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Abstract. Existing methodologies for the verification of concurrent sys-
tems are effective for reasoning about global properties of small systems.
For large systems, these approaches become expensive both in terms of
computational and human effort. A compositional verification method-
ology can reduce the verification effort by allowing global system prop-
erties to be derived from local component properties. For this to work,
each component must be viewed as an open system interacting with a
well-behaved environment. Much of the emphasis in compositional ver-
ification has been on the assume-guarantee paradigm where component
properties are verified contingent on properties that are assumed of the
environment. We highlight an alternate paradigm called lazy composition
where the component properties are proved by composing the component
with an abstract environment. We present the main ideas underlying lazy
composition along with illustrative examples, and contrast it with the
assume-guarantee approach. The main advantage of lazy composition is
that the proof that one component meets the expectations of the other
components, can be delayed till sufficient detail has been added to the
design.

1 Introduction

In the last two decades, there has been considerable progress in the verification of
concurrent, reactive systems. Much of the research has been devoted to the devel-
opment of formalisms such as temporal logics [Eme90,Lam94, MP92, CM88] and
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Fig. 1. Even number generator

process algebras [Hoa85,Mil80], and verification methods [Bar85,dBdRR90,dB-
dRR94, Sha93a] based on deduction [Eme90, Lam94, MP92, CM88] and model
checking [CES86,Kur93, Hol91]. While these techniques are effective on small
examples—mutual exclusion, basic cache consistency algorithms, and simple
communication protocols—the difficult problem of scaling these techniques up
to large and realistic systems has remained largely unsolved.

Large-scale concurrent systems are usually defined by composing together
a number of components or subsystems. The typical verification methods are
non-compositional and require a global examination of the entire system. In
the deductive approach to verification, this means that a property such as an
invariant has to be verified with respect to each transition of all of the com-
ponents in the system. Verification approaches based on model checking also
fail to scale up gracefully since the global state space that has to be explored
can grow exponentially in the number of components [GL94]. The purpose of a
compositional verification approach is therefore to shift the burden of verification
from the global level to the local, component level so that global properties are
established by composing together independently verified component properties.

To motivate compositional verification, we can consider a very simple exam-
ple of an adder component P shown in Figure 1 that adds two input numbers
z and y and places the output in z. Here z, y, and z can be program variables,
signals, or latches depending on the chosen model of computation. The system
containing P as a component might require its output z to be an even number,
but obviously P cannot unconditionally guarantee this property of the output
z. It might be reasonable to assume that the environment always provides odd
number inputs at z and y, so that with this assumption it is easy to show that
the output numbers at z are always even. Only local reasoning in terms of P is
needed to establish that z is always even when given odd number inputs at z
and y.

If, as is shown in Figure 2, P is now composed with another component @
that generates the inputs at z and y, then to preserve the property that only
even numbers are output at z, () must be shown to output only odd numbers
at z and y. However, the demonstration that ¢} provides only odd numbers as
outputs at z and y might require assumptions on the inputs taken by @, where z
itself might be such an input. If in showing that ) produces odd outputs at z and
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y, one has to assume that the z input is always even, then we have an obvious
circularity and nothing can be concluded about the oddness or evenness of z, y,
and z. If this circularity can somehow be broken, we then have a form of well-
founded mutual recursion between P and () that admits a proof by simultaneous
induction that z and y are always odd and z is always even. The circularity can
be broken by noting that that a z output for P is even as long as the preceding
z and y inputs are odd, and the z and y outputs for () are odd as long as the
preceding z input is even.

The assume-guarantee paradigm is the best studied approach to composi-
tional verification [AL93,AL95,AP93,CMP94,Col93,Ho091,Jon83,MC81,PJ91,
Pnu84, Sta85, XCC94, XdRH97, Zwi89]. In this approach, a property of a com-
ponent is stated as a pair (A, C) consisting of a guarantee property C that the
component will satisfy provided the environment to the component satisfies the
assumption property A. The interpretation of (A4, C') has to be carefully defined
to be non-circular. Informally, a component P satisfies (4, C) if the environ-
ment to P violates A before the component fails to satisfy C. When two or more
components, P, satisfying (A;,C:) and P, satisfying (A4,,C5), are composed
into a larger component P || Py, the assumption A together with property C; of
component P; must be used to show that P; does not violate assumption As,
and correspondingly, A and Cs must be used to show that P does not violate
As. Discharging these proof obligations allows one to conclude that the com-
posite component P;|| P, has a similar property (A4, C) where C follows from A,
C1, and C>. The assume-guarantee technique as described informally still suffers
from the earlier circularity. The formal details of the assume-guarantee technique
are deferred to Section 2. The assume-guarantee approach has been more widely
studied than actually used. The primary difficulty in applying this approach for
compositional verification is that it requires component guarantee properties to
be strong enough to entail any potential environment constraints. It is obviously
not easy to anticipate all the potential constraints that might be placed on a
component by the other components in a system.

The lazy composition approach advocated in this paper builds on conven-
tional techniques while avoiding the difficulties associated with the assume-
guarantee approach [Sha93b]. Lazy composition works at the level of the specifi-
cation of component behavior. In lazy composition, a property C of a component



specified as P is actually proved of the system P||E obtained by composing P
with an abstract environment specification F that captures the expected behav-
ior of the environment. When the component specification P is composed with
another component specification @, then C might no longer be a property of the
specification P||Q since @ might not satisfy the constraint E. However, C is a
property of the composition P||(Q A E) obtained by strengthening @ to addition-
ally satisfy E. This allows local properties such as C to be used as global prop-
erties of the specification of a larger system. If in fact the combined specification
P||(Q A E) can be simplified to P||Q, then clearly the constraint E is redundant
and can be eliminated. However, it is not imperative that (properties guaran-
teed by) @ already imply FE as is the case with the assume-guarantee technique.
While the assumed environment specification has eventually to be shown to hold
of the other components in the system, this proof obligation can be discharged
lazily as the system design is being refined. The demonstration that P||(Q A E)
is refined by P||@ uses inductive reasoning on computations so that any possi-
ble circularity between assumptions E and guarantees C is avoided. Thus lazy
composition allows global properties to be proved by local component-wise rea-
soning combined with a one-time demonstration that each component satisfies
the accumulated constraints imposed by the other components. There are sev-
eral other tradeoffs between lazy composition and assume-guarantee reasoning
that are discussed in Section 3.

The lazy composition approach is quite general and can be applied to a wide
variety of synchronous and asynchronous computational models, but this paper
considers only one such model, namely, asynchronous transition systems with
interleaving composition.

We first present some background on compositional verification in Section 2.
Lazy composition is introduced in Section 3. Some examples illustrating the use
of lazy composition in verifying safety properties are presented in Section 4.
The elimination of environment constraints by means of refinement proofs is
described in Section 5. The verification of liveness properties using lazy compo-
sition is given in Section 6. A comparison between lazy composition and other
compositional approaches is given in Section 7.

2 Background

The presentation in this paper is entirely at the semantic level where we are
dealing with states, predicates (sets) and relations on states, computations as
infinite sequences of states, and properties as sets of computations. We will also
speak of sets of sequences and properties interchangeably.

Asynchronous Transition Systems. In its simplest form, an asynchronous tran-
sition system is a triple (X;I, N) of a state type X, an initial set of states I,
and a reflexive (stuttering-closed) nezt-state relation N that defines the possible



atomic actions of the system. Seen as a closed system, i.e., one with no interac-
tion with an outside environment,? a valid computation of such a system consists
of an infinite sequence of states ¢ whose initial state o(0) is in I, i.e., I(c(0))
holds, and N holds of each pair of adjacent states, i.e., for all i, N(o(2),o(i+1)).
A property is a set of infinite state sequences. If P is an asynchronous transition
system, the set of its computations in the closed interpretation is represented
as [P]. The transition system P has a property A, in symbols, [P] = A, iff the
set of computations [P] is a subset of the set of sequences corresponding to the
property A. We write |= A when the property A is valid, i.e., contains all the
infinite sequences. Properties (sets of infinite sequences) can be combined with
connectives = A (complement), AV B (union), A A B (intersection), and A D B
which is defined as —=A V B. One transition system P refines another transition
system @ when = [P] D [@Q]. In typical usage below, a transition system will
be given as (I, N) leaving the state type X' implicit.

Safety Properties. A safety property informally asserts that nothing bad hap-
pens during a computation. Let o[i] represent the finite prefix consisting of the
first 7 states 0(0)...0(i — 1) of 0. A safety property [AS85] is one that excludes
an infinite sequence ¢ exactly when it excludes all extensions o[i] o p of some
finite prefix o[i] of 0. This means that safety properties are falsified by some
finite prefix of a sequence. For any property A, there is a property A° (the
safety closure of A) which is the strongest safety property containing A defined
as {o | Vi:3p: ofi]op € A}. The property (set) AS is clearly a safety property.
If A is a safety property, we say that o[n] € A when o[n]o p € A for some p.

Liveness Properties. Liveness properties assert that something good eventually
happens during the computation. Such properties hold of some infinite extension
of any finite sequence a, i.e, they can always be satisfied by an appropriately
chosen sequence of states. A liveness property can exclude an infinite sequence
o but must contain some extension of o[i] for each i. Given a property A, let A"
(the liveness closure of A) be AV —AS, where ~AS represents the complement
of AS. Then A’ is a liveness property because if for some a there is no p such
that a o p € AL, then since A C AL, Vp:aop ¢ A, but then Vp:aop ¢ AS.
This is a contradiction since every infinite sequence must be in A” or AS. Thus
every property A can be expressed as the conjunction of a safety property A
and a liveness property A” [Sch87].

Stuttering Invariance. A set of sequences A is stuttering invariant if whenever
ofi +1Jop € A then ofi + 1] oo (i) o p € A. In words, if A contains a sequence,
then it contains all variants of this sequence obtained by stuttering individual
states in the sequence finitely often. Stuttering arises naturally when there is a

2 The closed interpretation here means that each transition of a valid computation
satisfies the next-state relation N leaving no room for any environment transitions
other than those already specified by V.



notion of an observation of a transition system so that some of the transitions
have no observable effect. Stuttering invariance is often imposed as a constraint
on the allowable properties so that the resulting transition system can always
be implemented using internal unobservable state components.

Published explanations of assume-guarantee proof techniques often implicitly
rely on stuttering invariance without explicitly mentioning it. Stuttering invari-
ance is needed to argue that if we are given safety properties A and B such that
oli] € A and o[i] € B, then o[i] € A A B. Such a result is valid if A and B
are stuttering invariant properties. To see how the result can fail to hold, let
A consist of the strictly increasing sequences of even numbers and B consist of
the strictly increasing sequences of prime numbers. Both A and B are safety
properties that are not stuttering invariant. The singleton prefix (2) is in both
A and B but A A B is empty.?

Ezxpressing Properties. The above notions of computation and property are typ-
ical of the use of linear-time temporal logics for stating and proving properties
of closed systems. Examples of such logics include

— Manna and Pnueli’s LTL [MP92] with the temporal operators () (next-
time), O (always), and <& (eventually). Properties expressed in LTL that use
the () operator are not necessarily stuttering invariant.

— Chandy and Misra’s Unity [CM88] with operators invariant, stable,
unless, until, and leadsto which are applied to state predicates so that
temporal formulas are not nested. Unity properties are stuttering invariant.

— Lamport’s temporal logic of actions [Lam94] which drops the next-time
operator from linear-time temporal logic but allows temporal operators to
range over actions, i.e., binary relations over states. TLA is designed to
admit only stuttering invariant properties.

In the examples below, we restrict ourselves to some simple operators for
defining properties. If p is a predicate on states, then

1. invariant p holds of ¢ iff Vi : p(co(i)). This is a safety property.

2. eventually p holds of ¢ iff 3i : p(o(i)). This is a liveness property for any
satisfiable predicate p since any finite sequence can be extended to one in
which p eventually holds.

For a given transition system (I, N), the invariance of p can be proved using
induction by showing that for all states s in X, F I(s) D p(s), and for all states
s and s', and - p(s) A N(s,s’) D p(s').

8 A weaker requirement than stuttering invariance suffices for the soundness of the
assume-guarantee proof reasoning methods. A safety property A must include the
infinite sequence o[t + 1]oo () obtained by infinitely stuttering the last state of any
nonempty finite prefix ofi + 1] in A.



Components as Open Systems. The next step is to extend the model to open
systems so that components can be independently specified and composed to
form larger systems. If X is the set of global states of the large system, then a
component i can be given as a triple (X'; I;, N;). However, we can no longer take
the closed interpretation since a computation must include the actions taken
by other components. In the open system interpretation, a computation is an
infinite sequence of states whose initial state is in I; and each pair of adjacent
states is either related by IV; or is an arbitrary environment transition. The open
system interpretation is much too liberal and does not admit any interesting
properties since there are no constraints on the environment actions. This can
be partially overcome by placing weak constraints on the environment actions,
e.g., the values of the local variables of a component must be left unchanged
by its environment. With some constraint on the environment actions, one can
actually verify reasonably interesting local properties of a component. For ex-
ample, in TLA [Lam94], the next-state relation of a component is written as
[N]; which holds of a pair of states s, s’ when N(s,s')V f(s') = f(s). The state
function f typically projects out the local variables of the component so that the
environment transitions must not affect the values of these variables. In Lynch
and Tuttle’s I/O automata [LT87], a component is an input-enabled automaton
with its own local state so that any component properties established with re-
spect to this interpretation remain globally valid even in composition with other
components.

Even with such restrictions on the environment behavior, the open system
interpretation is somewhat weak since many properties of a component can only
be proved by assuming a stronger degree of cooperation from the environment.
We have already seen the example of the adder component of Figure 1 which
can be shown to always output even numbers when given odd number inputs by
its environment.

The Owicki—Gries Method. The Owicki-Gries method [OG76] is the first at-
tempt at a component-wise decomposition of the verification problem. In this
method, one proves a global invariant of the composition P;|| P> by showing it
to be a local invariant of one of the components, say P;, and a stable predicate,
i.e., one that is never falsified, of the other component P,. In other words, one
component establishes the invariant and the other component does not falsify it.
This method is not really compositional since it requires global reasoning on all
the actions of each component in order to establish an invariant. The Owicki—
Gries method was originally proposed in the framework of a proof-outline logic
where program components are annotated with assertions. Such program-based
proof methods can be quite restrictive when compared to the use of high-level
behavioral specifications as given by asynchronous transition systems.

Compositional Verification Using the Assume-Guarantee Approach. The
assume-guarantee approach originally proposed by Jones [Jon83] and Misra and
Chandy [MC81] is perhaps the most widely studied compositional verification



technique for concurrent systems. The presentation of this approach given below
is adapted from Abadi, Lamport, and Plotkin [AL93, AL95, AP93] and Col-
lette [Col94]. An assume-guarantee specification of a a component property is
given as a pair (4, C) consisting of an assumption property A and a guarantee

property C. To capture (A4,C) is defined as A e (A secures C) which is
the subset of A O C defined as {oc € A D C | Vi: ofi] € A% D ofi + 1] € C5}.

Thus A - C rules out unrealizable implementations of A D C that exhibit
computations where C* fails before the failure of A% can be detected by the
component. Similarly, A —> C (A maintains C) is the set of o in A D C such

that for all 4, ofi] € A D ofi] € C. Note that A — > C = (A D C)A(AS > C5),
and A —>C = (ADC)A (A% —> C%).

Composition of components P;| P, is defined so that [Py||P.] is the inter-
section of [P;] and [P:]. Since P; and P, are specified to allow environment
transitions, the composition of P; and P» includes all the interleavings of P;
and P, actions, but also contains computations with simultaneous P; and P
actions.*

The main compositionality rule in the assume-guarantee method [AL95] is
stated in Theorem 1.

Theorem 1. .
Pz' |: Az —D> Ci; fOT‘ 1= 1,2

EASACZACs DAL A Ay
EA S (CLAC > 0)
PP A s

+
In words, in order to show that the composition P, || P; has property A —> C,
it suffices to establish the following premises of the compositionality rule:

1. Each P; has property A; —+l> C;.

2. The individual environment constraints A; and As must be satisfied by the
conjunction of the safety parts of the joint environment constraint A and
the guarantee properties C; and Cs.

3. The joint commitment C must be maintained by the individual commitments
C1 and C5 when secured by the environment assumption A.

The formal details justifying the assume-guarantee rule are fairly elaborate,
but we can briefly convey some of the intuition by sketching the soundness

4 To obtain a strict interleaving of P; and P» actions, such joint actions can be

excluded by asserting that the variables written by P, and P> must be disjoint and
never simultaneously updated. Another approach is to label each transition with
the agent associated with it, and to have a disjoint set of agents associated with
components P and Ps.



argument. It is sufficient to focus our attention on infinite sequences o such that
+ + +
o€ (4 —> C1) A (As —> C3). To show 0 € A —> C, we need to prove both
+
0 €ADC and 0 € AS —»> C°. The argument proceeds in three steps:

+

— o€ (A5 —C NCY).
That is, for any n, o[n] € AS implies o[n+1] € CZ ACS. This can be proved
by induction on n using premises 1 and 2 while noting that the stuttering
invariance of A%, C7, and Cj is used in this argument.

~oeAS s 0s.
By premise 3, for any n, o[n] € AS implies o[n + 1] € CZ A C§ —»> C5.
From step 1, we therefore have o[n + 1] € C¥.

~ o0 € ADC. For o € A, since A D AS, we have by A T CP A CS that
o € C{ A Cs. By premise 2, this yields 0 € A; A A;. By premise 1 and the

+
definition of —>, we have that o € C; A Cy. We can then apply premise 3

+
with the definitions of the connectives —> and — to obtain o € C.

There are some approaches to modular verification based on model check-
ing that employ a weak form of assume-guarantee reasoning. In the work of
Grumberg and Long [GL94], assume-guarantee properties (A4,C) are treated

as implications A O C and not A "5 . Note that the use of implication for
assume-guarantee reasoning is not valid in general, and is sound only for a re-
stricted form of Theorem 1 where the cycle of dependencies between A;, Csy, As,
and C; has been broken. If A and C are just linear-time temporal logic (LTL)
formulas, then LTL model checking can be used to verify A O C of component
P since this implication is also in LTL. If C is a CTL or CTL* formula, then
the situation is more complicated since the implication A D C is not a well-
formed CTL or CTL* state formula, and furthermore, it does not capture the
intended meaning of A as an assumption [Jos90] which is that C' must hold on
the computation tree whose paths have been pruned according to A. Then, A
can be chosen as a YVCTL formula that characterizes the subtree of the compu-
tation tree that meets the assumption. For the case of VCTL assumptions and
synchronous Moore machine composition, Grumberg and Long give a way of
compiling the assumption A into a tableau automaton AT so that P||AT = C
iff P = A D C. Kupferman and Vardi [KV96] analyze the complexity of various
linear and branching-time variants of modular model checking. Alur and Hen-
zinger [AH96] give an assume-guarantee rule for proving language containment
in the context of the synchronous composition of a form of Mealy machines called
reactive modules.

3 Lazy Composition

Lazy composition differs from the assume-guarantee approach in several respects.



1. Components are not treated as blackboxes. Compositional verification merely

requires that properties be proved locally at the component level. It does
not require that components be treated as blackboxes for this purpose. The
assume-guarantee approach requires the assumptions to be discharged solely
by means of the guarantee properties of a component. The actual imple-
mentation of the component is never used for discharging proof obligations.
This means that the guarantee properties must either somehow anticipate
the possible constraints imposed by other components, or they must contain
implementation details. Lazy composition on the other hand does not take
a blackbox view of components and allows the behavioral specification to be
used for discharging the constraints imposed by other components. Since a
typical high-level behavioral specification might not contain enough detail to
discharge such external constraints, lazy composition allows the constraints
to be discharged lazily as the specification is being refined.
Blackbox assume-guarantee specifications can be independently refined to
yield implementations in terms of smaller blackbox components. Abadi and
Lamport [AL95] give a decomposition rule for showing that P'||Q’ refines
P||Q when P’ refines P and @' refines (). This rule has a premise similar
to premise 2 of the compositionality rule of Theorem 1 which has the same
drawback of requiring the environment constraints to be anticipated in the
blackbox specification.

2. Composition is not necessarily conjunction. Conjunction can be used to de-
fine the interleaving composition of two asynchronous transition systems by
a suitably chosen global constraint (see [AL95] and Footnote 4). Instead of
encoding composition using conjunction, we regard the definition of the pre-
cise notion of composition as something that is fixed by the model of com-
putation and not by the inference rule for composition. For asynchronous
composition, one takes the interleaving of the atomic actions of each compo-
nent, whereas for synchronous composition, i.e., globally clocked systems,
one takes the conjunction of the atomic actions. Other formalisms that
have asynchronously operating components with synchronous communica-
tion, e.g., CSP [Hoa85], can be modelled by means of a suitable definition
of composition.

3. Environment assumptions are specified as abstract components not proper-
ties. One difficulty with environment assumptions as properties is that they
apply to both the environment and the component. Typically, these con-
straints should apply only to environment actions and not the component
actions. If we take the example of a bank account component, the environ-
ment might be required to only deposit and not withdraw money from the
component but such a constraint should not apply to the component. There
is no elegant way of stating this distinction between the component and
its environment when the environment constraints are stated as properties
rather than abstract components.

4. No assume-guarantee proof obligations are generated. With lazy composi-
tion, properties of a component P; are proved in the context of an abstract

10



environment F;. The composition rule ensures that all local properties are
global properties of the composition. It does this by adding (conjoining, as
explained below) the environment constraints of one component to the spec-
ification of the other component so that the resulting system has the form
(P1 A EQ)||(Py A E).

This form of composition appears dishonest (and lazy) since it sidesteps
the question of whether the original specification of one component satis-
fies the environment assumptions of the other. However, specifications are
meant to be partial and are therefore not always strong enough to antici-
pate the environment constraints that can be placed on a component. The
best that one can do therefore is assert that if the specifications of each
component is strengthened with the environment constraints required by
the other component, then the resulting system satisfies the local proper-
ties of both components. If a component specification is strong enough to
discharge any constraints placed on it, then the strengthening is redundant
and can be eliminated by simplification. Otherwise, an implementation of
the component is required to satisfy the stronger specification including the
environment constraint.

The flexibility in postponing the assume-guarantee proof obligations is
needed since some proofs might require the additional information that is
provided when the specification is refined. If these proof obligations have to
be proved as in the assume-guarantee proof method, then the component
specifications must be quite detailed and strong. Since no proof obligations
are discharged and environment assumptions impose additional, possibly
unanticipated, constraints on a component specification, a component can-
not be independently refined in the lazy composition approach. A component
can only be independently refined when the component specification already
implies all the environment constraints that might be required of it. There is,
however, an advantage to refining in the global context where these assump-
tions are known since global properties can be exploited in the refinement
(see Section 5).

. Composition can yield inconsistent specifications. This is also the case when
composition is defined as conjunction. In the case of lazy composition, this
can arise because there is no computation that is compatible with the col-
lection of constraints given in the specification.

Summarizing the discussion so far, lazy composition takes the middle ground

between global verification as used in the Owicki—Gries approach and the strictly
modular, property-based verification used in the assume-guarantee approach.
Lazy composition is a proof style that uses a suitably weak characterization of
a cooperative environment in composition with which a component can exhibit
a given property. Once such an environment has been identified, the familiar
verification techniques for proving safety, liveness, and refinement properties
can be used. In the presentation of lazy composition, it will be assumed for
convenience that there is a fixed environment specification for each component,

11



but in practice, the environment can be varied according to the desired property
of the component.

We now move on to the details of lazy composition for asynchronous tran-
sition systems while noting that the techniques can easily be adapted to other
models and notions of composition. As already stated, an asynchronous transi-
tion system is given by a triple (X; I, N) consisting of the state X', an initializa-
tion predicate I on the state, and a binary next-state relation V. Given such a
triple P of the form (X; I, N}, the closed interpretation of P is written as [P]
and defined as the set sequences {o]|I(c(0)) AVi: N(o(i),o(i + 1))}. We focus
mainly on closed interpretations since one cannot prove interesting properties of
computations that admit arbitrary environment actions. When we are talking
about components, we will assume that Y is the global state type and omit it
from the transition system.

Given two transition systems, P; of the form (I, N;), and P, of the form
(I2, N2), the composition P, || P, is the transition system (I3 A I, N1 V N3). Note
that composition essentially yields the interleaving of the component transitions.

The environment F is also given as a transition system (I¢, N¢). A compo-
nent together with its environment is given as a pair P//E. The set of compu-
tations corresponding to P//E, i.e., [P//E], is defined as [P| E], i.e., the closed
interpretation of P||E. Note that though P//E and P||E have the same com-
putations, the notation P//E is chosen to emphasize the syntactic asymmetry
between component P and environment F.

Given two transition systems P; and P., the conjunction of these, P, A P,
is (I; A I, N1 A N3). Let Pf denote the component-environment specification
P;// E;. Given two component—environment specifications Pf and P§, the closed
co-imposition of these two specifications Pf ® Py is defined as the transition
system (P; A E3)||(P: A Eq). The open co-imposition of P and Py, written as
Pf x Ps | is defined as (Pf ® Py)//(E1 A E2) and its computations contain actions
corresponding to

1. P; but respecting Fs,
2. P, but respecting F;, and
3. Environment actions respecting £E; and Fs.

The closed co-imposition P @ Ps yields a system with only the actions
of P, and P, whereas the open co-imposition P/ x Ps yields a system with
environment actions that are constrained to conform to both E; and FE,. Both
operators are associative and commutative. It is easy to see that the property
preservation result given in Theorem 2 holds so that [Pf ® P$] and [Pf x P§]
are both subsets of [Pf], and hence any properties of Pf are also properties of
PP ® Py and Py x Ps§.

Theorem 2. 1. = [Pf ® Ps] D [Pf]
2. = [Pr = P5] o [Fr]

12
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O e

Fig. 3. A FIFO buffer with environment

We will henceforth ignore the closed co-imposition operator since its prop-
erties are similar to those of open co-imposition. The use of the co-imposition
operation in lazy composition will be illustrated in Section 4. The obvious prob-
lem with lazy composition is that it asserts the property preservation of Pf x P§
and says nothing about P; || P». By discharging proof obligations similar to those
in Theorem 1, we can show that the transition system specification Pf x Pg
is equivalent to the specification (Py||P:)//(E1 A E2), where the latter system
contains actions corresponding to P; and P, without any restrictions, and the
environment action F; A Es. In Section 5, we show that the environment con-
straints can be discharged in this manner by showing that P; refines F;, and P;
refines Fs. These refinement proofs can actually be carried out in the context
of global invariants, i.e., invariants of Pf x P§. The resulting refinement proof
obligations are similar to the assume-guarantee proof rule where A5 A C5 A C5
must entail A; A As.

4 Using Lazy Composition

Lazy composition will be illustrated by means of the example of a FIFO buffer
component that is composed from two smaller FIFO buffer components. This
examples has been frequently used with minor variations in the compositionality
literature [Col93, AL95].

A single (bounded or unbounded) FIFO buffer component shown in Figure 3
consists of a buffer variable b that contains a queue of values, and the input
and output variables in and out which contain values or are empty, i.e., contain
a distinguished value —. Two history variables are used to specify the correct
behavior of the buffer. The variable inh is a stack of all the non-— values placed
by the environment into in, and the variable outh is the stack of non-— values
read by the environment from out. The non-stuttering actions of the buffer are:

— Read a non-— value from the variable in and enqueue it at the back of b
while setting in to —. Formally, this is captured by the relation between the

13



pre-state (in, b, out, inh, outh) and the post-state (in’,d', out’, inh', outh') as

in# —
AbY = enqueue(in,b)
Ain' = —
A out' = out
A outh' = outh
A inh' = inh

A
read =

— Dequeue a value from the front of queue b and place this value in the variable
out when out is empty. Formally,

nonempty? (b)
A out = —
AN b = dequeue(b)
write = ¢ A out’ = front(b)
A outh’ = push(front(b), outh)
Ain' =in
| A inh' = inh

In the initial state, all the variables associated with the buffer are empty.
Formally,

inity = (out = — A b = outh = null).
The buffer component P is then given by the pair (inity, read V write).

The environment component initializes the variables in and inh so that they
are both empty:

init, = (in = — A inh = null).

In each non-stuttering action, the environment leaves b unchanged and may
change the value of in when empty and may set the value of out to —. Formally,

load 2 (in = — Ain' # — Ainh' = push(in', inh))
unload 2 (out # — A out' = — A outh' = outh)
(load V (in' = in A inh' = inh))

A (unload V (out’ = out A outh’ = outh))
Ab =b

env

The environment component F is given by the pair (init,, env).
It is easy to prove by induction that
[P//E] [ invariant inh = in o q2s(b) o outh,

where o is stack concatenation, ¢2s(b) converts the queue b into a stack by
repeatedly pushing elements from the front of queue b, and in is push(in, empty)
when in # —, and empty, otherwise. We have thus proved an invariant of a buffer
component P by assuming that the environment behavior is as specified by E.

14
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@% Buffer by @= Buffer b, %

Fig. 4. FIFO buffer composed from smaller buffers

Compositional reasoning is used when two such buffers are composed as shown
in Figure 4 to implement a single buffer. We do this by taking one instance
Py //E; of the buffer as specified above but renaming the variables b to by, out
to mid, and outh to midh, and a second instance Py//E> with b renamed to bo,
and where in and inh are just mid and midh, respectively. In other words, buffer
P; communicates values to buffer P, via mid.

Having already proved the invariant above for a FIFO buffer P, the goal
now is to prove a similar invariant inh = in o ¢2s(b) o outh, for some b, for the
composition (P;||Py)//(E1 A E3) of the two buffers. However, we cannot use the
invariant proved of P for composite buffers with P; and P; since those invariants
are proved for the systems P, //E; and Py //Es.

The claim = [(P1||P2)//(Ex A E3)] D [P1//E1] is not provable since the
definitions of P; and P, are not strong enough to imply the constraints Fy and
FE4, respectively. This is because F; specifies that each environment action must
leave the buffer variable b; unchanged and that the variable in must be written
only by the environment. The actions of P, place no constraints on the update
of the values of b; or in. Since we cannot demonstrate = [(P1||P2)//(E1 AE2)] D
[P1// E1], the invariant for Pf, namely, inh = in o by o midh, cannot be used as
a global invariant of (P || P)//(E1 A E»).

The best that we can do therefore is to conclude = [Pf x P§] D [PE] A [P5],
so that the conjunction of the individual invariants holds for Pf x Py. From the
conjunction of the two invariants:

1. [Pf x P§] k= invariant inh = in o q2s(b1) o midh
2. [Pf x P§] |= invariant midh = mid o ¢2s(bs) o outh

we can conclude
[Pf x Ps] |= invariant inh = in o ¢2s(b1) o q2s(mid) o q2s(bs) o outh.

So if we take b to be s2q(¢2s(b1) o mid o q2s(b2)) where s2q is the inverse of
g2s and converts a stack back into the corresponding queue, we have the desired
invariant inh = in o ¢2s(b) o outh for Pf x P§.
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In proving this invariant, we have used only the corresponding invariants
of the component buffers and some elementary lemmas about the concatena-
tion operation. We have not directly used the specification of individual buffers
themselves. We have worked at the level of the specification of the behavior
of the individual buffers rather than the corresponding program which would
be a complete specification of each transition. Since specifications can be par-
tial, it makes sense to conjoin the environment constraints to the component
specification rather than discharge them as proof obligations. Thus a more de-
tailed implementation will have to satisfy the higher-level specification of the
component as well as the constraints on the component imposed by the other
components in the combined system.

When refining P; to a more refined specification or a program in the context
P? x Pg, it is valid to use all the global invariants that have been proved of
P? x Ps. The introductory example involving odd and even numbers can be
used to illustrate the use of such invariants in refinement. The system P there
is of the form (Ip, Np) where

Ip 2 even?(z)

Np2( =z+y)A(@ =) A(y =)

If P’s environment constraint D is of the form (Ip, Np) where

In 2 0dd?(z) A odd?(y)
Np 2 odd?(z') Aodd?(y') N2 =2

then we can prove the invariant even?(z) A odd?(z) A odd?(y) for the system
P//D. Let @ be defined to be (Ig, Ng) where

Io 2 0dd?(z) A odd?(y)

Ng 2

(z' =z +2) ANy =y+2)A (2 =2)

Let E be the unconstrained system consisting of the everywhere-true initial-
ization predicate and next-state relation. We would now like to show that the
constraint D is satisfied by @, but this is not true in general. It does however
hold in the context of the invariant even?(z) A odd?(z) A odd?(y). The use of
invariants allows [(P//D) x (Q//E)] to be simplified to [P| Q|| D] since P A E
simplifies to P, D A E simplifies to D, and @ A D can be simplified to ) given

F even?(z) A odd?(z) A odd?(y) AN Ng D Np.

We show how invariants can be used in proving a refinement relation between
two transition systems using stepwise simulation in the next section.
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5 Discharging Proof Obligations by Refinement

We now examine how the familiar notion of refinement via simulation can be used
to simplify away the environment constraints F; and F5 in the lazy composition
Pf x P¢. This is analogous to the assume-guarantee proof obligations (premise 2)
except that lazy composition is more flexible about how and when these proof
obligations are discharged. Recall that in the assume-guarantee approach, the
assumptions of one component had to be discharged using the guarantee proper-
ties of all the components along with the global environment constraints. As we
noted, this has the disadvantage that the guarantee properties have to be chosen
to somehow anticipate the likely environment constraints. By contrast, in lazy
composition, these proof obligations are discharged lazily during refinement.
The refinement rule establishes the conclusion = [P] D [Q] by showing that
each transition of P can be simulated by a transition of ) . In particular, this
means that P inherits all the properties of ). The simulation of P transitions
by @ transitions can be shown in the presence of invariants of P and Q. The
invariants might be needed because the simulation relation between the actions of
P and @ might not hold outside their respective reachable states. The invariant
that is used for P can be an action invariant, a binary relation r on X' such that
Vi :r(o(i),o(i + 1)). In this case, we say that invariant r holds of 0. Given a
state predicate p, an action 7, and two transition systems P and @ of the form
(Ip, Np) and (Ig, Ng), respectively, the refinement rule is stated in Theorem 3.

Theorem 3.
[P] [ invariant r

[Q] = invariant p

F p(s) Ar(s,s') ANp(s,s') D Ng(s,s')
F IP(S) D IQ(S)

=[P > [Q]

The proof of the refinement rule is by a straightforward induction on the
length of the computations in [P]. The relevance of the refinement rule for com-
positional verification is that we can use it to eliminate the constraints imposed
on one component by another. When composing specifications using the co-
imposition operator, we end up with a specification P; x Py which is equivalent
to (P1 A Eq)||(Py A Eq)|[(Er A Ep). To eliminate, say, Fo from this specifica-
tion, we need to show that (P1 A E)||(P2 A E1)||(E1 A Es) can be refined by
Py||(Py AN Ey)||(F1 A Eg). The constraint E; can also be similarly eliminated.
This kind of refinement can be carried out with the aid of a simple corollary to
the refinement rule that can be used to show that [P||Q] refines [P A E|Q] by
showing that each P transitions can be simulated by an E transition.

Corollary 4.
[(P A E)|Q] = invariant p

F p(s) A Np(s,s') D Ng(s,s')
FIp(s) D Ig(s)
=[Pl > [(P A E)Q]
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Note that any global invariant p can be used in proving the stepwise sim-
ulation. This is what justifies the use in Section 4 of the invariant even?(z) A
odd?(z) A odd?(y) in showing that the strengthening of the specification @ with
D is redundant.

6 Liveness

Compositional liveness reasoning is needed for showing progress properties for
a component contingent on similar progress properties of other components.
For example, the FIFO buffer can only guarantee that an output will always
eventually be written if the environment can guarantee that a value in the out
variable will always eventually be read.

Liveness or progress assumptions have to be handled with some care in com-
positional verification. For example, suppose a component P guarantees that
output z is eventually 4 assuming the input z is eventually 3, and conversely,
component ) guarantees an eventual output 3 on z assuming that the input z is
eventually 4. If the guarantee properties are used to discharge assumptions, then
the composed system P||Q) guarantees that z will eventually take on the value
4 and that eventually z will take on the value 3. This would be unsound since
the system actually need not obey either eventuality for z or z and the individ-
ual assume-guarantee properties would still be satisfied. The assume-guarantee
proof rule is carefully crafted to rule out this kind of circularity by ensuring in
premise 2 that the assumptions have to be satisfied solely from the safety parts of
the guarantee properties. Component liveness properties are instead expressed as
implications in the property C; of a component P;, where the antecedent of the
implication is the fairness constraint on the other component. This antecedent is
of course easily discharged in the conjunction C; A Cs if Cy includes the fairness
condition of Ps.

To admit proofs of liveness properties in lazy composition, it will be necessary
to extend the notion of a transition system to include fairness conditions. An
asynchronous transition system with fairness is of the form (X; I, N, F') where F
is a fairness property that a valid computation must satisfy, i.e., [(I, N, F)] =
[(I, N)] A F. 1t is desirable that the F' component be used only to establish
progress properties so that any safety property should follow from the system
(X;1,N) without F. For this to be the case, the fairness condition F' should
be machine closed, i.e., any finite prefix o[n] in (I, N) should be extendable
to a sequence o[n] o p in [(I, N, F)]. F' is machine closed with respect to the
transition system [(I, N)] iff [(I, N, F)]° = [(I,N)]. For example, if P is a
transition system with only one state component z whose value is initially 0,
and a next-state relation '’ = z + 2V z' =z + 3V z' = z, then the property
eventually x = 3 is not a machine-closed fairness condition since it excludes
the computations in which x takes the value 2.

Typical notions of fairness such as weak and strong fairness are machine
closed with respect to the closed interpretation of a single transition system.
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An action r is said to be enabled in a state s, formally enabled(r)(s), iff there
exists a state s’ such that r(s,s’) holds. A predicate p holds infinitely often on
a sequence o iff Vi : 35 : j > i A p(o(j)). Similarly, an action r holds infinitely
often on ¢ iff Vi : 35 : 5 > i Ar(o(j),0(5 + 1)). A sequence o is said to be
weakly fair with respect to an action r iff either —enabled(r) holds infinitely
often or r holds infinitely often on o. A sequence o is said to be strongly fair
with respect to action r iff r holds infinitely often on o when enabled(r) does. It
can be shown that F' is machine closed with respect to transition system (I, N)
if F'is a conjunction of weak and strong fairness assertions on actions ry,...,r,
such that each r; is unblocked in (I, N)? i.e.,

[(I, N)] |= invariant enabled(r;) D enabled(r; A N).

When F' is machine closed with respect to (I, N), we say that the fair transition
system (I, N, F') is machine closed.

The situation is not so simple for transition systems whose computations
include both component and environment transitions. The definition of compo-
sition for fair asynchronous transition systems is

2

(I, N1, F1)|[{I2, N2, F5) = (I; A I, Ny V N2, Fi A F»).

The purpose of distributing the fairness conditions among the various compo-
nents is to allow componentwise properties to be deduced using just the relevant
global fairness conditions. In particular, machine closure is defined only with
respect to a closed interpretation so that it is only required for specifications
such as P//E or Pf x P§. Given the above definition of composition for fair
asynchronous transition systems, all fairness conditions are global and apply to
all components.

In a blackbox style of component specification, implementability considera-
tions require the component fairness condition to be machine closed with respect
to the open interpretation, and also receptive, i.e., machine closed without rely-
ing on cooperation from the environment. The receptiveness constraint on the
fairness condition can exclude unconditional strong fairness constraints since a
hostile environment can enable and disable a component action r without allow-
ing the component a chance to execute r. Receptiveness is a sensible restriction
when specifying an open component operating in an uncontrolled environment,
but this is not the situation in compositional verification since the environment
includes components whose specifications are an integral part of the design.

Given the definition of composition extended with fairness conditions, the
definitions of the operations ® and x remain unchanged from Section 3. The
property preservation results claimed in Theorem 2 also holds in the presence of
fairness conditions.

5 Abadi and Lamport [AL95] state this constraint differently by requiring each r; to
be a possible program action. This is equivalent since the fairness constraint r; can
just as well taken to be N Ar;.
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There is however one serious problem with lazy composition in the presence
of fairness. The co-imposition Pf x P§ of machine-closed specifications P // Eq
and P,//E5 is not necessarily machine closed. The co-imposition contains the
conjunctions P; A FEs, P> A E1, and E; A E5. The conjunction of two transitions
systems <Il,N1,F1> A <IQ,N2,F2> is defined as <Il A IQ,Nl /\Nz,Fl A F2> Since
the actions of the conjoined transition system are specified by N; A Ny which is
more constrained than either Ny or N, the fairness condition F; A F> might not
be machine closed in the resulting transition system. For example, let ' = z + 1
be a possible action of P; where P; initializes z to 0 and has no actions that
decrement or reset z. Then it can be proved of [Pf] that if the increment action
is weakly fair, then eventually z = 3. However, if Ey in P5 requires that z
not be incremented, then the set of computations [Pf x P§] is empty since the
only possible computations are those where the value of z is never changed and
these are ruled out by the weak fairness requirement on the increment action. Of
course, the property eventually = = 3 is vacuously preserved in this case. Note
that machine closure is violated in this example even if Es contains no fairness
conditions simply because Fs blocks a fair action of P;.

There is therefore a proof obligation that the system P} x Ps be shown to
be machine closed. In the special case of fairness conditions that only contain
weak and strong fairness assertions, this proof obligation can be discharged by
showing that each fair action is unblocked in the combined system.

The notion of refinement used to eliminate environment constraints has to
be extended to fair asynchronous transition systems. The goal is to show that
= [{Ip,Np, Fp)] D [{Ig,Nq, Fg)]. For this, we need to add one additional
premise to the refinement rule in Section 5.

Theorem 5.
[P] E invariant r
[Q] E invariant p
F p(s) Ar(s,s’) ANp(s,s') D Ng(s,s')
FIp(s) D Ig(s)
= [{Ip,Np, Fp)] D Fg
—1PI5 Q]

The discharging of the new premise can require temporal reasoning. For the
case of fairness conditions that are conjunctions of weak and strong fairness
assertions, one can simply show that to any weakly fair action r; in @), there is
a weakly or strongly fair action r; in P such that

[{Ip, Np)] = invariant 7 D r;
and
[{Ip, Np)] |= invariant enabled(r;) D enabled(r; A Np).

Similarly, to each strongly fair action in @, there must be a corresponding
strongly fair action in P.

20



Returning to the example of the FIFO buffer, if the actions read and write
are weakly fair, and the unload action for the buffer environment is weakly fair,
then in any fair computation of this transition system it is always the case that
a state in which z = in # — is eventually followed by (i.e., leads to, in the
terminology of temporal logic) a state in which out = z.

7 Discussion

We have argued thus far that lazy composition is superior to the assume-
guarantee method for compositional verification on the grounds that:

1. Lazy composition employs proof methods that are already familiar whereas
the assume-guarantee proof rule is quite formidable.

2. Assume-guarantee methods require specifications that can anticipate future
environment constraints.

3. The assume-guarantee assumptions apply to both component and environ-
ment and it is awkward to restrict these so that they only constrain the
environment.

4. Assume-guarantee specifications are more appropriate for writing blackbox
characterizations of open components rather than for compositional verifica-
tion where the point is to achieve a useful decomposition of the verification
task.

The advantage of lazy composition with respect to non-compositional, global
reasoning as characterized by the Owicki-Gries approach [OG76] is that it com-
bines the simplicity of global reasoning with the economy of using an abstract
characterization of the environment rather than the actual components in the
environment. This abstract characterization can be used to prove a number of
component properties. The actual components can then be shown to conform to
this abstract characterization by means of a refinement proof.

The Owicki-Gries approach is subsumed by lazy composition. If P is a
component that is required to satisfy an invariant p, then we can take the
environment F to be the transition system that merely preserves p, i.e., F
Ng(s,s') A p(s) D p(s'). Then the refinement proof obligation reduces to a
global demonstration that each component that is composed with P preserves
the invariant. This is obviously the most general assumption one can make of an
environment to P given that one wants to establish the invariant p, but it is not
the optimal way to use lazy composition. The more appropriate use of lazy com-
position is by describing the allowed or intended environment actions that are
relevant to the state variables that are read or written by component P and that
are needed to obtain useful properties of P. Thus lazy composition modularizes
the global reasoning by identifying suitable abstractions for the environment of
each component.
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7.1 Other Applications of Lazy Composition

We have employed lazy composition in the verification of the safety properties
of an N-process mutual exclusion algorithm [Sha97] and the alternating-bit
communication protocol [BSW69]. These verifications have been carried out
using PVS [ORS92]. The mutual exclusion algorithm has been verified using a
combination of induction, abstraction, and model checking. The algorithm uses a
Boolean turn variable for each process to arbitrate access to successive rounds of
competition using 2-process mutual exclusion, for eventual access to the critical
section. The environment to each process has to be constrained to not affect
the value of this turn variable in an undesirable way, e.g., when a process has
checked the turn value and has entered its critical section.

The example of the alternating-bit protocol consists of a sender process, a
receiver process, and the message and acknowledgement channels. The sender
process constrains its environments merely to drop messages from the message
channel, and the receiver process similarly constrains the value of the acknowl-
edgement channel. With these constraints, it is possible to carry out a modular
verification of the safety property of the alternating-bit protocol where all the
invariants are proved solely by local reasoning in terms of the receiver or the
sender process, possibly using previously proved global invariants.

8 Conclusions

We have presented the details of the paradigm of lazy compositional verification.
This approach has several advantages over the assume-guarantee paradigm. We
have formalized lazy composition verification within PVS [ORS92] and verified
several medium-scale examples with this approach. We do not yet have any con-
clusive evidence that the method scales up to larger systems. Lazy composition
can be adapted to models other than asynchronous transition systems by suit-
ably altering the definitions of composition, conjunction, and refinement. Lazy
composition does not need any new verification machinery since it builds on
existing techniques for proving safety, liveness, and refinement properties.
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