance computing. In
SIGOPS Oper. Syst. Rev., 2006.

[23] Microsoft Azure. http://microsoft.com/azure/.

[24] Microsoft Hyper-V. http://microsoft.com/hyperv.

[25] Nimbus Toolkit. http://workspace.globus.org/.

[26] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and Z. D. The eucalyptus open
source cloud computing system. In Cloud Computing
and Its Applications, 2008.

[27] RightScale. http://rightscale.com/.

[28] rPath. http://rpath.com/.

[29] A. Totok. TPC-W-NYU: J2EE-based implementation
of the TPC-W benchmark, 2005. NYU.

[30] E. Tsang. Foundations of Constraint Satisfaction.
Academic Press - Harcourt Brace & Company, 1993.

[31] VMware. http://vmware.com/.

[32] L. Xie, J. Luo, J. Qiu, J. A. Pershing, Y. Li, and
Y. Chen. Availability “weak point” analysis over a
SOA deployment framework. In NOMS. IEEE, 2008.

[33] L. Youseff and D. Butrico, M. Da Silva. Towards an
ontology of cloud computing. In Grid Computing
Environments (GCE08), 2008.

17

https://www.researchgate.net/publication/4149761_Reducing_the_complexity_of_application_deployment_in_large_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4149761_Reducing_the_complexity_of_application_deployment_in_large_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4149761_Reducing_the_complexity_of_application_deployment_in_large_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/37434658_Optimizing_Network_Virtualization_in_Xen?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/37434658_Optimizing_Network_Virtualization_in_Xen?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220690138_Foundations_of_Constraint_Satisfaction?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220690138_Foundations_of_Constraint_Satisfaction?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/224367196_Toward_a_Unified_Ontology_of_Cloud_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/224367196_Toward_a_Unified_Ontology_of_Cloud_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/224367196_Toward_a_Unified_Ontology_of_Cloud_Computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220623821_Virtualization_for_high-performance_computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220623821_Virtualization_for_high-performance_computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220623821_Virtualization_for_high-performance_computing?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220941635_The_Eucalyptus_Open-Source_Cloud-Computing_System?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220941635_The_Eucalyptus_Open-Source_Cloud-Computing_System?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220941635_The_Eucalyptus_Open-Source_Cloud-Computing_System?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/220941635_The_Eucalyptus_Open-Source_Cloud-Computing_System?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4354504_Availability_weak_point_analysis_over_an_SOA_deployment_framework?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4354504_Availability_weak_point_analysis_over_an_SOA_deployment_framework?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/4354504_Availability_weak_point_analysis_over_an_SOA_deployment_framework?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221461406_Model_Driven_Provisioning_Bridging_the_Gap_Between_Declarative_Object_Models_and_Procedural_Provisioning_Tools?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221461406_Model_Driven_Provisioning_Bridging_the_Gap_Between_Declarative_Object_Models_and_Procedural_Provisioning_Tools?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221461406_Model_Driven_Provisioning_Bridging_the_Gap_Between_Declarative_Object_Models_and_Procedural_Provisioning_Tools?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221461406_Model_Driven_Provisioning_Bridging_the_Gap_Between_Declarative_Object_Models_and_Procedural_Provisioning_Tools?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/221461406_Model_Driven_Provisioning_Bridging_the_Gap_Between_Declarative_Object_Models_and_Procedural_Provisioning_Tools?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==
https://www.researchgate.net/publication/3199582_Managing_the_configuration_complexity_of_distributed_applications_in_Internet_data_centers?el=1_x_8&enrichId=rgreq-f39202cc-5bf5-4ef3-ac11-7d8b4c11a7a4&enrichSource=Y292ZXJQYWdlOzIyODM2OTUyNjtBUzoxMjc4NTA1NjA2MjY2ODlAMTQwNzQ5MzM1NzE5Ng==

