
The Hybrid Scheduling Framework for Virtual Machine Systems

Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda Lu
Department of Computer Science and Engineering

Shanghai Jiao Tong University, China
{clweng, felixwang, mlli, xdlu}@sjtu.edu.cn

Abstract
The virtualization technology makes it feasible that multiple guest
operating systems run on a single physical machine. It is the virtual
machine monitor that dynamically maps the virtual CPU of virtual
machines to physical CPUs according to the scheduling strategy.
The scheduling strategy in Xen schedules virtual CPUs of a virtual
machines asynchronously while guarantees the proportion of the
CPU time corresponding to its weight, maximizing the throughput
of the system. However, this scheduling strategy may deteriorate
the performance when the virtual machine is used to execute the
concurrent applications such as parallel programs or multithreaded
programs. In this paper, we analyze the CPU scheduling problem
in the virtual machine monitor theoretically, and the result is that
the asynchronous CPU scheduling strategy will waste considerable
physical CPU time when the system workload is the concurrent
application. Then, we present a hybrid scheduling framework for
the CPU scheduling in the virtual machine monitor. There are two
types of virtual machines in the system: the high-throughput type
and the concurrent type. The virtual machine can be set as the con-
current type when the majority of its workload is concurrent appli-
cations in order to reduce the cost of synchronization. Otherwise,
it is set as the high-throughput type as the default. Moreover, we
implement the hybrid scheduling framework based on Xen, and we
will give a description of our implementation in details. At last, we
test the performance of the presented scheduling framework and
strategy based on the multi-core platform, and the experiment re-
sult indicates that the scheduling framework and strategy is feasible
to improve the performance of the virtual machine system.

Categories and Subject Descriptors D.4.1 [Operating Systems]:
Process Management

General Terms Algorithms, Experimentation, Performance

Keywords Virtualization, Scheduling Strategy, Hybrid Schedul-
ing

1. Introduction
With the development of the computer technology, the processing
power of computer system is increasing quickly, and the multi-core
(many-core) CPU gradually becomes popular in the computer sys-
tem. As a result, it is feasible to aggregate the functionality of mul-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’09, March 11–13, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-375-4/09/03. . . $5.00

tiple standalone computer systems into a single hardware computer,
in order to promote the usage of the hardware while decrease the
cost of the power. Virtualization technology [1][2] is a good way to
achieve these benefits. Differing from the traditional system soft-
ware stack, a virtual machine monitor (VMM) is inserted between
the operating system level and the hardware level in the virtualized
system. In the virtual machine system, multiple virtual machines
(VM) with a specified individual instance of the operating system
are running simultaneously on the top of the VMM. Currently, ex-
amples of system virtulization include VMWare [3], Xen [4], Vir-
tual server [5], Denali [6][7], User Mode Linux [8], etc.

However, the complexity of the virtualization technology intro-
duces additional management challenges. In this paper, we focus
our attention on CPU scheduling in the virtual machine system. It
is the VMM that virtualizes the physical CPU to the virtual CPU,
on which the guest operating system is running. Usually the total
number of virtual CPUs in the virtualized system is larger than the
number of physical CPUs, and the schedule module in the VMM
maps virtual CPUs of virtual machines into physical CPUs in a
time-share manner. The fair share of CPU should be guaranteed by
the VMM, That is to say, each VM should get the number of CPU
time in a proportion according to the strategy. For example, a VM
with a weight of 10 will get twice as much CPU as a VM with a
weight of 5 on a contended host.

In the virtual machine system with the multi-core CPU, usu-
ally treated as a virtual symmetric multiprocessing (SMP) system,
a specifical characteristic is that all virtual CPUs in a SMP virtual
machine are usually not online all the time, and possibly not on-
line at the same time, which is different from the non-virtualization
scenario. This is because the number of virtual CPUs of all vir-
tual machines is usually larger than the number of the physical
CPUs, and these virtual CPUs have to share the limited number
of the physical CPUs in turn. When the workload in a VM is the
non-concurrent application, the VMM schedules virtual CPUs of
the VM asynchronously while just has to guarantee a certain pro-
portion of the CPU time. This method is beneficial to simplify the
implementation of the CPU scheduling in the VMM, and will not
distinctly reduce the performance of the system, and it is widely
adopted in the implementation of the VMM. However, when the
workload in the VM is the concurrent application such as multi-
threaded programs or parallel programs with the synchronization
operation, these existing CPU scheduling methods may deteriorate
the performance.

The motivation of this paper is to improve the performance of
the CPU scheduling when the workload of the VM is the concur-
rent application. The main contribution of this paper includes as
follows. With theoretical analysis, the conclusion is that the asyn-
chronous virtual CPU scheduling strategy will waste considerable
physical CPU time when the system workload is the concurrent ap-
plication. A hybrid scheduling framework is presented to efficiently
deal with the variety of applications in the VM, where VMs are di-

111

vided into the high-throughput VM and the concurrent VM. And
the scheduling strategy is presented for mapping virtual CPUs in
the VMM, which adopts different algorithms correspondingly for
the two different types of VMs, while guarantees the fairness of
CPU sharing among VMs.

The rest of this paper is organized as follows. The next sec-
tion presents the CPU scheduling problem and its analysis in the
VMM. Section 3 presents a hybrid scheduling framework and al-
gorithm for the VMM. Section 4 discusses the implementation of
the scheduling framework and algorithm. Section 5 discusses the
experimental results. Section 6 provides a brief overview to the re-
lated works, and Section 7 concludes the paper.

2. CPU Scheduling Problem and Analysis in the
VMM

In this section, we firstly describe the general virtual machine
architecture, and then give a typical CPU scheduling scenario to
describe the CPU scheduling problem in the VMM. Finally, we
theoretically analyze the CPU scheduling problem in the VMM.

2.1 System virtualization
As depicted in Figure 1, virtualization provides an additional layer
(VMM) between the running operating system and the underlying
hardware. The VMM manages the hardware resources and exports
them to the operating systems running on them. As a result, the
VMM is in full control of allocating the physical CPUs to the guest
operating system.

Hardware

Virtual Machine Monitor (VMM)

Virtual Machine (VM1)

Operating System

Application 1

Application 2

Application 3

Virtual Machine (VM2)

Operating System

Application 1

Application 2

Application 3

Figure 1. General virtual machine architecture

Currently, the VM with multiple processors is treated as a vir-
tual SMP system, where all processors behave identically and any
process can execute on any processor. There are two problems with
CPU scheduling in the VMM, on which multiple virtual SMP sys-
tems run. One problem is how to guarantee the CPU fairness among
different VMs, that is, the CPU time obtained by a VM should be in
a certain proportion. And the other is how to deal with the synchro-
nization problem such as the lock-holder preemption [9] for the
virtual SMP system. For example, the VMM can preempt a virtual
CPU with a thread holding a lock, which will result in an extension
of the lock holding time. Before modeling and analysis, we firstly
give a scenario to illustrate these two problems.

2.2 Scenario
There are four processors in a SMP virtual machine, on which a
thread of a multithreaded program is running respectively, and the
unit time of CPU scheduling is a slot. The weight of the VM is
3/10, and there is a synchronization operation between threads at
the end of each step, and the length of the step is equal to the length

0 1 2 3 4 5 6 7 8 9 10 11 12

3

32

22

2

2

2

1

1

1

1

CPU3

CPU2

CPU1

Time: slot

CPU0

Figure 2. The scenario of Noncoscheduling

0 1 2 3 4 5 6 7 8 9 10 11 12

3

3

3

3

2

2

2

2

1

1

1

1CPU3

CPU2

CPU1

Time: slot

CPU0

Figure 3. The scenario of coscheduling

of the slot. This scenario can be abstracted from the multithreaded
program or the parallel program.

There exist two kinds of scheduling strategies. One is that each
virtual CPU is asynchronously assigned to the physical CPU in or-
der to maximize the throughput, while guaranteeing the CPU fair-
ness according to the weight. However, this strategy will deteriorate
the performance when the workload is a concurrent application. A
possible scheduling sequence of the multithreaded program by this
scheduling strategy is shown as Figure 2, the multithreaded appli-
cation only completes the 2 steps in the length of the 10 slots, while
there are 4 slots of CPU time to be wasted for the synchronization.

The other scheduling strategy is that each virtual CPU is syn-
chronously assigned to the physical CPU in order to avoid the ad-
ditional cost of the synchronization, while guaranteeing the CPU
fairness according to the weight. One possible scheduling sequence
of the multithreaded program by the scheduling strategy is shown
as Figure 3, and it completes the 3 steps in the length of the 10 slots.

This scenario with the two strategies gives a straightforward
comparison, and the coscheduling strategy outperforms the non-
coscheduling strategy for the concurrent workload, under the
condition that the CPU fairness is guaranteed, and each virtual
CPU runs 3 slots in the length of 10 slots. The limitation of the
coscheduling strategy is that the number of the virtual CPU should
be no more than the number of the physical CPU, and the schedul-
ing of one application may be delayed because lack of enough
idle physical CPUs. In the follows, we will theoretically analyze
the assignment of the concurrent application on the SMP virtual
machine.

2.3 Modeling
This section formalizes the job model, defines the scheduling
model, and presents the objective function of the schedule.

Job model. J = {J1, J2, ..., J|J|} denotes a concurrent job,
which comprises |J | tasks. Each task of the job is running in se-
quence, and has to synchronize with other tasks in a fixed interval.
Task Ji can be decomposed by the synchronization operation into
a sequence of |Ji| phases, that is, {J1

i , J2
i , ..., J

|Ji|
i }. Each phase

of a task comprises one part of computation and one subsequent
part of synchronization. For the kth phase of task Ji, Jk

i .e denotes
the part of the computation, and Jk

i .s denotes the part of the syn-
chronization. Once one phase of a task begins to run on a physical

112

CPU, we assume that it will keep running until the completion of
the phase.

Scheduling model. In the virtual machine system, the assign-
ment of a concurrent job in the SMP virtual machine includes: the
assignment of the job on virtual CPUs by the guest operating sys-
tem, and the assignment of the virtual CPUs on the physical CPUs
by the VMM.

The physical computer includes a group of homogenous CPUs,
denoted by P = {P1, P2, ..., P|P |}, and the number of the physical
CPUs is |P |. The VMs running on the physical computer is denoted
by V = {V1, V2, ..., V|V |}, and |V | denotes the number of VMs in
the system. The weight proportion of VM Vi is denoted by ω(Vi),
which represents the proportion of physical CPU time consumed
by the VM, and then

P
i

ω(Vi) = 1. The set of virtual CPUs

in the ith VM is denoted by C(Vi) = {vi1, vi2,, vi|C(Vi)|},
and |C(Vi)| denotes the number of virtual CPUs in VM Vi. For
avoiding overmuch switching cost of virtual CPUs mapping on
physical CPUs, the following relation exists, that is, ∀i, |C(Vi)| ≤
|P |. For the same reason, we assume that |J | ≤ |C(Vi)|.

The scheduling problem of a concurrent job J in VM Vi is
formalized by χ = (τ, π), where τ : J → {0, 1, 2,,∞} , and
π : J → P . τ maps phases of tasks to the set of time slots, and π
maps phases of tasks to the set of physical CPUs in the system.

As each task of the concurrent job is running in sequence and
synchronizes with each other at the end of phases in interval, we
have τ(Jm

k)+Jm
k .e+Jm

k .s < τ(Jn
l) if m < n. π(Jm

k) denotes a
physical CPU, on which task Jk runs during the course of its phase
Jm

k , and it is determined by the mapping realtions: Jm
k → C(Vi)

and C(Vi) → P . The makespan of job J executed on VM Vi by
the schedule χ is Tχ(J) = max

k
{τ(J

|Jk|
k) + J

|Jk|
k .e + J

|Jk|
k .s}.

Objective function. We now formulate the scheduling issue of
the concurrent job in the virtual machine system as an optimization
problem as follows.

Let χ be a schedule of a concurrent job J of VM Vi on the
physical machine with P . The objective function is min Tχ(J),
while subject to:

The proportion of the CPU time obtained by VM Vi is ω(Vi);
τ(Jm

k) + Jm
k .e + Jm

k .s < τ(Jn
l) if m < n;

|J | ≤ |C(Vi)| ≤ |P |.

2.4 Strategy analysis
The first-come-first-service (FCFS) strategy is a simple and effi-
cient method to schedule the computation-intensive concurrent ap-
plication on the SMP system. So we assume that a SMP virtual
machine is dedicated to execute tasks of a concurrent job in a cer-
tain period. In this paper, we focus on the CPU scheduling in the
VMM, and assume that each task of a concurrent job will be as-
signed to a fixed virtual CPU by the guest operating system for
reducing the cost of the context switch. Correspondingly, the job
scheduling problem reduces to the scheduling of the virtual CPU
to the physical CPU in the system. Then in the schedule χ, τ and
π also represent the mapping relation of the corresponding virtual
CPU to the set of time slots and the set of physical CPUs.

Formally, the time is subdivided into a sequence of fixed-length
slots, which is the basic time unit, and slot i corresponds to the time
interval [i, i + 1). Within each slot, each physical CPU is allocated
to a corresponding virtual CPU. To simplify the presentation, we
assume that each phase of a task is equal to a slot, then Jk

i .e +
Jk

i .s = 1.
Received(vij , t1, t2) denotes the CPU time obtained by the

virtual CPU vij in the interval [t1, t2), and the CPU time obtained
by the VM is equally distributed among its virtual CPUs. Then the

deviation is defined as follows:

Lag(t, vij) = t× |P | × ω(Vi)/|Vi| −Received(vij , 0, t) (1)

The |Lag(t, vij)| is used to evaluate the fairness of the schedul-
ing strategy. For an ideal fair scheduling strategy, which can guar-
antee that the CPU time consumed by a VM is strictly in proportion
to its weight, we have |Lag(t, vij)| ≤ 1, where the time unit is a
slot.

Proportional share (PS) scheduling strategy. This strategy al-
locates CPU in proportion to the number of shares (weights) that
VMs have been assigned, which displays as Figure 2. This strategy
is widely adopted by VMMs such as Xen. And the correlation of
the two virtual CPUs is not considered during the assignment of
the physical CPU to the virtual CPU. The key part of this strategy
is the concept of weight, while the CPU time obtained by a VM is
equally distributed among its virtual CPUs.

Lemma 1. For the concurrent job J in VM Vi, the supremum
of the completion time Tm of phase m by the ideal PS scheduling
strategy is:

sup Tm = max
k

τ(Jm−1
k) +

j
2×|Vi|

|P |×ω(Vi)

k
+ 1

Proof. At the time t0 = max
k

τ(Jm−1
k), the virtual CPU vij∗

with the maximal next scheduling interval has the following prop-
erty. It is scheduled nearly overfull, and Lag(t0, vij∗) = −1,
while it will be scheduled at the time t1 when Lag(t0, vij∗) = 1.
Because the virtual CPU vij∗ is not actually scheduled, we have
Received(vij∗ , 0, t0) = Received(vij∗ , 0, t1). According to
Equation (1), t1 × |P | × ω(Vi)/|Vi| − t0 × |P | × ω(Vi)/|Vi| =

2 holds. Then, t1 − t0 =
j

2×|Vi|
|P |×ω(Vi)

k
. As the virtual CPU

vij∗ has the maximal next scheduling interval, we have Tm =
max

k
τ(Jm−1

k)+(t1− t0)+1, that is, sup Tm = max
k

τ(Jm−1
k)+j

2×|Vi|
|P |×ω(Vi)

k
+ 1. z

Theorem 1. For the concurrent job J in VM Vi, the supremum
of the makespan of J by the PS scheduling strategy with the
maximal deviation |Lag| is:

(max
k
|Jk|)×

j
2×|Lag|×|Vi|
|P |×ω(Vi)

k
.

Proof. In Lemma 1, after replacing the deviation value of 1 with
the value of the PS scheduling strategy’s maximal deviation |Lag|,
the maximal scheduling interval is: t1 − t0 =

j
2×|Lag|×|Vi|
|P |×ω(Vi)

k
.

And task Ji has |Ji| phases, and the maximum of phases of Job J is
max

k
|Jk|, then the supremum of the makespan of J is (max

k
|Jk|)×j

2×|Lag|×|Vi|
|P |×ω(Vi)

k
. z

Co-proportional share (CPS) scheduling strategy. Besides
guaranteeing that the CPU time is allocated to VMs in propor-
tion to the number of their weights, this strategy co-assigns the set
of virtual CPUs in a VM to the physical CPUs, that is, virtual VPUs
are coscheduled to the physical CPUs in the system.

Theorem 2. For the concurrent job J in VM Vi, the makespan
of job J by the CPS scheduling strategy is:‰

(max
k
|Jk|)×|Vi|

|P |×ω(Vi)

ı
.

Proof. As all virtual CPUs are coscheduled to the physical
CPUs, the makespan is determined by the time length of the task
with the maximal number of phases. The weight proportion of a
virtual CPU in VM Vi is ω(Vi)

|Vi| , and the number of physical CPUs
is |P |, and the execution time of each phase is 1, then the makespan

of (max
k
|Jk|) phases is

‰
(max

k
|Jk|)×|Vi|

|P |×ω(Vi)

ı
. z

Corollary 1. For a concurrent job J in VM Vi, the makespan of
job J by the PS strategy with maximal deviation |Lag| is denoted

113

by makespanps, and the makespan of job J by the CPS strategy
is denoted by makespancps, then, makespanps

makespancps
= 2× |Lag|.

Corollary 1 is easily deduced by the above two theorems. For a
practical PS scheduling strategy, the value of |Lag| is usually larger
than 1. Therefore, the makespan of the concurrent job J by the PS
strategy will be not less than the twice of the makespan by the CPS
strategy at worst. As a result, the scheduling issue in the VMM
should be studied further to reduce this kind of the performance
loss.

In this section, we theoretically analyze the two kinds of
scheduling strategies for the CPU scheduling in the VMM. The-
oretical result indicates that the coscheduling strategy is a potential
efficient method for allocating physical CPUs to virtual CPUs when
the workload in the VM is the concurrent application.

3. Scheduling Framework and Algorithm
This section presents a hybrid scheduling framework, specifics
regarding its implementation are detailed in the following section.
We begin with the high-level design issues that have driven our
work, followed by the scheduling framework in the VMM. The
final part of this section gives a description of the CPU scheduling
algorithm in the VMM.

3.1 Design issues
To maximize the performance in the virtual machine system, the
following design issues should be considered for the scheduler in
the VMM.

• Fairness. When multiple VMs share a single physical system,
it is not a good appearance that a VM with the heavy workload
can impropriate the CPU resource of other VMs without any
limitation. The scheduler in the VMM should keep fairness in
resource sharing among VMs. That is, the amount of the CPU
time obtained by a VM is controlled. An effective method is
proportional share fairness, by which the CPU usage of a VM
is in proportion to the number of weights that the VM has been
assigned.

• Workload balancing. For multiple virtual CPUs in a VM, their
assigned physical CPU time should be nearly equal. So the
scheduler should balance the CPU time among virtual CPUs
in a SMP VM, and make virtual CPUs perform similarly as the
physical CPUs in the real SMP machine, and avoid the long
delay of a virtual CPU compared to the other virtual CPUs in
the VM.

• Wasted CPU time. The additional cost is unavoidably intro-
duced when the system is virtualized. Currently, the additional
cost of virtualization is relatively small. However, the inappro-
priate semantic rules may bring an unneglectable cost of the
wasted CPU. For example, a considerable CPU time may be
wasted during the period of synchronization between virtual
CPUs in a VM.

• Adaptiveness. There are a variety of workloads in VMs, and
VMs are scheduled by the VMM to the physical CPUs in the
system. So it is a large challenge for the scheduler that can
achieve the goal of good fairness, efficient workload balancing,
and minimal wasted CPU time, when allocating the physical
CPU time to VMs. The scheduler with a good adaptiveness can
make a better trade-off among these factors, and can change its
strategy for VMs with the different workload properties.

3.2 Scheduling framework
Applications running on the VM can be classified as the high-
throughput kind of applications and the concurrent kind of appli-
cations. For a high-throughput application, the scheduling goal is

to maximize the throughput. Taking a web server application as an
example, the performance goal is that the server can process ac-
cess requests as many as possible, and the processing threads of re-
quests are independent from each other. Obviously, the PS schedul-
ing strategy is suitable for scheduling physical CPU time over vir-
tual CPUs when the workload of the VM is the high-throughput
application, as adopted in Xen.

For the concurrent application, the CPS scheduling strategy is
a potential efficient method as analyzed above (see Section 2.4).
On the other hand, The constraint is that the number of the vir-
tual CPU should be no more than the number of the physical CPU,
and the scheduling of an application may be delayed because lack
of enough idle physical CPUs. Moreover, the implementation of
coscheduling also introduces an additional cost. It is a trade-off is-
sue between the increased performance and additional cost. How-
ever, the performance profit is larger than the performance loss
when a SMP VM is dedicated to execute the concurrent applica-
tion.

Therefore, we present a hybrid scheduling framework for the
VMM. In the scheduling framework shown as Figure 4, virtual
machines on the VMM can be divided into two kinds, one kind
is the high-throughput VM, and the other is the concurrent VM.
The two kinds of VMs will be created to run the corresponding
kinds of applications. Moreover, a VM can be changed from the
high-throughput type to the concurrent type, or from the concurrent
type to the high-throughput type, in response to the change of its
workload’s characteristic. When the majority of the workload in a
VM is the high concurrent application, the FCFS job assignment is
adopted.

Hardware

Virtual Machine Monitor (VMM)

High-throughput VM

Operating System

A
p

p
li

ca
ti

o
n

 1

A
p

p
li

ca
ti

o
n

 2

A
p

p
li

ca
ti

o
n

 3

Concurrent VM

Operating System

Application 1

Application 2

Application 3

F
C

F
S

Figure 4. The hybrid structure of virtualization

Besides the number of the virtual CPU, the capacity of the
memory, and the location of the file system, etc., the two properties
should be set when a VM is created, that is, the weight of the VM
and the type of the VM. The configure file of a VM includes all
above information. The setup work flow of the CPU scheduling
for a VM is shown as Figure 5. The initial scheduling parameters
are set in the configure file of a VM, which is created by the
system administrator. According to the configure file, the VM is
created with a certain weight. After the VM is created, the VMM
scheduling module has to recalculate the allocation proportion of
physical CPU time among VMs, and the new weight proportion
of CPU time of a VM is the value of its weight divided by the
new total weight. Then the scheduling module assigns the physical
CPU time to VMs according to the new proportion, while the
scheduling fashion of virtual CPUs in a VM is determined by
the VM’s type. When it is a concurrent VM, its virtual CPUs are
mapped into physical CPUs synchronously, otherwise its virtual
CPUs are mapped asynchronously. During the lifetime of a VM,

114

its type can be modified by the system administrator, according to
the characteristic of its workload.� � � � � � � � � � � 	 �
 � � � � � 	 � � � � � � � � � �� � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � �� � � � � � � � � � � �� 	 � � 	 � � � � � � � � � � � � � � � � � � � � 	� � � � � � � � � � � � � � � � � � � �� ��

 ! � � � � � � � � " � � � � � � � � � � � � � � 	 � � � � � � � � 	� � � � � � � � � � � � 	 � � � � � � � ! � � � � !
� � � � � � � � � � � � � � � � �

� � � � � � � � � 	 � � �� � � � 	 �
Figure 5. The setup work flow of scheduling

3.3 Scheduling algorithm
After the weight of VMs and their types are determined, then the
physical CPUs are allocated to the virtual CPUs by the VMM
scheduling algorithm.

For representing the type of VMs, we define an enumerate
structure as follows.

typedef enum {
HIT, /*the high-throughput type*/
CON, /*the concurrent type*/

}VMType;

For VM Vi, V T (Vi) denotes the type of the VM, and there are
two types of VMs, V T (Vi) = HIT if Vi is a high-throughput
VM, and V T (Vi) = CON if Vi is a concurrent VM. We also
define: V T (vij) = HIT if Vi is a high-throughput VM, and
V T (vij) = CON if Vi is a concurrent VM.

The scheduling algorithm for the VMM supporting the SMP
VM includes the following four parts.

Virtual CPU initial mapping. When a VM is created, each vir-
tual CPU of the VM will be inserted to the run queue of a physical
CPU, respectively. All available physical CPUs for the virtual CPU
vij makeups a set of physical CPUs, which is denoted by AP (vij),
and we have AP (vij) ⊆ P . For the two types of VMs, we have:

• if V T (Vi) = CON , for virtual CPU vij , there doesn’t exist
any virtual CPU vik (k = 1, ..., |C(Vi)|, and k 6= j) in the run
queue of any physical CPU Pl ∈ AP (vij).

• if V T (Vi) = HIT , for virtual CPU vij , AP (vij) = P .

Then, a physical CPU Pl0 with the minimal workload in
AP (vij) is chosen, and the virtual CPU vij is inserted into the
run queue of the physical CPU Pl0 .

Physical CPU time allocation. The physical CPU time of the sys-
tem is allocated to VMs in proportion to the number of the weights
that VMs have been assigned. The concept of potential energy (PE)
is borrowed from the mechanics. In a certain interval, the PE value
of each virtual CPU is reset according to the weight.

The PE value of virtual CPU vij is PE(vij). The dissipation of
PE per slot is denoted as PEunit, the time length of the allocation
interval is denoted as L slots, and the time of allocating physical
CPU time is denoted as an allocation event. Then in the interval
with L slots, the total PE of the system is PEtotal = |P | ×
PEunit × L.

The procedure of PE allocation is as the following pseudocode.

For each VM Vi:
The PE increment PEinc = PEtotal × ω(Vi);
For each virtual CPU vij in VM Vi

PE(vij) = PE(vij) + PEinc ÷ |C(Vi)|;
After updating the PE value of virtual CPUs, virtual CPUs in

the run queue of a physical CPU will be sorted in the decreasing
order of their PE values.

PE dissipation. We denote the virtual CPU currently running on
the physical CPU Pi as PV (Pi), and it is the head element in the
run queue of the physical CPU, and the run queue of Pi is denoted
by runq(Pi). After the time of a slot, the PE value of the virtual
CPU running on a corresponding physical CPU is decreased by
PEunit, and the processing procedure is as the following pseu-
docode, where the boot strap processor is abbreviated as BSP.

For each physical CPU Pk:
PE(PV (Pk)) = PE(PV (Pk))− PEunit;
If Pk is BSP, and an allocation event time achieves

Performing Physical CPU time allocation;
Else

Sorting virtual CPUs in the decreasing order of PE;

Scheduling and balancing. At the beginning of each slot, a virtual
CPU should be selected for each physical CPU in its run queue. The
scheduling and balancing algorithm is described as the following
pseudocode.

For each physical CPU Pk:
1) If PE(PV (Pk)) < 0, then:

Lookuping vi∗j∗ in the head of the run queue of
Pk′(k

′ 6= k), with PE(vi∗j∗) = max
k′

PE(PV (Pk′)),

and runq(Pk)∩C(Vi∗) = φ if V T (Vi∗) = CON , and
then migrating vi∗j∗ to Pk and executing it.

2) If PE(PV (Pk)) > 0 and V T (PV (Pk)) = CON ,
then:

Lookuping all other virtual CPUs that belong to the
same VM as PV (Pk), and their physical CPUs. Then Pk

sending Inter-Percossor Interrupt (IPI) to these physical
CPUs, and all virtual CPUs in this VM being scheduled.

3) If PE(PV (Pk)) > 0 and V T (PV (Pk)) = HIT ,
then:

The virtual CPU PV (Pk) being scheduled to the
physical CPU Pk.

Then the work flow of the VMM scheduling algorithm with the
above four parts is as Figure 6. It is the part of Physical CPU time
allocation that guarantees the CPU fairness according to the weight
that VMs are assigned, and the coscheduling operation for virtual
CPUs in a concurrent VM is implemented in the part of Scheduling
and balancing.

4. Detailed Design and Implementation
We have implemented a working prototype of the hybrid schedul-
ing framework in the virtual machine monitor. It is based on open-
source Xen-3.0.4, and the guest operating system is Linux. We

115

Virtual CPU initial mapping

Physical CPU time allocation

Scheduling and balancing

PE dissipation

L
 s

lo
ts

o
n
e

sl
o
t

Figure 6. The work flow of CPU scheduling

choose Linux and Xen because of their broad acceptance and the
availability of their open-source codes.

In the following subsection, the implementation of the hybrid
scheduling framework and the algorithm is described. At the first,
we will give a overview and discussion of the CPU scheduling
strategies in Xen.

4.1 CPU scheduling algorithms in Xen
Xen allows users to choose the CPU scheduling algorithm among
different algorithms. Three different CPU scheduling algorithms
are introduced until now, all allowing users specify CPU allocation
by the CPU weight. As the implemented prototype in this paper
is based on Xen, we briefly discuss the main features of the three
scheduling algorithms in Xen.

Borrowed Virtual Time (BVT). It is a fair-share scheduling
algorithm based on the concept of virtual time, dispathing the
runnable VM with the smallest virtual time firtstly [10]. The low-
latency support is provided in BVT for realtime and interactive ap-
plications by allowing latency-sensitive client to warp back in vir-
tual time to gain scheduling priority. And the client can effectively
borrow virtual time from its future CPU allocation.

The scheduling algorithm is configured with a context switch
allowance, and it is the real time by which the current VM is al-
lowed to advance beyond another runnable VM with equal claim
on the CPU. Each runnable VM receives a share of CPU in pro-
portion to its weight. To achieve this goal, the virtual time of the
currently running VM is incremented by its running time divided
by the weight.

The lack of the non work-conserving (NWC) mode in BVT
severely limited its usage, and led to the introduction of the other
scheduling algorithm.

Simple Earliest Deadline First (SEDF). In this algorithm, the
real time property is used to ensure time guarantees [11]. Each VM
specifies the slice and period together to represent the CPU share
requested by this VM, that is, a VM will receive at least the slice
specified by the VM in each period of the length specified by the
VM.

One boolean flag indicates whether the VM is eligible to receive
extra CPU time (work-conserving mode). This slack time is dis-
tributed in a fair manner after all the runnable VMs received their
CPU share. A VM obtains 30% when the slice is equal to 3 while
the period is equal to 10, or when the slice is equal to 30 while the

period is equal to 100. The time granularity in the definition of the
period impacts the scheduler fairness.

One main shortage is the lack of global workload balancing on
multiprocessors, and the CPU fairness depends on the value of the
period.

Credit Scheduling. This algorithm is a kind of proportional
share (PS) strategy, featuring automatic workload balancing of
virtual CPUs across physical CPUs on a SMP host [12]. Before
a CPU goes idle, it will find any runnable virtual CPU in the run
queue of the other physical CPUs. This approach guarantees that
no physical CPU idles when there exists a runnable virtual CPU in
the system.

Each VM is associated with a weight and a cap. When the cap
is 0, VM can receive extra physical CPU (WC-mode), while a non-
zero cap (expressed as a percentage) limits the amount of physical
CPU time obtained by a VM (NWC-mode). The algorithm uses 30
ms time slices for the physical CPU allocation. The priorities (cred-
its) of all runnable VMs are recalculated in the interval of 30ms,
which is mainly in proportion to weight that VMs are assigned by
the user. The basic unit time of scheduling is 10 ms, and the credit
of the running virtual CPU is decreased every 10 ms.

This algorithm can efficiently achieve a global workload bal-
ancing on a SMP system when the majority of the workload is not
the high concurrent application. It is the latest scheduling algorithm
and the default scheduling algorithm in Xen.

4.2 Scheduling module
In this subsection, we will describe the scheduling module in the
VMM based on Xen.

Similarly as the scheduling module in Linux and Xen, this
module is invoked every clock tick. At each clock tick, the mission
of the scheduling module running on each physical CPU is to
determine the next virtual CPU, which will execute on the physical
CPU. The key codes of the scheduling module are as follows.

static void schedule(void) {
......
next_slice = ops.do_scheduler(now);
......

}

In this paper, a new scheduler sched hybrid def is imple-
mented based on Xen as follows.

static struct scheduler *schedulers[] = {
&sched_sedf_def,
&sched_credit_def,
&sched_hybrid_def,
NULL

};

Specificially, the sched hybrid def scheduler is defined as
follows, which is similar as the structure of the credit scheduler
in Xen.

struct scheduler sched_hybrid_def = {
.name = "Multi-core PE Scheduler",
.opt_name = "pe",
.sched_id = XEN_SCHEDULER_PE,
.init_domain = hsched_dom_init,
.destroy_domain = hsched_dom_destroy,
.init_vcpu = hsched_vcpu_init,
.destroy_vcpu = hsched_vcpu_destroy,
.sleep = hsched_vcpu_sleep,
.wake = hsched_vcpu_wake,
.adjust = hsched_dom_cntl,
.pick_cpu = hsched_cpu_pick,

116

.tick = hsched_tick,

.do_schedule = hsched_schedule,

.dump_cpu_state = hsched_dump_pcpu,

.dump_settings = hsched_dump,

.init = hsched_init,
};

4.3 Coscheduling implementation
For avoiding that the two groups of the virtual CPUs from the two
individual concurrent VMs perform coscheduling at the same time,
so we define a global variable syn domain id, which should be
modified in the mutually exclusive means. And a global variable
syn map is defined to record the ID of physical CPUs needed to
be coscheduled.

The skeleton of the coscheduling implementation is as follows.

/* The coscheduling launched by others*/
/* participating in the coscheduling */
if((syn_domain_id > 0)&&(cpu_isset(cpu,syn_map))){
find the virtual CPU in the runq to be
coscheduled, and return it;

}
/* Not participating in the coscheduling */
else if
((syn_domain_id > 0)&&(!cpu_isset(cpu,syn_map))){
take the head virtual CPU in the runq,
and return it;

}
/* there is no coscheduling currently */
else{
take the head virtual CPU in the runq,
if (its PE > 0){
if (its VM is CON, and spin_trylock(lock)){
Add the ID of physical CPUs into the
workers, which is associated with virtual
CPUs in the VM;
cpumask_raise_softirq \\
(workers, SCHEDULE_SOFTIRQ);
spin_unlock(lock);
}
else{
return it;
}
}
else{
/* get the virtual CPU with positive

PE from others */
return hsched_workload_balance();
}

}

The virtual CPUs of a VM distributed on a group of physical
CPUs are coscheduling through the SCHEDULE_SOFTIRQ raised by
a physical CPU, which firstly schedules one of the virtual CPUs.
And the hsched_workload_balance selects the runnable virtual
CPU from other physical CPUs, while avoiding that the two virtual
CPUs in a concurrent VM are in the run queue of the same physical
CPU.

4.4 User interface
When a VM is created, it is a high-throughput VM by default, and
the user interface should be provided to the system administrator, so
that the type of a VM can be changed by the system administrator
according to the characteristic of the workload in the VM.

Therefore, we added new option “xm sched-pe” into the Xen
management tool, that is xm. The user interface of the hybrid sched-

uler is implemented by C and Phyton languages. Through this user
interface, a VM’s type and its weight can be set directly by the
system administrator.

When a VM changing from the high-throughput type to the
concurrent type by the system administrator, additional checking
and adjustment should be considered in the scheduling module in
the VMM. That is because any two virtual CPUs of a VM should
be not in the run queue of the same physical CPU when the VM is
a concurrent type.

5. Performance Evaluation
In this section,we perform some experiments on the virtual machine
system with benchmarks.

5.1 Experimental methodology
Workload. To evaluate the system performance, we used two
benchmarks suites from Stanford Parallel Applications for Shared
Memory (SPLASH-2) [13][14]. Additionally, a throughput bench-
mark of web server is adopted. Specifically, the three benchmarks
are as follows.

• LU. The LU kernel in SPLASH-2 factors a dense matrix into
the product of a lower triangular and an upper triangular matrix.
The dense n × n matrix A is divided into an N × N array of
B × B blocks (n = N × B) to exploit temporal locality on
submatrix elements.

• Barnes. The Barnes application simulates the interaction of a
system of bodies (galaxies or particles, for example) in three
dimensions over a number of time-steps, using the Barnes-Hut
hierarchical N-body method.

• Web server. We measure the throughput of the web server,
which is implemented by httfperf [15]. Httperf is a tool for mea-
suring the web server performance. It provides a flexible facility
for generating various HTTP workloads and for measuring the
server performance.

Experimental system. All experiments were executed on a Dell
PowerEdge 1900 server with dual quad-core Xeon X5310 CPUs,
and 2GB of RAM. The virtualized system ran Xen 3.0.4, and all
VMs ran the Fedora Core 6 Linux distribution with the Linux
2.6.16 kernel.

Scheduler. In the experiment, we will compare the credit sched-
uler in Xen with the hybrid scheduling scheduler. The performance
of three types of VMs is tested, that is, the VM in the default Xen,
and the concurrent VM and the high-throughput VM.

5.2 Experimental result
For testing the performance of the CPU scheduler in the VMM,
a VM as Dom1 is configured with 4 virtual CPUs and 512MB
memory. The VM Dom0 is configured with 8 virtual CPUs and
1024MB memory, and its weight is 256. We test the performance
with the above three workloads, that is, LU, Barnes, and web server
with httperf.

For each situation, the performance of Dom1 in the default Xen
is denoted by Credit. In the prototype of the hybrid scheduling
framework, the performance of Dom1 is denoted by CON when it is
set as a concurrent type, while the performance of Dom1 is denoted
by HIT when it is set as a high-throughput type.

When the workload in Dom1 is LU, n = 4096, and B = 16,
and the number of processors is 4, and the result is shown as
Figure 7. When the workload in Dom1 is Barnes, the number
of bodies is 262144, and the number of processors is 4, and the
other parameters are the default values, and the result is shown as
Figure 8. When the workload is the web server, the web server is

117

built by Tomcat, and is measured by httperf with the default value,
and the result is shown as Figure 9.

1 2 3 4 5 6 7 8

10

20

30

40

50

60

70

80

m
a

k
e

s
p

a
n

(s
e

c
)

Dom0 Weight relative to Dom1 Weight

 Credit

 CON

 HIT

Figure 7. LU workload

1 2 3 4 5 6 7 8

10

20

30

40

50

60

m
a

k
e

s
p

a
n

(s
e

c
)

Dom0 Weight relative to Dom1 Weight

 Credit

 CON

 HIT

Figure 8. Barnes workload

1 2 3 4 5 6 7 8

1000

2000

3000

4000

5000

T
h

ro
u

g
h

p
u

t(
re

q
/s

e
c
)

Dom0 Weight relative to Dom1 Weight

 Credit

 CON

 HIT

Figure 9. Web server workload

Experimental results indicate that the coscheduling strategy per-
forms well when the majority of workload is the concurrent appli-
cation, otherwise may deteriorate the performance. And the credit
scheduler in Xen can achieve a good performance when there
are high-throughput workloads in the VM. However, the perfor-
mance of the credit scheduler is lower than the performance of the

coscheduling strategy, when the workload in VM is the high con-
current application.

Another result can be concluded from the group of experiments.
That is, the working prototype of the hybrid scheduling framework
will achieve a better performance when the appropriate strategy is
selected for the VM.

6. Related Works
The scheduling issue in the VMM had close relationship with the
scheduling of operating system, as the VMM could be considered
as a specific kind of operating system.

A simple notion of priority for process scheduling is usually
used in conventional operating systems. A task with a higher prior-
ity is scheduled prior to a task with a lower priority, and priorities
may be static or be dynamically recalculated. While there are many
sophisticated priority schemas such as decay usage scheduling [16].
It is a priority and usage based mechanism for CPU scheduling em-
ployed by BSD [17] Unix. Decay usage scheduling is motivated
by two concerns: fairness and performance. For achieving fairness,
CPU slice is allocated to processes that have received fewer slices
in the recent past. The CPU time will be allocated to I/O-intensive
processes before the computation-intensive processes, in order to
improve throughput by overlapping CPU and I/O activities. For en-
suring that a particular application receives a certain percent of the
CPU usage, the fair-share schedulers is introduced [18][19], and it
can provide proportional sharing among processes and users in a
way compatible with a UNIX-style time sharing framework. How-
ever, experiments indicates that the fair-share scheduler provides
reasonable proportional fairness over relatively large time inter-
vals [20]. Lottery scheduling provides a more disciplined propor-
tional sharing approach than fair-share schedulers [21]. Firstly each
process receives a number of tickets proportional to its share. Then
the scheduler randomly picks a ticket and schedules the process
that owns this ticket to receive a CPU slice.

There are much research for effectively scheduling parallel
application on general multi-processors or distributed system.
Backfilling and gang scheduling [22] are two major strategies for
scheduling parallel jobs. Backfilling scheduling such as [23] [24]
tries to balance the goals of utilization, which attempts to sched-
ule jobs that are behind in the priority queue of waiting jobs to
unutilized nodes, rather than keep them idle. To prevent starvation
of larger jobs, it requires that the execution of a job selected out
of order will not delay the start of jobs that are ahead of it in the
priority queue. This method is based on the estimation of job exe-
cution time. And coscheduling (gang-scheduling) [25][26][27], on
the other hand, tries to schedule related threads or processes to run
simultaneously on different processors. When scheduling any of
the processes in the related group, all of them are scheduled for
execution so that they can communicate efficiently. Otherwise, one
could wait to send or receive a message to another while it is sleep-
ing, and vice-versa. Some works [28][29] propose combining these
two strategies together for better performance.

Applications can be typically divided into two types: I/O-
intensive applications and computation-intensive applications. Cor-
respondingly, current research efforts are focused on the scheduling
issue in the VMM with the computation-intensive workloads and
I/O-intensive workloads, respectively.

For improving the performance of computation-intensive work-
load in the virtual machine system, especially with the SMP VM,
VMWare and Xen provide their scheduler in the VMM. VMware
ESX Server is a popular commercial virtualization system for the
x86 architecture that runs on the physical hardware with no lower
level OS, and ESX server uses coscheduling for virtual CPUs
in order to maintain correctness and high performance [30][31],
which is an add-on software module. However, the number of vir-

118

tual CPUs is too strict, and the coscheduling strategy is fixed in
the module. As an open-source product, the current default sched-
uler in Xen [4] is the credit scheduler [12], and this scheduler
does not attempt to coschedule virtual CPUs. It is a proportional
share scheduling strategy, and tries to maximize the throughput
of the system while guaranteeing the fairness. Moreover, the three
scheduling algorithms in Xen are compared in [32].

Differing from schedulers in VMWare and Xen, the hybrid
scheduling framework in this paper can schedule virtual CPUs in
a dynamic means according to the type of the VM, has a good
adaptiveness aiming at the variety of the workload in the VM, while
guaranteeing the fairness among VMs.

In the aspect of I/O-intensive workload, in order to improve
the performance of I/O-intensive applications on the virtual ma-
chine system, a communication-aware CPU scheduler for Xen hy-
pervisor is proposed [33]. The SEDF scheduler is modified so
that it counts the numbers of received or sent packets by each
domain (VM) and preferentially schedules I/O-intensive domains.
SEDF and Credit schedulers are evaluated with different configu-
rations [34]. Furthermore, they make some extensions such as fix-
ing event channel notification and ordering the run queue within
the CPU scheduler of the Xen hypervisor to improve I/O perfor-
mance. VMM-bypass I/O [35] is also a method to improve I/O
performance, which allows guest domains to carry out I/O oper-
ations without the involvement of the hypervisor and the privileged
domain. Self-virtualized devices[36][37][38] also share the same
idea. Another relevant work is concerned with monitoring the per-
formance [39][40][41][42] (especially, the overhead for I/O pro-
cessing) and the scheduler is configured with the gained insight
from those information to achieve a high performance.

7. Conclusion
The CPU scheduling strategy and algorithm is crucial to promote
the performance of the virtual machine system. Many aspects need
be considered in the design of a scheduling strategy for the VMM,
such as fairness, workload balance, adaptiveness. It is one of most
challengeable problems in the virtualization technology.

In this paper, we analyze the CPU scheduling problem in the vir-
tual machine monitor theoretically, and the result is that the asyn-
chronous CPU scheduling strategy will waste considerable physi-
cal CPU time when the majority of the workload is the concurrent
application. Therefore, we present a hybrid scheduling framework
for the CPU scheduling in the VMM, which supports two types of
virtual machines in the system: the high-throughput type and the
concurrent type. The VM can be set as the concurrent type when
the majority of its workload is the concurrent application, in or-
der to reduce the cost of synchronization. Otherwise, it is set as
the high-throughput type as the default. Moreover, we implement
a prototype of the hybrid scheduling framework based on Xen. At
last, we test the performance of the presented scheduling strategy
based on the multi-core platform, and the experimental result indi-
cates that the hybrid scheduling framework is feasible to improve
the performance of the virtual machine system.

Although the proposed extensions to the VMM scheduling dis-
cussed in this paper may improve CPU performance to some de-
gree, there is still much room for the further improvement. Specif-
ically, the tradeoff of CPU scheduling between the concurrent type
and the high-throughput type of VMs need to be further considered.

Acknowledgments
This work was supported partly by National Key Basic Research
and Development Plan (973 Plan) of China (No. 2007CB310900),
and Huawei Science and Technology Foundation, and National
Natural Science Foundation of China (No. 90612018, 90715030

and 60503043). We would like to thank the anonymous reviewers
for their thoughtful comments and suggestions.

References
[1] P. Gum. System/370 extended architecture: Facilities for

virtual machines. IBM Journal of Research and Development,
27(6):530–544, 1983.

[2] J. Smith and R. Nair. Virtual Machines: Versatile platforms
for systems and processes. Elsevier, USA, 2005.

[3] C. Waldspurger. Memory resource management in vmware
esx server. In Proceedings of the 5th symposium on Operating
systems design and implementation (OSDI), December 2002.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art
of virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, pages 164–177, October 2003.

[5] Microsoft Corporation. Microsoft virtual server 2005.
http://www.microsoft.com/windowsserversystem/virtualserver/
default.mspx.

[6] A. Whitaker, M. Shaw, and S. Gribble. Scale and performance
in the denali isolation kernel. In Proceedings of the 5th
symposium on Operating systems design and implementation
(OSDI), pages 195–209, October 2002.

[7] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight
virtual machines for distributed and networked applications.
In Proceedings of the USENIX Annual Technical Conference,
October 2002.

[8] J. Dike. User-mode linux. In Proceedings of the 5th annual
Linux Showcase & Conference, 2001.

[9] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. To-
wards scalable multiprocessor virtual machines. In Proceed-
ings of the 3rd Virtual Machine Research & Technology Sym-
posium (VM’04), San Jose, CA, may 2004.

[10] K. Duda and D. Cheriton. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a gener-
alpurpose scheduler. In Proceedings of the 17th ACM SOSP,
1999.

[11] I. Leslie, D. Mcauley, R. Black, T. Roscoe, P. Barham, D. Ev-
ers, R. Fairbairns, and E. Hyden. The design and implementa-
tion of an operating system to support distributed multimedia
applications. IEEE Journal of Selected Areas in Communica-
tions, 14(7):1280–1297, 1996.

[12] Credit Scheduler. http://wiki.xensource.com/xenwiki/credit
scheduler.

[13] Stanford Parallel Applications for Shared Memory
(SPLASH). http://www-flash.stanford.edu/splash/.

[14] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages
24–36, 1995.

[15] httperf. http://www.hpl.hp.com/research/linux/httperf/.

[16] J. L. Hellerstein. Achieving service rate objectives with decay
usage scheduling. IEEE Transactions on Software Engineer-
ing, 19(8):813–825, 1993.

[17] S. Leffler, M. McKusick, and M. Karels. The Design and
Implementation of the 4.3 BSD Unix Operating System.
Addison-Wesley, 1988.

119

[18] J. Kay and P. Lauder. A fair share scheduler. Communications
of the ACM, 31(1):44–55, 1988.

[19] G. Henry. The fair share scheduler. AT&T Bell Labs Techni-
cal Journal, 63(8):1945–1957, 1984.

[20] R. Essick. An event based fair share scheduler. In Proceedings
of the Winter USENIX Conference, pages 147–161, 1990.

[21] C. Waldspurger and W. Weihl. Lottery scheduling: Flexible
proportional-share resource management. In Proceedings of
the First Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 1–11, 1994.

[22] D. Feitelson, L. Rudolph and U. Schwiegelshohn. Parallel
job scheduling - a status report. In Proceedings of the 10th
Workshop on Job Scheduling Strategies for Parallel Process-
ing, pages 1–16, 2004.

[23] B. Lawson, E. Smirni, and D. Puiu. Self-adapting back-
filling scheduling for parallel systems. In Proceedings of
the 2002 International Conference on Parallel Processing
(ICPP), pages 583–592, 2002.

[24] E. Shmueli and D. Feitelson. Backfilling with lookahead
to optimize the performance of parallel job scheduling. In
Proceedings of the 9th Workshop on Job Scheduling Strategies
for Parallel Processing, pages 228–251, 2003.

[25] J. Ousterhout. Scheduling techniques for concurrent systems.
In Proceedings of Third International Conference on Dis-
tributed Computing Systems (ICDCS), pages 22–30, 1982.

[26] D. Feitelson and L. Rudolph. Gang scheduling performance
benefits for fine-grain synchronization. Journal of Parallel
and Distributed Computing, 16(4):306–318, 1992.

[27] A. Batat and D. Feitelson. Gang scheduling with memory
considerations. In Proceedings in 14th International Parallel
and Distributed Processing Symposium (IPDPS), pages 109–
114, 2000.

[28] Y. Wiseman and D. Feitelson. Paired gang scheduling. IEEE
Transactions on Parallel and Distributed Systems, 14(6):581–
592, 2003.

[29] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubrama-
niam. Improving parallel job scheduling by combining gang
scheduling and backfilling techniques. In Proceedings of the
International Parallel and Distributed Processing Symposium
(IPDPS), pages 133–142, 2000.

[30] VMWARE. Performance tuning best practices for ESX
server 3, 2007. http://www.vmware.com/pdf/vi performance
tuning.pdf.

[31] VMWARE. Best practices using vmware virtual SMP, 2005.
http://www.vmware.com/pdf/vsmp best practices.pdf.

[32] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the
three CPU schedulers in Xen. ACM SIGMETRICS Perfor-
mance Evaluation Review, 35(2):42–51, 2007.

[33] S. Govindan, A. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam. Xen and Co.: Communication-aware cpu schedul-
ing for consolidated Xen-based hosting platforms. In Pro-
ceedings of the 3rd international conference on Virtual execu-
tion environments (VEE), pages 126–136, 2007.

[34] D. Ongaro, A. Cox, and S. Rixner. Scheduling I/O in virtual
machine monitors. In Proceedings of the 4th international
conference on Virtual execution environments (VEE), pages
1–10, 2008.

[35] J. Liu, W. Huang, B. Abali, and D. Panda. High performance
vmm-bypass I/O in virtual machines. In Proceedings of
USENIX ’06 Annual Technical Conference, 2006.

[36] H. Raj and K. Schwan. Implementing a scalable self-
virtualizing network interface on an embedded multicore plat-
form. In Proceedings of the Workshop on the Interaction be-
tween Operating Systems and Computer Architecture, 2005.

[37] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A.
Cox, and W. Zwaenepoel. Concurrent direct network access
for virtual machine monitors. In Proceedings of the Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), pages 306–317, 2007.

[38] H. Raj and K. Schwan. High performance and scalable I/O
virtualization via self-virtualized devices. In Proceedings
of the 16th International Symposium on High Performance
Distributed Computing, pages 179–188, 2007.

[39] L. Cherkasova and R. Gardner. Measuring CPU overhead
for I/O processing in the Xen virtual machine monitor. In
Proceedings of the USENIX Annual Technical Conference,
pages 387–390, 2005.

[40] A. Menon, J. Santos, Y. Turner, G. Janakiraman, and
W. Zwaenepoel. Diagnosing performance: Overheads in the
Xen virtual machine environment. In Proceedings of the 1st
international conference on Virtual execution environments
(VEE), pages 13–23, 2005.

[41] D. Gupta, R. Gardner, and L. Cherkasovah. XenMon:
QoSmonitoring and performance profiling tool. Technical Re-
port HPL-2005-187, HP Labs, 2005.

[42] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Ant-
farm: Tracking processes in a virtual machine environment.
In Proceedings of the USENIX Annual Technical Conference,
pages 1–14, 2006.

120

