MULTIPROCESSOR SCHEDULING OF PERIODIC TASKS
IN A HARD REAL-TIME ENVIRONMENT*

ASHOK KHEMKA
Computer Science Group
Tata Institute of Fundamental Research
Bombay 400 005, India

R.K. SHYAMASUNDART
Computer Science Group
Tata Institute of Fundamental Research
Bombay 400 005, India

e-mail: shyam@tifrvazr.bitnet

ABSTRACT

The problem of preemptive scheduling a set of periodic tasks on multiprocessors
is studied from the point of view of meeting their service requirements before
their respective deadlines. Sufficient conditions which permit full utilization of
the multiprocessor using the given scheduling algorithms are derived. The com-
plexity of the scheduling algorithms in terms of the number of scheduled tasks
and the number of processors and upper bounds on the number of preemptions
in a given time interval and for any single task are also derived. We also give a
schema for modifying existing schedules at little run-time cost when tasks arrive
or leave the system on-line.

Keywords: hard real-time, multiprocessor scheduling, preemptions

1. Introduction. Hard real-time systems are defined as those systems
in which the correctness of the system depends not only on the logical result
of computation, but also on the time at which the results are produced. Se-

* An earlier version of the paper was presented at the 6th IPPS 1992.
! Correspondence Address.

vere consequences will result if timing correctness properties of the system
are violated. In other words, satisfying the timing requirements of hard real-
time systems demand the scheduling of system resources according to some
well understood algorithms, so that the timing behaviour of the system is
understandable, predictable and maintainable. Applications of real-time sys-
tems can be found in automated factories, robot and vision systems, military
command and control systems, process control systems, flight control sys-
tems and future systems such as the space-based defense systems, SDI. The
use of multiprocessors for control and monitoring functions in such real-time
systems has increased recently. Efficient use of these systems can only be
achieved by a proper scheduling of time-critical functions. Each time-critical
function has associated with it a set of tasks, which are either executed in
response to external events or in response to events in other tasks. None
of the tasks are executed before the event which requests it occurs. The
tasks must be serviced within preassigned deadlines dictated by the physical
environment. For example, a radar that tracks flights produces data at a
fixed rate. A temperature monitor should be read periodically to detect any
changes promptly. Some of these periodic tasks may exist from the point of
system initialization, while others may come into existence dynamically. An
example of a dynamically created task is a task that monitors a particular
flight; this comes into existence when the aircraft enters an air traffic control
region and will cease to exist when the aircraft leaves the region.

Thus, a scheduling problem in a hard real-time system is defined by the
model of the system, the nature of tasks to be scheduled, and the objectives of
the scheduling strategy. Not very much is known (cf. [12]) about scheduling
algorithms for real-time systems. Most of the existing results either pertain
to simplistic situations or single processor systems. For a survey of the
existing results, the reader is referred to [3]. In, fact, most of the scheduling
problems of interest to practical real-time systems are NP-hard and hence,
there is a need for heuristics or approximation techniques. In this paper,
we investigate hard real-time scheduling issues at compile time, when the
characteristics of tasks are known a priori. We also show in a restricted
sense how to dynamically update the schedule built at compile time when
new tasks arrive or existing tasks leave the system on-line. We make the
following assumptions about the hard real-time environment in this paper:

1. Requests for tasks are periodic, with constant interval between re-
quests.
2. Each task must be completed before the next request for it occurs.
. Tasks are independent.

w

4. Computation time for each task is constant for that task.
This can be taken as the maximum processing time for the task

including the bookkeeping time necessary to request a successor and
the costs of preemptions.
These assumptions allow the characterization of a task by the following four
parameters:

1. The arrival time, A: The time at which a task is invoked in the
system.

2. The ready time, R: The earliest time at which a task can begin
execution. The ready time of a task is equal to or greater than its
arrival time. Since we have assumed the tasks to be independent,
the ready time of a task is the same as its arrival time.

3. The worst case computation time, C.

4. The deadline D: The time by which a task must finish. In our
model of hard real-time environment, the deadline of a periodic task
is equal to the arrival time of its next instance.

Let {I'y,I'y,...,[',,} be a set of m periodic jobs with computation times
{C,Cy, ..., Cp}, and periodicity! {Dy, Do, ..., D,,} respectively. Assump-
tion (2) about the hard real-time environment implies that the k' & > 1,
instance of a task I';, must be computed in full between the time units
(k — 1)« D; and k * D;. We are interested in constructing a preemptive
schedule of these m tasks on n processors at compile time. We assume
that the computation times and periodicity of tasks are expressed as inte-
gral multiples of the processor clock tick. Hence a task can be preempted
only at integral time units. A valid schedule must satisfy the following two
constraints :
Al. At any instant, at most one task can be executed on any single
processor.
A2. No single task can be executed on more than one processor at the
same instant.
We define the multiprocessor utilization factor to be the fraction of total time
spent in the execution of the task set. Since C;/D; is the fraction of multi-
processor time spent in executing task I'; ; for m tasks, the multiprocessor
utilization factor is:

m
U=> (Ci/Dy).
=1
Although the multiprocessor utilization factor can be improved by increasing
the values of the Cs or by decreasing the values of the D’s, it is constrained
by the requirement that all tasks satisfy their deadlines. It is clear from

! For the sake of simplicity, we have assumed correspondence between deadline and
periodicity and also, we have assumed that the arrival time of a task coincides with the
starting time of the task in the first period.

constraint (A1) that the condition U < n is necessary for feasible schedul-
ing of a set of periodic jobs on n processors. It is very interesting to know
how large the utilization factor can be. The uniprocessor case has been
considered in [9], where it is shown that for feasible scheduling of a set of
periodic tasks, the condition UU < 1 is both necessary and sufficient. The
authors of [9] propose two preemptive algorithms. In their first algorithm,
called the rate monotonic algorithm, static priorities are assigned to tasks
based on their periods. They also propose a dynamic priority assignment
algorithm, the earliest-deadline-first algorithm, which allows full processor
utilization. However, the general case whether the condition U < n (n > 1)
is sufficient for feasible scheduling of a set of periodic tasks on n proces-
sors remains open. Let the time slice of a task I'; be T x C;/D; where
T = GCD*{Dy, Ds, ..., D,,}. But the proof is incomplete because the sched-
ule constructed by the above theorem is not shown to satisfy constraint
(A2). A preemptive scheduling algorithm to calculate the minimum sched-
ule length for tasks related by precedence constraints has been developed
in [11]. In particular, three scheduling approaches are studied here: non-
preemptive scheduling, preemptive scheduling and general scheduling. In
general scheduling, processors are considered to possess a certain amount of
computing capability that can be shared by multiple tasks. Most instances
of the scheduling problem for hard real-time systems are shown to be com-
putationally intractable in [7]. A partition approach has been used to solve
the problem of scheduling periodic tasks on multiprocessors in [1,2,5]. The
main idea is to partition a set of periodic tasks among a minimum number
of processors such that each partition of the periodic tasks can be scheduled
ON one Processor.

In this paper, we answer the question whether the condition U < n is
sufficient for feasible scheduling on n processors partially. We divide the time
interval into blocks of equal length such that exactly one instance of each task
remains active in each block. We attempt to meet the average requirement
of every task within the block itself. We assume that task arrival times,
computation times and deadlines are expressed as multiples of the processor
clock ticks. We build an actual schedule when each task’s requirement per
block is expressible as integral clock ticks. When this is not so, we develop
a second algorithm which allots integral time units to each task in a block,
so as to meet the computation requirement of every task before its deadline.
This scheduling algorithm is shown to work for two particular cases which
are described below. We also derive an upper bound on the complexity of
the two scheduling algorithms and on the number of preemptions in a given
time interval and for any single task. We also give a schema for modifying

2 Greatest Common Divisor.

the schedule at little run-time cost when tasks arrive or leave the system
on-line.

Let T = GCD{Dy, Dy,D,} and D = LOM3{Dy, Dy, ...,D,,}.
Let C; < D;, for each task I';. Let the utilization factor U of a set of tasks
{I'1,Fgy e, I} be S0, (C3/ Dy). We call the time intervals [0, T, [T, 277,
[2T,3T1], - - - blocks of length T each. Also let U < n, for some integer n. In
this paper, we establish the following new results :

1. A schedule of the set of m tasks on n processors when each of the
task time slices is an integer.

2. A schedule of the set of m tasks on n processors when either C;/D; <
(1 —=1/T) or C; = Dy, for each task I';.

3. A schedule of the set of m tasks on n processors when />, (C;/D; —
[Ci/Di]) < 1.

4. An upper bound on the complexity of the scheduling algorithm is
O(m + n), when each of the task time slices is an integer; and is
O(m * (D/T)) otherwise.

5. An upper bound on the number of preemptions in a time interval
of length D is (m* D/T + 37;ca(D/D; — 1)), for some task set A
containing not more than (n — 1) tasks, when each of the task time
slices is an integer; and is (m+mn — 1) % (D/T) otherwise. An upper
bound on the number of preemptions for any task I'; is (D;/T + 1)
when each of the task time slices is an integer; and is 2 x D;/T
otherwise.

In our model, the operation of loading a task for the first time is
also treated like a task preemption, as both operations involve near
equal cost in physical applications.

6. A schema applicable in a restricted sense for modifying the existing
schedule at little run-time cost when new tasks arrive on-line or
existing tasks leave the system.

The rest of the paper is organized as follows. Section 2 describes an op-
timal scheduling algorithm, in the sense that it always constructs a feasible
preemptive schedule, if there exists one, on n processors for a set of m peri-
odic tasks having integral task time slices. Upper bounds on the complexity
of the algorithm and on the number of task preemptions are also derived. In
Section 2.1, we reduce the upper bound on the number of task preemptions
by performing a cyclic permutation of the processor schedules. Section 3
describes another scheduling algorithm for tasks having non-integral time
slices. It also derives upper bounds on the complexity of the algorithm and
on the number of task preemptions. In Section 3.1, we have shown the algo-
rithm to be optimal for two particular cases of task time slice values. Section

® Least Common Multiple.

4 describes a schema applicable in a restricted sense for modifying existing
schedules at little cost when tasks arrive or leave the system on-line.

2. Integral Task Time Slices. When the average requirement of each
task in a block is an integer, then the task is said to have an integral time
slice. This means that the task’s average requirement per block is exactly
an integral multiple of the processor clock tick. In this section, we describe
a scheduling algorithm SA1 for deriving a feasible, multiprocessor schedule,
if it exists, satisfying constraints (A1) and (A2) when each of the task time
slice is an integer and establish its optimality. We also derive upper bounds
on its time complexity and on the number of preemptions in a given time
interval and for any single task when SA1 is used to schedule tasks.

2.1. Scheduling Algorithm SA1. The scheduling algorithm is based
on a simple heuristic of allocating the time for the jth task between two pro-
cessors i and i+1 in a block (the length of the block is the GCD of the
deadlines) only if the requirements for the block on hand exceeds the GCD.
The number of preemptions are reduced by a simple scheme of cyclic per-
mutation of processors. First, we describe the basic scheduling algorithm.

Algorithm SA1

Let t; ; be the ith time unit corresponding to the j** processor. The
steps of the algorithm are described below:

1. Initialize : ¢, 7,k < 1;

(¢ denotes the processor, j the time unit and & the task number)
2.1 j+ N —1 > T,

then i+ i+ 1; j«— j+ N, =T

Task k is scheduled on processor i and processor (i+1) for
[Lit11s bit1,j4N,—T—1] and [t; ;, t; 7] intervals respectively.
else j + 7+ N;

Task k is scheduled on processor i only for the interval
[tigs tijrne—1]-
3. Iterate : k + k+ 1;
If k£ < m, then goto step 2.
Generate the schedule for the next task.

STEPS OF SCHEDULING ALGORITHM SA1

TABLE 1

Tasks:8, Processors:4
T = GCD[30,20, 10, 20,40, 50,60, 70] = 10
D = LC'M]I30, 20, 10,20, 40, 50, 60, 70] = 4200

Task Di CZ T % CZ/DZ
Iy 30 | 21 7
Iy 20| 8 4
s 10| 5 5
Iy 20| 8 4
I's 40 | 8 2
I's 50 | 35 7
I 60 | 12 2
I's 70 | 63 9

2.1.1. Illustrative Example. Consider the problem of scheduling eight
periodic tasks on four processors as described in TABLE 1.

A schedule constructed by SA1 for the system described in TABLE 1
is shown in Fig.1

2.1.2. Correctness and Complexity. In this section, we establish
the correctness of the algorithm and derive the time complexity.

THEOREM 2.1. Let I' be a set of m periodic tasks with a utilization
Jactor U < n. Then a sufficient condition for scheduling I' on n processors
is that T x (C;/D;) be integral, for each task T';.

Proof. We execute task I'y for T'«Cy /Dy time units, task 'y for TxCy/ Dy
time units, ... , task I';, for T x C,,/D,, time units in every block. Let
N; =T xC;/D;. Since C;/D; < 1, therefore, N; < T', for each i. Every task
I'; is executed for N;* D;/T or C; time units before its deadline D;. (By the
definition of 7', D;/T must be an integer). Now, > N; =T+U < nxT.
This shows that each task I'; can be allocated C; units of time before its
deadline D;. We need only to prove that there is some schedule satisfying
constraints (Al) and (A2).

We claim that algorithm SA1 constructs a valid schedule of the task
set I' for any single block. To prove the claim, we need to show only that
constraints (A1) and (A2) are never violated. Clearly, SA1 allots any single
time unit ¢; ;, 1 <7< n, 1 <j <T,toat most one task, thereby satisfying
(A1). Also, since the task time slice in any block is at most 7', therefore, if

Iy Iy

Prq L

Pro le Is I T

Prj Is | Ts I I
Pry F7| I's

0 1 2 3 4 5 6 7 8 9 10
Time units

Fia. 1. Schedule of TABLE 2.1.1 as constructed by SA1 for the first block

a time unit ¢; ; is allotted to a task by SA1, no other time unit of the type
tyr j is allotted to it, for any ¢’ # ¢. This is obvious from the construction of
the schedule by SA1. Hence, constraint (A2) is also satisfied.]

NOTE: Mok and Dertouzous (cf. [4]) claim that the integer task time
slices are sufficient for feasible scheduling in a multiprocessor environment.
However, their proof (Theorem 8) is incomplete because the schedule con-
structed by the theorem is not shown to satisfy constraint (A2).

LEMMA 2.2, Algorithm SA1 takes O(m) time to build a complete sched-
ule on n processors for a set of m tasks having integral time slices. Also, the
total number of preemptions in any interval of length T is at most (m+n—1).

Proof. Clearly one pass of algorithm SA1 takes O(1) time. To build a
schedule for a single block, the algorithm SA1 will have to make m passes,
where m is the number of tasks. The schedule of a single block so constructed
by SA1 can be duplicated every T time units. Hence the complexity of SA1
is O(m).

To get an upper bound on the number of task preemptions in a single block,
we note that all m tasks are loaded at least once in every block. SA1l
can preempt at most (n — 1) tasks in step 2 when a task is scheduled on

two processors. Also, tasks are allotted contiguous time slots of any single
processor in any given block. Hence the lemma. [
COROLLARY 2.3. There are at most 2+ D; /T preemptions for any task
r;.
Proof. The corollary follows trivially from the observation that there are
a total of D;/T blocks during the existence of any instance of the task I';
and any task is preempted at most once in any single block.
This upper bound is useful in computing the worst case computation time
of a task off-line. [

2.2. Cyclic Permutation Of Processors. In Section 1, we assumed
that the computation times of tasks include the costs of preemption. Thus,
it is essential to reduce the upper bound on the number of task preemptions
as it leads to a reduction in the worst case computation times of tasks. We
can obtain a better upper bound for the number of task preemptions by
reallocating processors to tasks in succeeding blocks as follows. If a task
is preempted at a processor and re-scheduled at some other processor in
step 2 of algorithm SA1, then this extra preemption of a task within a
single block can be compensated by reallocating processors to tasks in the
succeeding block as follows. If some task k is preempted by algorithm SA1 in
the first block, then the time units allotted to it are [t;41,1, tig1,j+N,—T—1]
and [t; ;, t; 7], for some processor 7 and time unit j. Such a task is said
to be preempted on processor (i + 1) at time unit (j + Ny — 7 — 1) and
rescheduled on processor 7 at time unit j. By allocating to processor i* in
the next block, the present schedule of processor (i + 1), we can compensate
for the extra preemption of task & on processor (i 4 1) in the first block by
ensuring contiguous allocation of time units on processor ¢ between the first
and second blocks.

Formally, the schedule of a block (other than the first block) is determined
from the schedule of the previous block as follows. Let {(i14+1,#14+2, ..., j1—

17j1)7 (22 + 17 iz + 27 ...7j2 — 17j2)7 ey (’L[+ 17 ’il + 27 ...7j[— 17]1)} be the
processors where a task is preempted and re-scheduled on a second processor
in the first block. Here 0 < 41 < 71 < 43 < J2 < ... < 4y < j1 < n.
The schedule is obtained by taking the following cyclic permutation of the
processors, {(i1,41 + 1,....,71 — 1,J1), (f2,02+ 1,0, ja — 1, 72), .., (i, 01 +
17 "'7jl - 17jl)}7

{(i1+17i1+27"'7j17i1)7 (i2+17i2+27"'7j27i2)7 "'7(il+17il+27"'7jl7i1)}-

The cyclic permutation of (¢1,414+1, ..., 71) to (¢i1+1,41+2,...,j1,%1) means
that the schedule of processor 71 in a block is the same as the schedule of

4 If 4 = n, then allot the schedule of processor 1.

Iy Iy

Pro L

Pr; le Is I T

Pry Is | Ts I I
Prj F7| I's

0 1 2 3 4 5 6 7 8 9 10
Time units

Fia. 2. Schedule of TABLE 2.1.1 as constructed by modified SA1 for the second block

processor (i1 + 1) in the previous block, the schedule of processor (i; + 1)
in a block is the same as the schedule of processor (i; + 2) in the previous
block, ... , and the schedule of processor j; in a block is the same as the
schedule of processor iy in the previous block. An example of processor
cycles in the schedule of TABLE 2.1.1 as constructed by algorithm SA1
(Fig. 1). Schedules for next blocks are constructed by taking the (2,1)
and (4,3) cyclic permutation of the processor cycles (1,2) and (3,4) in Fig.
1 respectively. The corresponding cyclic permutations of processors follow
trivially from Fig. 1. The schedule of the second block resulting from such a
cyclic permutation of the schedule of the first block is shown in Fig. 2. The
combined schedule of the first two blocks is shown in Fig. 3.

If no task is allotted more than one processor by algorithm SA1, then
there exists no processor cycles in the schedule of the first block. Hence, the
set of tasks can be partitioned into different processors, such that each task
is scheduled to completion by just its allotted processor. In such a case, the
schedule is simply repeated for succeeding blocks and no cyclic permutation
of processors is needed.

Pr; L . .

Pro Iy I's . ry Iy . Iy
pry _ s, re | Tq, s

Pr, L'z I's oI5 I'g 7

01 2 3 15 6 7 8 9 10111213 14151617 181920
Time units

Fia. 3. Schedule of TABLE 2.1.1 for the first two blocks

LEMMA 2.4. The modified SA1 algorithm takes O(m+n) time to build
a schedule on n processors for a set of m tasks having integral time slices.
Also, the total number of preemptions of tasks in any interval of length D is
at most (m * D/T + 37 ,cA(D/Dj — 1)), for some task set A containing at
most (n — 1) tasks.

Proof. Algorithm SA1 takes O(m) time to construct a schedule for the
first block. The schedules for succeeding blocks is obtained by determining
the processor cycles in the schedule of the first block, which takes O(n) time.
Hence it takes O(m 4+ n) time to build a complete schedule.

The total number of times tasks are loaded in an interval of length D is
m* D/T, as m tasks are loaded in each block. The preemption of a task
in a block is compensated in the modified SA1 algorithm by allocating
contiguous time units to the tasks between consecutive blocks. However we
need to account for those task preemptions in a block when there is a new
occurrence of the task in the succeeding block. This happens (D/D; — 1)
times for task ['; in an interval of length D. There is at most (n — 1) tasks
which are preempted in a single block, hence the result on the maximum
number of possible preemptions in an interval of length D using the modified
SA1 algorithm. [

COROLLARY 2.5. There are at most (D;/1T 4 1) preemptions for any
task I'; using the modified SA1 algorithm.

Proof. The corollary follows trivially from the simple observation that
only the preemption, if any, within the first block of the task’s existence is
left unaccounted. All succeeding preemptions within a block are accounted
for by allotting contiguous time units to the task between two consecutive
blocks. [

Hence, by the method of cyclic permutation of processors, we have been

TABLE 2
Task Requirements

Tasks: 6; Processors:3
T = GCDJ[10,20, 30,20, 30,60] = 10
D = LC'M][10,20, 30, 20, 30, 60] = 60

Task No. Di CZ T % CZ/DZ
1 10 6 6
2 20 | 11 53
3 30 | 23 73
4 20| 6 3
5 30 5 12
6 60 | 37 65

able to reduce the upper bound on the number of task preemptions in an
interval of length D from (m+n—1)xD/T to (mxD/T+3";cA(D/D;—1)),
for some task set A containing at most (n — 1) tasks. Therefore the upper
bound is reduced by ((n — 1) x D/T — > ,cA(D/D; — 1)) preemptions. It
is easy to see that using the modified SA1 algorithm, the upper bound is
reduced by at least (n — 1) preemptions irrespective of the composition of
the task set A. Also the upper bound on the number of preemptions for any
task I'; is reduced by (D;/T — 1). Hence, the worst case computation time
of a task is reduced by the modified SA1 algorithm.

3. Non Integral Task Time Slices. The hard real-time environment
may not necessarily consist of tasks with integral time slices only. There may
be some tasks with non-integral computational requirements per block. This
implies that we cannot apply algorithm SA1 to such a task set, as we cannot
allot non-integral clock ticks to tasks in a block. An example of such a task
set is shown in TABLE 3. In this section, we shall build a schedule for the
case when tasks have non integral time slices. Let N; = |T x (C;/D;]® and
F, = T«C;/D;—|T*C;/D;], for each task I';. Clearly, T'«xC;/D; = N;+F;
and 0 < F; < 1. We apply algorithm SA2 to such a task set, so as to allot
integral time units to tasks in a block.

Let the requirement of a task ['; before a block be rj time units. r; =
T « Cy/ Dy, for each task 'y at the start of the first block. In general ry is
non-integral and its value is different for different blocks. rj is a constant for
all blocks iff F, = 0. Let ri, = ng + fi, where ng = ||, and fi = rp — [rg].

5 Greatest integer less than or equal to.

TABLE 3
Allotment of time units to tasks of TABLE 3 by SA2

a; denotes the integral time units allotted to task I'; in a block.

Block Fl F2 F3 F4 F5 F6
No. ™ | ay T2 | as T3 | as T4 | ay s | as s | ag |
1 | 6[6]52]|6 7283 |3 [15][1]6z]6
2 |66 |5 |5 [75|8|3]3[2:]2]6%]6
3 |66 55|67 |7 |3][3[2]2]62]6
4 | 6|65 |5 |72]8[3]3]12]2]62]6
5 | 616|536 |75]8|3|3|15]1][62]6
6 |66 |5 |5 |7 |7 |3[3|2|2]|7]|7

3.1. Scheduling Algorithm SA2. The steps of the algorithm are de-
scribed below:

1.F «— n*xT =3" n,.
(I denotes the number of free time units in a block after meeting
integer time unit requirements of all tasks.)

2. Choose the first I’ tasks from the list of tasks having current f; > 0,
and n; < T.
(If there are less than [tasks, then all tasks satisfying the above
two conditions are chosen.)
Allot to these chosen tasks (n; 4 1) time units, and to all other tasks
n; units.

3. Apply algorithm SA1 using integer time units of tasks so computed
in step (2).

4. If task I'; is allotted (n; + 1) time units in step (2)
then r; = (NZ + E) — (1 — fZ)
else r; = (N; + ;) + f;

The algorithm SA2is applied D /T times to get a schedule for an interval
of D time units, which is sufficient to determine the schedule completely. An
example showing the allotment of time units to tasks having non-integral
time slices is shown in TABLE 3.1.

LEmMMA 3.1. The algorithm SA2 takes O(m x D/T) time to build a
complete schedule for a set of m tasks on n processors, with task computation
times C!s and deadlines D's satisfying usual conditions® . Also, the total
number of task preemptions in any interval of length D is at most (m +n —
1)« D/JT.

Proof. The proof is the same as for Lemma 2.2, but here we have to
consider an interval of size D. This is because tasks may be allotted different
time units in a block, due to the non-integral time slices of tasks. We obtain
a complete schedule by just considering D /T blocks from which the lemma
follows. [

COROLLARY 3.2. There are at most 2+ D; /T preemptions for any task
r;.

Proof. Same as for Corollary 2.3.]

3.2. Sufficient Conditions For Feasible Schedulability. In this
section, we state and prove two sufficient conditions for algorithm SA2 to
be optimal, i.e., to produce a valid, feasible schedule whenever there exists
one, when tasks have non-integral time slices.

The following two observations would be helpful in understanding the
proofs of Theorems 3.3 & 3.4:

OBSERVATIONS :

Ol1. If T x C;/D; is an integer for some task I';, then r; = T x C;/D; at
the start of each block.
This is because algorithm SA2 allots exactly r; time units to task
I'; in each block.

02. (T (Ci/Di) — 1) < r; < (T % (C;/Di) + 1), for all tasks I'; and at
the start of each block.
This is obvious from step (4) of algorithm SA2 where you either
subtract (1 — f;) or add f; to the task’s original requirement of
T x C;/D; time units per block.

THEOREM 3.3. Let I' be a set of m periodic tasks with a utilization
Jactor U < n. Then a sufficient condition for scheduling I' on n processors
using algorithm SA2 is (C;/D;) < (1-1/T), or C; = D;, for each task T';.

Proof. The following two assertions hold at the start of each block when
algorithm SA2 is applied to such a task set :

1. =1 < r; <T, for all tasks I';.

2.3 < nxT.
Induction : Initially, at the start of the first block, (1) and (2) both hold,
because r; =T« C;/D;. Suppose (1) and (2) hold at the start of some block
k. We shall now prove that (1) and (2) also hold at the start of block (k+1).

5 ¢, < Dy, for each task I';, and U < n.

Suppose C; = D; for some task I';. Then, T'x C;/D; = T is an integer and
from observation (O1) above, r; = T at the start of block (k+1) also. Next,
suppose C;/D; < (1 —1/T). This implies 0 < T+« C;/D; < (T'—1). From
observation (O2) above, it follows that —1 < r; < T at the start of each
block. Therefore, assertion (1) holds at the start of block (k4 1) and is
hence an invariant.

To prove assertion (2), we observe that if no time unit of block k& remains
idle, i.e., if all time units of block k are allotted to some task by algorithm
SA2, then (2) holds at the start of block (k + 1) also. This is because
S = 8= (N +F) —nxT =U—nxT < 0.

Now suppose that there is some idle time unit in block k. This implies that
at the start of block (k4 1), r; < N; + I}, for each task I';, as all tasks are
either computed fully or in excess of their requirements in block k. This is
because algorithm SA2 allots at least r; time units to each task I'; at the
start of block k. This is possible by the invariant (1) above, as no task’s
requirement exceeds T time units. Hence, in this case too, at the start of
block (k4 1), > r < Y (N;+F) <nx«T.

Therefore, assertion (2) also holds at the start of each block.

We observe that the time units allotted to tasks by algorithm SAZ2 in each
block satisfy the conditions of Theorem 2.1, therefore, an actual schedule
can be built by SA2 for each block using algorithm SA1. It only remains
to be proved that no deadlines are violated or no task is computed before its
arrival. This is trivial from the observation that if a fractional amount (less
than one) of a task is not computed in some block, then the deadline for that
task has not been crossed at the completion of that block. This is because
the total computation requirement C; of a task I'; before its deadline D; and
the time units allotted to it so far are both integral. For the same reason, if
a task I'; is computed in excess of its requirement r; in a block, there is no
danger of computing the next instance of the task before its arrival, as only
a proper fractional amount is computed in excess. [

An example where the conditions of Theorem 3.3 is satisfied is given in
TABLE 3. In real-time system applications, the computation times of tasks
are much less than their respective deadlines and the deadlines of tasks are
not usually relatively prime. Hence, there is a very good chance of a task
set satisfying the conditions of Theorem 3.3.

7 at the start of block (k+1).
8 at the start of block k.

THEOREM 3.4. Let I' be a set of m periodic tasks with a utilization
Jactor U < n. A sufficient condition for scheduling I' on n processors using
algorithm SA2 is, 3" F; < 1.

Proof. In this case, the following two assertions hold at the start of each
block when algorithm SAZ2 is applied to such a task set :

1. =1 <r; < (T'+1), for all tasks I';.

2.5 < nxT.
Induction : Initially, at the start of the first block, both (1) and (2) hold,
because r; =T x C;/D;.
Suppose (1) and (2) hold at the start of some block k. We shall now prove
that (1) and (2) also hold at the start of block (k+ 1).
From observations (O1) and (O2) above, assertion (1) holds at the start of
block (k + 1), because non-integral task time slices cannot exceed T time
units.

As in Theorem 3.3, if no time unit of block k remains idle, i.e., if all time
units are allotted to some task by algorithm SA2, then assertion (2) holds
at the start of block (k+ 1) also.

Now, suppose that there is some idle time unit in block k. All tasks I'; with
their r; values less than or equal to T at the start of the block, are either
computed fully or are computed in excess. If there is no task whose require-
ment at the start of block k is greater than 7', then assertion (2) again holds
at the start of block (k4 1).

So let there be some task I'; whose requirement, r;, at the start of block %
is greater than 7" and also let there be some idle time unit in block k. If for
a task, say task I';, the requirement is not greater than 7', then it is allotted
at least V; time units in block k by algorithm SAZ2. This is because at the
start of block k, its requirement, r;, is greater than (N; — 1) time units from
observation (02). Now consider a task, say task I';, with its requirement, r;,
greater than 1" at the start of block k. Such a task is allotted 7" or (N; + 1)
time units by algorithm SA2. This is because, N; = (T — 1) for such a task
I';. Therefore, the total time units allotted by algorithm SAZ2 in block £ is
at least Y i~y (N;) + 1. From this it follows that the total requirement at
the start of block (k+ 1) is at most,

Yl (Nt Fi+r?) = I (N - 1

= Zil(E + ri) -1)

< P, (OO Fr <1, by assumption)

< n T (by the inductive hypothesis)

Hence assertion (2) holds at the start of block (k+ 1).

2 Requirement at the start of block k.

TABLE 4

Tasks:6; Processors: 3
T = GCDJ[10,20, 30,20, 30,60] = 10
D = LC'M][10,20, 30, 20, 30, 60] = 60

Task No. Di CZ T % CZ/DZ
1 10] 6 6
2 20 | 11 53
3 30 | 24 8
4 20| 6 3
5 30| 4 14
6 60 | 37 6%

Therefore, both assertions (1) and (2) hold at the start of each block.

Here again, as in Theorem 3.3, the time units allotted by algorithm SAZ2
to tasks in each block satisfy the conditions of Theorem 2.1. Therefore, a
schedule can be built for each block using the allotted time units. As in
Theorem 3.3, no task deadlines are violated and no task is computed before
its arrival. Hence the theorem. [

An example of a task set satisfying the constraints of Theorem 3.4 is
shown in TABLE 3.2.

4. Modifying Schedules On-Line. In a system that is static, the
characteristics of the real-time system are assumed to be known a priori,
and, hence, the schedule can be built at compile time. Such systems are
quite inflexible even though they may incur low run-time (not necessar-
ily constant) overheads. In practice, most applications involve a number
of components that can be statically specified along with many dynamic
components. A proper design should ensure high resource utilization and
low overheads for such applications. Whereas a large proportion of current
real-time systems are static in nature, next generation systems will have to
adopt more dynamic and flexible solutions. Most of the algorithms which
are optimal for static scheduling are not optimal for dynamic scheduling. In
particular, Mok and Dertouzos [4] showed that for multiprocessor systems,
there can be no optimal algorithm for scheduling preemptable tasks if either
the arrival time or deadline or computation time of tasks is not known a
priori. They also showed that, if the set of all possible tasks that will ever
arrive in a system can be scheduled initially, then the set can be scheduled at
run-time also. The use of this approach is limited, because in most dynamic
systems, the probability that all possible arriving tasks can be scheduled

initially is low. We now show how to modify the schedules built at compile-
time when either new tasks arrive or existing tasks leave the system on-line
at little run-time cost.

4.1. Integral Task Time Slices. First consider the case of integral
task time slices. Assume that new tasks arrive at time units T,2*7T,3% T, ...,
and so on, and their deadlines are integral multiples of the block length T.
The scheduling algorithm SA1 is applied when some new tasks arrive on-
line. If no current task leaves the system, then one need not run algorithm
SA1 all over again. The variables ¢ and j in algorithm SA1 denoting the
processor and the time unit respectively are kept as global variables and the
schedule for a new task is obtained by just a single pass of algorithm SA1.
Hence, a new task is schedulable in O(1) time. If some current task leaves
the system, then an attempt is made to allot the time units corresponding
to each single outgoing task to one or more new tasks. But if a new task’s
requirement per block exceeds the time units allotted to any of the outgoing
tasks, then algorithm SA1 has to be applied to the whole task set in order
to guarantee the new task and to maintain the properties of the schedule on
the maximum number of preemptions allowable for any task and during any
fixed time interval.

4.2. Non-Integral Task Time Slices. Now consider the case of non-
integral task time slices. Here we assume that new tasks arrive at time units
D, 2xD,;3xD,..., and so on, and their deadlines are integral multiples of the
block length T'. Suppose that the total idle time units in the first block after
steps (1) and (2) of algorithm SA2 are applied to the original task set is at
least [T+ C;/ D], where I'; denotes the new task arriving on-line. For such
a task set, task ['; needs no more than [T * C;/D;] time units in each block,
and there are at least [1'+ (/D] idle time units in each block after allotting
time units to the tasks in the original task set in step (2) of algorithm SA2.
The variables ¢ and j denoting the processor and the time unit respectively
are kept as global variables for each of the D/T blocks and the schedule for
the new task is obtained by just a single pass of algorithm SA1 for each
block. Hence, the schedule for each block can be revised in just O(1) step.
Since the schedule needs to be revised over D/T blocks, i.e., for an interval
of length D, the complete revised schedule is obtained in just O(D/T') time.
If some current task leaves the system or when the requirements of a new
task entering the system does not satisfy the property above, then there is
no simple method by which the existing schedule can be revised at little
run-time cost, and algorithm SA2 has to be applied to the complete task
set.

¥ Least integer greater than or equal to.

5. Conclusion. In this paper, we have given for the first time linear
multiprocessor scheduling algorithms which compute feasible, preemptive
schedules at compile time and also arrived at upper bounds on the number
of preemptions for any single task and during a fixed time interval. We have
also shown in certain cases a schema for modifying existing schedules at little
run-time cost when new tasks arrive on-line or when existing tasks leave the
system. Our results come closer to the open problem: whether any idle time
of the multiprocessor system could be used for feasible scheduling of new pe-
riodic tasksl’ Whether our scheduling algorithm fails for tasks not satisfying
the sufficient conditions of & 3 remains open. It would appear that the SA1
and SA2 algorithms defined in this paper are also non-preemptive schedul-
ing algorithms. The algorithms compute the actual time-slots at which a
task must execute, and one could use this for non-preemptive scheduling as
opposed to preemptive scheduling. But non-preemptive scheduling has its
problems when the actual run times of tasks is less than its worst case com-
putation time. It is shown in [6, 10] that the schedule length may increase, if
the actual run-time of some task is less than its worst case computation-time,
which may result in some tasks missing their deadlines. Since algorithm SA1
caters to the situation where each time slice is an integer, one way of ap-
plying SA1 to all task sets is to artificially increase the computation times
of tasks when necessary to ensure that the corresponding time slice is an
integer. This entails lesser processor utilization, but then it becomes very
easy to guarantee new tasks on-line. The primary practical problem with
the SA1 and SA2 algorithms is that it is based on the GCD and the LCM
of the task periods. In order to keep these numbers manageable (for instance
consider task periods which are relatively prime), task periods may have to
be shortened (lengthening of task periods may not be possible because of
application requirements), and the utilization of the task set is only artifi-
cially increased. A small GCD (of a single clock tick) can cause the schedule
to be long and tedious to manage. The fact that tasks can execute on more
than one processor during their existence means that tasks may have to be
sent from one processor to another. The communication time between two
processors is taken care of by the fact that the algorithms SA1 and SA2
allot time units to a preempted task within a block in such a way that there
are (I' =T % C;/D;) time units available for communication to take place
between the processors. If the above time units is not enough to allow for
communication, then we may schedule the task on a single processor, keeping
the remaining time units of the processor idle. So there is a tradeoff between
achieving high multiprocessor utilization and avoiding high communication
costs. In this paper, we have assumed that tasksin a hard real-time environ-
ment are independent. However simple precedence constraints among tasks

can be modeled as follows. Let a task I'; occur after a fixed number (say n)
of occurrences of another task I';. This is modeled by choosing the periods
of tasks I'; and I'; so that the period of I'; is n times the period of I'; and
the (n + 1)”% request for T'; coincides with the 15 request for I';, and so on.

The fact that the multiprocessor can be fully loaded and still guarantee
task service requirements within a preassigned time has tremendous scope
in real-time applications. Most real-time tasks arrive on-line and a good
on-line strategy is therefore needed to determine its schedulability and then
to arrive at a schedule in good time. Current methods of determining the
schedule of a new task arriving on-line in a multiprocessor environment is
based on heuristics. In fact, under the constraints of the task characteristics
as discussed above, the criterion that the multiprocessor utilization be not
more than its capacity to guarantee feasible scheduling of a new, periodic
task is an optimal one. An optimal design for next generation real-time
systems would be to revise the schedules dynamically at little run-time cost.
We feel that our approach has potential for multiprocessor hard real-time
on-line scheduling, when the arrival times and deadlines of newly arriving
tasks are truly random. The work in this direction is progressing. Further,
the preliminary work related to scheduling for imprecise computations and
its relation to reclaiming the time left unutilized in a schedule (cf. [10]) is
reported in [8].

Acknowledgements. The authors thank the referees for their sugges-
tions.

REFERENCES

[1] J.A. BANNISTER AND K.S. TRIVEDI, Task Allocation In Fault-Tolerant Distributed
Systems, Acta Informatica, Springer-Verlag, 1983.

[2] S. DavarI AND S.K. DHALL, An On-Line Algorithm For Real-Time Tasks Allocation,
IEEE Real-Time Systems Symposium, Dec. 1986.

[3] S.C. CHENG, J.A. STANKOVIC AND K. RAMAMRITHAM, Scheduling Algorithms for
Hard Real-Time Systems - A Brief Survey, in Tutorial on Hard Real-Time Sys-
tems, edited by J.A. Stankovic and K. Ramamritham, [EEE Press, 1988.

[4] M.L. DERTOUZOS, AND ALOYSIUS KA-LAU Mok, Multiprocessor On-Line Scheduling
Of Hard-Real-Time Tasks, IEEE Transactions on Software Engineering, vol. 15,
no. 12, Dec.1989.

[5] S.K. DuaLL AND C.L. Liu, On A Real-Time Scheduling Problem, Operations Re-
search, vol. 26(1), 1978.

[6] M.R. GAREY AND JOHNSON, D.S., Complexity Results For Multiprocessor Scheduling
Under Resource Constraints, STAM Journal of Computing 4, 1975.

[7] R.L. GRAHAM, Bounds For Certain Multiprocessor Anomalies, Bell Syst. Tech. J. 45
(1966), 1563-1581.

[8] A. KuEMKA, K.V. SUBRAHMANYAM AND R.K. SHYAMASUNDAR, Multiprocessor
Scheduling for tmprecise computations in a hard real-time environment, to be
presented at IPPS 93, New Port Beach, California, April 1993.

[9] C.L. Liu, AND JAMES W. LAYLAND, Scheduling Algorithms for Multiprogramming in
a Hard- Real- Time Environment, Journal of the Assoc. for Computing Machinery,
vol. 20, no. 1, Jan. 1973.

[10] G.K. MANACHER, Production and Stabilization of Real-Time Task Schedules, Journal
of the Assoc. for Computing Machinery, vol. 14, no.3, July 1967.

[11] R.R. MuUNTZ AND E.G. COFFMAN, Preemptive Scheduling Of Real-Time Tasks On
Multiprocessor Systems, Journal of the Assoc. for Computing Machinery, vol. 17,
no. 2, April 1970.

[12] J.A. STankovic, Real-Time Computing Systems: the Next Generation, in Tutorial
on Hard Real-Time Systems, edited by J.A. Stankovic and K. Ramamritham,
IEEE Press, 1988.

