CALCULATING CONTROLLER AREA NETWORK (CAN)

MESSAGE RESPONSE TIMES

K. TINDELL, A.BURNS, and A. WELLINGS

University of York, Department of Computer Science, York, YO1 5DD, England

Abstract: Controller Area Network (CAN) is a well designed communications bus for sending and receiving short
real-time control messages at speeds of up to 1Mbit/sec. One of the perceived drawbacks to CAN has been the inability
to bound accurately the worst-case response time of a given message (i.e. the longest time between queueing the
message and the message arriving at the destination processors). This paper presents analysis to bound such response

times, including the costs of error handling and re-transmission.

Key Words: real-time systems; real-time communications; scheduling theory; scheduling analysis; distributed systems

1. INTRODUCTION

The Controller Area Network (CAN) [3] is a well
designed communications bus for sending and
receiving short real-time control messages. The bus
is designed to connect control systems over a small
area (such as automobiles), operating in a noisy
environment at speeds of up to 1Mbit/sec. One of
the perceived problems of CAN is the inability to
bound the response times of messages. To show
how this problem can in fact be easily solved, we
apply analysis developed for fixed priority pre-
emptive real-time processor scheduling [1, 6, 7] to
the problem of message scheduling on a CAN bus.
Before we proceed further we describe briefly the
architecture of CAN, and make some general
observations and assumptions about the
implementation.

CAN is a broadcast bus where a number of
processors are connected to the bus via an interface

(Fig. 1).

A data source is transmitted as a message
consisting of between 1 and 8 bytes (‘octets’). A
data source may be transmitted periodically,
sporadically, or on-
demand. So, for
example, a data
source such as ‘road
speed” could be
encoded as a 1 byte

Host
processor

identifier, represented as an 11 bit number (giving
2032 identifiers — CAN prohibits identifiers with
the seven most significant bits equal to ‘1”). The
identifier servers two purposes: filtering messages
upon reception, and assigning a priority to the
message.

A station on a CAN bus is able to receive a
message based on the message identifier: if a
particular host processor needs to obtain the road
speed (for example) then it indicates the identifier
to the interface processor. Only messages with
desired identifiers are received and presented to the
host processor. Thus in CAN a message has no
destination.

The use of the identifier as priority is the most
important part of CAN regarding real-time
performance. In any bus system there must be a
way of resolving contention: with a TDMA bus,
each station is assigned a pre-determined time slot
in which to transmit. With Ethernet, each station
waits for silence and then starts transmitting. If
more than one station tries to transmit together
then they all detect this, wait for a randomly

determined time
rertace period, and try again
processor the next time the bus
is idle. Ethernet is an
example of a carrier-
sense broadcast bus,

‘ﬁ ‘Station’
‘ since each station

message and
broadcast every 100
milliseconds. The
data source is

CAN bus/

\ waits until the bus is
idle (i.e. no carrier is
sensed), and
monitors its own

assigned a unique Fig. 1: CAN architecture

traffic for collisions. CAN is also a carrier-sense
broadcast bus, but takes a much more systematic
approach to contention. The identifier field of a
CAN message is used to

next idle). The whole message is transmitted
without interruption.

From these observations,

control access to the bus

after collisions by taking Host processor

the worst-case time from

Interface processor queueing the highest

advantage of certain
electrical characteristics.

With CAN, if multiple
stations are transmitting

concurrently and one message
station transmits a ‘0’ bit, queued
then all stations

priority message to the
reception of that message

(i.e. the worst-case

attempt to i P
transmit response time O e
message on message) can be
the bus calculated easily: the

longest time a station must
wait for the bus to become

monitoring the bus will
see a ‘0’. Conversely, only
if all stations transmit a
‘1> will all processors
monitoring the bus see a
‘1. In CAN terminology, a ‘0’ bit is termed
dominant, and a ‘1’ bit is termed recessive. In
effect, the CAN bus acts like a large AND-gate,
with each station able to see the output of the gate.
This behaviour is used to resolve collisions: each
station waits until bus idle (as with Ethernet).
When silence is detected each station begins to
transmit the highest priority message held in its
queue whilst monitoring the bus. The message is
coded so that the most significant bit of the
identifier field is transmitted first. If a station
transmits a recessive bit of the message identifier,
but monitors the bus and sees a dominant bus then
a collision is detected. The station knows that the
message it is transmitting is not the highest
priority message in the system, stops transmitting,
and waits for the bus to become idle. If the station
transmits a recessive bit and sees a recessive bit on
the bus then it may be transmitting the highest
priority message, and proceeds to transmit the next
bit of the identifier field. Because CAN requires
identifiers to be unique within the system, a station
transmitting the last bit (least significant bit) of the
identifier without detecting a collision must be
transmitting the highest priority queued message,
and hence can start transmitting the body of the
message (if identifiers were not unique then two
stations attempting to transmit different messages
with the same identifier would cause a collision
after the arbitration process has finished, and an
error would occur).

There are some general observations to make on
this arbitration protocol. Firstly, a message with a
smaller identifier value is a higher priority
message. Secondly, the highest priority message
undergoes the arbitration process without
disturbance (since all other stations will have
backed-off and ceased transmission until the bus is

Fig. 2: Interface between host processor
and CAN processor

idle is the longest time to
transmit a CAN message
(we term this delay the
blocking time of a
message). The largest
CAN message (8 bytes) takes 130 microseconds to
be transmitted (at 1Mbit/sec transmission speed,
with a ‘bit stuffing’ width of 5 bits), and hence the
blocking time of a CAN message is 130
microseconds. The worst-case response time of the
highest priority CAN message is therefore 130
microseconds plus the time taken to transmit the
message. For a lower priority message, the worst-
case response time cannot be found so easily,
leading to the generally perceived problem that
only the highest priority message can be
guaranteed on CAN. We will give analysis in this
paper that bounds the response time of all CAN
messages, including the lowest priority message.
The existence of this analysis makes CAN
eminently suitable as a bus for hard real-time
applications.

Before we proceed to develop such analysis we
need to discuss briefly how CAN messages are
queued in the stations. Fig. 2 depicts a typical
interface.

In Fig. 2 the host processor is queueing a message
into the slot for identifier ‘1’; the slot for identifier
‘4’ is already occupied with another message. The
slots are typically implemented as dual-port
memory shared between the processors. The
interface processor will attempt to transmit
message ‘1’ when the bus next becomes idle. There
is no queue of messages for a given identifier: in
Fig. 2, if message ‘1’ is being transmitted when
another message with the same identifier is queued
then the message in the slot is overwritten and
destroyed. This is important, since it implies a
deadline for a message queued periodically: a given
message must be transmitted before the message
for the next period can be queued. So, returning to
the example of a message containing ‘road speed’,
we can see that the message must be transmitted

within 100 milliseconds to avoid being overwritten
by the contents of the message corresponding to the
next measurement. In effect, we have a deadline on
the transmission of any message: the message must
be transmitted before the subsequent message can
be queued (of course, we may have a deadline on
the message that is much shorter than the period).

2. ANALYSISOF A SIMPLE CAN MODEL

In this section we develop simple analysis for the
CAN model outlined above. In redlity, CAN is
more complex than described, and later sections
will extend the analysis to cover these
complexities.

There has been much work in the field of real-time
systems analysis recently: at the University of York
we have developed anaysis for systems where
activities are dispatched according to fixed
priorities [1, 6, 7, 5]. Because CAN is primarily a
priority-based bus, much of this analysis can be
applied directly. In this paper we will show the
application of the analysis; the reader is referred
elsawhere for a more forma derivation of the
general theory [1].

Before introducing the analysis we first define
some terms. A message is a CAN message
assigned a unique identifier and consisting of
between 1 and 8 bytes of data. A given message is
assumed to be queued cyclicly (i.e. at intervals, the
source of the message queues messages of the same
size and with the same identifier). A given
message is queued at a station within a queueing
window, with a minimum interval between
subsequent queueing windows (messages do not
have to be strictly periodic: a message can be
sporadic, but there must be a minimum time
between the queueing of the message). This is
illustrated in Fig. 3.

The period of a given message mis denoted as Ty,
The width of the queueing window for message m
(i.e. the jitter on the queueing of the message) is
denoted J,, The term by, defines the number of
bytes in the message; C,,, denotes the worst-case
time taken to physicaly transmit the message on
the bus. This does not including the delays because
of contention on the bus; it does include the time
taken to transmit the identifier field, other message
fields (such as cyclic redundancy checks), and the
message data itself. Thus

Thisis equa to C for a message of 8 bytes, and is
130 microseconds for a transmission speed of
IMbit/sec.

The worst-case response time of a given message
m is the longest time between the queueing of a
message and the time the message arrives at
destination stations, and is denoted R, The
deadline of the message is denoted D,,,; a message
issaid to be schedulableif and only if:

Rn<Dm

We have a restriction on the worst-case response
time: a queued message must be sent before the
next queueing of the message (we want to prevent
the overwriting of a message). Thus we must also
have:

Rn<Tm=Im

From this we can see that the message queueing
window (i.e. the message queueing jitter) must be
less than the periodicity of the message. We now
develop analysis to determine the worst-case
response time of a given message m.

We define the worst-case response time is
composed of two delays: the queueing delay and
the transmission delay. The queueing delay is
longest time that a message can be queued in a
station and be delayed because other higher and
lower priority messages are being sent on the bus.
We denote this time as t,,, The transmission delay
is the time taken to actually send the message on
the bus. As we said earlier, thistime is denoted Cy,
(and is a function of by, the number of bytes in
message m). The worst-case response time is thus
defined as:

Ry =tm+Co (1)

The queueing delay, ty, is itself composed of two
times. the longest time that any lower priority
message can occupy the bus, and the longest time
that all higher priority messages can be queued and
occupy the bus before the message m is finaly
transmitted. Earlier we termed these times the
blocking time, and denoted it as B. The latter time
is termed the interference. From earlier scheduling
theory [1], the interference from higher priority

messages over an interval

Cppisafunction of by, T, 0 T, | of duration t is:
T "
Jm
The blocking time on CAN — — t+Jj + Ty .
is defined as the longest ahEm T, J
time that a message can Queueing
take to be physcaly window

transmitted on the bus.

Fig. 3: Periodic message queueing

The set hp(m) is composed of all the messages in
the system of higher priority than message m. The
term Ty, is the time taken to transmit a bit on
CAN. Note that the set hp(m) defines a priority
ordering. From other work we know that the
optimal priority ordering is deadline monotonic
[2]. In fact, in the presence of queueing jitter, the
optimal ordering is to select priorities on the basis
of:

Dm=dm

That is, the smaller the value of D — J the higher
the message priority [1]. From the above
description we can see that the queueing delay is
given by:

tym+J; +Tbit“
i

Dj[hp(m)|r

We desire the smallest value of t, satisfying the
above equation. Unfortunately, the above equation
cannot be re-arranged to give a solution for t,
However, a recurrence relation can be formed:

th =B+

T !

tm+J; +Tbit‘!C
j

DJ'EhP(m)|V

Because the recurrence relation is monotonically
increasing in t,, we need to start the iteration with

a value of tr?] that is smaller than the smallest
value of t,,, satisfying equation 2. A value of zero is
suitable, but a better value (i.e. one that leads to
shorter iteration) is to choose the value of t,, where
n is a message of higher priority than m.

3. EXTENDING THE MODEL: ERROR
HANDLING AND ‘RTR’ MESSAGES

In the previous sections we described briefly the
CAN architecture and protocol. However, we made
two simplifications: we ignored error handling,
and we did not address a special type of message
(called Remote Transmission Request messages).
In this section we describe a model for error
handling, discuss remote transmission request
(RTR) messages, and extend the analysis to handle
the full CAN model.

CAN has an effective error detection mechanism:
an error detected by either the sender of a message,
or receiver stations of the message, is signalled to
the sender station. The sender then re-transmits the
message. In the worst-case, upon detection of an
error the recovery process requires the transmission
of up to 29 bits (plus the re-transmission of the
message). To include the costs of error handling in

the analysis of the previous section, we define the
function E(t): the most probable bound on the
overheads due to errors in an interval of duration t.
We include in this function the costs of
retransmission. This function can be defined using
statistical analysis based on observed error
characteristics of a given configuration of CAN in
a given environment. Each detected error implies
the re-transmission of a message. We assume that
as soon as the sending station detects an error in
the transmission of a message it immediately re-
queues the message for transmission. The
assumption is an important one for the following
reason: if the message is not immediately re-
queued then the bus may become idle and a lower
priority message attain access to the bus (and then
begin transmission). This means that the message
being re-transmitted may be again delayed by a
lower priority message. In general, therefore, a
given message m would be delayed by lower
priority messages for up to time (n+ 1)B, where n
is the number of re-transmissions of message m.
This would needlessly add to the worst-case
response time of the message.

A probable bound on the error recovery overheads
before a message marrives at the destination is:

E(Ry)

Now that we have defined the overheads due to
error handling for the transmission of a given
message m, we can include these overheads in the
analysis developed in the previous section. We
update equation 2 to:

tm= E(tm +Cm)+ B+

tm+Jj +Tbit“C- 3)
]

Dj[hp(m)|r TJ'

Note that we have re-written Ry, as t,, + Cy, (from
equation 1).

We now describe CAN remote transmission
request (RTR) messages. This message is a special
CAN message with a zero length data field. It is
interpreted by stations to mean “please transmit the
message with the same identifier as this message”.
Because identifiers are unique within the system,
there can only be one station that responds to this
message (if no stations respond by transmitting the
requested message then an error is flagged). We
make the assumption that a station responding to
an RTR message will immediately queue the
requested message for transmission such that no
lower priority message can be transmitted first (for
the same reasons described earlier for the
assumption that re-transmissions occur
immediately). Of course, if a higher priority

message has been queued since the transmission of
the RTR message, then the higher priority message
will be transmitted after the RTR message has been
sent and before the requested message is sent.

A number of stations may transmit RTR messages,
and one station may transmit the corresponding
requested message; all of these messages have the
same identifier, and hence priority. This
complicates the analysis slightly: previously,
messages were assumed to have unique identifiers,
and the set hp(m) for a given message m indicated
all the messages that could win the arbitration
process and delay the transmission of m. However,
with the introduction of RTR messages this is no
longer true. This problem is addressed by CAN in
two ways. Firstly, although a number of stations
can simultaneously attempt to transmit RTR
messages with the same identifier, no collision
results. This is because RTR messages with the
same identifier have identical bit patterns (recall
that RTR messages are zero byte messages): no
station will see other than the data it transmitted.
Secondly, the CAN message arbitration gives
priority to requested messages over RTR messages
with the same identifier.

One way to address the problem of interference
between RTR and requested data messages all with
the same identifier is to change the set hp(m) to
include all messages of higher or the same priority.
However, this is pessimistic, since it is possible for
CAN to prevent the interference if we are careful
with how we define the semantics of an RTR
message. We say that the worst-case response time
of an RTR message is defined as the longest time
between queueing the RTR message and the
requested message arriving at destination stations.
This definition means that if an RTR message is
queued at some time, but that before the RTR
message is transmitted the requested data message
is received (in response to an earlier RTR message,
say), then the response time is the time between the
still-untransmitted RTR message and the reception
of the requested data message. Thus the RTR
message could be satisfied before it has been
transmitted! (a sensible implementation of CAN
would then remove the untransmitted RTR
message).

Because of this definition of RTR response time we
do not have to consider the interference between
data messages and RTR messages of the same
priority. We now continue, and define new
notation: the time Crrr(m) is the value of C for the
requested message, where mis a given message. If
mis not an RTR message then we define Crrr(m)
to be zero.

Because the worst-case response time of an RTR
message includes the time taken to transmit the
requested message, we must re-define the equation
for the worst-case response time of a given
message m (from equation 1):

(4)

_ tm+CRTR(m) ifmMORTR

"t *Crm otherwise
Where RTR is the set of RTR messages. The term
t, represents the queueing delay for message m (as
before), but this queueing delay must also include
the time taken to transmit the RTR message. The
interference from higher priority RTR messages
must include the transmission of the corresponding
data message. Equation 3 is therefore updated to:

tm =Cm + E(tm +CRTR(m))+ B+
()

tm +Jj +Tpi
{—T_ (€, +Cerng)
0j Chp(m) i
Thus we have completed the analysis of CAN.

4. CONCLUSIONS

Hitherto a perceived problem with CAN for use in
distributed real-time control applications was that
it was impossible to determine the worst-case
response time of a given message. In this short
paper we have shown how to find the worst-case
response time of a given message queued for
transmission across a CAN bus. Basic analysis has
been developed for a simple CAN model, and then
extended to include the costs of error handling and
remote transmission request messages.

In order to apply the analysis to a real
implementation we must examine in more detail
the behaviour of the given CAN controller to see if
it meets the assumptions outlined in this paper.
The reader is referred to [4] for a detailed case
study, using the Intel 82527 CAN controller on a
large ‘benchmark’ automotive control problem.

5. REFERENCES

[1] Audsley, N., Burns, A., Richardson, M.,
Tindell, K., and Wellings, A,
“Applying New Scheduling Theory to
Static Priority Pre-emptive Scheduling,”
Software Engineering Journal 8(5) pp.
284-292 (September 1993)

[2] Leung, J., and Whitehead, J., “On The
Complexity of Fixed-Priority
Scheduling of Periodic Real-Time
Tasks” Performance Evaluation 2(4),
pp. 237-250 (December 1982)

[3]

[4]

[5]

[6]

[7]

“Road Vehicles — Interchange of Digital
Information — Controller Area Network
(CAN) for High Speed
Communication”, 1SO DIS 11898
(February 1992)

Tindell, K. and A. Burns, “Guaranteed
Message Latencies for Distribute Safety-
Critical Hard Real-Time Networks”,
YCS 229, Department of Computer
Science, University of York (June 1994)
Tindell, K., “Analysis of Hard Real-
Time Communications”, YCS 222,
Department of Computer Science,
University of York (January 1994)
Tindell, K. and Clark, J., “Holistic
Schedulability Analysis for Distributed
Hard Real-Time Systems,”
Micrprocessors and Microprogramming
(Special Issue on Parallel Embedded
Real-Time Systems) (March 1994)
Tindell, K., Burns, A., and Wellings, A.,
“An Extendible Approach for Analysing
Fixed Priority Hard Real-Time Tasks,”
Real-Time Systems 6(2) pp. 133-151

