
MULTIPROCESSOR SCHEDULING OF PERIODIC TASKSIN A HARD REAL-TIME ENVIRONMENT�ASHOK KHEMKAComputer Science GroupTata Institute of Fundamental ResearchBombay 400 005, IndiaR.K. SHYAMASUNDARyComputer Science GroupTata Institute of Fundamental ResearchBombay 400 005, Indiae-mail: shyam@tifrvax.bitnetABSTRACTThe problem of preemptive scheduling a set of periodic tasks on multiprocessorsis studied from the point of view of meeting their service requirements beforetheir respective deadlines. Su�cient conditions which permit full utilization ofthe multiprocessor using the given scheduling algorithms are derived. The com-plexity of the scheduling algorithms in terms of the number of scheduled tasksand the number of processors and upper bounds on the number of preemptionsin a given time interval and for any single task are also derived. We also give aschema for modifying existing schedules at little run-time cost when tasks arriveor leave the system on-line.Keywords: hard real-time, multiprocessor scheduling, preemptions1. Introduction. Hard real-time systems are de�ned as those systemsin which the correctness of the system depends not only on the logical resultof computation, but also on the time at which the results are produced. Se-� An earlier version of the paper was presented at the 6th IPPS 1992.y Correspondence Address.

vere consequences will result if timing correctness properties of the systemare violated. In other words, satisfying the timing requirements of hard real-time systems demand the scheduling of system resources according to somewell understood algorithms, so that the timing behaviour of the system isunderstandable, predictable and maintainable. Applications of real-time sys-tems can be found in automated factories, robot and vision systems, militarycommand and control systems, process control systems, ight control sys-tems and future systems such as the space-based defense systems, SDI. Theuse of multiprocessors for control and monitoring functions in such real-timesystems has increased recently. E�cient use of these systems can only beachieved by a proper scheduling of time-critical functions. Each time-criticalfunction has associated with it a set of tasks, which are either executed inresponse to external events or in response to events in other tasks. Noneof the tasks are executed before the event which requests it occurs. Thetasks must be serviced within preassigned deadlines dictated by the physicalenvironment. For example, a radar that tracks ights produces data at a�xed rate. A temperature monitor should be read periodically to detect anychanges promptly. Some of these periodic tasks may exist from the point ofsystem initialization, while others may come into existence dynamically. Anexample of a dynamically created task is a task that monitors a particularight; this comes into existence when the aircraft enters an air tra�c controlregion and will cease to exist when the aircraft leaves the region.Thus, a scheduling problem in a hard real-time system is de�ned by themodel of the system, the nature of tasks to be scheduled, and the objectives ofthe scheduling strategy. Not very much is known (cf. [12]) about schedulingalgorithms for real-time systems. Most of the existing results either pertainto simplistic situations or single processor systems. For a survey of theexisting results, the reader is referred to [3]. In, fact, most of the schedulingproblems of interest to practical real-time systems are NP-hard and hence,there is a need for heuristics or approximation techniques. In this paper,we investigate hard real-time scheduling issues at compile time, when thecharacteristics of tasks are known a priori. We also show in a restrictedsense how to dynamically update the schedule built at compile time whennew tasks arrive or existing tasks leave the system on-line. We make thefollowing assumptions about the hard real-time environment in this paper:1. Requests for tasks are periodic, with constant interval between re-quests.2. Each task must be completed before the next request for it occurs.3. Tasks are independent.4. Computation time for each task is constant for that task.This can be taken as the maximum processing time for the task

including the bookkeeping time necessary to request a successor andthe costs of preemptions.These assumptions allow the characterization of a task by the following fourparameters:1. The arrival time, A: The time at which a task is invoked in thesystem.2. The ready time, R: The earliest time at which a task can beginexecution. The ready time of a task is equal to or greater than itsarrival time. Since we have assumed the tasks to be independent,the ready time of a task is the same as its arrival time.3. The worst case computation time, C.4. The deadline D: The time by which a task must �nish. In ourmodel of hard real-time environment, the deadline of a periodic taskis equal to the arrival time of its next instance.Let f�1;�2; :::;�mg be a set of m periodic jobs with computation timesfC1; C2; :::; Cmg, and periodicity1 fD1; D2; :::; Dmg respectively. Assump-tion (2) about the hard real-time environment implies that the kth; k � 1,instance of a task �i, must be computed in full between the time units(k � 1) � Di and k � Di. We are interested in constructing a preemptiveschedule of these m tasks on n processors at compile time. We assumethat the computation times and periodicity of tasks are expressed as inte-gral multiples of the processor clock tick. Hence a task can be preemptedonly at integral time units. A valid schedule must satisfy the following twoconstraints :A1. At any instant, at most one task can be executed on any singleprocessor.A2. No single task can be executed on more than one processor at thesame instant.We de�ne the multiprocessor utilization factor to be the fraction of total timespent in the execution of the task set. Since Ci=Di is the fraction of multi-processor time spent in executing task �i ; for m tasks, the multiprocessorutilization factor is: U = mXi=1(Ci=Di):Although the multiprocessor utilization factor can be improved by increasingthe values of the C 0is or by decreasing the values of the D0is, it is constrainedby the requirement that all tasks satisfy their deadlines. It is clear from1 For the sake of simplicity, we have assumed correspondence between deadline andperiodicity and also, we have assumed that the arrival time of a task coincides with thestarting time of the task in the �rst period.

constraint (A1) that the condition U � n is necessary for feasible schedul-ing of a set of periodic jobs on n processors. It is very interesting to knowhow large the utilization factor can be. The uniprocessor case has beenconsidered in [9], where it is shown that for feasible scheduling of a set ofperiodic tasks, the condition U � 1 is both necessary and su�cient. Theauthors of [9] propose two preemptive algorithms. In their �rst algorithm,called the rate monotonic algorithm, static priorities are assigned to tasksbased on their periods. They also propose a dynamic priority assignmentalgorithm, the earliest-deadline-�rst algorithm, which allows full processorutilization. However, the general case whether the condition U � n (n � 1)is su�cient for feasible scheduling of a set of periodic tasks on n proces-sors remains open. Let the time slice of a task �i be T � Ci=Di whereT = GCD2fD1; D2; :::; Dmg. But the proof is incomplete because the sched-ule constructed by the above theorem is not shown to satisfy constraint(A2). A preemptive scheduling algorithm to calculate the minimum sched-ule length for tasks related by precedence constraints has been developedin [11]. In particular, three scheduling approaches are studied here: non-preemptive scheduling, preemptive scheduling and general scheduling. Ingeneral scheduling, processors are considered to possess a certain amount ofcomputing capability that can be shared by multiple tasks. Most instancesof the scheduling problem for hard real-time systems are shown to be com-putationally intractable in [7]. A partition approach has been used to solvethe problem of scheduling periodic tasks on multiprocessors in [1,2,5]. Themain idea is to partition a set of periodic tasks among a minimum numberof processors such that each partition of the periodic tasks can be scheduledon one processor.In this paper, we answer the question whether the condition U � n issu�cient for feasible scheduling on n processors partially. We divide the timeinterval into blocks of equal length such that exactly one instance of each taskremains active in each block. We attempt to meet the average requirementof every task within the block itself. We assume that task arrival times,computation times and deadlines are expressed as multiples of the processorclock ticks. We build an actual schedule when each task's requirement perblock is expressible as integral clock ticks. When this is not so, we developa second algorithm which allots integral time units to each task in a block,so as to meet the computation requirement of every task before its deadline.This scheduling algorithm is shown to work for two particular cases whichare described below. We also derive an upper bound on the complexity ofthe two scheduling algorithms and on the number of preemptions in a giventime interval and for any single task. We also give a schema for modifying2 Greatest Common Divisor.

the schedule at little run-time cost when tasks arrive or leave the systemon-line.Let T = GCDfD1; D2; :::; Dmg and D = LCM3fD1; D2; :::; Dmg:Let Ci � Di, for each task �i. Let the utilization factor U of a set of tasksf�1;�2; :::;�mg be Pmi=1(Ci=Di). We call the time intervals [0; T]; [T; 2T];[2T; 3T]; � � � blocks of length T each. Also let U � n, for some integer n. Inthis paper, we establish the following new results :1. A schedule of the set of m tasks on n processors when each of thetask time slices is an integer.2. A schedule of the set ofm tasks on n processors when either Ci=Di �(1� 1=T) or Ci = Di, for each task �i.3. A schedule of the set ofm tasks on n processors whenPmi=1(Ci=Di�bCi=Dic) � 1.4. An upper bound on the complexity of the scheduling algorithm isO(m + n), when each of the task time slices is an integer; and isO(m � (D=T)) otherwise.5. An upper bound on the number of preemptions in a time intervalof length D is (m �D=T + Pj2�(D=Dj � 1)), for some task set �containing not more than (n� 1) tasks, when each of the task timeslices is an integer; and is (m+n� 1) � (D=T) otherwise. An upperbound on the number of preemptions for any task �i is (Di=T + 1)when each of the task time slices is an integer; and is 2 � Di=Totherwise.In our model, the operation of loading a task for the �rst time isalso treated like a task preemption, as both operations involve nearequal cost in physical applications.6. A schema applicable in a restricted sense for modifying the existingschedule at little run-time cost when new tasks arrive on-line orexisting tasks leave the system.The rest of the paper is organized as follows. Section 2 describes an op-timal scheduling algorithm, in the sense that it always constructs a feasiblepreemptive schedule, if there exists one, on n processors for a set of m peri-odic tasks having integral task time slices. Upper bounds on the complexityof the algorithm and on the number of task preemptions are also derived. InSection 2.1, we reduce the upper bound on the number of task preemptionsby performing a cyclic permutation of the processor schedules. Section 3describes another scheduling algorithm for tasks having non-integral timeslices. It also derives upper bounds on the complexity of the algorithm andon the number of task preemptions. In Section 3.1, we have shown the algo-rithm to be optimal for two particular cases of task time slice values. Section3 Least Common Multiple.

4 describes a schema applicable in a restricted sense for modifying existingschedules at little cost when tasks arrive or leave the system on-line.2. Integral Task Time Slices. When the average requirement of eachtask in a block is an integer, then the task is said to have an integral timeslice. This means that the task's average requirement per block is exactlyan integral multiple of the processor clock tick. In this section, we describea scheduling algorithm SA1 for deriving a feasible, multiprocessor schedule,if it exists, satisfying constraints (A1) and (A2) when each of the task timeslice is an integer and establish its optimality. We also derive upper boundson its time complexity and on the number of preemptions in a given timeinterval and for any single task when SA1 is used to schedule tasks.2.1. Scheduling Algorithm SA1. The scheduling algorithm is basedon a simple heuristic of allocating the time for the jth task between two pro-cessors i and i+1 in a block (the length of the block is the GCD of thedeadlines) only if the requirements for the block on hand exceeds the GCD.The number of preemptions are reduced by a simple scheme of cyclic per-mutation of processors. First, we describe the basic scheduling algorithm.Algorithm SA1Let ti;j be the ith time unit corresponding to the jth processor. Thesteps of the algorithm are described below:1. Initialize : i; j; k 1;(i denotes the processor, j the time unit and k the task number)2. If j +Nk � 1 � T ,then i i+ 1; j j +Nk � TTask k is scheduled on processor i and processor (i+1) for[ti+1;1; ti+1;j+Nk�T�1] and [ti;j ; ti;T] intervals respectively.else j j +NkTask k is scheduled on processor i only for the interval[ti;j ; ti;j+Nk�1].3. Iterate : k k + 1;If k � m, then goto step 2.Generate the schedule for the next task.STEPS OF SCHEDULING ALGORITHM SA1

TABLE 1Tasks:8, Processors:4T = GCD[30; 20; 10; 20; 40; 50; 60; 70] = 10D = LCM [30; 20; 10; 20; 40; 50; 60; 70] = 4200Task Di Ci T � Ci=Di�1 30 21 7�2 20 8 4�3 10 5 5�4 20 8 4�5 40 8 2�6 50 35 7�7 60 12 2�8 70 63 92.1.1. Illustrative Example. Consider the problem of scheduling eightperiodic tasks on four processors as described in TABLE 1.A schedule constructed by SA1 for the system described in TABLE 1is shown in Fig.12.1.2. Correctness and Complexity. In this section, we establishthe correctness of the algorithm and derive the time complexity.Theorem 2.1. Let � be a set of m periodic tasks with a utilizationfactor U � n. Then a su�cient condition for scheduling � on n processorsis that T � (Ci=Di) be integral, for each task �i.Proof. We execute task �1 for T �C1=D1 time units, task �2 for T �C2=D2time units, ... , task �m for T � Cm=Dm time units in every block. LetNi = T � Ci=Di. Since Ci=Di � 1, therefore, Ni � T , for each i. Every task�i is executed for Ni �Di=T or Ci time units before its deadline Di. (By thede�nition of T , Di=T must be an integer). Now,Pmi=1Ni = T �U � n �T .This shows that each task �i can be allocated Ci units of time before itsdeadline Di. We need only to prove that there is some schedule satisfyingconstraints (A1) and (A2).We claim that algorithm SA1 constructs a valid schedule of the taskset � for any single block. To prove the claim, we need to show only thatconstraints (A1) and (A2) are never violated. Clearly, SA1 allots any singletime unit ti;j ; 1 � i � n; 1 � j � T , to at most one task, thereby satisfying(A1). Also, since the task time slice in any block is at most T , therefore, if

Pr1Pr2Pr3Pr4
�1 �2�2 �3 �4�5 �6 �7�7 �80 1 2 3 4 5 6 7 8 9 10Time unitsFig. 1. Schedule of TABLE 2.1.1 as constructed by SA1 for the �rst blocka time unit ti;j is allotted to a task by SA1, no other time unit of the typeti0;j is allotted to it, for any i0 6= i. This is obvious from the construction ofthe schedule by SA1. Hence, constraint (A2) is also satis�ed.NOTE: Mok and Dertouzous (cf. [4]) claim that the integer task timeslices are su�cient for feasible scheduling in a multiprocessor environment.However, their proof (Theorem 8) is incomplete because the schedule con-structed by the theorem is not shown to satisfy constraint (A2).Lemma 2.2. Algorithm SA1 takes O(m) time to build a complete sched-ule on n processors for a set of m tasks having integral time slices. Also, thetotal number of preemptions in any interval of length T is at most (m+n�1).Proof. Clearly one pass of algorithm SA1 takes O(1) time. To build aschedule for a single block, the algorithm SA1 will have to make m passes,wherem is the number of tasks. The schedule of a single block so constructedby SA1 can be duplicated every T time units. Hence the complexity of SA1is O(m).To get an upper bound on the number of task preemptions in a single block,we note that all m tasks are loaded at least once in every block. SA1can preempt at most (n � 1) tasks in step 2 when a task is scheduled on

two processors. Also, tasks are allotted contiguous time slots of any singleprocessor in any given block. Hence the lemma.Corollary 2.3. There are at most 2 �Dj=T preemptions for any task�j . Proof. The corollary follows trivially from the observation that there area total of Dj=T blocks during the existence of any instance of the task �jand any task is preempted at most once in any single block.This upper bound is useful in computing the worst case computation timeof a task o�-line.2.2. Cyclic Permutation Of Processors. In Section 1, we assumedthat the computation times of tasks include the costs of preemption. Thus,it is essential to reduce the upper bound on the number of task preemptionsas it leads to a reduction in the worst case computation times of tasks. Wecan obtain a better upper bound for the number of task preemptions byreallocating processors to tasks in succeeding blocks as follows. If a taskis preempted at a processor and re-scheduled at some other processor instep 2 of algorithm SA1, then this extra preemption of a task within asingle block can be compensated by reallocating processors to tasks in thesucceeding block as follows. If some task k is preempted by algorithm SA1 inthe �rst block, then the time units allotted to it are [ti+1;1; ti+1;j+Nk�T�1]and [ti;j ; ti;T], for some processor i and time unit j. Such a task is saidto be preempted on processor (i + 1) at time unit (j + Nk � T � 1) andrescheduled on processor i at time unit j. By allocating to processor i4 inthe next block, the present schedule of processor (i+1), we can compensatefor the extra preemption of task k on processor (i+ 1) in the �rst block byensuring contiguous allocation of time units on processor i between the �rstand second blocks.Formally, the schedule of a block (other than the �rst block) is determinedfrom the schedule of the previous block as follows. Let f(i1+1; i1+2; :::; j1�1; j1); (i2 + 1; i2 + 2; :::; j2 � 1; j2); ::: ; (il + 1; il + 2; :::; jl � 1; jl)g be theprocessors where a task is preempted and re-scheduled on a second processorin the �rst block. Here 0 < i1 < j1 < i2 < j2 < ::: < il < jl � n.The schedule is obtained by taking the following cyclic permutation of theprocessors, f(i1; i1 + 1; :::; j1 � 1; j1); (i2; i2 + 1; :::; j2 � 1; j2); ::: ; (il; il +1; :::; jl� 1; jl)g,f(i1+1; i1+2; :::; j1; i1); (i2+1; i2+2; :::; j2; i2); ::: ; (il+1; il+2; :::; jl; il)g:The cyclic permutation of (i1; i1+1; :::; j1) to (i1+1; i1+2; :::; j1; i1) meansthat the schedule of processor i1 in a block is the same as the schedule of4 If i = n, then allot the schedule of processor 1.

Pr2Pr1Pr4Pr3
�1 �2�2 �3 �4�5 �6 �7�7 �80 1 2 3 4 5 6 7 8 9 10Time unitsFig. 2. Schedule of TABLE 2.1.1 as constructed by modi�ed SA1 for the second blockprocessor (i1 + 1) in the previous block, the schedule of processor (i1 + 1)in a block is the same as the schedule of processor (i1 + 2) in the previousblock, ... , and the schedule of processor j1 in a block is the same as theschedule of processor i1 in the previous block. An example of processorcycles in the schedule of TABLE 2.1.1 as constructed by algorithm SA1(Fig. 1). Schedules for next blocks are constructed by taking the (2,1)and (4,3) cyclic permutation of the processor cycles (1,2) and (3,4) in Fig.1 respectively. The corresponding cyclic permutations of processors followtrivially from Fig. 1. The schedule of the second block resulting from such acyclic permutation of the schedule of the �rst block is shown in Fig. 2. Thecombined schedule of the �rst two blocks is shown in Fig. 3.If no task is allotted more than one processor by algorithm SA1, thenthere exists no processor cycles in the schedule of the �rst block. Hence, theset of tasks can be partitioned into di�erent processors, such that each taskis scheduled to completion by just its allotted processor. In such a case, theschedule is simply repeated for succeeding blocks and no cyclic permutationof processors is needed.

Pr1Pr2Pr3Pr4 �1 �2 �3 �4�2 �3 �4 �1 �2�5 �6 �7 �8�7 �8 �5 �6 �70 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Time unitsFig. 3. Schedule of TABLE 2.1.1 for the �rst two blocksLemma 2.4. The modi�ed SA1 algorithm takes O(m+n) time to builda schedule on n processors for a set of m tasks having integral time slices.Also, the total number of preemptions of tasks in any interval of length D isat most (m �D=T +Pj2�(D=Dj � 1)), for some task set � containing atmost (n� 1) tasks.Proof. Algorithm SA1 takes O(m) time to construct a schedule for the�rst block. The schedules for succeeding blocks is obtained by determiningthe processor cycles in the schedule of the �rst block, which takes O(n) time.Hence it takes O(m+ n) time to build a complete schedule.The total number of times tasks are loaded in an interval of length D ism � D=T , as m tasks are loaded in each block. The preemption of a taskin a block is compensated in the modi�ed SA1 algorithm by allocatingcontiguous time units to the tasks between consecutive blocks. However weneed to account for those task preemptions in a block when there is a newoccurrence of the task in the succeeding block. This happens (D=Dj � 1)times for task �j in an interval of length D. There is at most (n� 1) taskswhich are preempted in a single block, hence the result on the maximumnumber of possible preemptions in an interval of length D using the modi�edSA1 algorithm.Corollary 2.5. There are at most (Dj=T + 1) preemptions for anytask �j using the modi�ed SA1 algorithm.Proof. The corollary follows trivially from the simple observation thatonly the preemption, if any, within the �rst block of the task's existence isleft unaccounted. All succeeding preemptions within a block are accountedfor by allotting contiguous time units to the task between two consecutiveblocks.Hence, by the method of cyclic permutation of processors, we have been

TABLE 2Task RequirementsTasks: 6; Processors:3T = GCD[10; 20; 30; 20; 30; 60] = 10D = LCM [10; 20; 30; 20; 30; 60] = 60Task No. Di Ci T �Ci=Di1 10 6 62 20 11 5123 30 23 7234 20 6 35 30 5 1236 60 37 616able to reduce the upper bound on the number of task preemptions in aninterval of length D from (m+n�1)�D=T to (m�D=T+Pj2�(D=Dj�1)),for some task set � containing at most (n� 1) tasks. Therefore the upperbound is reduced by ((n � 1) � D=T �Pj2�(D=Dj � 1)) preemptions. Itis easy to see that using the modi�ed SA1 algorithm, the upper bound isreduced by at least (n � 1) preemptions irrespective of the composition ofthe task set �. Also the upper bound on the number of preemptions for anytask �j is reduced by (Dj=T � 1). Hence, the worst case computation timeof a task is reduced by the modi�ed SA1 algorithm.3. Non Integral Task Time Slices. The hard real-time environmentmay not necessarily consist of tasks with integral time slices only. There maybe some tasks with non-integral computational requirements per block. Thisimplies that we cannot apply algorithm SA1 to such a task set, as we cannotallot non-integral clock ticks to tasks in a block. An example of such a taskset is shown in TABLE 3. In this section, we shall build a schedule for thecase when tasks have non integral time slices. Let Ni = bT � Ci=Dic5 andFi = T �Ci=Di�bT �Ci=Dic, for each task �i. Clearly, T �Ci=Di = Ni+Fiand 0 � Fi < 1. We apply algorithm SA2 to such a task set, so as to allotintegral time units to tasks in a block.Let the requirement of a task �k before a block be rk time units. rk =T � Ck=Dk, for each task �k at the start of the �rst block. In general rk isnon-integral and its value is di�erent for di�erent blocks. rk is a constant forall blocks i� Fk = 0. Let rk = nk + fk , where nk = brkc, and fk = rk �brkc.5 Greatest integer less than or equal to.

TABLE 3Allotment of time units to tasks of TABLE 3 by SA2ai denotes the integral time units allotted to task �i in a block.Block �1 �2 �3 �4 �5 �6No. r1 a1 r2 a2 r3 a3 r4 a4 r5 a5 r6 a61 6 6 512 6 723 8 3 3 123 1 616 62 6 6 5 5 713 8 3 3 213 2 613 63 6 6 512 6 7 7 3 3 2 2 612 64 6 6 5 5 723 8 3 3 123 2 623 65 6 6 512 6 713 8 3 3 113 1 656 66 6 6 5 5 7 7 3 3 2 2 7 73.1. Scheduling Algorithm SA2. The steps of the algorithm are de-scribed below:1. F n � T �Pmi=1 ni.(F denotes the number of free time units in a block after meetinginteger time unit requirements of all tasks.)2. Choose the �rst F tasks from the list of tasks having current fi > 0,and ni < T .(If there are less than F tasks, then all tasks satisfying the abovetwo conditions are chosen.)Allot to these chosen tasks (ni+1) time units, and to all other tasksni units.3. Apply algorithm SA1 using integer time units of tasks so computedin step (2).4. If task �i is allotted (ni + 1) time units in step (2)then ri = (Ni + Fi)� (1� fi)else ri = (Ni + Fi) + fiThe algorithm SA2 is applied D=T times to get a schedule for an intervalof D time units, which is su�cient to determine the schedule completely. Anexample showing the allotment of time units to tasks having non-integraltime slices is shown in TABLE 3.1.

Lemma 3.1. The algorithm SA2 takes O(m � D=T) time to build acomplete schedule for a set of m tasks on n processors, with task computationtimes C 0is and deadlines D0is satisfying usual conditions6 . Also, the totalnumber of task preemptions in any interval of length D is at most (m+ n�1) �D=T .Proof. The proof is the same as for Lemma 2.2, but here we have toconsider an interval of size D. This is because tasks may be allotted di�erenttime units in a block, due to the non-integral time slices of tasks. We obtaina complete schedule by just considering D=T blocks from which the lemmafollows.Corollary 3.2. There are at most 2 �Dj=T preemptions for any task�j . Proof. Same as for Corollary 2.3.3.2. Su�cient Conditions For Feasible Schedulability. In thissection, we state and prove two su�cient conditions for algorithm SA2 tobe optimal, i.e., to produce a valid, feasible schedule whenever there existsone, when tasks have non-integral time slices.The following two observations would be helpful in understanding theproofs of Theorems 3.3 & 3.4:Observations :O1. If T � Ci=Di is an integer for some task �i, then ri = T � Ci=Di atthe start of each block.This is because algorithm SA2 allots exactly ri time units to task�i in each block.O2. (T � (Ci=Di)� 1) < ri < (T � (Ci=Di) + 1), for all tasks �i and atthe start of each block.This is obvious from step (4) of algorithm SA2 where you eithersubtract (1 � fi) or add fi to the task's original requirement ofT � Ci=Di time units per block.Theorem 3.3. Let � be a set of m periodic tasks with a utilizationfactor U � n. Then a su�cient condition for scheduling � on n processorsusing algorithm SA2 is (Ci=Di) � (1�1=T), or Ci = Di, for each task �i.Proof. The following two assertions hold at the start of each block whenalgorithm SA2 is applied to such a task set :1. �1 < ri � T , for all tasks �i.2. Pmi=1 ri � n � T .Induction : Initially, at the start of the �rst block, (1) and (2) both hold,because ri = T �Ci=Di. Suppose (1) and (2) hold at the start of some blockk. We shall now prove that (1) and (2) also hold at the start of block (k+1).6 Ci � Di, for each task �i, and U � n.

Suppose Ci = Di for some task �i. Then, T � Ci=Di = T is an integer andfrom observation (O1) above, ri = T at the start of block (k+1) also. Next,suppose Ci=Di � (1 � 1=T). This implies 0 < T � Ci=Di � (T � 1). Fromobservation (O2) above, it follows that �1 < ri � T at the start of eachblock. Therefore, assertion (1) holds at the start of block (k + 1) and ishence an invariant.To prove assertion (2), we observe that if no time unit of block k remainsidle, i.e., if all time units of block k are allotted to some task by algorithmSA2, then (2) holds at the start of block (k + 1) also. This is becausePmi=1 ri7 �Pmi=1 ri8 =Pmi=1(Ni + Fi)� n � T = U � n � T � 0.Now suppose that there is some idle time unit in block k. This implies thatat the start of block (k + 1), ri � Ni + Fi, for each task �i, as all tasks areeither computed fully or in excess of their requirements in block k. This isbecause algorithm SA2 allots at least ri time units to each task �i at thestart of block k. This is possible by the invariant (1) above, as no task'srequirement exceeds T time units. Hence, in this case too, at the start ofblock (k + 1), Pmi=1 ri � Pmi=1(Ni + Fi) � n � T .Therefore, assertion (2) also holds at the start of each block.We observe that the time units allotted to tasks by algorithm SA2 in eachblock satisfy the conditions of Theorem 2.1, therefore, an actual schedulecan be built by SA2 for each block using algorithm SA1. It only remainsto be proved that no deadlines are violated or no task is computed before itsarrival. This is trivial from the observation that if a fractional amount (lessthan one) of a task is not computed in some block, then the deadline for thattask has not been crossed at the completion of that block. This is becausethe total computation requirement Ci of a task �i before its deadline Di andthe time units allotted to it so far are both integral. For the same reason, ifa task �i is computed in excess of its requirement ri in a block, there is nodanger of computing the next instance of the task before its arrival, as onlya proper fractional amount is computed in excess.An example where the conditions of Theorem 3.3 is satis�ed is given inTABLE 3. In real-time system applications, the computation times of tasksare much less than their respective deadlines and the deadlines of tasks arenot usually relatively prime. Hence, there is a very good chance of a taskset satisfying the conditions of Theorem 3.3.7 at the start of block (k + 1).8 at the start of block k.

Theorem 3.4. Let � be a set of m periodic tasks with a utilizationfactor U � n. A su�cient condition for scheduling � on n processors usingalgorithm SA2 is, Pmi=1 Fi � 1.Proof. In this case, the following two assertions hold at the start of eachblock when algorithm SA2 is applied to such a task set :1. �1 < ri < (T + 1), for all tasks �i.2. Pmi=1 ri � n � T .Induction : Initially, at the start of the �rst block, both (1) and (2) hold,because ri = T � Ci=Di.Suppose (1) and (2) hold at the start of some block k. We shall now provethat (1) and (2) also hold at the start of block (k + 1).From observations (O1) and (O2) above, assertion (1) holds at the start ofblock (k + 1), because non-integral task time slices cannot exceed T timeunits.As in Theorem 3.3, if no time unit of block k remains idle, i.e., if all timeunits are allotted to some task by algorithm SA2, then assertion (2) holdsat the start of block (k+ 1) also.Now, suppose that there is some idle time unit in block k. All tasks �i withtheir ri values less than or equal to T at the start of the block, are eithercomputed fully or are computed in excess. If there is no task whose require-ment at the start of block k is greater than T , then assertion (2) again holdsat the start of block (k+ 1).So let there be some task �j whose requirement, rj , at the start of block kis greater than T and also let there be some idle time unit in block k. If fora task, say task �i, the requirement is not greater than T , then it is allottedat least Ni time units in block k by algorithm SA2. This is because at thestart of block k, its requirement, ri, is greater than (Ni� 1) time units fromobservation (O2). Now consider a task, say task �j , with its requirement, rj,greater than T at the start of block k. Such a task is allotted T or (Nj + 1)time units by algorithm SA2. This is because, Nj = (T � 1) for such a task�j . Therefore, the total time units allotted by algorithm SA2 in block k isat least Pmi=1(Ni) + 1. From this it follows that the total requirement atthe start of block (k + 1) is at most,Pmi=1(Ni + Fi + ri2)�Pmi=1(Ni) � 1,= Pmi=1(Fi + ri) � 1 ,� Pmi=1 ri; (Pmi=1 Fi � 1, by assumption)� n � T (by the inductive hypothesis)Hence assertion (2) holds at the start of block (k + 1).2 Requirement at the start of block k.

TABLE 4Tasks:6; Processors: 3T = GCD[10; 20; 30; 20; 30; 60] = 10D = LCM [10; 20; 30; 20; 30; 60] = 60Task No. Di Ci T �Ci=Di1 10 6 62 20 11 5123 30 24 84 20 6 35 30 4 1136 60 37 616Therefore, both assertions (1) and (2) hold at the start of each block.Here again, as in Theorem 3.3, the time units allotted by algorithm SA2to tasks in each block satisfy the conditions of Theorem 2.1. Therefore, aschedule can be built for each block using the allotted time units. As inTheorem 3.3, no task deadlines are violated and no task is computed beforeits arrival. Hence the theorem.An example of a task set satisfying the constraints of Theorem 3.4 isshown in TABLE 3.2.4. Modifying Schedules On-Line. In a system that is static, thecharacteristics of the real-time system are assumed to be known a priori,and, hence, the schedule can be built at compile time. Such systems arequite inexible even though they may incur low run-time (not necessar-ily constant) overheads. In practice, most applications involve a numberof components that can be statically speci�ed along with many dynamiccomponents. A proper design should ensure high resource utilization andlow overheads for such applications. Whereas a large proportion of currentreal-time systems are static in nature, next generation systems will have toadopt more dynamic and exible solutions. Most of the algorithms whichare optimal for static scheduling are not optimal for dynamic scheduling. Inparticular, Mok and Dertouzos [4] showed that for multiprocessor systems,there can be no optimal algorithm for scheduling preemptable tasks if eitherthe arrival time or deadline or computation time of tasks is not known apriori. They also showed that, if the set of all possible tasks that will everarrive in a system can be scheduled initially, then the set can be scheduled atrun-time also. The use of this approach is limited, because in most dynamicsystems, the probability that all possible arriving tasks can be scheduled

initially is low. We now show how to modify the schedules built at compile-time when either new tasks arrive or existing tasks leave the system on-lineat little run-time cost.4.1. Integral Task Time Slices. First consider the case of integraltask time slices. Assume that new tasks arrive at time units T; 2�T; 3�T; :::;and so on, and their deadlines are integral multiples of the block length T .The scheduling algorithm SA1 is applied when some new tasks arrive on-line. If no current task leaves the system, then one need not run algorithmSA1 all over again. The variables i and j in algorithm SA1 denoting theprocessor and the time unit respectively are kept as global variables and theschedule for a new task is obtained by just a single pass of algorithm SA1.Hence, a new task is schedulable in O(1) time. If some current task leavesthe system, then an attempt is made to allot the time units correspondingto each single outgoing task to one or more new tasks. But if a new task'srequirement per block exceeds the time units allotted to any of the outgoingtasks, then algorithm SA1 has to be applied to the whole task set in orderto guarantee the new task and to maintain the properties of the schedule onthe maximum number of preemptions allowable for any task and during any�xed time interval.4.2. Non-Integral Task Time Slices. Now consider the case of non-integral task time slices. Here we assume that new tasks arrive at time unitsD; 2�D; 3�D; :::; and so on, and their deadlines are integral multiples of theblock length T . Suppose that the total idle time units in the �rst block aftersteps (1) and (2) of algorithm SA2 are applied to the original task set is atleast dT �Cl=Dle3, where �l denotes the new task arriving on-line. For sucha task set, task �l needs no more than dT �Cl=Dle time units in each block,and there are at least dT �Cl=Dle idle time units in each block after allottingtime units to the tasks in the original task set in step (2) of algorithm SA2.The variables i and j denoting the processor and the time unit respectivelyare kept as global variables for each of the D=T blocks and the schedule forthe new task is obtained by just a single pass of algorithm SA1 for eachblock. Hence, the schedule for each block can be revised in just O(1) step.Since the schedule needs to be revised over D=T blocks, i.e., for an intervalof length D, the complete revised schedule is obtained in just O(D=T) time.If some current task leaves the system or when the requirements of a newtask entering the system does not satisfy the property above, then there isno simple method by which the existing schedule can be revised at littlerun-time cost, and algorithm SA2 has to be applied to the complete taskset.3 Least integer greater than or equal to.

5. Conclusion. In this paper, we have given for the �rst time linearmultiprocessor scheduling algorithms which compute feasible, preemptiveschedules at compile time and also arrived at upper bounds on the numberof preemptions for any single task and during a �xed time interval. We havealso shown in certain cases a schema for modifying existing schedules at littlerun-time cost when new tasks arrive on-line or when existing tasks leave thesystem. Our results come closer to the open problem: whether any idle timeof the multiprocessor system could be used for feasible scheduling of new pe-riodic tasks? Whether our scheduling algorithm fails for tasks not satisfyingthe su�cient conditions of & 3 remains open. It would appear that the SA1and SA2 algorithms de�ned in this paper are also non-preemptive schedul-ing algorithms. The algorithms compute the actual time-slots at which atask must execute, and one could use this for non-preemptive scheduling asopposed to preemptive scheduling. But non-preemptive scheduling has itsproblems when the actual run times of tasks is less than its worst case com-putation time. It is shown in [6, 10] that the schedule length may increase, ifthe actual run-time of some task is less than its worst case computation-time,which may result in some tasks missing their deadlines. Since algorithm SA1caters to the situation where each time slice is an integer, one way of ap-plying SA1 to all task sets is to arti�cially increase the computation timesof tasks when necessary to ensure that the corresponding time slice is aninteger. This entails lesser processor utilization, but then it becomes veryeasy to guarantee new tasks on-line. The primary practical problem withthe SA1 and SA2 algorithms is that it is based on the GCD and the LCMof the task periods. In order to keep these numbers manageable (for instanceconsider task periods which are relatively prime), task periods may have tobe shortened (lengthening of task periods may not be possible because ofapplication requirements), and the utilization of the task set is only arti�-cially increased. A small GCD (of a single clock tick) can cause the scheduleto be long and tedious to manage. The fact that tasks can execute on morethan one processor during their existence means that tasks may have to besent from one processor to another. The communication time between twoprocessors is taken care of by the fact that the algorithms SA1 and SA2allot time units to a preempted task within a block in such a way that thereare (T � T � Ci=Di) time units available for communication to take placebetween the processors. If the above time units is not enough to allow forcommunication, then we may schedule the task on a single processor, keepingthe remaining time units of the processor idle. So there is a tradeo� betweenachieving high multiprocessor utilization and avoiding high communicationcosts. In this paper, we have assumed that tasks in a hard real-time environ-ment are independent. However simple precedence constraints among tasks

can be modeled as follows. Let a task �i occur after a �xed number (say n)of occurrences of another task �j . This is modeled by choosing the periodsof tasks �i and �j so that the period of �i is n times the period of �j andthe (n+ 1)th request for �j coincides with the 1st request for �i, and so on.The fact that the multiprocessor can be fully loaded and still guaranteetask service requirements within a preassigned time has tremendous scopein real-time applications. Most real-time tasks arrive on-line and a goodon-line strategy is therefore needed to determine its schedulability and thento arrive at a schedule in good time. Current methods of determining theschedule of a new task arriving on-line in a multiprocessor environment isbased on heuristics. In fact, under the constraints of the task characteristicsas discussed above, the criterion that the multiprocessor utilization be notmore than its capacity to guarantee feasible scheduling of a new, periodictask is an optimal one. An optimal design for next generation real-timesystems would be to revise the schedules dynamically at little run-time cost.We feel that our approach has potential for multiprocessor hard real-timeon-line scheduling, when the arrival times and deadlines of newly arrivingtasks are truly random. The work in this direction is progressing. Further,the preliminary work related to scheduling for imprecise computations andits relation to reclaiming the time left unutilized in a schedule (cf. [10]) isreported in [8].Acknowledgements. The authors thank the referees for their sugges-tions.

REFERENCES[1] J.A. Bannister and K.S. Trivedi, Task Allocation In Fault-Tolerant DistributedSystems, Acta Informatica, Springer-Verlag, 1983.[2] S. Davari and S.K. Dhall, An On-Line Algorithm For Real-Time Tasks Allocation,IEEE Real-Time Systems Symposium, Dec. 1986.[3] S.C. Cheng, J.A. Stankovic and K. Ramamritham, Scheduling Algorithms forHard Real-Time Systems - A Brief Survey, in Tutorial on Hard Real-Time Sys-tems, edited by J.A. Stankovic and K. Ramamritham, IEEE Press, 1988.[4] M.L. Dertouzos, and Aloysius Ka-Lau Mok,Multiprocessor On-Line SchedulingOf Hard-Real-Time Tasks, IEEE Transactions on Software Engineering, vol. 15,no. 12, Dec.1989.[5] S.K. Dhall and C.L. Liu, On A Real-Time Scheduling Problem, Operations Re-search, vol. 26(1), 1978.[6] M.R. Garey and Johnson, D.S., Complexity Results For Multiprocessor SchedulingUnder Resource Constraints, SIAM Journal of Computing 4, 1975.[7] R.L. Graham, Bounds For Certain Multiprocessor Anomalies, Bell Syst. Tech. J. 45(1966), 1563-1581.[8] A. Khemka, K.V. Subrahmanyam and R.K. Shyamasundar, MultiprocessorScheduling for imprecise computations in a hard real-time environment, to bepresented at IPPS 93, New Port Beach, California, April 1993.[9] C.L. Liu, and James W. Layland, Scheduling Algorithms for Multiprogramming ina Hard-Real-Time Environment, Journal of the Assoc. for Computing Machinery,vol. 20, no. 1, Jan. 1973.[10] G.K. Manacher, Production and Stabilization of Real-Time Task Schedules, Journalof the Assoc. for Computing Machinery, vol. 14, no.3, July 1967.[11] R.R. Muntz and E.G. Coffman, Preemptive Scheduling Of Real-Time Tasks OnMultiprocessor Systems, Journal of the Assoc. for Computing Machinery, vol. 17,no. 2, April 1970.[12] J.A. Stankovic, Real-Time Computing Systems: the Next Generation, in Tutorialon Hard Real-Time Systems, edited by J.A. Stankovic and K. Ramamritham,IEEE Press, 1988.

