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Abstract 
 

Lately, wireless sensor networks are garnering a lot of interests, as it is feasible to deploy them in many ad hoc scenarios such as for 
earthquake monitoring, tsunami monitoring and battlefield surveillance. As sensor nodes may be deployed in hostile areas, these battery-
powered nodes are mostly expected to operate for a relatively long period. Clustering is an approach actively pursued by many groups in 
realizing more scalable data gathering and routing. However, it is rather challenging to form an appropriate number of clusters with well-
balanced memberships. To this end, we propose a novel application of collective social agents to guide the formation of these clusters. In 
order to counter the usual problems of such meta-heuristics, we propose a novel atypical application that allows our protocol to converge 
fast with very limited overhead. An analysis is performed to determine the optimal number of clusters necessary to achieve the highest 
energy efficiency. In order to allow for a realistic evaluation, a comprehensive simulator involving critical components of the 
communication stack is used. Our protocol is found to ensure a good distribution of clusterheads through a totally distributed approach. To 
quantify certain clustering properties, we also introduced two fitness metrics that could be used to benchmark different clustering 
algorithms.  
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1. Introduction  
 

Wireless sensor technology is evolving rather rapidly in various aspects, as it draws significant interests 

from different research communities such as wireless networking, embedded system, database, data mining and 

distributed computing groups. For instance, in terms of the sensor node hardware, the Mica2 mote has roughly 

eight times the memory and communication bandwidth as its predecessor, the Rene mote, developed in 1999 for 

the same power budget [1]. These sensor nodes coupled with wireless communication capability have found use 

in many applications such as earthquake monitoring, target tracking and surveillance, structural monitoring and 

precision agriculture. The nodes are typically stationary due to their unique application needs, substantially 

more resource constrained and more densely deployed than mobile ad hoc networks (MANETs). Even though, 

there have been significant advances in recent years to improve wireless sensor nodes capabilities, more energy-

efficient solutions are required within the communication stack and middleware for the conservation of the 

battery power. As the entire wireless sensor network (WSN) utility relies on its useful lifetime, these solutions 

however might come at the tradeoff against the traditional performance measures such as packet delivery ratio, 

mean latency and throughput. Within the communication stack, an approach that is likely to succeed in this 

regard is the use of a hierarchical structure for routing [2, 3]. 

Clustering with data aggregation is an important technique in this direction, and it makes the tradeoff 

between energy efficiency and data resolution. Even though many protocols have been proposed in the literature 

to minimize energy dissipation on the forwarding paths, some nodes may still be drained quickly. By employing 

a dynamic clustering technique, these nodes could lose their popularity as certain roles are rotated dynamically 

________________________________________________________________________ 
* Corresponding author. Tel.: +61-2-9351 4494. 
E-mail address: skennedy@it.usyd.edu.au. 



2 

[3]. Various clustering techniques in different context have been proposed. Most algorithms aim at generating 

the minimum number of clusters and transmission distance. These algorithms also distinguish themselves by 

how the clusterheads (CHs) are elected.  

Another important design issue to consider is network reliability or robustness. Since the wireless medium 

and the sensor nodes themselves are considered less reliable relative to the wired technology and its tethered 

nodes, adopting a deterministic approach in the solution design, and assuming only average case performance 

would be disastrous in practice. To this end, social insect swarm behavior may provide an ideal model for the 

design of such less controllable systems. To our knowledge, very few researchers have considered or adopted 

such biologically-inspired approaches for the WSN design. However, a number of recent works has been based 

on different swarm behaviors in the design of routing protocols for MANETs. As there are many important 

similarities between these two ad hoc technologies, we believe building on these knowledge may be useful for 

WSNs. Most of these swarm-based routing algorithms are simple yet robust as well as adaptive to topological 

changes. However, such algorithms cannot establish the shortest or appropriate paths before a sufficient number 

of agents is flooded [4].  

In this paper, we propose to biologically inspire the clustering approach, whereby the network is clustered 

around certain nodes deemed biologically fit. A preliminary version of this algorithm is introduced in [5]. 

According to this approach, when a node has a special agent, it self-elects itself to become a CH. Such election 

obviates the need to maintain many state variables. A fixed number of such agents (i.e. in biological term, the 

swarm size) are used to ensure that a certain number of clusters are formed throughout the network useful life. 

This number is derived analytically to minimize energy dissipation through data aggregation. We derive the 

optimal number of clusters assuming a Voronoi tessellation incorporating both the influence of intra- and inter-

traffic. Based on this optimal number and our approach of clustering, we could guarantee that the network 

always operates close to optimal once system convergence is achieved. In addition, we could ensure that the 

CHs are well distributed across the network to promote load balancing. Thus, using this approach, we address a 

multi-objective optimization problem of energy efficiency and load balancing. To quantify the clustering 

properties, we also introduce two fitness metrics that will be useful for comparing any clustering algorithms. 

To the best of our knowledge, this is the first attempt to adapt a biologically-inspired technique to the 

resource-starved device class in a unique approach. To counter the general problems of such biologically-

inspired meta-heuristics whereby they requires significant number of agents and a long time for convergence, 

we only adopt its certain useful features, and modify the mechanics of the agents. The main features that we still 

adopt are: 

• The notion of biological fitness of a solution; 

• The use of a collection of simple agents interacting locally. Interaction is not achieved through explicit 

message exchanges, but implicitly by leaving some simple state at the nodes. 

In a typical swarm intelligence use, an agent has to be present at an object (here, a node) to affect its biological 

fitness. In our approach, an agent is allowed to influence even from remote. We demonstrate later how this 

unique adaptation has reduced the need for a large agent population and also reduced the convergence time in 

our atypical application. Also, our dynamic clustering protocol exhibits fault-tolerance in the face of node 
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failures compared against fixed or deterministic clustering approaches in the literature. Even when a node fails, 

this protocol could still achieve the desired properties of good CH distribution and energy efficiency. 

The rest of the paper is organized as follows. Section 2 presents the perspective of this area of research. 

Various clustering and biologically-inspired algorithms proposed in the literature are discussed there. The basic 

swarm principles are presented in Section 3. In Section 4, the details of our protocol are described. The 

comprehensive simulator used to experiment with this algorithm is described in Section 5. Many different 

experiments comparing our protocol against well-known proposals and their corresponding results are presented 

and analyzed in Section 6. The main findings of this work are summarized in the final section with some 

directions for further work. 

 

2. Related Work 
 

Intense research in the field of sensor network technology in recent years has fueled further development in 

micro-sensor technology and low-power analog/digital electronics. Some of the ongoing challenging issues 

facing researchers are low-power signal processing architecture, routing protocol and data gathering strategy, 

data storage and indexing, data aggregation, low-power security protocol, and localization. It is realized that the 

approach that is likely to succeed to provide a scalable and energy-efficient solution is of a hierarchical 

structure. To this end, various clustering algorithms have been proposed in different context. Initially, these 

algorithms focused on the connectivity problem [6-8] but later energy-efficiency was more of interest in 

wireless ad hoc and sensor networks [9-15]. However, almost all focuses on reducing the number of clusters 

formed, which may not necessarily entail minimum energy dissipation. 

Generally, clustering algorithms segment a network into non-overlapping clusters comprising a CH each. 

Non-CH nodes transmit sensed data to CHs, where the sensed data could be aggregated as these signals could be 

sufficiently correlated due to the nodes spatial proximity, and transmitted to the base-station (aka the sink). 

Clustering algorithms may be distinguished by the way the CHs are elected. The Linked Cluster Algorithm 

(LCA) [8] selects a CH based on the highest id among all nodes within one-hop. This is enhanced by LCA2 [16] 

that selects the node with the lowest id among all nodes that is neither a CH nor is one-hop of the previously 

selected CHs. In [17], the authors developed a similar distributed algorithm to LCA2, which identifies the CH 

by choosing the node with the highest degree. Other algorithms such as the Distributed Cluster Algorithm 

(DCA) [18] and Weighted Clustering Algorithm (WCA) [19] rely on weights to select CHs. 

Load balancing heuristics are proposed in [10] and [20]. In [20], the proposed clustering algorithm is 

designed to ensure each cluster has equal number of nodes while keeping minimal distance between nodes and 

their CH. These “load-balanced” algorithms focus mainly on balancing the intra-cluster traffic load without due 

consideration to the external traffic. The max-min d-cluster algorithm is proposed to achieve better load 

balancing among CHs as well as to reduce the number of CHs as compared to LCA or LCA2 [11]. It generates 

d-hop clusters with a run-time of O(d) rounds. In [12], some clustering algorithms are proposed to maximize the 

network lifetime by varying the cluster size and the duration of a node being nominated as a CH based on the 

assumption that the locations are known a priori. These algorithms ignore inter-cluster traffic, and also need the 

recognition of the whole network topology, which may not be feasible in many cases. The proposal in [21] 



4 

incorporates the effect of inter-cluster traffic in the determination of the optimal sink placement that maximizes 

the network topological lifetime. In [22], a fixed clustering algorithm that performs energy load balancing to 

improve network lifetime is proposed. It also takes into consideration the interaction between clustering and 

routing. Two schemes were introduced. The first scheme finds the optimal cluster size and location, whereas the 

second allows a CH to probabilistically choose to either relay the traffic to the next-hop or to deliver it directly 

to the sink. It assumes a heterogeneous network, where the CH nodes have larger resources than the others. 

The Low-Energy Adaptive Clustering Hierarchy (LEACH) algorithm [13] and its related extensions [14, 15, 

23] use probabilistic self-election, where each sensor node has a probability p of becoming a CH in each round. 

It guarantees that every node becomes a CH only once in 1/p rounds. Such role rotation aims to distribute the 

energy usage for a more load-balanced operation. However, LEACH assumes all nodes are able to reach the 

sink directly, and requires position knowledge to perform a precise transceiver power control. Some of these 

algorithms were designed to generate stable clusters in environments with mobile nodes. In a typical WSN, the 

sensor nodes are stationary, and the instability of clusters due to mobility of these nodes may not be an issue. 

Drawing from the wealth of clustering proposals for both MANETs and WSNs, The Hybrid Energy-Efficient 

Distributed (HEED) clustering is proposed in [3] to adopt real-valued weight-based clustering. It uses residual 

energy as the primary clustering parameter to probabilistically elect a number of tentative CHs, and then 

advertises to their neighbors of their intentions to become CHs. Such messages include a secondary cost 

measure that is a function of neighbor proximity or cluster density. This secondary cost is mainly used to avoid 

elected CHs to be in range of each other, and to guide the regular nodes in choosing the best cluster to join. This 

proposal is generally able to achieve a good CH distribution across the network. 

Another crucial design aspect of WSNs to consider is the network reliability and fault-tolerance. It has been 

demonstrated in different context that the collective behavior of social insects has many attractive features, not 

the least robustness and reliability through redundancy. However, only a handful WSN proposals have been 

inspired by nature. Due to some parallels to MANETs, we will consider some biologically-inspired algorithms 

proposed for this domain. The first MANET routing algorithm based on the ant colony principles is the Ant-

colony-based Routing Algorithm (ARA) [24] derived from AntNet [25], an algorithm for wired networks. It 

exploited the pheromone laying behavior of ants. 

Pheromone is a quality metric indicating the goodness of a path. Although pheromone evaporates over time, 

subsequent ants leave additional pheromone and thus reinforce the path. Ants gradually establish the shortest 

path between food and their nest in a fully distributed and autonomous manner. Ants are flooded towards 

destinations while establishing the reverse paths to the source. The fact of gradual decay of pheromone 

introduces a form of a negative feedback to prevent old routes from remaining in the forwarding tables when 

routes fall out of favor with ants. As the number of ants that completes journeys to food in a given time is larger 

on a shorter path than on a longer path, a shorter path accumulates more pheromone and attracts more ants. The 

shortest paths become preferable, and most ants use them. However, longer paths are not entirely lost as some 

ants may still maintain such routes. Routing schemes based on such ant colony behavior is both robust and 

adaptable. When the shortest route is lost due to some event, the longer routes provide alternative options. 

Another MANET routing algorithm that inspired by termite is Termite [26]. In this approach, no exclusive 

agents are used though, as the agents are piggybacked onto data packets. These packets follow the pheromone 
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trail for their destinations, and leave new pheromone for their sources. In [27], routing is established based on a 

swarm of different types of honeybees. This algorithm, termed BeeAdHoc, is a hybrid routing approach where it 

could either be proactive or reactive. It is shown that BeeAdHoc achieves better energy savings while still 

maintaining performance in terms of the traditional metrics against DSR, AODV and DSDV. 

As the number of nodes grows, the number of agents required to establish the routing infrastructure may 

explode. A way to overcome the overhead explosion and attain scalability is by using the hierarchical routing 

approach. For MANETs, an adaptive Swarm-based Distributed Routing (adaptive-SDR) [28] and Mobile Ants 

Based Routing (MABR) [29] are proposed, whereby both schemes consider dividing the network into small 

clusters/zones, and then perform intra- and inter-routing. To our knowledge, the only work to have considered 

swarm intelligence in the wireless sensor context is [30]. They implemented a distributed network of mobile 

sensor nodes and controlled the nodes physical movements using swarm principles. It was demonstrated that the 

swarm behavior could be used to ensure safe separation between the agents and coverage efficiency while 

enforcing a level of cohesion that maintains a level of connectivity between the mobile agents. These nodes 

however are less resource-constrained than typical mote-class devices, and the overhead due the swarm 

intelligence meta-heuristic was not a major concern there. 

We propose the use of both a hierarchical structure and the biological inspiration to realize a scalable and 

robust data routing strategy. To appreciate this integration, the basic principles of swarm intelligence are 

presented next, and then followed by our proposed protocol. 

 

3. Swarm Principles 
 

Swarms are useful in many optimization problems. A swarm of agents is used in a stochastic algorithm to 

obtain near optimum solutions to complex, non-linear optimization problems [31, 32]. In this work, we consider 

the use of a swarm of agents and its control aspects. Swarm control issues are important as the swarm behavior 

could be used to establish logical network topology. In the description of his boids model, Reynolds [33] 

presents the classic swarm control theory. There are three basic controlling behaviors that govern movements of 

agents within the swarm. Kadrovach and Lamont [30] have summarized these behaviors as shown in Table 1. 
 
Table 1 
Agent behaviors in a swarm 

Behavior Description 
Separation Avoid collisions with nearby agents. 
Alignment Attempt to match velocity with nearby agents. 
Cohesion Attempt to stay close to nearby agents. 

 

When agents migrate in a swarm, every agent must ensure that they do not collide with one another. Also, in 

order to ensure the best survival of an agent, it should stay as close as possible to the others. This implies that an 

agent should match its velocity with neighboring agents to keep abreast. Any swarm behavior is solely based on 

locally observable phenomena, and is reflected in Table 1 by the adjective nearby. The integration of these 

behaviors results in a stable swarm formation, where every agent is at least some minimum distance from others. 

In social insects, many sophisticated community behaviors emerge from the interaction of individuals where 

each insect carries out simple tasks. Some known collective behaviors are foraging, nest construction, 
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thermoregulation, brood sorting and cemetery formation [34]. These collective behaviors of social insects have 

inspired computer scientists to replicate them as they exhibits many attractive features, such as robustness and 

reliability through redundancy [4, 34]. 

In this paper, we propose a biologically-inspired clustering protocol that uses a collection of agents. We 

exploit on the first two swarm principles, namely separation and alignment, through pheromone control to 

achieve a stable and near uniform distribution of the CH nodes. Moreover, it is observed in [35] that the 

algorithm converges faster to an optimal or near optimal solution when pheromone is also reduced drastically 

from those elements that make up the worst solution in each iteration. Thus, subsequent ants are discouraged 

from returning to poorer solutions seen in the past. This constitutes the simplest way to implement anti-

pheromone where the evaporation of pheromone is simulated by a significant reduction in existing pheromone 

levels. The integrated use of these separate components as part of the proposal is described in-depth further. 

 

4. The T-ANT Protocol 
 

Our main design goal is to consistently form an optimal number of clusters with a good CH distribution for a 

load-balanced and energy efficient network operation. Each regular node is mapped to exactly one cluster. 

Accordingly, we enumerate the requirements for the proposed design strategy: 

1. The protocol should be completely distributed. Each node only makes a local decision on its role. 

2. The CH election should be completed in constant time. 

3. The protocol should be efficient in terms of processing complexity and message exchange. 

4. The elected CHs should be well distributed. 

 

4.1 Overview of the T-ANT protocol 

 

As T-ANT is a dynamic clustering protocol, its operation is divided into rounds. Each round comprises a 

cluster setup phase and a steady state phase. A number of timers are utilized to control the operations for 

optimal performance. However, if time synchronization is absent, this protocol will still function albeit at sub-

optimal performance. During the cluster setup phase, CHs are elected and clusters are formed around them. To 

avoid the maintenance of many state variables as in many current clustering proposals, we utilize social agents 

in a unique way to control CH election. (Just for simplicity of reference, we term them ants; these ants however 

do not behave as ants in the ant-colony optimization technique.) A node with an ant becomes a CH, whereas the 

others would choose to join the best cluster in range. As we reveal further, our approach represents an atypical 

use of the swarm intelligence approach. During the steady state phase, the cyclic process of data collection from 

members, data aggregation and transfer to the sink occurs at fixed intervals. Since ants play a critical role in this 

protocol, we need to determine an appropriate swarm size and the way they are introduced into the network. 

This issue is addressed through the ant release component used during network initialization. 

The details of all aspects of the protocol are individually described further with appropriate analyses where 

necessary. 
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4.2 The ant release component 

 

During network initialization, the sink releases a fixed number of ants (i.e. control messages) into the 

network. When the sink releases an ant, it chooses one of its neighbors at random. The ant makes a random walk 

into the network as deep as restricted by its time-to-live (TTL) value. Assuming the terrain is a square M×M and 

nodes with radio range r, TTL is initially fixed at ⎡ rM 2 ⎤. This represents half of the diagonal terrain length 

(in hops) to facilitate the ants to wander away from each other. To avoid attraction between ants, they do not 

leave any pheromone trail at this stage. Before releasing the next ant, the sink waits for a time proportional to 

one-hop delay (τ) and a random offset to ensure its subsequent transmission does not self-interfere. When an ant 

arrives at a node, the next stop is again randomly chosen (excluding the sender) if TTL has not expired. If TTL 

expires, the ant remains at this node. However, if the final ant location overlaps with another ant, the latter ant 

must find another location. Algorithm 1 summarizes this initialization phase. Beyond this initialization phase, 

ants only migrate in single-hops at the start of each round (i.e. TTL = 1). 

 

Algorithm 1. The Ant Release Protocol 
Sink: 
Repeat 
   Choose a random neighbor (node i) to release an ant 
   Send the ant to node i 
   Wait for τ(1 + rand), where 0 < rand < 1 
Until all ants are released 
 
Other nodes: 
If an ant wanders to node i 
   Decrement its TTL 
   If TTL > 0 
      Choose a random neighbor, j 
      Send the ant to node j 
   ElseIf TTL == 0 and node i already has an ant 
      Pick a random neighbor 
      Send the ant to it 
   Else 
      Store the ant 
   End 
End 

 
Deciding on the appropriate swarm size is crucial for T-ANT’s optimal performance. The analysis goal here 

is to organize nodes into clusters for optimal data aggregation to minimize overall energy dissipation. Towards 

this end, an analysis to determine the appropriate swarm size is performed. The following assumptions are made 

for this analysis: 

• The nodes are randomly scattered in a two-dimensional plane and follows a homogeneous spatial 
Poisson process with λ intensity [15]. 

• All nodes in the network are homogeneous with radio range r. 
• The communication from each node follows isotropic propagation model. 
• The energy needed for the transmission of one bit of data from node u to node v is the same as to 

transmit from v to u (i.e. a symmetric channel). 
• The sink is located the center of the terrain (an alternate derivation is indicated for corner locations). 
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The overall idea of the derivation of this optimal system parameter value is to define a function for the energy 

used in the network to disseminate information to the sink. 

As per the assumptions, the nodes are distributed according to a homogeneous spatial Poisson process. The 

number of nodes in a square area of side M is a Poisson random variable, N with mean λA where A = M × M. 

Lets assume that for a particular realization of the process, there are n nodes in this area. If a node requires an ant 

to become a CH (the details of CH election is explained in the next subsection), and there are p% ants as to the 

number of nodes, there will be np nodes elected as CHs. Also, the CHs and regular nodes are distributed as per 

independent homogeneous spatial Poisson processes P1 and P0 of intensity λ1 = pλ and λ0 = (1-p)λ, 

respectively. 

Using the ideas in stochastic geometry, each node joins the cluster of the closest CH to form a Voronoi 

tessellation [36]. The plane divides into zones called Voronoi cells, with each cell corresponding to a P1 process 

point termed its nucleus. If Nv is the random variable representing the number of P0 process points in each 

Voronoi cell and Lv is the total length of all segments connecting the P0 process points to the nucleus in a 

Voronoi cell, then based on the results in [23]: 
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Now, to derive the energy dissipation, the free space (d2 path loss) channel model is used. [For other path 

loss exponents (i.e. 3-6), it follows a similar derivation, and has a constant effect on the optimal number of CHs.] 

To transmit an l-bit packet a distance r (i.e. its radio range), the radio expends: 

ETx(l,d) = lEelec + lεfsr2  (3) 

where Eelec is the electronic energy that depends on factors like digital coding, modulation, filtering and 

spreading of the signal, and εfsr2 is the amplifier energy that depends on the distance and the acceptable bit-error 

rate. As to receive a packet, the radio expends: 

ERx(l,d) = lEelec  (4) 

The T-ANT protocol guarantees that the number of clusters per round is always np. The dissipated energy by 

the nodes can be analytically estimated using the computation and communication energy models. Each CH 

dissipates energy receiving signals from its members, aggregating the signals and transmitting the aggregate 

signal to the sink. Since a CH could be located at any (x,y) point on the terrain with uniform intensity, the 

probability density function of its location is constant (1/M2). The transmission to the sink may also be multihop. 

We could estimate the average distance to the sink (dToS) by integrating the distance function over the area as 

follows: 

E[dToS] = ∫ ∫ +
y x

dxdy
M

yx 2
22 1

  

            = M61   (5) 
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Limits of the definite integral are [-M/2,M/2] for both x and y. If we however assume the sink is located at a 

corner (say bottom left origin), range of this integral is changed to [0,M] giving E[dToS] = M3/2 . 

Accordingly, the average hop to the sink is E[dToS]/r. Now, let C1 represent the energy spent by a CH node 

during a single round: 

E[C1 | N=n] = (E[Nv])lEelec+ (E[Nv]+1)lEDA + ( )2
fselec εE2

61
rll

r
M

+  (6) 

We assume lossy data aggregation is performed at the CH with the energy for aggregation is EDA. 

As for each non-CH node, it only needs to transmit its data to the CH once during a data interval. Let C2 

represent the energy used by each non-CH node: 

E[C2 | N=n] = lEelec + 
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This allows us to determine the energy spent in a cluster (C3) during each round as: 

E[C3 | N=n] = E[C1 | N=n] + E[C2 | N=n] × E[Nv ] (8) 

Since there are np clusters in the network, we can now derive the total energy usage. Let C represent the total 

energy spent in the system, then: 

E[C | N=n] = np E[C3 | N=n] 
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Removing the conditioning on N yields: 
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E[C] is minimized by a value of p that is a solution of: 
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Equation (11) has two roots where only one is positive. The second derivative of the above equation is also 

positive for this root, hence minimizing the total energy spent. This only positive root of (11) is given by: 

popt = 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+ elec

2
fselec

fs

E2)εE2(
61

ε
2
1

r
r

M
λ

 (12) 

The above expression gives the optimal percentage of ants required to achieve the optimal clustering 

performance in terms of energy dissipation. 

 



10 

4.3 The clustering algorithm 

 

Any clustering algorithm comprises two components, namely CH election and cluster formation. Both 

components are invoked during the cluster setup phase of T-ANT, whereby the phase is activated through the 

CS_Timer. When this timer expires, a node checks to see whether it possesses an ant. If the node has an ant, it is 

guaranteed to become a CH. As there are only a fixed number of ants in the network, a fixed number of CHs are 

formed. Since there is no looping statement as a function of the number of nodes, it is trivially evident that the 

election terminates in constant time. This CH election approach has a very small constant time complexity as 

opposed to other proposals in the literature. 

Observation 1. The CH election process terminates in O(1) time (c.f. requirement 2). 

The cluster formation is triggered by these CHs, whereby they advertise to the neighbors by broadcasting an 

advertisement (ADV) message with their node id. Upon receiving such message, a regular node records the CH 

id and the number of ADV messages received thus far. At this stage, the most critical difference between our 

biologically-inspired approach against other typical swarm intelligence applications occurs. When regular nodes 

receive an ADV message from a CH, we allow this message to affect the pheromone level at these nodes. Here, 

an ant does not need to be at a node to leave a pheromone trail, which is contrary to its typical application. As 

such, the influence of an ant is broader and quicker than their typical implementation. This atypical property of 

our approach has contributed to a significant reduction in the required number of ants for the system behavioral 

convergence, and thus overcomes a common problem highlighted in many biologically-inspired proposals. 

The actual clustering process happens once another timer expires. A node decides to join a cluster when its 

JOIN_Timer expires. The node computes its pheromone level based on the number of CHs (nc) in its 

neighborhood and its normalized residual energy. The pheromone function (pi) is based on the forwarding 

probability formula used in the uniform ant routing algorithm [37], but expanded as: 

p
pp

p i
i ∆+

∆+
= −
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where p∆  is given by: 
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Eresi is a node’s residual energy, Emax is the reference maximum battery energy and k is the learning rate of 

the algorithm (= 0.1). This pheromone function is adopted to achieve dual clustering objectives, namely load 

balancing as well as energy efficiency. The effect of quadratic drop in pheromone with the number of CHs in 

range not only promotes a good distribution of CHs, but also indirectly affects the load balancing objective. A 

regular node chooses the nearest cluster to join by sending a JOIN message with its id, the selected CH id and its 

pheromone level. When a CH receives JOIN messages, it finds the member with the highest pheromone level to 

attract its ant for the next round. It is obvious that the amount of state required for this clustering is small 

compared against the stochastic or weight-based clustering algorithms proposed in the literature. 

Observation 2. T-ANT is completely distributed (c.f. requirement 1). A node locally decides to become a CH if 

an ant wanders to it or may join a cluster. 
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Lemma 1. T-ANT has a worst-case processing time complexity of O(n) per node, where n is the number of 

nodes in the network (c.f. requirement 3). 

Proof. For a homogeneous spatial Poisson process, the process intensity is uniform. Thus, the average node 

degree is πr2n/M2, where r is the radio range and M is the side of the square region. Generally r << M. In the 

worst-case, a CH has to process JOIN messages from the potential members in the order of n to determine the 

neighbor with the highest pheromone level. It also has to receive and aggregate data messages linear in n during 

the steady state phase. Therefore, the worst-case processing time is O(n).          

Lemma 2. T-ANT clustering has a worst-case message exchange complexity of O(n) in the network (c.f. 

requirement 3). 

Proof. During the cluster setup phase, a fixed number of CHs are elected as bounded by the number of ants. 

Each CH only broadcasts one ADV message. All covered regular nodes (i.e. nodes that receive at least one 

ADV) reply by sending a JOIN message giving O(n) messages in the network.          

Before the next CS_Timer expires, the ants wander to the nodes with the highest pheromone level among 

their neighbors, and these nodes will become the next CHs. Before an ant leaves its current node, an amount of 

anti-pheromone is laid to mimic a rapid decay of pheromone level. It was shown in [38] that a rate of 0.1 is 

suitable to force an agent not to revisit a visited city in the Traveling Salesman Problem. This is also necessary 

in our context to ensure that the ants do not return to the same node too soon. This decay rate also indirectly 

promotes energy load balancing.  

In the steady state phase, each regular node sends its sensory data message to its CH. To ensure that 

transmissions from the members face minimal collision, we adopt the radial coordination strategy proposed in 

[39] for convergecast transmissions. The details are given later as it is implemented within the MAC protocol. 

Due to the spatial proximity of the nodes in a cluster, the CH will perform a lossy aggregation to exploit of the 

possible high spatial correlations. The details on how to capture any correlation structure present in the network 

data is beyond the scope of this paper. For specific discussion on this issue, interested readers are referred to 

[40, 41] and references therein. Algorithm 2 presents overall T-ANT clustering with the setup and the steady 

state phases.  

 

Algorithm 2. The T-ANT Clustering Algorithm 
Cluster Setup: 
When CS_Timer expires 
   If node i has an ant 
      CH status = true 
      Create an ADV message (CH_id, TTL) 
      Broadcast the ADV message to neighbors 
   Else 
      Node i sets its JOIN_Timer and waits for ADVs 
   End 
End 
If node i receives an ADV message from CH k 
   Increment number of ADVs received 
   If node i is not a CH and this CH k is nearer 
      Select CH k as the best CH 
   End 
End 
/* Only for nodes with ADV */ 
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When JOIN_Timer expires at node i 
   Compute the pheromone level, p 
   Create a JOIN message (CH_id, p) 
   Send JOIN to the selected CH 
End 
 
Steady State: 
When DATA_Timer expires at node i 
   Capture sensory value, val 
   If node i is a CH 
      Wait for data messages from all members 
      Aggregate data signals 
      Create a data message (sink_id, val) 
      Send to sink 
   Else 
      If node i belongs to a cluster 
          /* for covered nodes */ 
         Create a data message (CH_id, val) 
         Send to CH 
      Else 
         /* for uncovered nodes */ 
         Create a data message (sink_id, val) 
         Forward to sink 
      End 
   End 
End 
/* only for CH nodes */ 
When ANT_Timer expires 
   Pick the best neighbor, j 
   Send ant to node j 
End 

 

Lemma 3. The probability of two CH nodes in each other’s radio range is at least inverse of n, implying the 

CHs are mostly well distributed (c.f. requirement 4). 

Proof. Without loss of generality, lets assume that there are two ants in a network of n nodes. In the worst-case, 

two CHs may be formed in almost complete overlapping ranges as shown in Fig. 1, especially during network 

initialization when the ants just follow a random walk. At this stage, the normalized residual energy is fairly 

uniform across the network (it does not need to be exactly same). Thus, the only factor that influences the 

pheromone level of the cluster members is the number of CHs (nc) in range. The nodes in the shaded area will 

have a quadratic in nc lower pheromone than the rest. This is due to the quadratic drop introduced into the 

pheromone function [see eqn. (14)]: 
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At the next cluster setup phase, the ants would only wander to any of their neighbors outside the shaded area 

(e.g. ant a wanders to any node in A ∩ B’), as their pheromone level is higher. These ants would only return to 

any nodes in the shaded area only when all other nodes (in the order of n) are visited. This implies that in a 
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cycle of n visits, only once an ant comes in range of another ant giving a probability 1/n. By induction, a 

network with more ants will exhibit a similar behavior. Moreover, when more than two ants come into range, 

the repulsion effect is even greater. Thus, CHs are mostly well distributed.         

a
bA 

B

 
Fig. 1. An example to illustrate the worst-case scenario of closely overlapping CH nodes. Sets A and B represent nodes in range of CH a 

and b, respectively. The shaded area represents nodes with significantly lower pheromone level than the rest. 

 

Theorem 1. The T-ANT protocol promotes load balancing. 

Proof. In this dynamic protocol, the role of CH is continuously shared among the nodes. With Lemma 3, the 

elected CHs are mostly well distributed throughout the network lifetime. As each regular node chooses to 

associate to its nearest CH, this results in similar cluster sizes as well. Therefore, T-ANT achieves load 

balancing.                

It is possible that the wandering ants may die due to the environment uncertainty or any node failure. When 

there are lesser ants than the optimal number, the network operation would still proceed as before albeit 

suboptimally. Due to the robustness of the proposed protocol, the remaining CHs would strive to share the 

aggregation task. If there is any uncovered node, it would to resort to direct (multihop) transmissions towards 

the sink. The event of most ants dying simultaneously has a probability in the order of all nodes dying at about 

the same time, as the ants are mostly well distributed. Thus, such an event is only likely when the network is 

nearing the end of its lifetime. To limit the impact of isolated node failures, we could introduce a timer on the 

ants. When this timer expires, current ants are flushed out and the sink re-releases the same optimal number of 

ants to restart the above process. Further robustness and reliability study on this issue is left for future study. 

 

4.4 The clustering properties 

 

The use of a specific swarm size as derived earlier guarantees the network mostly operates with the optimal 

number of clusters compared to a stochastic approach that may have fewer or more than the optimal number at 

any time. The given pheromone expression guides the evolution of the swarm to achieve the separation 

behavior among ants in the swarm, which is one the swarm principles highlighted in Section 3. Separation may 

not be achieved immediately upon the random release of these ants by the sink. However, it is found empirically 

that separation is attained rather quickly within a small constant number of rounds. To quantify this 

phenomenon, the CH election fitness metric is introduced. It is defined as follows: 
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where nc is the number of CH nodes and ni is the number of ADVs seen by CHi. By normalizing against number 

of CHs, it captures the average number CHs in the range of another. This metric will have a small value for a 

network with well distributed CHs. For instance, a value of two represents on average two CHs in the range of 

another CH. Another desirable swarm behavior is alignment. In our context, the number of members served by a 

CH is used to represent alignment. When the swarm evolves to achieve separation, alignment is also achieved as 

a side-benefit. The clustering fitness metric A is defined to represent alignment as follows: 

∑
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where mi is the number of members of CHi and µ* is the ideal average number of nodes served by a CH in a 

perfect uniform CH distribution. µ* is computed as n/nc. Thus, this clustering fitness metric is the standard 

deviation of the clusters membership against the ideal average. A smaller metric value implies that the 

membership variance among the clusters is small thereby the clusters are well balanced. 

 

5. The Simulation Framework 
 

We evaluated the performance of the T-ANT clustering using a discrete-event simulator. To enable a 

comprehensive study, the effects of both routing and MAC protocols are also integrated. In the description of 

the simulator, we assume that each sensor node is aware of: 

1. its neighbors (even if it changes) due to the occasional beaconing by the sink and the cluster setup phase; 

and 

2. the network is synchronized by means of any time synchronization protocols [42]. 

The simulator is developed in C++ and adopts the object-oriented approach to allow natural mapping to a 

real sensor network. The radio model is currently assumed to follow an isotropic propagation. As for the MAC 

choice, we adopted the CSMA protocol due to its simplicity and its promise of scalability [39, 43]. However, a 

straightforward application of this protocol in a convergecast scenario is a recipe for failure. In the periodic 

monitoring type application, when the sensor DATA_Timer expires, all nodes capture their sensory value and 

convert to digital via an analog-to-digital converter (ADC) linked to the sensing hardware. Assuming a time-

synchronized clustered network, all nodes simultaneously generate the sensory message for transmission 

towards their CHs. If no precautions were taken, their transmissions would interfere resulting in many collisions 

and retransmissions. This many-to-one transmission is known as convergecast. In order to reduce collisions, 

Huang and Zhang [39] proposed that a node should delay its transmission relative to its distance to the hop 

destination (h) and the node density. As there is likely to be many nodes at each hop, an additional random 

offset is also included to further reduce the collision probability. We chose to adopt a similar temporal 

coordination with respect to a node’s CH. However, it was modified to be less conservative to reflect the smaller 

scope of a cluster rather than an entire network as in [39]. Accordingly, the random wait time function (T) is 

given as: 
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T(h) = (1 + rand).τh  (17) 

where rand is a uniformly distributed random number from 0 to 1 and τ is the average one-hop delay. 

At the network layer, we adopted a simple routing mechanism in Greedy Routing Scheme (GRS) [44] to 

control the network’s forwarding behavior. The forwarding objective is to minimize the number of hops 

between the sink and the other nodes. To establish this minimum hop routing tree, the sink occasionally 

broadcasts a beacon message with a hop count, which is initialized to zero. To overcome the problem of 

asymmetrical links that may be prevalent in WSNs [45], the sink could broadcast at a power level lower than the 

maximum level of a regular node, a move similar to He’s proposal [46]. This is possible for a sensor node with 

tunable transmit power as in Mica2 motes. Upon receiving the beacon, each node records the sender id, 

increments the hop count by one, and then rebroadcasts at a power level below its maximum level. A node only 

rebroadcasts if the new hop count is smaller than its stored value. Since we are focusing on a stationary scenario, 

the sink node only needs to perform occasional beaconing to avoid significant overhead. This forwarding rule 

establishes a minimum hop tree rooted at the sink. Finally, the T-ANT protocol is implemented between the 

application and the network layer, and thus, the overall system framework is as shown in Fig. 2. 

 

 Application 

T-ANT 

GRS 

CSMA 

Radio 

ADC 

Sensor

 
 

Fig. 2. Simulation framework involving the core components of a communication stack. 

 

Based on the given simulation framework, we investigate T-ANT’s performance against LEACH, HEED 

and a flat strategy (i.e. the application sits directly on GRS). Since LEACH can’t be applied directly to a 

multihop network, we modified this algorithm to use the GRS routing protocol to forward messages whenever 

the destination is not within the radio range. As for HEED, even though this algorithm is able to achieve a good 

CH distribution in general compared to others in the literature, the use of tentative CHs that do not finally 

become CHs leaves some regular nodes uncovered (i.e. no CH in range to join). According to the proposed 

HEED implementation [3], such uncovered nodes are forced to become CHs. In our view, this move goes 

against its main design goal of achieving a good CH distribution. Such forced CHs may be in range of other 

CHs, and they are mostly single-node clusters. The issue of having many single-node clusters was addressed by 

increasing the radio range of the nodes in [3]. We, however, feel that instead of forcing these nodes to become 

CHs, they should just be left uncovered. Only the nodes that did not receive any messages at all should be made 

CHs. Such a move has a notional structure change, but it is operationally the same. Thus, for our comparative 

study here, we adopt this suggested implementation. 
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The results from the comparison and other evaluations are presented further. 

 

6. Results and Discussions 
 

For these simulation experiments, we assumed that there are 100 sensor nodes distributed randomly in a 

square M×M region with M = 100 m. The transceiver energy parameters are set as: Eelec = 50 nJ/bit and εfs = 10 

pJ/bit/m2. The energy for data aggregation is set to EDA = 5 nJ/bit per signal [13]. The control and data message 

sizes are fixed at 30 bytes, and sensory data is generated at 2-second interval. Each CH node retains its CH 

status for 20 seconds. The anti-pheromone rate is fixed at 0.1. Unless otherwise stated, all the following 

investigations adopt these values as their system parameters as summarized in Table 2. For all simulation results 

in this paper, each experiment is repeated 10 times and a 95% confidence interval is obtained. 

 
Table 2 
The System Parameters 

Parameter Value 
Field dimension, M 100 m 
Message size 30 bytes 
Sensor DATA_Timer 2 sec 
CS_Timer 20 sec 
Anti-pheromone rate, β 0.1 
Electronics energy, Eelec 50 nJ/bit 
Amplifier energy, εfs 10 pJ/bit/m2 
Data aggregation energy, EDA 5 nJ/bit/signal 
Node radio range 30 m 

 

For the purpose of benchmarking our protocol against others in the literature, we chose to compare against 

two well known proposals, LEACH and a more recent one, HEED, as indicated in the previous section. These 

two protocols belong to two different approaches of clustering; the former is a stochastic clustering scheme and 

makes a clever use of dynamic thresholding, whereas the latter adopts a widely used approach in the MANET 

environment, namely weight-based clustering for ensuring good CH distribution. The key design goals of these 

protocols are the same as our proposal. Both protocols are good baseline for comparison due to the following 

features: 

• Clustering is distributed and entirely based on local information. 
• Clusters are disjoint. 
• They are designed to achieve energy efficiency through load balancing. 
• Each employs a different mode of CH election. 
 
For the HEED protocol implementation, we used the values suggested in [3] for its parameters, and chose to 

use node degree as the secondary parameter for clustering, as it results in the best load-balanced performance. In 

this section, a comprehensive evaluation of T-ANT is provided. The followings are the different aspects of study 

performed: 

• The number of clusters required for optimal T-ANT performance. 
• The clustering properties of the clustered formations. 
• The distribution of residual energy of nodes. 
• Topology formation as the system evolves towards convergence. 
• Network lifetime. 
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These are the performance metrics utilized in our investigations: 

• Clustering fitness: This is based on the fitness metric given as eqn. (16). It represents the fitness of the 
cluster formation in terms of membership. 

• CH election fitness: This is based on the fitness metric given in eqn. (15). It represents the fitness of all 
the elected CH nodes in terms of their distribution. 

• Energy per round: This metric represents the energy dissipated by all nodes in a round of data 
collection. 

• Network lifetime: This metric represents the time period from the instant the network is deployed to the 
moment when the first node runs out of energy. 

 

6.1 T-ANT characteristics 

 

Since T-ANT’s performance depends on the number of ants used to form the clusters, the analysis results are 

used to determine this optimal number. These results are verified using simulation. Fig. 3 depicts the 

comparison between those results. Even though the absolute energy values are different, it is obvious that both 

curves suggest a very similar pattern. The discrepancy is mainly due to the analysis considering the energy 

usage of T-ANT alone, whereas the simulator considers the overhead of the entire stack. Both results concur that 

the optimal number of ants for this scenario is nine. This optimal number of ants, which determines the number 

of clusters, is attainable using eqn. (12). When there are fewer or more clusters in the network, the energy 

dissipation worsens. When there are fewer clusters, there will be many cases of uncovered nodes. These nodes 

will resort to sending their messages, possibly multihop, to the sink. However, when there is more than the 

optimal number, the overhead of managing these clusters will outweighs their benefit. Thus, it is necessary to 

identify the optimal number of ants to achieve T-ANT’s best performance based on the deployment parameters. 
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Fig. 3. Average energy dissipated against the number of ants for T-ANT. The simulation results (i.e. dots) are plotted against the left y-

axis, and the analysis results (i.e. line) are against right y-axis. 

 

In order to observe the generality of the above finding, we used eqn. (12) to determine the optimal number of 

clusters for different terrain areas as well as number of nodes. In Fig. 4, a wireframe 3D plot is given to depict 

how the optimal number varies with the two factors. For a fixed area, the optimal number of clusters varies in 
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( )nO , where n is the number of nodes. As for a fixed number of nodes, the optimal number of clusters is 

linear of terrain area. 
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Fig. 4. The optimal number of clusters [using eqn. (12)] against the number of nodes and the terrain area. The number of nodes is in 

range [50,1000], whereas area size is in [2500,40000]. 

 

6.2 Clustering properties 

 

In this study, we characterize the clustering properties of T-ANT against LEACH and HEED in terms of 

clustering and CH election fitness. Fig. 5 depicts clustering fitness of these protocols at different simulation 

time. This fitness metric represents the alignment property, which indicates how well aligned the cluster sizes 

are. Both T-ANT and HEED mostly exhibit small standard deviation values. This implies each cluster has 

similar number of members. This behavior is only achievable if the CHs are always well distributed. As claimed 

in [3], we verified that HEED is able to achieve this property with our proposed modification. As for LEACH, 

the fitness value varies quite unpredictably. This is mainly due to its stochastic election nature, where the 

number of clusters formed at each round changes quite significantly. Moreover, it is also possible that the 

elected CHs may even be clumped. When the CHs are clumped, the disparity among clusters is large in terms of 

their membership. At other times, the number of clusters may be substantially lesser than necessary to achieve 

complete network coverage. Many nodes will not be covered and the few clusters may have too many members 

far from the ideal mean. The two outlying LEACH points on Fig. 5 represent such a scenario. 
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Fig. 5. The clustering fitness at different simulation time for T-ANT, LEACH and HEED. 

 

In Fig. 6, the CH election fitness is depicted for these protocols. This fitness metric captures how well the 

elected CHs are distributed. It represents the average number of CHs in the range of another. A rather consistent 

behavior as above is obtained. Both T-ANT and HEED have smaller values with HEED showing the least CH 

overlaps with the proposed modification. Due to its biological inspiration, T-ANT has a higher value initially 

before the system achieves convergence. As the swarm evolves, the ants are able to move to better locations, 

and within five rounds, the swarm is able to achieve separation. Even after a good CH distribution is achieved, 

the fitness value keeps changing as the ants are forced to wander to achieve load balancing. It is also found that 

HEED mostly forms lesser number of CHs than T-ANT. The number of clusters formed using T-ANT always 

follows the suggested optimal number as per our analysis. Thus, in terms of energy efficiency, HEED will not 

be able to perform as well as T-ANT due to its clustering process. As for LEACH, its probabilistic CH election 

forces the value to vary significantly. At some rounds, there are no CHs in range of another but at other rounds, 

there are more than a few CHs in range.  
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Fig. 6. The CH election fitness at different simulation time for T-ANT, LEACH and HEED. 
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6.3 Load distribution 

 

In order to observe how well T-ANT promotes load balancing among the nodes, we ran a simulation on 

periodic data collection at 2-sec interval for 2000 sec. At the outset, each node had 2-J battery energy. Figs. 7(a) 

and (b) shows residual energy across the nodes at the end of simulation comparing three protocols. The plots are 

separated to avoid clutter. It is obvious that T-ANT achieved the best performance by maintaining a near 

uniform battery discharge among the nodes. HEED did not perform as well mainly due to its use of tentative 

CHs that do not ultimately become CHs. This causes the affected nodes to become uncovered, which in turn 

forces them to send their messages directly, possibly multihop, to the sink. As expected, LEACH also did not 

perform as well. Since LEACH does not guarantee an optimal clustering throughout its operation, the number of 

clusters formed and their sizes vary greatly. When a suboptimal clustered topology is formed and operated for 

certain interval, this causes some nodes to become more energy drained than the others.  
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Fig. 7. Residual energy distribution of nodes after 2000-sec simulation of T-ANT, HEED and LEACH. The nodes are initially equipped 

with 2-J battery energy. (a) T-ANT vs. HEED; (b) T-ANT vs. LEACH.  
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6.4 Dynamics of clustered topology 

 

The following figures visually demonstrate how T-ANT promotes good distribution of CHs in the network 

compared to HEED and LEACH. Figs. 8 and 9 depict the clustered topology formation at different rounds. For 

T-ANT, we chose to use the optimal number of ants based on the analysis. In the following figures, a ring 

represents a CH, a filled circle represents a regular node, and a line segment links a member to its CH. Any 

unlinked regular nodes are uncovered. For T-ANT, it is visually evident that when the sink randomly releases 

the ants, they could still be forced to neighboring nodes, which results in some regular nodes left uncovered as 

shown in Fig. 8(a). However, as the swarm evolves, the ants are able to achieve some separation by round three 

[Fig. 8(b)]. When the system converges by round five, the network achieves good CH distribution.  

 

     
      (a)              (b) 

     
       (c)            (d) 

Fig. 8. The dynamics of T-ANT clustered topology at different rounds as the swarm evolves. During earlier rounds, quite a few nodes 

are uncovered as the swarm behavior has not converged. However, the coverage is almost total when convergence is achieved.  

Topology formed at round: (a) 1 (b) 3 (c) 10 and (d) 20. 

 

HEED is also able to achieve a fair CH distribution. However, it is not able to achieve complete network 

coverage resulting in many regular nodes left un-clustered. There are two issues that might have contributed to 

this shortcoming. Firstly, the issue of tentative CHs that do not finally become CHs, as highlighted earlier. The 
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other issue is with the protocol’s Finalize phase, its last phase of cluster setup. During this phase, any node that 

did not receive a CH message is forced to become a CH. This causes some neighboring nodes to become CHs, as 

depicted in Fig. 9(b). LEACH exhibits significant variations to its clustered topology, as expected. For certain 

rounds, there are very few clusters formed with many nodes left uncovered, as shown in Fig. 9(c). At other 

rounds, there are many more clusters than necessary, which force many of them to be in range of quite a few 

CHs [Fig. 9(d)]. Such a formation results in significant disparity in their cluster membership, leading to 

imbalance in energy dissipation when the network has to operate under this sub-optimal structure for a certain 

interval. 

 

     
            (a)               (b) 

     
              (c)            (d) 

Fig. 9. The dynamics of HEED and LEACH clustered topologies at different rounds. The coverage of both protocols is not total. HEED 

at round (a) 10 (b) 20; LEACH at round (c) 10 and (d) 20. 

 

6.5 Network lifetime 

 

In Fig. 10, the improvement gained through T-ANT is further exemplified by the network lifetime graph. For 

this investigation, we set initial battery energy at only 0.1J to let the nodes to die sooner. This however does not 

change the pattern of behavior of these protocols. It is evident that T-ANT exhibits the longest lifetime with all 
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nodes remaining fully functional. It is found that T-ANT achieves more than twice the lifetime of HEED and 

LEACH. It also achieves as much as five times the lifetime of the flat routing approach. There is a distinctive 

stair-case effect across all the curves. This is caused by the chosen routing protocol. Whenever certain critical 

nodes on the routing tree die, a part of the network is partitioned resulting in a number of nodes simultaneously 

losing connectivity to the sink. Thus, there are sudden plunges in the number of active nodes throughout the 

curves. T-ANT avoids the use of such critical nodes as long as possible with its ants. This obviously indicates 

that T-ANT promotes good load balancing across the entire network to sustain the network for its longest 

possible use. Fig. 10 also indicates the utility of a clustering algorithm against a flat routing approach. All the 

clustering protocols with data aggregation are able to sustain network lifetime at least twice the lifetime of the 

minimum hop routing protocol. 
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Fig. 10. Network lifetime against simulation time of T-ANT, HEED and LEACH. 

 

7. Conclusions 
 

In this work, we proposed the first novel application of the swarm intelligence technique to the resource-

starved wireless sensor nodes domain. Due to the unique challenges of this domain, we devised an approach that 

allows the algorithm to converge very quickly with only limited overhead. Unlike the traditional applications of 

such biologically-inspired technique, we allow an agent to influence all nodes within the radio range of the host 

node, and not just this node alone. 

The T-ANT clustering protocol utilizes these social agents to guide the election of clusterheads in a totally 

distributed manner. An analysis was performed to determine the number of clusterheads necessary to achieve 

the optimal performance in terms of energy dissipation. Accordingly, we employed this fixed number of agents 

to elect clusterheads. This unique approach allowed T-ANT to form and maintain the optimal number of clusters 

throughout the network operation. Due to the robustness of any biologically-inspired algorithm, this protocol 

could handle unforeseen circumstances in the environment and node failures. We have also introduced two 

fitness metrics that are useful for comparison of clustering properties between algorithms. It is demonstrated 
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here that T-ANT is able to achieve two desirables swarm behaviors, namely separation and alignment, in a fully 

distributed way. Due to the separation behavior, the elected clusterheads are mostly well distributed across the 

network. Moreover, as a side-benefit of this behavior and the alignment behavior, T-ANT also achieved an even 

distribution of members among the clusters. It is also found that T-ANT maintain substantially lesser state 

overhead in memory compared to LEACH or HEED. 

Such a biologically-inspired approach may also be useful in applications that require an in-network 

actuation, to assist in the sensor-actuator coordination. The feasibility of this use is left for our future work. 

 

Acknowledgments 
 

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions. This 

work was supported in part by grants from ARC Discovery Project DP0664782 and USyd R&D L2844 U3230. 

 

References 
 
[1] J. Hill, M. Horton, R. Kling, L. Krishnamurthy, The platforms enabling wireless sensor networks, Communications of the ACM 47 6 

(2004) 41 - 46. 
[2] K. Akkaya, M. Younis, A survey on routing protocols for wireless sensor networks, Elsevier Ad Hoc Networks 3 3 (2005) 325-349. 
[3] O. Younis, S. Fahmy, Heed: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks, IEEE Transactions 

on Mobile Computing 3 4 (2004) 366 - 379. 
[4] Y. Ohtaki, N. Wakamiya, M. Murata, M. Imase, Scalable ant-based routing algorithm for ad-hoc networks, in: 3rd IASTED 

International Conference on Communications, Internet, and Information Technology, 2004, pp. 
[5] S. Selvakennedy, S. Sinnappan, Y. Shang, Data dissemination based on ant swarms for wireless sensor networks, in: IEEE Consumer 

Communications and Networking Conference, 2006, pp. 132-136. 
[6] M. Gerla, J. T.-C. Tsai, Multicluster, mobile, multimedia radio network, Wireless Networks 1 3 (1995) 255-265. 
[7] F. Kuhn, T. Moscibroda, R. Wattenhofer, Initializing newly deployed ad hoc and sensor networks, in: 10th annual international 

conference on Mobile computing and networking, 2004, pp. 260-274. 
[8] D. Baker, A. Ephremides, The architectural organization of a mobile radio network via a distributed algorithm, IEEE Transactions on 

Communications 29 11 (1981) 1694-1701. 
[9] G. Gupta, M. Younis, Load-balanced clustering of wireless sensor networks, in: IEEE International Conference on Communications, 

May 2003, pp. 1848-1852. 
[10] A. D. Amis, R. Prakash, Load-balancing clusters in wireless ad hoc networks, in: 3rd IEEE Symposium on Application-Specific 

Systems and Software Engineering Technology, Mar 2000, pp. 25-32. 
[11] A. D. Amis, R. Prakash, T. H. P. Vuong, D. T. Huynh, Max-min d-cluster formation in wireless ad hoc networks, in: 19th  Joint 

Conference of the IEEE Computer and Communications, Mar 2000, pp. 32-41. 
[12] C.-F. Chiasserini, I. Chlamtac, P. Monti, A. Nucci, An energy-efficient method for nodes assignment in cluster-based ad hoc networks, 

Wireless Networks 10 3 (2004) 223-231. 
[13] W. B. Heinzelman, A. P. Chandrakasan, H. Balakrishnan, An application-specific protocol architecture for wireless microsensor 

networks, IEEE Transactions on Wireless Communications 1 4 (2002) 660 - 670. 
[14] S. Selvakennedy, S. Sinnappan, A configurable time-controlled clustering algorithm for wireless sensor networks, in: 1st International 

Workshop on Heterogenous Wireles Sensor Networks, IEEE Computer Society, 2005, pp. 368-372. 
[15] S. Bandyopadhyay, E. J. Coyle, An energy efficient hierarchical clustering algorithm for wireless sensor networks, in: 22nd IEEE Joint 

Conference of the IEEE Computer and Communications Societies (INFOCOM), 2003, pp. 1713 - 1723. 
[16] A. Ephremides, J. Wieselthier, D. Baker, A design concept for reliable mobile radio networks with frequency hopping signaling, 

Proceedings of the IEEE 75 1 (Jan 1987) 56-73. 
[17] C. R. Lin, M. Gerla, Adaptive clustering for mobile wireless networks, IEEE Journal on Selected Areas in Communications 15 7 

(1997) 1265-1275. 
[18] S. Basagni, Distributed clustering for ad hoc networks, in: 4th International Symposium on Parallel Architectures, Algorithms, and 

Networks, Jun 1999, pp. 310-315. 
[19] M. Chatterjee, S. K. Sas, D. Turgut, An on-demand weighted clustering algorithm (wca) for ad hoc networks, in: IEEE Global 

Telecommunications Conference, Dec 2000, pp. 1697-1701. 
[20] S. Ghiasi, A. Srivastava, X. Yang, M. Sarrafzadeh, Optimal energy aware clustering in sensor networks, Sensors 2 (2002) 258-269. 
[21] J. Pan, Y. T. Hou, L. Cai et al., Topology control for wireless sensor networks, in: 9th international conference on mobile computing 

and networking, Sept 2003, pp. 286-299. 
[22] T. Shu, M. Krunz, S. Vrudhula, Power balanced coverage-time optimization for clustered wireless sensor networks, in: 6th ACM 

international symposium on Mobile ad hoc networking and computing, May 2005, pp. 111-120. 
[23] M. J. Handy, M. Haase, D. Timmermann, Low energy adaptive clustering hierarchy with deterministic cluster-head selection, in: 4th 

International Workshop on Mobile and Wireless Communications Network, 2002, pp. 368  - 372. 
[24] M. Genes, U. Sorges, I. Bouazizi, Ara - the ant-colony based routing algorithm for manets, in: ICPP Workshop on Ad Hoc Networks, 

Aug 2002, pp. 79 - 85. 



25 

[25] G. D. Caro, M. Dorigo, Antnet: Distributed stigmergetic control for communication networks, Journal of Artificial Intelligence 9 
(1998) 317-365. 

[26] M. Roth, S. Wicker, Termite: Emergent ad-hoc networking, in: Second Mediterranean Workshop on Ad-Hoc Networks, 2003, pp. 
[27] H. F. Wedde, M. Farooq, T. Pannenbaecker et al., Beeadhoc: An energy efficient routing algorithm for mobile ad hoc networks 

inspired by bee behavior, in: 2005 conference on Genetic and evolutionary computation, June 2005, pp. 153-160. 
[28] I. Kassabalidis, M. A. El-Sharkawi, R. J. Marks et al., Adaptive-sdr: Adaptive swarm-based distributed routing, in: International Joint 

Conference on Neural Networks, May 2002, pp. 351-354. 
[29] M. Heissenbuttel, T. Braun, Ants-based routing in large scale mobile ad-hoc networks, in: Kommunikation in verteilten Systemen, Feb 

2003, pp. 91-99. 
[30] B. A. Kadrovach, G. B. Lamont, A particle swarm model for swarm-based networked sensor systems, in: ACM symposium on 

Applied computing, Mar 2002, pp. 918-924. 
[31] M. J. Mataric, Issues and approaches in the design of collective autonomous agents, Robotics and Autonomous Systems 16 2-4 (1995) 

321-331. 
[32] M. Dorigo, G. D. Caro, L. M. Gambardella, Ant algorithms for discrete optimization, Artificial Life 5 2 (1999) 137-172. 
[33] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics 21 4 (1987) 25-34. 
[34] V. Hartmann, Evolving agent swarms for clustering and sorting, in: conference on Genetic and evolutionary computation, Jun 2005, 

pp. 217-224. 
[35] R. Schoonderwoerd, O. E. Holland, J. L. Bruten, L. J. M. Rothkrantz, Ant-based load balancing in telecommunications networks, 

Adaptive Behavior 2 (1996) 169–207. 
[36] S. G. Foss, S. A. Zuyez, On a voronoi aggregative process related to a bivariate poisson process, Advances in Applied Probability 28 4 

(1996) 965-981. 
[37] D. Subramanian, P. Druschel, J. Chen, Ants and reinforcement learning: A case study in routing in dynamic networks, in: International 

Joint Conference on Arti cial Intelligence, Morgan Kaufmann, 1997, pp. 832-838. 
[38] J. Montgomery, M. Randall, Anti-pheromone as a tool for better exploration of search space, in: Third International Workshop on Ant 

Algorithms, Springer-Verlag, Sept 2002, pp. 100-110. 
[39] Q. Huang, Y. Zhang, Radial coordination for convergecast in wireless sensor networks, in: 29th IEEE International Conference on 

Local Computer Networks, Nov 2004, pp. 542-549. 
[40] H. Gupta, V. Navda, S. R. Das, V. Chowdhary, Efficient gathering of correlated data in sensor networks, in: MobiHoc '05, ACM Press, 

2005, pp. 402-413. 
[41] J. Chou, D. Petrovic, K. Ramachandran, A distributed and adaptive signal processing approach to reducing energy consumption in 

sensor networks, in: INFOCOM, 2003, pp. 1054-1062. 
[42] B. Sundararaman, U. Buy, A. D. Kshemkalyani, Clock synchronization for wireless sensor networks: A survey, Elsevier Ad Hoc 

Networks 3 3 (2005) 281-323. 
[43] A. Woo, D. Culler, A transmission control scheme for media access in sensor networks, in: 7th annual international conference on 

Mobile computing and networking, Jul 2001, pp. 221-235. 
[44] G. Finn, "Routing and addressing problems in large metropolitan-scale internetworks," ISI, Mar 1987. 
[45] D. Ganesan, B. Krishnamachari, A. Woo et al., "Complex behavior at scale: An experimental study of low-power wireless sensor 

networks," UCLA, LA, 2002, pp. 1-11. 
[46] T. He, S. Krishnamurthy, J. A. Stankovic et al., Wide-area monitoring of mobile objects: Energy-efficient surveillance system using 

wireless sensor networks, in: 2nd ACM International conference on Mobile systems, applications, and services, ACM, 2004, pp. 270 - 
283. 

 


