
Lazy Compositional Veri�cation?Natarajan ShankarComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USAshankar@csl.sri.comURL: http://www.csl.sri.com/~shankar/Phone: +1 (415) 859-5272 Fax: +1 (415) 859-2844Abstract. Existing methodologies for the veri�cation of concurrent sys-tems are e�ective for reasoning about global properties of small systems.For large systems, these approaches become expensive both in terms ofcomputational and human e�ort. A compositional veri�cation method-ology can reduce the veri�cation e�ort by allowing global system prop-erties to be derived from local component properties. For this to work,each component must be viewed as an open system interacting with awell-behaved environment. Much of the emphasis in compositional ver-i�cation has been on the assume-guarantee paradigm where componentproperties are veri�ed contingent on properties that are assumed of theenvironment. We highlight an alternate paradigm called lazy compositionwhere the component properties are proved by composing the componentwith an abstract environment. We present the main ideas underlying lazycomposition along with illustrative examples, and contrast it with theassume-guarantee approach. The main advantage of lazy composition isthat the proof that one component meets the expectations of the othercomponents, can be delayed till su�cient detail has been added to thedesign.1 IntroductionIn the last two decades, there has been considerable progress in the veri�cation ofconcurrent, reactive systems. Much of the research has been devoted to the devel-opment of formalisms such as temporal logics [Eme90,Lam94,MP92,CM88] and? Supported by the Air Force O�ce of Scienti�c Research under contract F49620-95-C0044 and by the National Science Foundation under contract CCR-9509931 andCCR-9300444. Based on earlier work [Sha93b] funded by Naval Research Laboratory(NRL) under contract N00015-92-C-2177. Connie Heitmeyer, Ralph Je�ords, andPierre Collette gave useful feeback on the work cited above. John Rushby, SamOwre, and Nikolaj Bj�rner provided detailed comments on drafts of this paper.Presentations of earlier versions of this work at the meetings of IFIP Working Group2.3 and at COMPOS'97 yielded valuable insights and criticisms. Mart��n Abadi andLeslie Lamport prompt and helpful in their responses to various technical queriesand with feedback on earlier drafts.

P z

x

y

odd

odd

even

Fig. 1. Even number generatorprocess algebras [Hoa85,Mil80], and veri�cation methods [Bar85,dBdRR90,dB-dRR94, Sha93a] based on deduction [Eme90, Lam94,MP92,CM88] and modelchecking [CES86,Kur93,Hol91]. While these techniques are e�ective on smallexamples|mutual exclusion, basic cache consistency algorithms, and simplecommunication protocols|the di�cult problem of scaling these techniques upto large and realistic systems has remained largely unsolved.Large-scale concurrent systems are usually de�ned by composing togethera number of components or subsystems. The typical veri�cation methods arenon-compositional and require a global examination of the entire system. Inthe deductive approach to veri�cation, this means that a property such as aninvariant has to be veri�ed with respect to each transition of all of the com-ponents in the system. Veri�cation approaches based on model checking alsofail to scale up gracefully since the global state space that has to be exploredcan grow exponentially in the number of components [GL94]. The purpose of acompositional veri�cation approach is therefore to shift the burden of veri�cationfrom the global level to the local, component level so that global properties areestablished by composing together independently veri�ed component properties.To motivate compositional veri�cation, we can consider a very simple exam-ple of an adder component P shown in Figure 1 that adds two input numbersx and y and places the output in z. Here x, y, and z can be program variables,signals, or latches depending on the chosen model of computation. The systemcontaining P as a component might require its output z to be an even number,but obviously P cannot unconditionally guarantee this property of the outputz. It might be reasonable to assume that the environment always provides oddnumber inputs at x and y, so that with this assumption it is easy to show thatthe output numbers at z are always even. Only local reasoning in terms of P isneeded to establish that z is always even when given odd number inputs at xand y.If, as is shown in Figure 2, P is now composed with another component Qthat generates the inputs at x and y, then to preserve the property that onlyeven numbers are output at z, Q must be shown to output only odd numbersat x and y. However, the demonstration that Q provides only odd numbers asoutputs at x and y might require assumptions on the inputs taken by Q, where zitself might be such an input. If in showing that Q produces odd outputs at x and2

PQ
x

y

zz

odd

odd

even

Fig. 2. Odd and even number generatorsy, one has to assume that the z input is always even, then we have an obviouscircularity and nothing can be concluded about the oddness or evenness of x, y,and z. If this circularity can somehow be broken, we then have a form of well-founded mutual recursion between P and Q that admits a proof by simultaneousinduction that x and y are always odd and z is always even. The circularity canbe broken by noting that that a z output for P is even as long as the precedingx and y inputs are odd, and the x and y outputs for Q are odd as long as thepreceding z input is even.The assume-guarantee paradigm is the best studied approach to composi-tional veri�cation [AL93,AL95,AP93,CMP94,Col93,Hoo91,Jon83,MC81,PJ91,Pnu84, Sta85,XCC94,XdRH97, Zwi89]. In this approach, a property of a com-ponent is stated as a pair (A;C) consisting of a guarantee property C that thecomponent will satisfy provided the environment to the component satis�es theassumption property A. The interpretation of (A;C) has to be carefully de�nedto be non-circular. Informally, a component P satis�es (A;C) if the environ-ment to P violates A before the component fails to satisfy C. When two or morecomponents, P1 satisfying (A1; C1) and P2 satisfying (A2; C2), are composedinto a larger component P1kP2, the assumption A together with property C1 ofcomponent P1 must be used to show that P1 does not violate assumption A2,and correspondingly, A and C2 must be used to show that P2 does not violateA2. Discharging these proof obligations allows one to conclude that the com-posite component P1kP2 has a similar property (A;C) where C follows from A,C1, and C2. The assume-guarantee technique as described informally still su�ersfrom the earlier circularity. The formal details of the assume-guarantee techniqueare deferred to Section 2. The assume-guarantee approach has been more widelystudied than actually used. The primary di�culty in applying this approach forcompositional veri�cation is that it requires component guarantee properties tobe strong enough to entail any potential environment constraints. It is obviouslynot easy to anticipate all the potential constraints that might be placed on acomponent by the other components in a system.The lazy composition approach advocated in this paper builds on conven-tional techniques while avoiding the di�culties associated with the assume-guarantee approach [Sha93b]. Lazy composition works at the level of the speci�-cation of component behavior. In lazy composition, a property C of a component3

speci�ed as P is actually proved of the system PkE obtained by composing Pwith an abstract environment speci�cation E that captures the expected behav-ior of the environment. When the component speci�cation P is composed withanother component speci�cation Q, then C might no longer be a property of thespeci�cation PkQ since Q might not satisfy the constraint E. However, C is aproperty of the composition Pk(Q^E) obtained by strengthening Q to addition-ally satisfy E. This allows local properties such as C to be used as global prop-erties of the speci�cation of a larger system. If in fact the combined speci�cationPk(Q^E) can be simpli�ed to PkQ, then clearly the constraint E is redundantand can be eliminated. However, it is not imperative that (properties guaran-teed by) Q already imply E as is the case with the assume-guarantee technique.While the assumed environment speci�cation has eventually to be shown to holdof the other components in the system, this proof obligation can be dischargedlazily as the system design is being re�ned. The demonstration that Pk(Q ^E)is re�ned by PkQ uses inductive reasoning on computations so that any possi-ble circularity between assumptions E and guarantees C is avoided. Thus lazycomposition allows global properties to be proved by local component-wise rea-soning combined with a one-time demonstration that each component satis�esthe accumulated constraints imposed by the other components. There are sev-eral other tradeo�s between lazy composition and assume-guarantee reasoningthat are discussed in Section 3.The lazy composition approach is quite general and can be applied to a widevariety of synchronous and asynchronous computational models, but this paperconsiders only one such model, namely, asynchronous transition systems withinterleaving composition.We �rst present some background on compositional veri�cation in Section 2.Lazy composition is introduced in Section 3. Some examples illustrating the useof lazy composition in verifying safety properties are presented in Section 4.The elimination of environment constraints by means of re�nement proofs isdescribed in Section 5. The veri�cation of liveness properties using lazy compo-sition is given in Section 6. A comparison between lazy composition and othercompositional approaches is given in Section 7.2 BackgroundThe presentation in this paper is entirely at the semantic level where we aredealing with states, predicates (sets) and relations on states, computations asin�nite sequences of states, and properties as sets of computations. We will alsospeak of sets of sequences and properties interchangeably.Asynchronous Transition Systems. In its simplest form, an asynchronous tran-sition system is a triple h�; I;Ni of a state type �, an initial set of states I ,and a re
exive (stuttering-closed) next-state relation N that de�nes the possible4

atomic actions of the system. Seen as a closed system, i.e., one with no interac-tion with an outside environment,2 a valid computation of such a system consistsof an in�nite sequence of states � whose initial state �(0) is in I , i.e., I(�(0))holds, and N holds of each pair of adjacent states, i.e., for all i, N(�(i); �(i+1)).A property is a set of in�nite state sequences. If P is an asynchronous transitionsystem, the set of its computations in the closed interpretation is representedas [[P]]. The transition system P has a property A, in symbols, [[P]] j= A, i� theset of computations [[P]] is a subset of the set of sequences corresponding to theproperty A. We write j= A when the property A is valid, i.e., contains all thein�nite sequences. Properties (sets of in�nite sequences) can be combined withconnectives :A (complement), A _B (union), A ^B (intersection), and A � Bwhich is de�ned as :A _B. One transition system P re�nes another transitionsystem Q when j= [[P]] � [[Q]]. In typical usage below, a transition system willbe given as hI;Ni leaving the state type � implicit.Safety Properties. A safety property informally asserts that nothing bad hap-pens during a computation. Let �[i] represent the �nite pre�x consisting of the�rst i states �(0) : : : �(i� 1) of �. A safety property [AS85] is one that excludesan in�nite sequence � exactly when it excludes all extensions �[i] � � of some�nite pre�x �[i] of �. This means that safety properties are falsi�ed by some�nite pre�x of a sequence. For any property A, there is a property AS (thesafety closure of A) which is the strongest safety property containing A de�nedas f� j 8i : 9� : �[i] � � 2 Ag. The property (set) AS is clearly a safety property.If A is a safety property, we say that �[n] 2 A when �[n] � � 2 A for some �.Liveness Properties. Liveness properties assert that something good eventuallyhappens during the computation. Such properties hold of some in�nite extensionof any �nite sequence �, i.e, they can always be satis�ed by an appropriatelychosen sequence of states. A liveness property can exclude an in�nite sequence� but must contain some extension of �[i] for each i. Given a property A, let AL(the liveness closure of A) be A _ :AS , where :AS represents the complementof AS . Then AL is a liveness property because if for some � there is no � suchthat � � � 2 AL, then since A � AL, 8� : � � � =2 A, but then 8� : � � � =2 AS .This is a contradiction since every in�nite sequence must be in AL or AS . Thusevery property A can be expressed as the conjunction of a safety property ASand a liveness property AL [Sch87].Stuttering Invariance. A set of sequences A is stuttering invariant if whenever�[i+ 1] � � 2 A then �[i+ 1] � �(i) � � 2 A. In words, if A contains a sequence,then it contains all variants of this sequence obtained by stuttering individualstates in the sequence �nitely often. Stuttering arises naturally when there is a2 The closed interpretation here means that each transition of a valid computationsatis�es the next-state relation N leaving no room for any environment transitionsother than those already speci�ed by N .5

notion of an observation of a transition system so that some of the transitionshave no observable e�ect. Stuttering invariance is often imposed as a constrainton the allowable properties so that the resulting transition system can alwaysbe implemented using internal unobservable state components.Published explanations of assume-guarantee proof techniques often implicitlyrely on stuttering invariance without explicitly mentioning it. Stuttering invari-ance is needed to argue that if we are given safety properties A and B such that�[i] 2 A and �[i] 2 B, then �[i] 2 A ^ B. Such a result is valid if A and Bare stuttering invariant properties. To see how the result can fail to hold, letA consist of the strictly increasing sequences of even numbers and B consist ofthe strictly increasing sequences of prime numbers. Both A and B are safetyproperties that are not stuttering invariant. The singleton pre�x h2i is in bothA and B but A ^ B is empty.3Expressing Properties. The above notions of computation and property are typ-ical of the use of linear-time temporal logics for stating and proving propertiesof closed systems. Examples of such logics include{ Manna and Pnueli's LTL [MP92] with the temporal operators
 (next-time), 2 (always), and 3 (eventually). Properties expressed in LTL that usethe
 operator are not necessarily stuttering invariant.{ Chandy and Misra's Unity [CM88] with operators invariant, stable,unless, until, and leadsto which are applied to state predicates so thattemporal formulas are not nested. Unity properties are stuttering invariant.{ Lamport's temporal logic of actions [Lam94] which drops the next-timeoperator from linear-time temporal logic but allows temporal operators torange over actions , i.e., binary relations over states. TLA is designed toadmit only stuttering invariant properties.In the examples below, we restrict ourselves to some simple operators forde�ning properties. If p is a predicate on states, then1. invariant p holds of � i� 8i : p(�(i)). This is a safety property.2. eventually p holds of � i� 9i : p(�(i)). This is a liveness property for anysatis�able predicate p since any �nite sequence can be extended to one inwhich p eventually holds.For a given transition system hI;Ni, the invariance of p can be proved usinginduction by showing that for all states s in �, ` I(s) � p(s), and for all statess and s0, and ` p(s) ^N(s; s0) � p(s0).3 A weaker requirement than stuttering invariance su�ces for the soundness of theassume-guarantee proof reasoning methods. A safety property A must include thein�nite sequence �[i+1]��(i)! obtained by in�nitely stuttering the last state of anynonempty �nite pre�x �[i+ 1] in A. 6

Components as Open Systems. The next step is to extend the model to opensystems so that components can be independently speci�ed and composed toform larger systems. If � is the set of global states of the large system, then acomponent i can be given as a triple h�; Ii; Nii. However, we can no longer takethe closed interpretation since a computation must include the actions takenby other components. In the open system interpretation, a computation is anin�nite sequence of states whose initial state is in Ii and each pair of adjacentstates is either related by Ni or is an arbitrary environment transition. The opensystem interpretation is much too liberal and does not admit any interestingproperties since there are no constraints on the environment actions. This canbe partially overcome by placing weak constraints on the environment actions,e.g., the values of the local variables of a component must be left unchangedby its environment. With some constraint on the environment actions, one canactually verify reasonably interesting local properties of a component. For ex-ample, in TLA [Lam94], the next-state relation of a component is written as[N]f which holds of a pair of states s, s0 when N(s; s0)_ f(s0) = f(s). The statefunction f typically projects out the local variables of the component so that theenvironment transitions must not a�ect the values of these variables. In Lynchand Tuttle's I/O automata [LT87], a component is an input-enabled automatonwith its own local state so that any component properties established with re-spect to this interpretation remain globally valid even in composition with othercomponents.Even with such restrictions on the environment behavior, the open systeminterpretation is somewhat weak since many properties of a component can onlybe proved by assuming a stronger degree of cooperation from the environment.We have already seen the example of the adder component of Figure 1 whichcan be shown to always output even numbers when given odd number inputs byits environment.The Owicki{Gries Method. The Owicki{Gries method [OG76] is the �rst at-tempt at a component-wise decomposition of the veri�cation problem. In thismethod, one proves a global invariant of the composition P1kP2 by showing itto be a local invariant of one of the components, say P1, and a stable predicate,i.e., one that is never falsi�ed, of the other component P2. In other words, onecomponent establishes the invariant and the other component does not falsify it.This method is not really compositional since it requires global reasoning on allthe actions of each component in order to establish an invariant. The Owicki{Gries method was originally proposed in the framework of a proof-outline logicwhere program components are annotated with assertions. Such program-basedproof methods can be quite restrictive when compared to the use of high-levelbehavioral speci�cations as given by asynchronous transition systems.Compositional Veri�cation Using the Assume-Guarantee Approach. Theassume-guarantee approach originally proposed by Jones [Jon83] and Misra andChandy [MC81] is perhaps the most widely studied compositional veri�cation7

technique for concurrent systems. The presentation of this approach given belowis adapted from Abadi, Lamport, and Plotkin [AL93, AL95, AP93] and Col-lette [Col94]. An assume-guarantee speci�cation of a a component property isgiven as a pair (A;C) consisting of an assumption property A and a guaranteeproperty C. To capture (A;C) is de�ned as A +��. C (A secures C) which isthe subset of A � C de�ned as f� 2 A � C j 8i : �[i] 2 AS � �[i + 1] 2 CSg.Thus A +��. C rules out unrealizable implementations of A � C that exhibitcomputations where CS fails before the failure of AS can be detected by thecomponent. Similarly, A ��. C (A maintains C) is the set of � in A � C suchthat for all i, �[i] 2 A � �[i] 2 C. Note that A +��. C � (A � C)^(AS +��. CS),and A ��. C � (A � C) ^ (AS ��. CS).Composition of components P1kP2 is de�ned so that [[P1kP2]] is the inter-section of [[P1]] and [[P2]]. Since P1 and P2 are speci�ed to allow environmenttransitions, the composition of P1 and P2 includes all the interleavings of P1and P2 actions, but also contains computations with simultaneous P1 and P2actions.4The main compositionality rule in the assume-guarantee method [AL95] isstated in Theorem 1.Theorem 1. Pi j= Ai +��. Ci; for i = 1; 2j= AS ^ CS1 ^ CS2 � A1 ^A2j= A +��. (C1 ^ C2 ��. C)P1kP2 j= A +��. C:In words, in order to show that the composition P1kP2 has property A +��. C,it su�ces to establish the following premises of the compositionality rule:1. Each Pi has property Ai +��. Ci.2. The individual environment constraints A1 and A2 must be satis�ed by theconjunction of the safety parts of the joint environment constraint A andthe guarantee properties C1 and C2.3. The joint commitment C must be maintained by the individual commitmentsC1 and C2 when secured by the environment assumption A.The formal details justifying the assume-guarantee rule are fairly elaborate,but we can brie
y convey some of the intuition by sketching the soundness4 To obtain a strict interleaving of P1 and P2 actions, such joint actions can beexcluded by asserting that the variables written by P1 and P2 must be disjoint andnever simultaneously updated. Another approach is to label each transition withthe agent associated with it, and to have a disjoint set of agents associated withcomponents P1 and P2. 8

argument. It is su�cient to focus our attention on in�nite sequences � such that� 2 (A1 +��. C1) ^ (A2 +��. C2). To show � 2 A +��. C, we need to prove both� 2 A � C and � 2 AS +��. CS . The argument proceeds in three steps:{ � 2 (AS +��. CS1 ^ CS2).That is, for any n, �[n] 2 AS implies �[n+1] 2 CS1 ^CS2 . This can be provedby induction on n using premises 1 and 2 while noting that the stutteringinvariance of AS , CS1 , and CS2 is used in this argument.{ � 2 AS +��. CS .By premise 3, for any n, �[n] 2 AS implies �[n + 1] 2 CS1 ^ CS2 ��. CS .From step 1, we therefore have �[n+ 1] 2 CS .{ � 2 A � C. For � 2 A, since A � AS , we have by AS +��. CS1 ^ CS2 that� 2 CS1 ^ CS2 . By premise 2, this yields � 2 A1 ^ A2. By premise 1 and thede�nition of +��., we have that � 2 C1 ^ C2. We can then apply premise 3with the de�nitions of the connectives +��. and ��. to obtain � 2 C.There are some approaches to modular veri�cation based on model check-ing that employ a weak form of assume-guarantee reasoning. In the work ofGrumberg and Long [GL94], assume-guarantee properties (A;C) are treatedas implications A � C and not A +��. C. Note that the use of implication forassume-guarantee reasoning is not valid in general, and is sound only for a re-stricted form of Theorem 1 where the cycle of dependencies between A1, C2, A2,and C1 has been broken. If A and C are just linear-time temporal logic (LTL)formulas, then LTL model checking can be used to verify A � C of componentP since this implication is also in LTL. If C is a CTL or CTL* formula, thenthe situation is more complicated since the implication A � C is not a well-formed CTL or CTL* state formula, and furthermore, it does not capture theintended meaning of A as an assumption [Jos90] which is that C must hold onthe computation tree whose paths have been pruned according to A. Then, Acan be chosen as a 8CTL formula that characterizes the subtree of the compu-tation tree that meets the assumption. For the case of 8CTL assumptions andsynchronous Moore machine composition, Grumberg and Long give a way ofcompiling the assumption A into a tableau automaton AT so that PkAT j= Ci� P j= A � C. Kupferman and Vardi [KV96] analyze the complexity of variouslinear and branching-time variants of modular model checking. Alur and Hen-zinger [AH96] give an assume-guarantee rule for proving language containmentin the context of the synchronous composition of a form of Mealy machines calledreactive modules .3 Lazy CompositionLazy composition di�ers from the assume-guarantee approach in several respects.9

1. Components are not treated as blackboxes. Compositional veri�cation merelyrequires that properties be proved locally at the component level. It doesnot require that components be treated as blackboxes for this purpose. Theassume-guarantee approach requires the assumptions to be discharged solelyby means of the guarantee properties of a component. The actual imple-mentation of the component is never used for discharging proof obligations.This means that the guarantee properties must either somehow anticipatethe possible constraints imposed by other components, or they must containimplementation details. Lazy composition on the other hand does not takea blackbox view of components and allows the behavioral speci�cation to beused for discharging the constraints imposed by other components. Since atypical high-level behavioral speci�cation might not contain enough detail todischarge such external constraints, lazy composition allows the constraintsto be discharged lazily as the speci�cation is being re�ned.Blackbox assume-guarantee speci�cations can be independently re�ned toyield implementations in terms of smaller blackbox components. Abadi andLamport [AL95] give a decomposition rule for showing that P 0kQ0 re�nesPkQ when P 0 re�nes P and Q0 re�nes Q. This rule has a premise similarto premise 2 of the compositionality rule of Theorem 1 which has the samedrawback of requiring the environment constraints to be anticipated in theblackbox speci�cation.2. Composition is not necessarily conjunction. Conjunction can be used to de-�ne the interleaving composition of two asynchronous transition systems bya suitably chosen global constraint (see [AL95] and Footnote 4). Instead ofencoding composition using conjunction, we regard the de�nition of the pre-cise notion of composition as something that is �xed by the model of com-putation and not by the inference rule for composition. For asynchronouscomposition, one takes the interleaving of the atomic actions of each compo-nent, whereas for synchronous composition, i.e., globally clocked systems,one takes the conjunction of the atomic actions. Other formalisms thathave asynchronously operating components with synchronous communica-tion, e.g., CSP [Hoa85], can be modelled by means of a suitable de�nitionof composition.3. Environment assumptions are speci�ed as abstract components not proper-ties. One di�culty with environment assumptions as properties is that theyapply to both the environment and the component. Typically, these con-straints should apply only to environment actions and not the componentactions. If we take the example of a bank account component, the environ-ment might be required to only deposit and not withdraw money from thecomponent but such a constraint should not apply to the component. Thereis no elegant way of stating this distinction between the component andits environment when the environment constraints are stated as propertiesrather than abstract components.4. No assume-guarantee proof obligations are generated. With lazy composi-tion, properties of a component Pi are proved in the context of an abstract10

environment Ei. The composition rule ensures that all local properties areglobal properties of the composition. It does this by adding (conjoining, asexplained below) the environment constraints of one component to the spec-i�cation of the other component so that the resulting system has the form(P1 ^ E2)k(P2 ^ E1).This form of composition appears dishonest (and lazy) since it sidestepsthe question of whether the original speci�cation of one component satis-�es the environment assumptions of the other. However, speci�cations aremeant to be partial and are therefore not always strong enough to antici-pate the environment constraints that can be placed on a component. Thebest that one can do therefore is assert that if the speci�cations of eachcomponent is strengthened with the environment constraints required bythe other component, then the resulting system satis�es the local proper-ties of both components. If a component speci�cation is strong enough todischarge any constraints placed on it, then the strengthening is redundantand can be eliminated by simpli�cation. Otherwise, an implementation ofthe component is required to satisfy the stronger speci�cation including theenvironment constraint.The
exibility in postponing the assume-guarantee proof obligations isneeded since some proofs might require the additional information that isprovided when the speci�cation is re�ned. If these proof obligations have tobe proved as in the assume-guarantee proof method, then the componentspeci�cations must be quite detailed and strong. Since no proof obligationsare discharged and environment assumptions impose additional, possiblyunanticipated, constraints on a component speci�cation, a component can-not be independently re�ned in the lazy composition approach. A componentcan only be independently re�ned when the component speci�cation alreadyimplies all the environment constraints that might be required of it. There is,however, an advantage to re�ning in the global context where these assump-tions are known since global properties can be exploited in the re�nement(see Section 5).5. Composition can yield inconsistent speci�cations. This is also the case whencomposition is de�ned as conjunction. In the case of lazy composition, thiscan arise because there is no computation that is compatible with the col-lection of constraints given in the speci�cation.Summarizing the discussion so far, lazy composition takes the middle groundbetween global veri�cation as used in the Owicki{Gries approach and the strictlymodular, property-based veri�cation used in the assume-guarantee approach.Lazy composition is a proof style that uses a suitably weak characterization ofa cooperative environment in composition with which a component can exhibita given property. Once such an environment has been identi�ed, the familiarveri�cation techniques for proving safety, liveness, and re�nement propertiescan be used. In the presentation of lazy composition, it will be assumed forconvenience that there is a �xed environment speci�cation for each component,11

but in practice, the environment can be varied according to the desired propertyof the component.We now move on to the details of lazy composition for asynchronous tran-sition systems while noting that the techniques can easily be adapted to othermodels and notions of composition. As already stated, an asynchronous transi-tion system is given by a triple h�; I;Ni consisting of the state �, an initializa-tion predicate I on the state, and a binary next-state relation N . Given such atriple P of the form h�; I;Ni, the closed interpretation of P is written as [[P]]and de�ned as the set sequences f�jI(�(0)) ^ 8i : N(�(i); �(i + 1))g. We focusmainly on closed interpretations since one cannot prove interesting properties ofcomputations that admit arbitrary environment actions. When we are talkingabout components, we will assume that � is the global state type and omit itfrom the transition system.Given two transition systems, P1 of the form hI1; N1i, and P2 of the formhI2; N2i, the composition P1kP2 is the transition system hI1 ^ I2; N1_N2i. Notethat composition essentially yields the interleaving of the component transitions.The environment E is also given as a transition system hIe; Nei. A compo-nent together with its environment is given as a pair P==E. The set of compu-tations corresponding to P==E, i.e., [[P==E]], is de�ned as [[PkE]], i.e., the closedinterpretation of PkE. Note that though P==E and PkE have the same com-putations, the notation P==E is chosen to emphasize the syntactic asymmetrybetween component P and environment E.Given two transition systems P1 and P2, the conjunction of these, P1 ^ P2,is hI1 ^ I2; N1 ^ N2i. Let P ei denote the component-environment speci�cationPi==Ei. Given two component{environment speci�cations P e1 and P e2 , the closedco-imposition of these two speci�cations P e1
 P e2 is de�ned as the transitionsystem (P1 ^ E2)k(P2 ^ E1). The open co-imposition of P e1 and P e2 , written asP e1 �P e2 , is de�ned as (P e1
P e2)==(E1^E2) and its computations contain actionscorresponding to1. P1 but respecting E2,2. P2 but respecting E1, and3. Environment actions respecting E1 and E2.The closed co-imposition P e1
 P e2 yields a system with only the actionsof P1 and P2, whereas the open co-imposition P e1 � P e2 yields a system withenvironment actions that are constrained to conform to both E1 and E2. Bothoperators are associative and commutative. It is easy to see that the propertypreservation result given in Theorem 2 holds so that [[P e1
 P e2]] and [[P e1 � P e2]]are both subsets of [[P e1]], and hence any properties of P e1 are also properties ofP e1
 P e2 and P e1 � P e2 .Theorem 2. 1. j= [[P e1
 P e2]] � [[P e1]]2. j= [[P e1 � P e2]] � [[P e1]] 12

Environment

Bufferin outFig. 3. A FIFO bu�er with environmentWe will henceforth ignore the closed co-imposition operator since its prop-erties are similar to those of open co-imposition. The use of the co-impositionoperation in lazy composition will be illustrated in Section 4. The obvious prob-lem with lazy composition is that it asserts the property preservation of P e1 �P e2and says nothing about P1kP2. By discharging proof obligations similar to thosein Theorem 1, we can show that the transition system speci�cation P e1 � P e2is equivalent to the speci�cation (P1kP2)==(E1 ^ E2), where the latter systemcontains actions corresponding to P1 and P2 without any restrictions, and theenvironment action E1 ^ E2. In Section 5, we show that the environment con-straints can be discharged in this manner by showing that P2 re�nes E1, and P1re�nes E2. These re�nement proofs can actually be carried out in the contextof global invariants, i.e., invariants of P e1 � P e2 . The resulting re�nement proofobligations are similar to the assume-guarantee proof rule where AS ^ CS1 ^ CS2must entail A1 ^ A2.4 Using Lazy CompositionLazy composition will be illustrated by means of the example of a FIFO bu�ercomponent that is composed from two smaller FIFO bu�er components. Thisexamples has been frequently used with minor variations in the compositionalityliterature [Col93,AL95].A single (bounded or unbounded) FIFO bu�er component shown in Figure 3consists of a bu�er variable b that contains a queue of values, and the inputand output variables in and out which contain values or are empty, i.e., containa distinguished value ?. Two history variables are used to specify the correctbehavior of the bu�er. The variable inh is a stack of all the non-? values placedby the environment into in, and the variable outh is the stack of non-? valuesread by the environment from out . The non-stuttering actions of the bu�er are:{ Read a non-? value from the variable in and enqueue it at the back of bwhile setting in to ?. Formally, this is captured by the relation between the13

pre-state hin; b; out ; inh; outhi and the post-state hin 0; b0; out 0; inh 0; outh 0i asread 4= 8>>>>>><>>>>>>: in 6= ?^ b0 = enqueue(in; b)^ in 0 = ?^ out 0 = out^ outh 0 = outh^ inh 0 = inh{ Dequeue a value from the front of queue b and place this value in the variableout when out is empty. Formally,write 4=8>>>>>>>><>>>>>>>>:
nonempty?(b)^ out = ?^ b0 = dequeue(b)^ out 0 = front(b)^ outh 0 = push(front(b); outh)^ in 0 = in^ inh 0 = inhIn the initial state, all the variables associated with the bu�er are empty.Formally, initb 4= (out = ?^ b = outh = null):The bu�er component P is then given by the pair hinitb; read _ writei.The environment component initializes the variables in and inh so that theyare both empty: inite 4= (in = ?^ inh = null):In each non-stuttering action, the environment leaves b unchanged and maychange the value of in when empty and may set the value of out to ?. Formally,load 4= (in = ?^ in 0 6= ?^ inh 0 = push(in 0; inh))unload 4= (out 6= ?^ out 0 = ?^ outh 0 = outh)env 4= 8<: (load _ (in 0 = in ^ inh 0 = inh))^ (unload _ (out 0 = out ^ outh 0 = outh))^ b0 = bThe environment component E is given by the pair hinite; envi.It is easy to prove by induction that[[P==E]] j= invariant inh = in � q2s(b) � outh;where � is stack concatenation, q2s(b) converts the queue b into a stack byrepeatedly pushing elements from the front of queue b, and in is push(in; empty)when in 6= ?, and empty , otherwise. We have thus proved an invariant of a bu�ercomponent P by assuming that the environment behavior is as speci�ed by E.14

Environment

in mid outBuffer Bufferb b1 2Fig. 4. FIFO bu�er composed from smaller bu�ersCompositional reasoning is used when two such bu�ers are composed as shownin Figure 4 to implement a single bu�er. We do this by taking one instanceP1==E1 of the bu�er as speci�ed above but renaming the variables b to b1, outto mid , and outh to midh, and a second instance P2==E2 with b renamed to b2,and where in and inh are just mid and midh, respectively. In other words, bu�erP1 communicates values to bu�er P2 via mid .Having already proved the invariant above for a FIFO bu�er P , the goalnow is to prove a similar invariant inh = in � q2s(b) � outh, for some b, for thecomposition (P1kP2)==(E1 ^E2) of the two bu�ers. However, we cannot use theinvariant proved of P for composite bu�ers with P1 and P2 since those invariantsare proved for the systems P1==E1 and P2==E2.The claim j= [[(P1kP2)==(E1 ^ E2)]] � [[P1==E1]] is not provable since thede�nitions of P1 and P2 are not strong enough to imply the constraints E2 andE1, respectively. This is because E1 speci�es that each environment action mustleave the bu�er variable b1 unchanged and that the variable in must be writtenonly by the environment. The actions of P2 place no constraints on the updateof the values of b1 or in. Since we cannot demonstrate j= [[(P1kP2)==(E1^E2)]] �[[P1==E1]], the invariant for P e1 , namely, inh = in � b1 �midh, cannot be used asa global invariant of (P1kP2)==(E1 ^E2).The best that we can do therefore is to conclude j= [[P e1 �P e2]] � [[P e1]]^ [[P e2]],so that the conjunction of the individual invariants holds for P e1 �P e2 . From theconjunction of the two invariants:1. [[P e1 � P e2]] j= invariant inh = in � q2s(b1) �midh2. [[P e1 � P e2]] j= invariant midh = mid � q2s(b2) � outhwe can conclude[[P e1 � P e2]] j= invariant inh = in � q2s(b1) � q2s(mid) � q2s(b2) � outh:So if we take b to be s2q(q2s(b1) � mid � q2s(b2)) where s2q is the inverse ofq2s and converts a stack back into the corresponding queue, we have the desiredinvariant inh = in � q2s(b) � outh for P e1 � P e2 .15

In proving this invariant, we have used only the corresponding invariantsof the component bu�ers and some elementary lemmas about the concatena-tion operation. We have not directly used the speci�cation of individual bu�ersthemselves. We have worked at the level of the speci�cation of the behaviorof the individual bu�ers rather than the corresponding program which wouldbe a complete speci�cation of each transition. Since speci�cations can be par-tial, it makes sense to conjoin the environment constraints to the componentspeci�cation rather than discharge them as proof obligations. Thus a more de-tailed implementation will have to satisfy the higher-level speci�cation of thecomponent as well as the constraints on the component imposed by the othercomponents in the combined system.When re�ning P1 to a more re�ned speci�cation or a program in the contextP e1 � P e2 , it is valid to use all the global invariants that have been proved ofP e1 � P e2 . The introductory example involving odd and even numbers can beused to illustrate the use of such invariants in re�nement. The system P thereis of the form hIP ; NP i whereIP 4= even?(z)NP 4= (z0 = x+ y) ^ (x0 = x) ^ (y0 = y)If P 's environment constraint D is of the form hID ; NDi whereID 4= odd?(x) ^ odd?(y)ND 4= odd?(x0) ^ odd?(y0) ^ z0 = zthen we can prove the invariant even?(z) ^ odd?(x) ^ odd?(y) for the systemP==D. Let Q be de�ned to be hIQ; NQi whereIQ 4= odd?(x) ^ odd?(y)NQ 4= (x0 = x+ z) ^ (y0 = y + z) ^ (z0 = z)Let E be the unconstrained system consisting of the everywhere-true initial-ization predicate and next-state relation. We would now like to show that theconstraint D is satis�ed by Q, but this is not true in general. It does howeverhold in the context of the invariant even?(z) ^ odd?(x) ^ odd?(y). The use ofinvariants allows [[(P==D) � (Q==E)]] to be simpli�ed to [[PkQkD]] since P ^ Esimpli�es to P , D ^ E simpli�es to D, and Q ^D can be simpli�ed to Q given` even?(z) ^ odd?(x) ^ odd?(y) ^NQ � ND:We show how invariants can be used in proving a re�nement relation betweentwo transition systems using stepwise simulation in the next section.
16

5 Discharging Proof Obligations by Re�nementWe now examine how the familiar notion of re�nement via simulation can be usedto simplify away the environment constraints E1 and E2 in the lazy compositionP e1 �P e2 . This is analogous to the assume-guarantee proof obligations (premise 2)except that lazy composition is more
exible about how and when these proofobligations are discharged. Recall that in the assume-guarantee approach, theassumptions of one component had to be discharged using the guarantee proper-ties of all the components along with the global environment constraints. As wenoted, this has the disadvantage that the guarantee properties have to be chosento somehow anticipate the likely environment constraints. By contrast, in lazycomposition, these proof obligations are discharged lazily during re�nement.The re�nement rule establishes the conclusion j= [[P]] � [[Q]] by showing thateach transition of P can be simulated by a transition of Q . In particular, thismeans that P inherits all the properties of Q. The simulation of P transitionsby Q transitions can be shown in the presence of invariants of P and Q. Theinvariants might be needed because the simulation relation between the actions ofP and Q might not hold outside their respective reachable states. The invariantthat is used for P can be an action invariant, a binary relation r on � such that8i : r(�(i); �(i + 1)). In this case, we say that invariant r holds of �. Given astate predicate p, an action r, and two transition systems P and Q of the formhIP ; NP i and hIQ; NQi, respectively, the re�nement rule is stated in Theorem 3.Theorem 3. [[P]] j= invariant r[[Q]] j= invariant p` p(s) ^ r(s; s0) ^NP (s; s0) � NQ(s; s0)` IP (s) � IQ(s)j= [[P]] � [[Q]]The proof of the re�nement rule is by a straightforward induction on thelength of the computations in [[P]]. The relevance of the re�nement rule for com-positional veri�cation is that we can use it to eliminate the constraints imposedon one component by another. When composing speci�cations using the co-imposition operator, we end up with a speci�cation P e1 �P e2 which is equivalentto (P1 ^ E2)k(P2 ^ E1)k(E1 ^ E2). To eliminate, say, E2 from this speci�ca-tion, we need to show that (P1 ^ E2)k(P2 ^ E1)k(E1 ^ E2) can be re�ned byP1k(P2 ^ E1)k(E1 ^ E2). The constraint E1 can also be similarly eliminated.This kind of re�nement can be carried out with the aid of a simple corollary tothe re�nement rule that can be used to show that [[PkQ]] re�nes [[P ^ EkQ]] byshowing that each P transitions can be simulated by an E transition.Corollary 4. [[(P ^ E)kQ]] j= invariant p` p(s) ^NP (s; s0) � NE(s; s0)` IP (s) � IE(s)j= [[PkQ]] � [[(P ^ E)kQ]]17

Note that any global invariant p can be used in proving the stepwise sim-ulation. This is what justi�es the use in Section 4 of the invariant even?(z) ^odd?(x) ^ odd?(y) in showing that the strengthening of the speci�cation Q withD is redundant.6 LivenessCompositional liveness reasoning is needed for showing progress properties fora component contingent on similar progress properties of other components.For example, the FIFO bu�er can only guarantee that an output will alwayseventually be written if the environment can guarantee that a value in the outvariable will always eventually be read.Liveness or progress assumptions have to be handled with some care in com-positional veri�cation. For example, suppose a component P guarantees thatoutput z is eventually 4 assuming the input x is eventually 3, and conversely,component Q guarantees an eventual output 3 on x assuming that the input z iseventually 4. If the guarantee properties are used to discharge assumptions, thenthe composed system PkQ guarantees that z will eventually take on the value4 and that eventually x will take on the value 3. This would be unsound sincethe system actually need not obey either eventuality for x or z and the individ-ual assume-guarantee properties would still be satis�ed. The assume-guaranteeproof rule is carefully crafted to rule out this kind of circularity by ensuring inpremise 2 that the assumptions have to be satis�ed solely from the safety parts ofthe guarantee properties. Component liveness properties are instead expressed asimplications in the property C1 of a component P1, where the antecedent of theimplication is the fairness constraint on the other component. This antecedent isof course easily discharged in the conjunction C1 ^C2 if C2 includes the fairnesscondition of P2.To admit proofs of liveness properties in lazy composition, it will be necessaryto extend the notion of a transition system to include fairness conditions. Anasynchronous transition system with fairness is of the form h�; I;N; F i where Fis a fairness property that a valid computation must satisfy, i.e., [[hI;N; F i]] �[[hI;Ni]] ^ F . It is desirable that the F component be used only to establishprogress properties so that any safety property should follow from the systemh�; I;Ni without F . For this to be the case, the fairness condition F shouldbe machine closed , i.e., any �nite pre�x �[n] in hI;Ni should be extendableto a sequence �[n] � � in [[hI;N; F i]]. F is machine closed with respect to thetransition system [[hI;Ni]] i� [[hI;N; F i]]S = [[hI;Ni]]. For example, if P is atransition system with only one state component x whose value is initially 0,and a next-state relation x0 = x + 2 _ x0 = x + 3 _ x0 = x, then the propertyeventually x = 3 is not a machine-closed fairness condition since it excludesthe computations in which x takes the value 2.Typical notions of fairness such as weak and strong fairness are machineclosed with respect to the closed interpretation of a single transition system.18

An action r is said to be enabled in a state s, formally enabled(r)(s), i� thereexists a state s0 such that r(s; s0) holds. A predicate p holds in�nitely often ona sequence � i� 8i : 9j : j > i ^ p(�(j)). Similarly, an action r holds in�nitelyoften on � i� 8i : 9j : j > i ^ r(�(j); �(j + 1)). A sequence � is said to beweakly fair with respect to an action r i� either :enabled(r) holds in�nitelyoften or r holds in�nitely often on �. A sequence � is said to be strongly fairwith respect to action r i� r holds in�nitely often on � when enabled(r) does. Itcan be shown that F is machine closed with respect to transition system hI;Niif F is a conjunction of weak and strong fairness assertions on actions r1; : : : ; rnsuch that each ri is unblocked in hI;Ni,5 i.e.,[[hI;Ni]] j= invariant enabled(ri) � enabled(ri ^N):When F is machine closed with respect to hI;Ni, we say that the fair transitionsystem hI;N; F i is machine closed.The situation is not so simple for transition systems whose computationsinclude both component and environment transitions. The de�nition of compo-sition for fair asynchronous transition systems ishI1; N1; F1ikhI2; N2; F2i 4= hI1 ^ I2; N1 _N2; F1 ^ F2i:The purpose of distributing the fairness conditions among the various compo-nents is to allow componentwise properties to be deduced using just the relevantglobal fairness conditions. In particular, machine closure is de�ned only withrespect to a closed interpretation so that it is only required for speci�cationssuch as P==E or P e1 � P e2 . Given the above de�nition of composition for fairasynchronous transition systems, all fairness conditions are global and apply toall components.In a blackbox style of component speci�cation, implementability considera-tions require the component fairness condition to be machine closed with respectto the open interpretation, and also receptive, i.e., machine closed without rely-ing on cooperation from the environment. The receptiveness constraint on thefairness condition can exclude unconditional strong fairness constraints since ahostile environment can enable and disable a component action r without allow-ing the component a chance to execute r. Receptiveness is a sensible restrictionwhen specifying an open component operating in an uncontrolled environment,but this is not the situation in compositional veri�cation since the environmentincludes components whose speci�cations are an integral part of the design.Given the de�nition of composition extended with fairness conditions, thede�nitions of the operations
 and � remain unchanged from Section 3. Theproperty preservation results claimed in Theorem 2 also holds in the presence offairness conditions.5 Abadi and Lamport [AL95] state this constraint di�erently by requiring each ri tobe a possible program action. This is equivalent since the fairness constraint ri canjust as well taken to be N ^ ri. 19

There is however one serious problem with lazy composition in the presenceof fairness. The co-imposition P e1 � P e2 of machine-closed speci�cations P1==E1and P2==E2 is not necessarily machine closed. The co-imposition contains theconjunctions P1 ^E2, P2 ^E1, and E1 ^E2. The conjunction of two transitionssystems hI1; N1; F1i ^ hI2; N2; F2i is de�ned as hI1 ^ I2; N1 ^N2; F1 ^ F2i. Sincethe actions of the conjoined transition system are speci�ed by N1 ^N2 which ismore constrained than either N1 or N2, the fairness condition F1 ^F2 might notbe machine closed in the resulting transition system. For example, let x0 = x+1be a possible action of P1 where P1 initializes x to 0 and has no actions thatdecrement or reset x. Then it can be proved of [[P e1]] that if the increment actionis weakly fair, then eventually x = 3. However, if E2 in P e2 requires that xnot be incremented, then the set of computations [[P e1 � P e2]] is empty since theonly possible computations are those where the value of x is never changed andthese are ruled out by the weak fairness requirement on the increment action. Ofcourse, the property eventually x = 3 is vacuously preserved in this case. Notethat machine closure is violated in this example even if E2 contains no fairnessconditions simply because E2 blocks a fair action of P1.There is therefore a proof obligation that the system P e1 � P e2 be shown tobe machine closed. In the special case of fairness conditions that only containweak and strong fairness assertions, this proof obligation can be discharged byshowing that each fair action is unblocked in the combined system.The notion of re�nement used to eliminate environment constraints has tobe extended to fair asynchronous transition systems. The goal is to show thatj= [[hIP ; NP ; FP i]] � [[hIQ; NQ; FQi]]. For this, we need to add one additionalpremise to the re�nement rule in Section 5.Theorem 5. [[P]] j= invariant r[[Q]] j= invariant p` p(s) ^ r(s; s0) ^NP (s; s0) � NQ(s; s0)` IP (s) � IQ(s)j= [[hIP ; NP ; FP i]] � FQj= [[P]] � [[Q]]The discharging of the new premise can require temporal reasoning. For thecase of fairness conditions that are conjunctions of weak and strong fairnessassertions, one can simply show that to any weakly fair action ri in Q, there isa weakly or strongly fair action r0j in P such that[[hIP ; NP i]] j= invariant r0j � riand [[hIP ; NP i]] j= invariant enabled(ri) � enabled(r0j ^NP):Similarly, to each strongly fair action in Q, there must be a correspondingstrongly fair action in P . 20

Returning to the example of the FIFO bu�er, if the actions read and writeare weakly fair, and the unload action for the bu�er environment is weakly fair,then in any fair computation of this transition system it is always the case thata state in which x = in 6= ? is eventually followed by (i.e., leads to, in theterminology of temporal logic) a state in which out = x.7 DiscussionWe have argued thus far that lazy composition is superior to the assume-guarantee method for compositional veri�cation on the grounds that:1. Lazy composition employs proof methods that are already familiar whereasthe assume-guarantee proof rule is quite formidable.2. Assume-guarantee methods require speci�cations that can anticipate futureenvironment constraints.3. The assume-guarantee assumptions apply to both component and environ-ment and it is awkward to restrict these so that they only constrain theenvironment.4. Assume-guarantee speci�cations are more appropriate for writing blackboxcharacterizations of open components rather than for compositional veri�ca-tion where the point is to achieve a useful decomposition of the veri�cationtask.The advantage of lazy composition with respect to non-compositional, globalreasoning as characterized by the Owicki{Gries approach [OG76] is that it com-bines the simplicity of global reasoning with the economy of using an abstractcharacterization of the environment rather than the actual components in theenvironment. This abstract characterization can be used to prove a number ofcomponent properties. The actual components can then be shown to conform tothis abstract characterization by means of a re�nement proof.The Owicki{Gries approach is subsumed by lazy composition. If P is acomponent that is required to satisfy an invariant p, then we can take theenvironment E to be the transition system that merely preserves p, i.e., `NE(s; s0) ^ p(s) � p(s0). Then the re�nement proof obligation reduces to aglobal demonstration that each component that is composed with P preservesthe invariant. This is obviously the most general assumption one can make of anenvironment to P given that one wants to establish the invariant p, but it is notthe optimal way to use lazy composition. The more appropriate use of lazy com-position is by describing the allowed or intended environment actions that arerelevant to the state variables that are read or written by component P and thatare needed to obtain useful properties of P . Thus lazy composition modularizesthe global reasoning by identifying suitable abstractions for the environment ofeach component. 21

7.1 Other Applications of Lazy CompositionWe have employed lazy composition in the veri�cation of the safety propertiesof an N -process mutual exclusion algorithm [Sha97] and the alternating-bitcommunication protocol [BSW69]. These veri�cations have been carried outusing PVS [ORS92]. The mutual exclusion algorithm has been veri�ed using acombination of induction, abstraction, and model checking. The algorithm uses aBoolean turn variable for each process to arbitrate access to successive rounds ofcompetition using 2-process mutual exclusion, for eventual access to the criticalsection. The environment to each process has to be constrained to not a�ectthe value of this turn variable in an undesirable way, e.g., when a process haschecked the turn value and has entered its critical section.The example of the alternating-bit protocol consists of a sender process, areceiver process, and the message and acknowledgement channels. The senderprocess constrains its environments merely to drop messages from the messagechannel, and the receiver process similarly constrains the value of the acknowl-edgement channel. With these constraints, it is possible to carry out a modularveri�cation of the safety property of the alternating-bit protocol where all theinvariants are proved solely by local reasoning in terms of the receiver or thesender process, possibly using previously proved global invariants.8 ConclusionsWe have presented the details of the paradigm of lazy compositional veri�cation.This approach has several advantages over the assume-guarantee paradigm. Wehave formalized lazy composition veri�cation within PVS [ORS92] and veri�edseveral medium-scale examples with this approach. We do not yet have any con-clusive evidence that the method scales up to larger systems. Lazy compositioncan be adapted to models other than asynchronous transition systems by suit-ably altering the de�nitions of composition, conjunction, and re�nement. Lazycomposition does not need any new veri�cation machinery since it builds onexisting techniques for proving safety, liveness, and re�nement properties.References[AH96] Rajeev Alur and Thomas A. Henzinger. Reactive modules. In Proceedings,11th Annual IEEE Symposium on Logic in Computer Science, pages 207{218, New Brunswick, New Jersey, 27{30 July 1996. IEEE Computer SocietyPress.[AL93] Mart��n Abadi and Leslie Lamport. Composing speci�cations. ACM Trans-actions on Programming Languages and Systems, 15(1):73{132, 1993.[AL95] Mart��n Abadi and Leslie Lamport. Conjoining speci�cations. ACM Trans-actions on Programming Languages and Systems, 17(3):507{534, 1995.22

[AP93] Mart��n Abadi and Gordon D. Plotkin. A logical view of composition. The-oretical Computer Science, 114(1):3{30, 1993.[AS85] B. Alpern and F. B. Schneider. De�ning liveness. Information ProcessingLetters, 21(4):181{185, October 1985.[Bar85] H. Barringer. A Survey of Veri�cation Techniques for Parallel Programs,volume 191 of Lecture Notes in Computer Science. Springer-Verlag, 1985.[BSW69] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliablefull-duplex transmission over half-duplex links. Communications of theACM, 12(5):260, 261, May 1969.[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of�nite-state concurrent systems using temporal logic speci�cations. ACMTransactions on Programming Languages and Systems, 8(2):244{263, April1986.[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-tion. Addison-Wesley, Reading, MA, 1988.[CMP94] Edward Chang, Zohar Manna, and Amir Pnueli. Compositional veri�cationof real-time systems. In Proceedings, Ninth Annual IEEE Symposium onLogic in Computer Science, pages 458{465, Paris, France, 4{7 July 1994.IEEE Computer Society Press.[Col93] P. Collette. Application of the composition principle to Unity-like speci-�cations. In M.-C. Gaudel and J.-P. Jouannaud, editors, Proceedings ofTAPSOFT '93, volume 668 of Lecture Notes in Computer Science, pages230{242, Berlin, 1993. Springer-Verlag.[Col94] Pierre Collette. An explanatory presentation of composition rules forassumption-commitment speci�cations. Information Processing Letters,50(1):31{35, April 1994.[dBdRR90] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. StepwiseRe�nement of Distributed Systems: Models, Formalisms, Correctness, vol-ume 430 of Lecture Notes in Computer Science. Springer Verlag, 1990.[dBdRR94] J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. A Decadeof Concurrency: Re
ections and Perspectives, volume 803 of Lecture Notesin Computer Science, Noordewijkerhout, The Netherlands, 1994. SpringerVerlag.[Eme90] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,Handbook of Theoretical Computer Science, volume B: Formal Models andSemantics, chapter 16, pages 995{1072. Elsevier and MIT press, Amster-dam, The Netherlands, and Cambridge, MA, 1990.[GL94] Orna Grumberg and David E. Long. Model checking and modular ver-i�cation. ACM Transactions on Programming Languages and Systems,16(3):843{871, 1994.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall In-ternational Series in Computer Science. Prentice Hall, Hemel Hempstead,UK, 1985.[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.[Hoo91] J. Hooman. Speci�cation and Compositional Veri�cation of Real-Time Sys-tems, volume 558 of Lecture Notes in Computer Science. Springer Verlag,1991.[Jon83] C. B. Jones. Tentative steps toward a development method for interferingprograms. ACM TOPLAS, 5(4):596{619, 1983.23

[Jos90] B. Josko. Verifying the correctness of AADL modules using model check-ing. In de Bakker et al. [dBdRR90], pages 386{400.[Kur93] R.P. Kurshan. Automata-Theoretic Veri�cation of Coordinating Processes.Princeton University Press, Princeton, NJ, 1993.[KV96] O. Kupferman and M. Y. Vardi. Module checking. In R. Alur and T. A.Henzinger, editors, Computer-Aided Veri�cation96, volume 1102 of LectureNotes in Computer Science, pages 75{86. Springer Verlag, 1996.[Lam94] Leslie Lamport. The temporal logic of actions. ACM TOPLAS, 16(3):872{923, May 1994.[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributedalgorithms. In Proceedings of the sixth Annual Symposium on Principlesof Distributed Computing, New York, pages 137{151. ACM Press, 1987.[MC81] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEETransactions on Software Engineering, 7(4):417{426, July 1981.[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of LectureNotes in Computer Science. Springer-Verlag, 1980.[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-current Systems, Volume 1: Speci�cation. Springer-Verlag, New York, NY,1992.[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-grams. Acta Informatica, 6:319{340, 1976.[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cationsystem. In Deepak Kapur, editor, 11th International Conference on Auto-mated Deduction (CADE), volume 607 of Lecture Notes in Arti�cial Intel-ligence, pages 748{752, Saratoga, NY, June 1992. Springer-Verlag.[PJ91] P. K. Pandya and M. Joseph. P{A logic | a compositional proof systemfor distributed programs. Distributed Computing, 5(1):37{54, 1991.[Pnu84] A. Pnueli. In transition from global to modular temporal reasoning aboutprograms. In K. R. Apt, editor, Logic and Models of Concurrent Systems,NATO-ASI, pages 123{144. Springer Verlag, 1984.[Sch87] Fred B. Schneider. Decomposing properties into safety and liveness usingpredicate logic. Technical Report 87-874, Department of Computer Science,Cornell University, Ithaca, NY, October 1987.[Sha93a] A. Udaya Shankar. An introduction to assertional reasoning for concurrentsystems. ACM Computing Surveys, 25(3):225{262, September 1993.[Sha93b] N. Shankar. A lazy approach to compositional veri�cation. TechnicalReport SRI-CSL-93-8, Computer Science Laboratory, SRI International,Menlo Park, CA, December 1993.[Sha97] N. Shankar. Machine-assisted veri�cation using theorem proving andmodel checking. In Manfred Broy and Birgit Scheider, editors, Mathemati-cal Methods in Program Development, volume 158 of NATO ASI Series F:Computer and Systems Science, pages 499{528. Springer, 1997.[Sta85] E. W. Stark. A proof technique for rely/guarantee properties. In S. N.Maheshwari, editor, Foundations of Software Technology and TheoreticalComputer Science, volume 206 of Lecture Notes in Computer Science, pages369{391. Springer Verlag, 1985.[XCC94] Q.-W. Xu, A. Cau, and P. Collette. On unifying assumption{commitmentstyle proof rules for concurrency. In B. Jonsson and J. Parrow, editors,CONCUR'94, volume 836 of Lecture Notes in Computer Science, pages267{282. Springer Verlag, 1994.24

[XdRH97] Q.-W. Xu, W.-P. de Roever, and J.-F. He. The rely-guarantee method forverifying shared variable concurrent programs. Formal Aspects of Comput-ing, 9(2):149{174, 1997.[Zwi89] J. Zwiers. Compositionality, Concurrency and Partial Correctness, volume321 of Lecture Notes in Computer Science. Springer Verlag, 1989.

25

