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1 IntroductionIn this paper we give new bounds on the covering numbers for kernel machines.This leads to improved bounds on their generalization performance. Kernel ma-chines perform a mapping from input space into a feature space (see e.g. [1, 33]),construct regression functions or decision boundaries based on this mapping,and use constraints in feature space for capacity control. Support Vector (SV)machines, which have recently been proposed as a new class of learning al-gorithms solving problems of pattern recognition, regression estimation, andoperator inversion [54] are a well known example of this class. We will use SVmachines as our model of choice to show how bounds on the covering numberscan be obtained. We outline the relatively standard methods one can then useto hence bound their generalization performance. SV machines, like most kernelbased methods, possess the nice property of de�ning the feature map in a man-ner that allows its computation implicitly at little additional computationalcost. Our reasoning also applies to similar algorithms such as regularizationnetworks [16] or certain unsupervised learning algorithms [42]. Let us now takea closer look at SV machines. Central to them are two ideas: capacity controlby maximizing margins, and the use of nonlinear kernel functions.Capacity control. In order to perform pattern recognition using linear hy-perplanes, often a maximum margin of separation between the classes is soughtfor, as this leads to good generalization ability independent of the dimension-ality [55, 54, 44]. It can be shown that for separable training data(x1; y1); : : : ; (xm; ym) 2 Rd � f�1g; (1)this is achieved by minimizing kwk2 subject to the constraints yj(hw;xji+b) �1 for j = 1; : : : ;m, and some b 2 R. The decision function then takes the formf(x) = sgn(hw;xi + b): (2)Similarly, a linear regression f(x) = hw;xi+ b (3)can be estimated from data(x1; y1); : : : ; (xm; ym) 2 Rd � R (4)by �nding the attest function which approximates the data within some marginof error: in this case, one minimizes kwk2 subject to jf(xj) � yjj � ", wherethe parameter " > 0 plays the role of the margin, albeit not in the space of theinputs x, but in that of the outputs y. The analogy to pattern recognition issomewhat loose, and there exist alternative ways of introducing a margin (e.g.in the space Rm of all outputs y1; : : : ; ym, [60]).In both cases, generalizations for the nonseparable or nonrealizable caseexist, using various types of cost functions [14, 54, 47].1



Nonlinear kernels. In order to apply the above reasoning to a rather gen-eral class of nonlinear functions, one can use kernels computing dot productsin high-dimensional spaces nonlinearly related to input space [1, 10]. Undercertain conditions on a kernel k, to be stated below (Theorem 4), there exists anonlinear map � into a reproducing kernel Hilbert space F (see e.g. [39]) suchthat k computes the dot product in F , i.e.k(x;y) = h�(x);�(y)iF : (5)Given any algorithm which can be expressed in terms of dot products exclu-sively, one can thus construct a nonlinear version of it by substituting a kernelfor the dot product. Examples of such machines include SV pattern recogni-tion [10], SV regression estimation [54], and kernel principal component analysis[42].By using the kernel trick for SV machines, the maximum margin idea isthus extended to a large variety of nonlinear function classes (e.g. radial basisfunction networks, polynomial networks, neural networks), which in the case ofregression estimation comprise functions written as kernel expansionsf(x) = mXi=1 �jk(xj ;x) + b; (6)with �j 2 R, j = 1; : : : ;m. It has been noticed that di�erent kernels can becharacterized by their regularization properties [49]: SV machines are regular-ization networks minimizing the regularized risk Rreg[f ] = Remp[f ] + �2kPfk2,(with a regularization parameter � � 0, and a regularization operator P ) overthe set of functions of the form (6), provided that k and P are interrelatedby k(xs;xt) = h(Pk)(xs; �); (Pk)(xt ; �)i. To this end, k is chosen as Green'sfunction of P �P where P � is the adjoint of P .This provides insight into the regularization properties of SV kernels. How-ever, it does not completely settle the issue of how to select a kernel for agiven learning problem, and how using a speci�c kernel might inuence theperformance of a SV machine.1.1 Outline of the paperIn the present work, we show that properties of the spectrum of the kernel canbe used to make statements about the generalization error of the associatedclass of learning machines. Unlike in previous SV learning studies, the kernelis no longer merely a means of broadening the class of functions used, e.g. bymaking a nonseparable dataset separable in a feature space nonlinearly relatedto input space. Rather, we now view it as a constructive handle by which wecan control the generalization error.A key feature of the present paper is the manner in which we directly boundthe covering numbers of interest rather than making use of a combinatorial di-mension (such as the VC-dimension or the fat-shattering dimension) and sub-sequent application of a general result relating such dimensions to covering2



numbers. We bound covering numbers directly by viewing the relevant class offunctions as the image of a unit ball under a particular compact operator. Ageneral overview of the method is given in Section 3.The remainder of the paper is organized as follows. We start by introduc-ing notation and de�nitions (Section 2). Section 4 formulates generalizationerror bounds in terms of covering numbers. Section 5 contains the main resultbounding entropy numbers in terms of the spectrum of a given kernel. Theresults in this paper rest on a connection between covering numbers of functionclasses and entropy numbers of suitably de�ned operators. In particular we de-rive an upper bound on the entropy numbers in terms of the size of the weightvector in feature space and the eigenvalues of the kernel used. Section 6 showshow to make use of kernels such as k(x) = e�x2 which do not have a discretespectrum. Section 7 presents some results on the entropy numbers obtainedfor given rates of decay of eigenvalues and 8 shows how to extend the resultsto several dimensions. The concluding section (Section 9) indicates how thevarious results in the paper can be glued together in order to obtain overallbounds on the generalization error. Most of the examples we provide for thecalculation of eigenvalues are for translation invariant kernels (i.e. convolutionalkernels); this is merely for convenience | the general theory is not restrictedto such kernels.We do not present a single master generalization error theorem for three keyreasons: 1) the only novelty in the paper lies in the computation of coveringnumbers themselves; 2) the particular statistical result one needs to use dependson the speci�c problem situation; 3) many of the results obtained are in a formwhich, whilst quite amenable to ready computation on a computer, do notprovide much direct insight by merely looking at them, except perhaps in theasymptotic sense, and �nally 4) some applications (such as classi�cation) wherefurther quantities like margins are estimated in a data dependent fashion, needan additional luckiness argument [45] to apply the bounds.Thus although our goal has been theorems, we are ultimately forced to resortto a computer to make use of our results. This is not necessarily a disadvan-tage | it is a both a strength and a weakness of Structural Risk Minimization(SRM) [56] that a good generalization error bound is both necessary and su�-cient to make the method work well. It is our expectation that the re�ned (andsigni�cantly more tight) covering number bounds obtainable by our methodswill be exploitable in SRM algorithms | they could be used for example formodel selection. If one is running a computer program anyway, there is lit-tle point in expending a large e�ort to make the generalization error boundsdirectly consumable in a pencil and paper sense.2 De�nitions and NotationFor d 2 N, Rd denotes the d-dimensional space of vectors x = (x1; : : : ; xd)T .We de�ne spaces `dp as follows: as vector spaces, they are identical to Rd , inaddition, they are endowed with p-norms: for 0 < p < 1, kxk`dp := kxkp =3



�Pdj=1 jxj jp�1=p; for p = 1, kxk`d1 := kxk1 = maxj=1;:::;d jxj j. Note that adi�erent normalization of the the `dp norm is used in some papers in learningtheory (e.g. [52]). For 0 < p < 1, `p = `1p . We use the shorthand sequencenotation (xj)j = (x1; x2; : : :).Given m points x1; : : : ;xm 2 `dp, we use the shorthand Xm = (x1; : : : ;xm).Suppose F is a class of functions f : Rd ! R. The `d1 norm with respect toXm of f 2 F is de�ned as kfk`Xm1 := maxi=1;:::;m jf(xi)j. Likewise kfk`Xmp =k(f(x1); : : : ; f(xm)k`mp .Given some set X with a �-algebra, a measure � on X, some 1 � p < 1and a function f :X ! R we de�ne kfkLp(X;R) := �R jf(x)jpd�(x)�1=p if theintegral exists and kfkL1(X;R) := ess supx2X jf(x)j. For 1 � p � 1, we letLp(X;R) := ff :X! R: kfkLp (X;R) <1g. We let Lp(X) := Lp(X;R).Let L(E;F ) be the set of all bounded linear operators T between the normedspaces (E; k�kE ) and (F; k�kF ), i.e. operators such that the image of the (closed)unit ball UE := fx 2 E: kxkE � 1g (7)is bounded. The smallest such bound is called the operator norm,kTk := supx2UE kTxkF : (8)The nth entropy number of a set M � E, for n 2 N, is�n(M) := inff� > 0 : there exists an �-cover for M in Econtaining n or fewer pointsg (9)The entropy numbers of an operator T 2 L(E;F ) are de�ned as�n(T ) := �n(T (UE)): (10)Note that �1(T ) = kTk, and that �n(T ) certainly is well de�ned for all n 2 Nif T is a compact operator, i.e. if T (UE) is precompact, i.e. if for any � > 0there exists a �nite cover of T (UE) with open � balls on X. The dyadic entropynumbers of an operator are de�ned byen(T ) := �2n�1(T ); n 2 N; (11)similarly, the dyadic entropy numbers of a set are de�ned from its entropynumbers. A very nice introduction to entropy numbers of operators is [13].The �-covering number of F with respect to the metric d denoted N(�;F; d) isthe smallest number of elements of an �-cover for F using the metric d.In this paper, E and F will always be Banach spaces, i.e. complete normedspaces (for instance `dp spaces). In some cases, they will be Hilbert spaces H,i.e. Banach spaces endowed with a dot product h�; �iH giving rise to its normvia kxkH =phx; xiH .By log and ln, we denote the logarithms to base 2 and e, respectively. Byi, we denote the imaginary unit i = p�1, k will always be a kernel, and d and4
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Figure 1: Schematic picture of the new viewpoint.m will be the input dimensionality and the number of examples(x1; y1); : : : ; (xm; ym) 2 Rd � R; (12)respectively. We will map the input data into a feature space via a mapping �.We let ~x := �(x).3 Operator Theory Methods for Entropy NumbersIn this section we briey explain the new viewpoint implicit in the present paper.With reference to Figure 1, consider the traditional viewpoint in statisticallearning theory. One is given a class of functions F, and the generalizationperformance attainable using F is determined via the covering numbers of F.More precisely, for some set X, and xi 2 X for i = 1; : : : ;m, de�ne the �-Growth5



function of the function class F on X asNm(�;F) := supx1;:::;xm2XN(�;F; `Xm1 ); (13)where N(�;F; `Xm1 ) is the �-covering number of F with respect to `Xm1 . Manygeneralization error bounds can be expressed in terms of Nm(�;F). An exampleis given in the following section.The key novelty in the present work solely concerns the manner in whichthe covering numbers are computed. Traditionally, appeal has been made toa result such as the so-called Sauer's lemma (originally due to Vapnik andChervonenkis). In the case of function learning, a generalization called theVC-dimension of real valued functions, or a variation due to Pollard (calledthe pseudo-dimension), or or a scale-sensitive generalization of that (called thefat-shattering dimension) is used to bound the covering numbers. These resultsreduce the computation of Nm(�;F) to the computation of a single \dimension-like" quantity. An overview of these various dimensions, some details of theirhistory, and some examples of their computation can be found in [5].In the present work, we view the class F as being induced by an operator �Tkdepending on some kernel function k. Thus F is the image of a \base class" Gunder �Tk. The analogy implicit in the picture is that the quantity that mattersis the number of �-distinguishable messages obtainable at the information sink.(Recall the equivalence up to a constant factor of 2 in � of packing and coveringnumbers.) In a typical communications problem, one tries to maximize thenumber of distinguishable messages (per unit time), in order to maximize theinformation transmission rate. But from the point of view of the receiver, thejob is made easier the smaller the number of distinct messages that one needsto be concerned with decoding. The signi�cance of the picture is that the kernelin question is exactly the kernel that is used, for example, in support vectormachines. As a consequence, the determination of Nm(�;F) can be done interms of properties of the operator �Tk. The latter thus plays a constructiverole in controlling the complexity of F and hence the di�culty of the learningtask. We believe that the new viewpoint in itself is potentially very valuable,perhaps more so than the speci�c results in the paper. A further exploitationof the new viewpoint can be found in [60, 41, 50, 48]. There are in fact a varietyof ways to de�ne exactly what is meant by �Tk, and we have deliberately notbeen explicit in the picture. We make use of one particular �Tk in this paper. Aslightly di�erent approach is taken in [60].We conclude this section with some historical remarks.The concept of the metric entropy of a set has been around for some time.It seems to have been introduced by Pontriagin and Schnirelmann [36] and wasstudied in detail by Kolmogorov and others [27]. The use of metric entropy tosay something about linear operators was developed independently by severalpeople. Prosser [37] appears to have been the �rst to make the idea explicit.He determined the e�ect of an operator's spectrum on its entropy numbers.In particular, he proved a number of results concerning the asymptotic rate ofdecrease of the entropy numbers in terms of the asymptotic behavior of the6



eigenvalues. A similar result is actually implicit in section 22 of Shannon'sfamous paper [43], where he considered the e�ect of di�erent convolution op-erators on the entropy of an ensemble. Prosser's paper [37] led to a handful ofpapers (see e.g. [38, 22, 3, 29]) which studied various convolutional operators.A connection between Prosser's �-entropy of an operator and Kolmogorov's �-entropy of a stochastic process was shown in [2]. Independently, another groupof mathematicians including Carl and Stephani [13] studied covering numbers[53] and later entropy numbers [35] in the context of operator ideals. (Theyseem to be unaware of Prosser's work | see e.g. [11, p. 136].)Connections between the local theory of Banach spaces and uniform con-vergence of empirical means has been noted before (e.g. [34]). More recentlyGurvits [21] has obtained a result relating the Rademacher type of a Banachspace to the fat-shattering dimension of linear functionals on that space andhence via the key result in [4] to the covering numbers of the induced class.We will make further remarks concerning the relationship between Gurvits' ap-proach and ours in [60]; for now let us just note that the equivalence of thetype of an operator (or of the space it maps to), and the rate of decay of itsentropy numbers has been (independently) shown by Kolchinski�� [25, 26] andDefant and Junge [15, 23]. Note that the exact formulation of their resultsdi�ers. Kolchinski�� was motivated by probabilistic problems not unlike ours.4 Generalization Bounds via Uniform ConvergenceThe generalization performance of learning machines can be bounded via uni-form convergence results as in [57, 56]. A recent review can be found in [5];see also [30]. The key thing about these results is the role of the coveringnumbers of the hypothesis class | the focus of the present paper. Resultsfor both classi�cation and regression are now known. For the sake of con-creteness, we quote below a result suitable for regression which was proved in[4]. For results on classi�er performance in terms of covering numbers see [8].Let Pm(f) := 1mPmi=1 f(xi) denote the empirical mean of f on the samplex1; : : : ;xm.Lemma 1 (Alon, Ben{David, Cesa{Bianchi, and Haussler, 1997) Let Fbe a class of functions from X into [0; 1] and let P be a distribution over X.Then, for all � > 0 and all m � 2�2 ,Pr(supf2F jPm(f)� P (f)j > �) � 12m �E hN� �6 ;F; ` �X2m1 �i e��2m=36 (14)where Pr denotes the probability w.r.t. the sample x1; : : : ;xm drawn i.i.d. fromP , and E the expectation w.r.t. a second sample �Xm = (�x1; : : : ; �x2m) also drawni.i.d. from P .In order to use this lemma one usually makes use of the fact that for any P ,E hN(�;F; ` �Xm1 )i � Nm(�;F): (15)7



The above result can be used to give a generalization error result by applying itto the loss-function induced class. The following Lemma, which is an improvedversion of [9, Lemma 17], is useful in this regard (a similar result was obtainedby [6]):Lemma 2 Denote F a set of functions from X to [a; b] with a < b, a; b 2 Rand l : R ! [0;1) a loss function. Let z := (xi; yi)mj=1, lf jzj := l(f(xj) � yj),lf jz := (lf jzj )mj=1, lFjz := flf jz: f 2 Fg and N(�; ljz) := N(�; lFjz; `z1). Then thefollowing two statements hold:1. Suppose l satis�es the Lipschitz{conditionl(�)� l(�0) � Cj� � �0j for all �; �0 2 [a� b; b� a]: (16)Then for all � > 0 maxz2(X�[a;b])mN(�; ljz) � maxx2XmN � �C ;Fjx; `x1� (17)and maxz2(X�[a;b])mN(�; ljz) � maxx2XmN � �mC ;Fjx; `x1� : (18)2. Suppose that for some C; ~C > 0, l satis�es the \approximate Lipschitz{condition"l(�)� l(�0) � max(Cj� � �0j; ~C) for all �; �0 2 [a� b; b� a] (19)then for all � > ~C=Cmaxz2(X�[a;b])mN(�; ljz) � maxx2XmN � �C ;Fjx; `x1� : (20)Proof We show that, for any sequence z of (x; y) pairs in X � [a; b] andany functions f and g, if the restrictions of f and g to x are close, then therestrictions of lf and lg to z are close. Thus, given a cover of Fjx we canconstruct a cover of lFjz that is no bigger. For part 1 we get:1m ������ mXj=1 l(g(xj)� yj)� l(f(xj)� yj)������ � 1m mXj=1 jl(g(xj)� yj)� l(f(xj)� yj)j� 1m mXj=1Cjg(xj)� f(xj)j= Cmkg(Xm)� f(Xm)k`m1� Ckg(Xm)� f(Xm)k`m1 :
8



In the second case we proceed similarly1m ������ mXj=1 l(g(xj)� yj)� l(f(xj)� yj)������ � Cm mXj=1max(jg(xj)� f(xj)j; ~C=C)� C� for � � ~C=C:The second case can be useful, when the exact form of the cost function is notknown, happens to be discontinuous or is badly behaved in some other way.1It shows how down to a scale ~C=C statements about the covering numbersof the loss-function induced class can be made. Applying the result above topolynomial loss leads to the following corollary:Corollary 3 Let the assumptions be as above in lemma 2. Then for loss func-tions of type l(�) = 1p�p with p > 1 (21)we have C = (b� a)(p�1), in particular C = (b� a) for p = 2 and thereforemaxz2(X�[a;b])mN(�; ljz) � maxx2XmN� �(b� a)p�1XC ;Fjx� (22)One can readily combine the uniform convergence results with the above re-sults to get overall bounds on generalization performance. We do not explicitlystate such a result here since the particular uniform convergence result neededdepends on the exact set-up of the learning problem. A typical uniform con-vergence result takes the formPmfsupf jRemp(f)�R(f)j > �g � c1(m)Nm(�;F)e���m=c2 : (23)Even the exponent in (23) depends on the setting: In regression � can be setto 1, however in agnostic learning [24] in general � = 2, except if the class isconvex in which case it can be set to 1 [31]. Since our primary interest is indetermining Nm(�;F) we will not try to summarize the large body of resultsnow available on uniform convergence and generalization error.These generalization bounds are typically used by setting the right hand sideequal to � and solving for m = m(�; �) (which is called the sample complexity).Another way to use these results is as a learning curve bound ��(�;m) wherePmfsupf2F jRemp(f)�R(f)j > ��(�;m)g � �:We note here that the determination of ��(�;m) is quite convenient in terms ofen, the dyadic entropy number associated with the covering number Nm(�;F)1The two cases could be combined into one by writing the conditions in terms of themodulus of continuity. For the sake of clarity , however, we refrained from doing so.9



in (23). Setting the right hand side of (23) equal to �, we have� = c1(m)Nm(�;F)e���m=c2) log � �c1(m)�+ ��mc2 ln 2 = logNm(�;F)) edlog� �c1(m)�+ ��mc2 ln 2+1e � �: (24)Thus ��(�;m) = minf�: (24) holdsg. Thus the use of �n or en (which will arisenaturally from our techniques) is in fact a convenient thing to do for �ndinglearning curves.5 Entropy Numbers for Kernel MachinesIn the following we will mainly consider machines where the mapping intofeature space is de�ned by Mercer kernels k(x;y) as they are easier to dealwith using functional analytic methods. (More general kernels are consideredin [48].) Such machines have become very popular due to the success of SVmachines. Nonetheless in Appendix A we will show how a more direct approachcould be taken towards upper{bounding entropy numbers.5.1 Mercer's Theorem, Feature Spaces and ScalingOur goal is to make statements about the shape of the image of the input spaceX under the feature map �(�). We will make use of Mercer's theorem. Theversion stated below is a special case of the theorem proven in [28, p. 145]. Inthe following we will assume (X; �) to be a �nite measure space, i.e. �(X) <1.Theorem 4 (Mercer) Suppose k 2 L1(X2) is a symmetric kernel (hencek(x; x0) = k(x0; x)) such that the integral operator Tk : L2(X)! L2(X),Tkf(�) := ZX k(�;y)f(y)d�(y) (25)is positive. Let  j 2 L2(X) be the eigenfunction of Tk associated with the eigen-value �j 6= 0 and normalized such that k jkL2 = 1. Suppose  j is continuousfor all j 2 N.1. (�j(T ))j 2 `1.2.  j 2 L1(X) and supj k jkL1 <1.3. k(x;y) = Pj2N �j j(x) j(y) holds for all (x;y), where the series convergesabsolutely and uniformly for all (x;y).We will call a kernel satisfying the conditions of this theorem a Mercer kernel.From statement 2 of Mercer's theorem there exists some constant Ck 2 R+depending on k(�; �) such thatj j(x)j � Ck for all j 2 N and x 2 X: (26)10



Note that if X is compact and k is continuous, then  j is continuous (cf. e.g.[7, p.270]). Alternatively, if k is translation invariant, then  j are scaled co-sine functions and thus continuous. Moreover from statement 3 it follows thatk(x;y) corresponds to a dot product in `2 i.e. k(x;y) = h�(x);�(y)i`2 with� : X ! `2� : x 7! (�j(x))j := (p�j j(x))j (27)for all x 2 X. In the following we will (without loss of generality) assume thesequence of (�j)j be sorted in nonincreasing order. From the argument above,one can see that �(X) lives not only in `2 but in an axis parallel parallelepipedwith lengths 2Ckp�j.We remark that the measure � need have nothing to do with the distributionof examples. We make use of result 3 of the above theorem to bound the coveringnumbers of the class of functions implemented using SV machines. The speci�cbounds will depend on � since that will a�ect the  j , Ck and the (�j)j . Thequestion of the optimal � to use and how it may be chosen if one knows P (thedistribution from which the xj are drawn) is not considered here. In all casesconsidered in this paper we will in fact take � to be Lebesgue measure.It will be useful to consider maps that map �(X) into balls of some radiusR centered at the origin. The following proposition shows that the class of allthese maps is determined by elements of `2 and the sequence of eigenvalues(�j)j .Proposition 5 (Mapping �(X) into `2) Let S be the diagonal mapS : RN ! RNS : (xj)j 7! S(xj)j = (sjxj)j with sj 2 R: (28)Then S maps �(X) into a ball of �nite radius RS centered at the origin if andonly if (p�jsj)j 2 `2.Proof(() Suppose (sjp�j)j 2 `2 and let R2S := C2kk(sjp�j)jk2̀2 < 1. For anyx 2 X, kS�(x)k2̀2 =Xj2N s2j�jj j(x)j2 �Xj2N s2j�jC2k = R2S : (29)Hence S�(X) � `2.()) Suppose (sjp�j)j is not in `2. Hence the sequence (An)n with An :=nPj=1 s2j�j is unbounded. Now de�nean(x) := nXj=1 s2j�jj j(x)j2: (30)
11



Then kan(�)kL1(X) = An due to the normalization condition on  j . However,as �(X) <1 there exists a set ~X of nonzero measure such thatan(x) � An�(X) for all x 2 ~X: (31)Combining the left side of (29) with (30) we obtain kS�(x)k2̀2 � an(x) for alln 2 N and all x. Since an(x) is unbounded for a set ~X with nonzero measurein X, we can see that S�(X) 6� `2.Once we know that �(X) is contained in the parallelepiped described abovewe can use this result to construct a mapping Â from the unit ball in `2 to anellipsoid E such that �(X) � E as in the following diagram.X � // �(X) � `2 Â�1 //T U`2 � `2Â
tth h h h

h h
h h
h h
h h
h h`2 � E (32)The operator Â will be useful for computing the entropy numbers of concate-nations of operators. (Knowing the inverse will allow us to compute the for-ward operator, and that can be used to bound the covering numbers of theclass of functions, as shown in the next subsection.) We thus seek an operatorÂ : `2 ! `2 such that Â�1�(X) � U`2 : (33)This means that E := AU`2 will be such that �(X) � E. The latter can beensured by constructing Â such thatÂ: (xj)j 7! (RÂ � aj � xj)j with RÂ; aj 2 R+ (34)where Ck and aj are chosen with respect to a speci�c kernel and where RÂ :=Ckk(p�j=aj)jk`2 . From Proposition 5 it follows that all those operators Âfor which RÂ < 1 will satisfy (33). We call such scaling (inverse) operatorsadmissible.5.2 Entropy NumbersThe next step is to compute the entropy numbers of the operator Â and use thisto obtain bounds on the entropy numbers for kernel machines like SV machines.We will make use of the following theorem due to Gordon, K�onig and Sch�utt[17, p. 226] (stated in the present form in [13, p. 17]).Theorem 6 Let �1 � �2 � � � � � �j � � � � � 0 with �i 2 R+0 be a non{increasing sequence of non{negative numbers and letDx = (�1x1; �2x2; : : : ; �jxj; : : :) (35)for x = (x1; x2; : : : ; xj ; : : :) 2 `p be the diagonal operator from `p into itself,12



generated by the sequence (�j)j, where 1 � p � 1. Then for all n 2 N,supj2N n� 1j (�1�2 � � � �j) 1j � �n(D) � 6 supj2N n� 1j (�1�2 � � � �j) 1j : (36)We can exploit the freedom in choosing Â to minimize an entropy number asthe following corollary shows. This will be a key ingredient of the calculationof the covering numbers for SV classes, as shown below.2Corollary 7 (Entropy numbers for �(X)) Let k:X � X ! R be a Mercerkernel and let Â be de�ned by (34). Then there exists an operator A such thatfor all n 2 N�n(A: `2 ! `2) � inf(as)s:(p�s=as)s2`2 supj2N 6Ck �p�s=as�s`2 n� 1j (a1a2 � � � aj) 1j :(37)This result follows immediately by identifying D and A and exploiting thefreedom that we still have in choosing a particular operator A among the classof admissible ones.As already described in Section 1 the hypotheses that a SV machine gen-erates can be expressed as hw; ~xi + b where both w and ~x are de�ned in thefeature space S = span(�(X)) and b 2 R. The kernel trick as introduced by [1]was then successfully employed in [10] and [14] to extend the Optimal MarginHyperplane classi�er to what is now known as the SV machine. We deal withthe \+b" term in Section 9; for now we consider the classF� := ffw:x 7! hw;xi:x 2 S; kwk � �g � RS :Note that F� depends implicitly on k since S does.We seek the `m1 covering numbers for the class F� induced by the kernelin terms of the parameter � which is the inverse of the size of the margin infeature space, or equivalently, the size of the weight vector in feature space asde�ned by the dot product in S (see [55, 54] for details). In the following wewill call such hypothesis classes with length constraint on the weight vectors infeature space SV classes. Let T be the operator T = S ~Xm� where � 2 R andthe operator S ~Xm is de�ned byS ~Xm : `2 ! `m1S ~Xm : w 7! (h~x1;wi; : : : ; h~xm;wi) : (38)with ~xj 2 �(X) for all j. The following theorem is useful when computingentropy numbers in terms of T and A. It is originally due to Maurey, and wasextended by Carl [12].2[20] show that for Mercer kernels the minimization as required in (37) is well de�ned, i.e.there exists some operator A such that the in�mum of �n(Â) over all Â is obtained.13



Theorem 8 (Carl and Stephani [13, p. 246]) Let S 2 L(H; `m1) where His a Hilbert space. Then there exists a constant c > 0 such that for all m 2 N,and 1 � j � m en(S) � ckSk�n�1 log �1 + mn ��1=2 : (39)An alternative proof of this result (given in [60]) provides a small explicit valuefor the constant: c � 103. However there is reason to believe that c should be1:86, the constant obtainable for identity maps from `m2 into `m1.3The restatement of Theorem 8 in terms of �2n�1 = en will be useful in thefollowing. Under the assumptions above we have�n(S) � ckSk�(log n+ 1)�1 log�1 + mlog n+ 1��1=2 : (40)Now we can combine the bounds on entropy numbers of A and SXm toobtain bounds for SV classes. First we need the following lemma.Lemma 9 (Carl and Stephani [13, p. 11]) Let E;F;G be Banach spaces,R 2 L(F;G), and S 2 L(E;F ). Then, for n; t 2 N,�nt(RS) � �n(R)�t(S) (41)�n(RS) � �n(R)kSk (42)�n(RS) � �n(S)kRk: (43)Note that the latter two inequalities follow directly from the fact that �1(R) =kRk for all R 2 L(F;G).Theorem 10 (Bounds for SV classes) Let k be a Mercer kernel, let � beinduced via (27) and let T := S ~Xm� where S ~Xm is given by (38) and � 2 R+ .Let A be de�ned as in corollary 7 and suppose ~xj = �(xj) for j = 1; : : : ;m.Then the entropy numbers of T satisfy the following inequalities:�n(T ) � ckAk� log�1=2 n log1=2 �1 + mlog n� (44)�n(T ) � 6��n(A) (45)�nt(T ) � 6c� log�1=2 n log1=2 �1 + mlog n� �t(A)where c is de�ned as in Lemma 8.This result gives several options for bounding �n(T ). We shall see in exam-ples later that the best inequality to use depends on the rate of decay of the3In fact (39) is just one of three terms to be considered when bounding en(S). However, theother two terms are merely improvements of (39) for the case of small n (since en(S) � kSkby de�nition) and for n in the order of m or larger. This leads to rates decaying exponentially,i.e. en = O(2�n=m), however this case is not interesting for learning theoretical studies, sinceit corresponds to overly complex models. See [60] for details.14



eigenvalues of k. The result gives e�ective bounds on Nm(�;F�) since�n(T : `2 ! `m1) � �0 ) Nm(�0;F�) � n:Proof We will use the following factorization of T to upper bound �n(T ).U`2 � `2 T //�
��

`m1
�U`2 � `2 S�(Xm) ::

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u A // �E � `2S(A�1�(Xm))OO

(46)
The top arrow in the diagram follows from the de�nition of T . The fact thatremainder commutes stems from the fact that since A is diagonal, it is self-adjoint and so for any ~x 2 Shw; ~xi = hw; AA�1~xi = hAw; A�1~xi: (47)Instead of computing the entropy number of T = S ~Xm� directly, which isdi�cult or wasteful, as the the bound on S ~Xm does not take into account that~x 2 E but just makes the assumption of ~x 2 �U`2 for some � > 0, we willrepresent T as S(A�1 ~Xm)A�. This is more e�cient as we constructed A suchthat A�1�(X) � U`2 �lling a larger proportion of it than 1��(X) does.By construction of A and due to the Cauchy-Schwarz inequality we havekSA�1 ~Xmk � 1. Thus applying lemma 9 to the factorization of T and usingTheorem 8 proves the theorem.As we shall see in Section 7, one can give asymptotic rates of decay for �n(A).(In fact we give non-asymptotic results with explicitly evaluable constants.) Itis thus of some interest to give overall asymptotic rates of decay of �n(T ) interms of the order of �n(A).Lemma 11 (Rate bounds on �n) Let k be a Mercer kernel and suppose Ais the scaling operator associated with it as de�ned by (34).1. If �n(A) = O(log�� n) for some � > 0 then for �xed m,�n(T ) = O(log�(�+1=2) n): (48)2. If log �n(A) = O(log�� n) for some � > 0 then for �xed m,log �n(T ) = O(log�� n): (49)This Lemma shows that in the �rst case, Maurey's result (theorem 8) allowsan improvement in the exponent of the entropy number of T , whereas in thesecond, it a�ords none (since the entropy numbers decay so fast anyway). TheMaurey result may still help in that case though for nonasymptotic n.15



Proof From theorem 8 we know that �n(S) = O(log�1=2 n). Now use (41),splitting the index n in the following way:n = n�n(1��) with � 2 (0; 1): (50)For the �rst case this yields�n(T ) = O(log�1=2 n� )O(log�� j��1)= ��1=2(1� �)��O(log�(�+1=2) n) = O(log�(�+1=2) n): (51)In the second case we havelog �n(T ) = log �(��1=2)O(log�1=2 n)�+ (1� �)��O(log�� n) = O(log�� n):(52)In a nutshell we can always obtain rates of convergence better than those dueto Maurey's theorem because we are not dealing with arbitrary mappings intoin�nite dimensional spaces. In fact, for logarithmic dependency of �n(T ) on n,the e�ect of the kernel is so strong that it completely dominates the 1=pnbehavior for arbitrary Hilbert spaces. An example of such a kernel is k(x; y) =exp(�(x � y)2); see Proposition 15 and also Section 6 for the discretizationquestion.We conclude this section by remarking that instead of the a priori boundsdeveloped here, one may often obtain better bounds in terms of the empiricalGram matrix. A sketch of this reasoning is provided in Appendix A.6 Discrete Spectra of Convolution OperatorsThe results presented above show that if one knows the eigenvalue sequence(�i)i of a compact operator, one can bound its entropy numbers. Whilst it isalways possible to assume that the data fed into a SV machine have boundedsupport, the same can not be said of the kernel k(�; �); a commonly used kernel isk(x; y) = exp(�(x� y)2) which has noncompact support. The induced integraloperator (Tkf)(x) = Z 1�1 k(x; y)f(y)dy (53)then has a continuous spectrum (a nondenumerable in�nity of eigenvalues) andthus Tk is not compact [7, p.267]. The question arises: can we make use ofsuch kernels in SV machines and still obtain generalization error bounds of theform developed above? Note that by a theorem of Widom [59], the eigenvaluedecay of any convolution operator de�ned on a compact set via a kernel havingcompact support can decay no faster than �j = 
(e�j2) and thus if one seeksvery rapid decay of eigenvalues (with concomitantly small entropy numbers),one must use convolution kernels with noncompact support.We will resolve these issues in the present section. Before doing so, let us�rst consider the case that suppk � [�a; a] for some a < 1. Suppose further16



that the data points xj satisfy xj 2 [�b; b] for all j. If k(�; �) is a convolutionkernel (i.e. k(x; y) = k(x � y; 0) which allows us to write with some abuse ofnotation k(x� y) := k(x� y; 0)), then the SV hypothesis hk(�) can be writtenhk(x) := mXj=1 �jk(x;xj) = mXj=1 �jkv(x;xj) =: hkv(x) (54)for v � 2(a + b) where kv(�) is the v-periodic extension of k(�) (analogouslykv(x� y) := kv(x� y; 0)): kv(x) := 1Xj=�1k(x� jv): (55)We now relate the eigenvalues of Tkv to the Fourier transform of k(�). We doso for the case of d = 1 and then state the general case later.Lemma 12 Let k:R ! R be a symmetric convolution kernel, let K(!) =F [k(x)](!) denote the Fourier transform of k(�) (see (63)) and kv denote thev{periodical kernel derived from k (also assume that kv exists). Then kv has arepresentation as a Fourier series with !0 := 2�v andkv(x� y) = 1Pj=�1 p2�v K(j!0)eij!0x= p2�v K(0) +P1j=1 2vp2�K(j!0) cos(j!0(x� y)): (56)Moreover the eigenvalues �j of Tkv satisfy �j = p2�K(j!0) for j 2 Z andCk =q 2v .Proof Clearly the Fourier series coe�cients Kj of kv exist (as kv exists) withKj := 1pv Z v=2v=2 e�ij!0xkv(x)dxand therefore by the de�nition of kv and the existence of K(!) we concludeKj = 1pv R v=2v=2 P1j=�1 e�ij!0xk(x� jv)= 1pv P1j=�1 R v=2v=2 e�ij!0xk(x� jv) =q2�v K(j!0):This and the fact that fx 7! v�1=2eij!0x: j 2 Zg forms an orthogonal basisin L2([�v2 ; v2 ]; C ) proves (56). (Note that from k(x) = k(�x) we concludeK(!) = K(�!)). Furthermore, we are interested in real valued basis functionsfor k(x� y). The functions 0(x) := 1pv j(x) := q 2v cos(j!0x) and  �j(x) :=q 2v sin(j!0x) for all j 2 N (57)17



form an eigensystem of the integral operator de�ned by kv with the correspond-ing eigenvalues p2�K(j!0). Finally one can see that Ck =q 2v by computingthe max over j 2 N and x 2 [�v=2; v=2].Thus even though Tk may not be compact, Tkv can be (if (K(j!0))j2N � `2for example). The above lemma can be applied whenever we can form kv(�)from k(�). Clearly k(x) = O(x�(1+�)) for some � > 0 su�ces to ensure the sumin (55) converges.Let us now consider how to choose v. Note that the Riemann-Lebesguelemma tells us that for integrable k(�) of bounded variation (surely any kernelone would use would satisfy that assumption), one has K(!) = O(1=!). Thereis an tradeo� in choosing v in that for large enough !, K(!) is a decreasing func-tion of ! (at least as fast as 1=!) and thus by Lemma 12, �j = p2�K(2�j=v)is an increasing function of v. This suggests one should choose a small value ofv. But a small v will lead to high empirical error (as the kernel \wraps around"and its localization properties are lost) and large Ck. There are several ap-proaches to picking a value of v. One obvious one is to a priori pick some ~� > 0and choose the smallest v such that jk(x) � kv(x)j � ~� for all x 2 [�v=2; v=2].Thus one would obtain a hypothesis hkv(x) uniformly within C~� of hk(x) wherePmj=1 j�j j � C.Remark 13 The above Lemma can be readily extended to d dimensions. As-sume k(x) is v-periodic in each direction (x = (x1; : : : ; xd)), we get�j = (2�) d2K(!0j) = (2�) d2K(!0kjk) (58)for radially symmetric k and �nally for the eigenfunctions Ck = (2=v) d2 .Finally it is worth explicitly noting how the choice of a di�erent bandwidthof the kernel, i.e. letting k(�)(x) := �dk(�x), a�ects the eigenspectrum of thecorresponding operator. We have K(�)(!) = K(!=�), hence scaling a kernelby � means more densely spaced eigenvalues in the spectrum of the integraloperator Tk(�).In conclusion: in order to obtain a discrete spectrum one needs to use aperiodic kernel. For a given problem one can always periodize a nonperiodickernel in a way that changes the �nal hypothesis in an arbitrarily small way.One can then make use of the results of the present paper.7 Covering Numbers for Given Decay RatesIn this section we will show how the asymptotic behavior of �n(A: `2 ! `2),where A is the scaling operator introduced before, depends on the eigenvaluesof Tk.A similar analysis has been carried out by Prosser [37], in order to computethe entropy numbers of integral operators. However all of his operators mappedinto L2(X; C ). Furthermore, whilst our propositions are stated as asymptotic18



results as his were, the proofs actually give non-asymptotic information withexplicit constants.Note that we need to sort the eigenvalues in a nonincreasing manner becauseof the requirements in corollary 7. If the eigenvalues were unsorted one couldobtain far too small numbers in the geometrical mean of �1; : : : ; �j . Many one-dimensional kernels have nondegenerate systems of eigenvalues in which caseit is straightforward to explicitly compute the geometrical means of the eigen-values as will be shown below. Note that whilst all of the examples below arefor convolution kernels, i.e. k(x; y) = k(x� y), there is nothing in the formula-tions of the propositions themselves that requires this. When we consider thed-dimensional case we shall see that with rotationally invariant kernels, degen-erate systems of eigenvalues are generic. In section 8.2 we will show how tosystematically deal with that case.Let us consider the special case where (�j)j decays asymptotically with somepolynomial or exponential degree. In this case we can choose a sequence (aj)jfor which we can evaluate (37) explicitly. In what follows, by the eigenvaluesof a kernel k we mean the eigenvalues of the the induced integral operator Tk.Proposition 14 (Polynomial Decay) Let k be a Mercer kernel with eigen-values �j = O(j�(�+1)) for some � > 0. Then for any � 2 (0; �=2) we have�n(A: `2 ! `2) = O(ln��2+� n): (59)The rate obtained is tight within logarithmic factors and can be bounded frombelow by 
(ln��2 n).An example of such a kernel is k(x) = e�x. The proof can be found in theappendix.The next theorem covers a wide range of practically used kernels, namelythose with exponential polynomial decay in their eigenvalues. For instancethe Gaussian kernel k(x) = e�x2 has exponential quadratic decay in �i. The\damped harmonic oscillator" kernel k(x) = 11+x2 is another example, this timewith just exponential decay in its eigenvalues.Proposition 15 (Exponential{Polynomial Decay) Suppose k is a Mercerkernel with �j = O(e��jp) for some �; p > 0. Thenln ��1n (A: `2 ! `2) = O(ln pp+1 n): (60)The rate is tight.See the appendix for a proof. (A more precise, but rather more complex, calcu-lation is given in [20].) Whilst this theorem gives the guarantees on the learningrates of estimators using such types of kernels (which is theoretically pleasingand leads to desirable sample complexity rates), it may not always be wiseto use the theoretically obtained bounds. Instead, one should take advantageof the estimates based on an analysis of the distribution of the training datasince the rates obtained by the latter may turn out to be far superior wrt. thetheoretical predictions (cf. sec. 6 and [41]).19



8 Higher DimensionsThings get a somewhat more complicated in higher dimensions. For simplicity,we will restrict ourselves to translation invariant kernels in what follows.There are basically two ways that can be pursued for constructing kernelsin Rd � Rd ! R with d > 1 if no particular assumptions on the data we aredealing with are made. Firstly one could construct kernels byk(x� y) = k(x1 � y1)� � � � � k(xd � yd): (61)This choice will usually lead to preferred directions in input space as the kernelsare not rotationally invariant in general. The second approach consists in settingk(x� y) = k(kx� yk`2): (62)This approach also leads to translationally invariant kernels which are alsorotationally invariant. In the following we will exploit this approach to com-pute regularization operators and corresponding Green's functions. It is quitestraightforward, however, to generalize our exposition to the rotational asym-metric case. Now let us de�ne the basic ingredients needed for the furthercalculations.8.1 Basic ToolsThe d-dimensional Fourier transform is de�ned byF : L2(Rd )! L2(Rd) with F [f ](!) := 1(2�)d=2 ZRd e�ih!;xif(x)dx: (63)Then its inverse transform is given byF�1 : L2(Rd)! L2(Rd ) with F�1[f ](x) = 1(2�)d=2 ZRd eih!;xif(!)d!: (64)F can be shown to be an isometry on L2(Rd ).Now introduce regularization operators P de�ned byhPf; Pgi := ZsuppP (!) F [f ](!)F [g](!)P (!) d! (65)for some nonnegative function P (!) converging to 0 for k!k ! 1. It can beshown [49] that for a kernel to be a Green's function of P �P , i.e.hPk(x); Pk(x � x0)i = k(x0); (66)we need F [k](!) = P (!). For radially symmetric functions, i.e. f(x) = f(kxk2),we can explicitly carry out the integration on the sphere to obtain Fouriertransform which is also radially symmetric (see e.g. [51, 32]), namelyF [f ](k!k) = !��H�[r�f(r)](k!k); (67)20



where � := 12d � 1 and H� is the Hankel transform over the positive real line.The latter is de�ned byH� [f ](!) := Z 10 rf(r)J�(!r)dr: (68)Here J� is the Bessel function of the �rst kind de�ned byJ�(r) := r�2�� 1Xj=0 (�1)jr2j22jj!�(j + � + 1) : (69)Note that H� = H�1� , i.e. f = H� [H� [f ]] (in L2) due to the Hankel inversiontheorem [51].8.2 Degenerate SystemsComputing the Fourier transform for a given kernel k gives us the continu-ous spectrum. As pointed out in Section 6, we are interested in the discretespectrum of integral kernels de�ned on X. This means that the eigenvaluesare de�ned on the grid !0Zd with !0 = 2�=v. Assuming k(x) is rotationallyinvariant, so is K(!) and therefore also the eigenvalues �j = (2�) d2K(j!0) asshown in Lemma 12. Consequently we have degeneracies in the point spectrumof the integral operator given by k (or kv respectively) as all j!0 with equallength will have the same eigenvalue. In order to deal with this case e�cientlywe slightly modify Theorem 6 for our purposes. The following theorem allowsproper account to be taken of the multiplicity of eigenvalues, and thus allowsthe straight-forward calculation of the sought for entropy numbers.Theorem 16 Let (st)t 2 NN0 be an increasing sequence with s0 = 1 and (�j)j 2RN be a non{increasing sequence of non{negative numbers with�sj < �s�| for j < �| and �j = �st for st�1 < j � stand let Dx = (�1x1; �2x2; : : : ; �jxj; : : :) (70)for x = (x1; x2; : : : ; xj ; : : :) 2 `p be the diagonal operator from `p into itself,generated by the sequence (�j)j, where 1 � p � 1. Then for all n 2 N,supt2N n� 1st (�1�2 � � � �st) 1st � �n(D) � 6 supt2N n� 1st (�1�2 � � � �st) 1st : (71)See the appendix for a proof.This theorem allows us to obtain a similar result to corollary 7.Corollary 17 (Entropy numbers for degenerate systems)Let k:X � X ! R be a Mercer kernel and let A be de�ned by (34) with theadditional restriction that the coe�cients aj have to match the degeneracy of21



�j, i.e. asj � as�| for j < �| and aj = ast for st�1 < j � st. Then4 one canchoose A such that�n(A: `2 ! `2) � inf(aj)j :(p�j=aj)j2`2 supt2N 6Ck �p�j=aj�j`2 n� 1st (a1a2 : : : ast) 1st(72)This result by itself may not appear too useful. However it is in fact exactlywhat we need for the degenerate case (it is slightly tighter than the originalstatement, as the supremum e�ectively has to be carried out only over a subsetof N). Finally we have to compute the degree of multiplicity that occurs fordi�erent indices j. For this purpose consider shells of radius r in Rd centeredat the origin, i.e. rSd�1, which contain a nonzero number of elements of Zd.Denote the corresponding radii by rj and let n(rj; d) be the number of elementson these shells. Observe that n(r; d) 6= 0 only when r2 2 N. Thusn(r; d) := jZd \ rSd�1jN(r; d) := Pf0���r:�22Ng n(�; d): (73)The determination of n(r; d) is a classical problem which is completely solvedby the use of the �-series. (see e.g. [19]):Theorem 18 (Occupation numbers of shells) Let the formal power series�(x) be de�ned by �(x) := 1Xj=�1xj2 = 1 + 2 1Xj=1 xj2 : (74)Then (�(x))d = 1Xj=1 n(pj; d)xj : (75)This theorem allows one to readily compute n(r; d) exactly; see the appendixfor some Maple code to do so. (Note that whilst there do exist closed formasymptotic approximate formulae for n(r; d) [19, p. 155], they are inordinatelycomplicated and of little use for our purposes.)We can now construct an index of the eigenvalues which satis�es the requiredordering (at least for nonincreasing functions K(!)) and we get the followingresult:Corollary 19 (Radially Symmetric Systems on a Lattice)Let k:X � X ! R be a Mercer kernel with eigenvalues given by a radiallysymmetric nonincreasing function on a lattice, i.e. �j = �(kjk) with j 2 Zd andlet A be de�ned by (34) with the additional restriction that the coe�cients ai4See [20] for a proof that (72) is well de�ned for kernels with summable eigenvalues.
22



have to match the degeneracy of �j, i.e. aj = a(kjk). Then�n(A: `2 ! `2) �inf(aj)j: p�jaj !j2(`2)d supt2N 6Ck �p�jaj �j(`2)dn� 1N(rt;d) �Qtq=1 a(rq)n(rq ;d)� 1N(rt;d) :(76)Note that this result, although it may seem straightforward, cannot be obtainedfrom corollary 7 directly as there the sup would have to be carried out over Ninstead of (N(rt; d))t. The di�erent formulation allows us to compute boundson the entropy numbers more easily.8.3 Bounds for Kernels in RdLet us conclude this section with some examples of the eigenvalue sequencesfor kernels typically used in SV machines. These can then be used to evaluatethe right hand side in corollary 19. Recall that � = d2 � 1. First we have tocompute the Fourier/Hankel transform for the kernels.Example 20 (Gaussian RBFs) For Gaussian rbfs in d dimensions we havek(r) = ��de� r22�2 and correspondinglyF [k](!) = !����dH� �r�e� r22�2 � (!)= !���2(�+1)�d!�e�!2�22= e�!2�22 :Example 21 (Exponential RBFs) In the case of k(r) = e�ar we getF [k](!) = !��H� �r�e�ar� (!)= !��2�+1!�a�� 12� �� + 32� �a2 + !2���� 32= 2d2 a�� 12� �d2 + 1� 1(a2 + !2) d+12i.e. in the case of d = 1 we recover the damped harmonic oscillator (in frequencydomain). In general we get a decay in terms of the eigenvalues like !�(d+1).Moreover we can conclude from this that the Fourier transform of k, vieweditself as a kernel, i.e. k(r) = �1 + r2�� d+12 , yields the initial kernel as itscorresponding power spectrum in Fourier domain.Example 22 (Damped Harmonic Oscillator) Another way to generalizethe harmonic oscillator, this time in a way, that k does not depend on thedimensionality d is to set k(r) = 1a2+r2 . Following [58, section 13.6] we getF [k](!) = !��H� � r�a2 + r2� (!)23



= !��a�K�(!a)where K� is the Bessel function of the second kind, de�ned by (see [51])K�(x) = Z 10 e�x cosh t cosh(�t)dt: (77)It is possible to upper bound F [k] viaK�(x) =r �2xe�x 24p�1Xj=0(2x)�j � �� + j + 12�j!� �� � j + 12� + � � (2x)�p � �� + p+ 12�j!� �� � p+ 12�35(78)with p > � � 12 and � 2 [0; 1] [18, eq. 8.451.6]). As one can see the term inthe brackets [�] converges to 1 for x ! 1 and we get exponential decay of theeigenvalues.Using Theorem 18, Corollary 19 and Remark 13 one may compute the en-tropy numbers numerically for a particular kernel and a particular set of pa-rameters. This may seem unsatisfactory from a theoretician's point of view.However, as the ultimate goal is to use the obtained bounds for model selec-tion, it is desirable to obtain as tight bounds (especially in the constants) aspossible. Hence if much more precise bounds can be obtained by some not tooexpensive numerical calculation it is de�nitely worth while to use those insteadof a theoretically nice but not su�ciently tight upper bound. The computa-tional e�ort to calculate these quantities is typically negligible in comparisonto training the actual learning machine.Notwithstanding the above, in order to give a feeling for the e�ect of thedecay of the Fourier transform of the kernel on the entropy numbers of the Aoperator, we conclude with the following general result, the proof of which isrelegated to the appendix.Proposition 23 (Polynomial exponential decay in Rd) For kernels k(�; �)in Rd � Rd with �(!) = O(e��k!kp) with �; p > 0 the following bound on theentropy number of the corresponding scaling operator holds.ln ��1n (A: `2 ! `2) = O(ln pp+d n)9 ConclusionsWe have shown how to connect properties known about mappings into featurespaces with bounds on the covering numbers. Our reasoning relied on the factthat this mapping exhibits certain decay properties to ensure rapid convergenceand a constraint on the size of the weight vector in feature space. This meansthat the corresponding algorithms have to restrict exactly this quantity to en-sure good generalization performance. This is exactly what is done in SupportVector machines. 24



The actual application of our results, perhaps for model selection usingstructural risk minimization, is somewhat involved, but is certainly doable |see the references below. Here we outline one possible path. As said before,the viewpoint in this paper is new, and perhaps there will be re�nements soonforthcoming which would make the codi�cation of our existing results into asingle generalization bound premature.9.1 A Possible Procedure to use the Results of this PaperChoose k and � The kernel k may be chosen for a variety of reasons, whichwe have nothing additional to say about here. The choice of � shouldtake account of the discussion in Section 6.Choose the period v of the kernel One suggested procedure is outlined inSection 6.Bound �n(A) This can be done using Corollary 7 (for the case d = 1) orCorollary 17 or 19 for the case d > 1. Some examples of this sort ofcalculation are given in Section 7.Bound �n(T ) Using Theorem 10.Take account of the \+b" The key observation is that given a class F withknown Nm(�;F), one can bound Nm(�;F+) as follows. (Here F+ := ff +b: f 2 F; b 2 Rg.) Suppose V� is an �-cover for F and elements of F+ areuniformly bounded by B (this implies a limit on jbj as well as a uniformbound on elements of F). ThenV +� := B=�[j=�B=�V� + j�is an �-cover for F+ and thus Nm(�;F+) � 2B� Nm(�;F). Observe that thiswill only be \noticeable" for classes F with very slowly growing coveringnumbers (polynomial in 1=�).Take account of the loss function using Lemma 2 for example.Plug into a uniform convergence result See the pointers to the literatureand the example in Section 4.9.2 Further WorkThe operator-theoretic viewpoint introduced in this paper seems fruitful. Theoverall bounds for SV classes can, via a somewhat involved argument, be con-siderable simpli�ed [20]. The general approach can be applied to various otherlearning machines such as convex combinations of basis functions and multilayernetworks [48]. When combined with a appropriate statistical argument [46] theyyield bounds on generalization performance that appear to work well for model25



selection [41]. The methods can also be applied to some problems of unsuper-vised learning [50].The results of the present paper hinge on the measurement of the size ofthe weight vector w by a `2 norm. In [60] we show the e�ect of di�erent normsfor measuring the size of w, as well as presenting a number of related results.We expect that further re�nements and extensions to these techniques willcontinue to yield valuable results.AcknowledgementsThe authors thank Peter Bartlett, Bernd Carl, Andr�e Elissee�, Ying Guo, JohnShawe{Taylor, and Anja Westerho� for helpful discussions and comments. Thiswork was supported by the Australian Research Council, a grant of the DFG(#Ja 379/71) and Neurocolt II. This work would not have been possible hadthe European cup �nal not been held in London in 1996 immediately prior toCOLT96.
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A Empirical BoundsInstead of theoretically determining the shape of �(X) a priori one could usethe training and/or test data to empirically estimate its shape and use thisquantity to compute an operator Bemp in place of A to (32). In this subsectionwe will sketch a possible approach | the full development of these ideas requiresconsiderable further work; see [41].For instance assume that we are given an m{sample of data points X :=fx1; : : : ;xmg � X, not necessarily only from the training set but perhaps alsocomprising unlabelled test samples, drawn from the same distribution P . Nowsuppose we could estimate the �rst j radii (e.g. in a manner similar to the radiusestimate in [40]) fr1; : : : ; rjg of an ellipsoid enclosing �(X) with probability say1 � �.5 Denote by fe1; : : : ; ej�1g � `2 a set of orthogonal vectors pointing inthe directions given by the radii and Pj the projector onto (spanfe1; : : : ; ej�1g).Note that we only have to be sure that with probability 1�� the data lies insidethe ellipsoid and that we need no statement on the precision of the estimateof the radii | this makes a big di�erence in terms of the volume. Then withprobability 1 � � we could upper bound the covering numbers of a scalingoperator Bemp by making use of corollary 7. Due to the ellipsoid condition thefollowing inequality holds for all xs:j�1Xt=1 het;�(xt)i2r2t � 1 (79)and moreover kPj�(xt)k`2 � rj for all 1 � t � M . Hence for an operatorBemp�1 scaling the �rst j�1 directions e1; : : : ; ej�1 by r�1t and the rest by r�1j ,Bemp�1�(X) would still be enclosed inp2U`2 . Hence we have a similar situationas in the case where we explicitly computed all eigenvalues analytically. Settingrt := rj for t > j and applying corollary 7 leads to the following upper boundon the entropy of Bemp�n(Bemp) � 6p2 supj2N n� 1j (r1r2 � � � rj) 1j (80)The aim is now to �nd the maximum n for which the estimate will not breakdown yet (for we have the liberty of distributing the covering numbers arbi-trarily between the shrinkage operator Bemp and the actual evaluation operatorSXm as shown in section 5). In other words we are looking for that particularvalue of j where supj is taken on for the smallest radius estimated. Ignoringthe fact that n 2 N for a moment we arrive at the following equation:n� 1j (r1r2 � � � rj) 1j = n� 1j+1 (r1r2 � � � rj � rj) 1j+1 (81)5This for instance could be done in a way similar to Kernel{PCA [49] by computing theeigensystem (�i; �ij) of the Gram matrix kij = k(xi; xj). Then, possibly after some ordering,p�i � ri = p�imaxj j�ij j. 27



Solving for n yields and taking n 2 N into account yieldsnj = $r1r2 � � � rjrjj % and therefore �nj+1(Bemp) � 6p2rj (82)This calculation is valid as nj is a nondecreasing function of j: nj+1nj = � rjrj+1�j .If this assumption failed to be true one would have to rede�ne Bemp to scaleonly the �rst ~j directions for which this happened to hold | it gains one littleto scale in directions where the decay rate is too slow.Instead of taking real data (which may be expensive to get) we also couldupper bound the �rst j radii by a Monte{Carlo method, once we can bound theset X. This is also useful when no analytic expansion in terms of eigenvaluesof the operator can be obtained or where it would be too tedious to obtainexplicitly. In cases with a su�cient amount of computational power availablethis may even be a more practical and faster way than computing the spectrumgiven by k analytically. The latter, at least in order to obtain optimal bounds,would have to be done for each learning problem anew. The method proposedhere would obviate the need for such detailed theoretical calculations whichmay be impractical to carry out in some instances.B Proofs of Results in Section 7Proof (Proposition 14) The proof uses Corollary 7. Since �j = O(j���1there exists some � 2 R+ with �j � �2j���1. In this case all sequences(aj)j = (j� �2 )j with 0 < � < � lead to an admissible scaling property. One has�p�jaj �j`2 = � �j ����22 �j`2 = �p�(�� � + 1) (83)where �(�) is Riemann's zeta function. Moreover one can bound �(�) byx+  � � �1 + 1x� � x+ 1 (84)where  is Euler's constant. The next step is to evaluate the expression(a1a2 � � � aj) 1j =  jYs=1 s� �2! 1j = (j!)� �2j = �(j + 1)� �2 (85)The Gamma function �(x) can be bounded as follows; for j > 1,ln j � 1 � 1j ln�(j + 1) � ln j: (86)
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Hence one may bound �n(A)�n(A) � Ck� inf�2(0;�) supj2N n� 1j � 1��� + � 12 j� �2 (87)�n(A) � 6Ck� inf�2(0;�) supj2N n� 1j � 1��� + 1� 12 e �2 j� �2 (88)In order to avoid unneeded technicalities we will replace supj2N by supj2[1;1).This is no problem when computing the upper bound, but it is an issue for thelower bound. However, j� �2 on [1;1) is within a constant factor of 2� �2 of itscorresponding values on the integer domain N, the biggest discrepancy beingat [1; 2].6 Thus we may safely ignore the concern. Next we computesupj2[1;1)n� 1j j� �2 = supj2[1;1) e�1j lnn� �2 ln j = �2e lnn� �� �2 : (89)The maximum of the argument is obtained for j = 2 lnn� , hence (89) holds for alllnn � �2 , which is �ne since we want to compute bounds on �n(A) as n ! 1.For the lower bounds on �n(A) we obtain�n(A) � Ck�(2e)� �2 inf�2(0;�)� 1��� + � 12 �2 lnn� �� �2� Ck�(2e)2� �2 inf�2(0;�) � 1��� + � 12 inf�2(0;�) �2 lnn� �� �2= Ck�(2e)2� �2 � 1� + � 12 �2 lnn� ���2 : (90)This shows that �n(A) is always bounded from below by 
�ln��2 n�. Compu-tation of the upper bound is slightly more e�ort, since one has to evaluate�n(A) � 6Ck� inf�2(0;�)� 1��� + 1� 12 �2 lnn� �� �2 : (91)Clearly for any �xed � 2 (0; �) we are able to obtain a rate of �n(A) =O �ln� �2 n�, thus the theorem follows. For practical purposes a good approxi-mation of the inf can be found as 1��� = ln(2 lnn) by computing the derivativeof the argument in (91) wrt. � and dropping all terms independent of � and n.However, numerical minimization of (91) is more advisable when small valuesof �n(A) are crucial.For the proof of Proposition 15 we need the following standard Lemma:6One may show [41] that aj�+1 � supj2Nn� 1j (a1; : : : ; aj) 1j � aj� for that particular j�where supj2Nis actually obtained. Hence the maximum quotient aj+1=aj , which in the presentcase is 2� �2 , determines the value by which the bound has to be lowered in order to obtain atrue lower bound. 29



Lemma 24 (Summation and Integration in R1) Suppose f : R ! R is anintegrable nonincreasing function. Then the following inequality holds for anya 2 Z Z 1a f(x)dx � 1Xn=a f(n) � Z 1a�1 f(x)dx: (92)Proof The proof relies on the fact thatf(n) � Z n+1n f(n)dn � f(n+ 1)due to the monotonicity of f and a decomposition of the integral 1R0 = 1Pn=0 n+1Rn .The lemma is a direct consequence thereof.Proof (Proposition 15) Since �j = O(e��jp) there exists some � 2 R+ with�j � �2e��jp . Similarly to before we now use a series (aj)j = e��=2jp . Then byapplying lemma 24 we have that for any � 2 [0; �),�p�jaj �j`2 = �0@ 1Xj=0 e(���)jp1A 12 8<: � �q1 + �(1=p)p(���)1=p� �q �(1=p)p(���)1=p (93)Next we have to apply a similar bound to the product of the �rst j diagonalentries of the scaling operator A.(a1a2 : : : aj) 1j = e� 12j � jPs=1 sp ( � e� �2(p+1) jp� e� �2(p+1) jp+ �2j(p+1) � e� �2(p+1) jp+ �2(p+1) (94)The last inequality holds since j 2 N. Next we have to compute supj2N n� 1j e� �2(p+1) jp =supj2N e� 1j lnn� �2(p+1) jp. Di�erentiation of the exponent wrt. j leads toj�2 lnn� �p2(p+1)jp�1 = 0) j�1 lnn = �p2(p+1)jp (95)and thus supj2[1;1)n� 1j e� �2(p+1) jp = e�( �2 )1=(p+1)�p+1p lnn� pp+1 : (96)Replacing the domain from supj2N to supj2[1;1) is not a problem when it comesto computing upper bounds on �n(A). As for the lower bounds, again, a similarreasoning like in the previous proof would have to be applied.7 However, itis left out for the sake of clarity. Thus �n(A) can be bounded from below as7As in the previous theorem, the problem reduces to bounding the quotient aj�+1=aj�where j� is the variable for which supj2N is obtained. However, here the quotient can only bebounded by e� �p2 jp�1 . Fortunately this is of lower order than the remaining terms, hence itwill not change the rate of the lower bounds.30



follows�n(A) � Ck� inf�2(0;�)r �(1=p)p(���)1=p e�( �2 )1=(p+1)�p+1p lnn� pp+1� Ck� inf�2(0;�)r �(1=p)p(���)1=p inf�2(0;�) e�( �2 )1=(p+1)�p+1p lnn� pp+1= Ck�r�(1=p)p�1=p e�(�2 )1=(p+1)�p+1p lnn� pp+1 (97)Thus a lower bound on the rate of log �n is O(log pp+1 n). Moreover, for the upperbound we obtain�n(A) � 6Ck� inf�2(0;�)r1 + �(1=p)p(���)1=p e�( �2 )1=(p+1)�p+1p lnn� pp+1+ �2j(p+1) (98)One could evaluate (98) numerically. However, it can be seen that for any �xed� 2 (0; �) the rate of log �n(A) can be bounded by O(log pp+1 n), which showsthat the obtained rates are tight.C Proof of Theorem 16Proof The �rst part of the inequality follows directly from theorem 6 as it isa weaker statement than the original one. We prove the second part by closelymimicking the proof in [13, p. 17]. We de�ne�(n) := 8 supt2N n� 1st (�1�2 � � � �st) 1st (99)and show that for all n there is an index sj with �sj+1 � �(n)4 . For this purposechoose an index r such that n � 2sj+1 and thus 1 � 2n�1=(sj+1). Moreover wehave �sj+1 � (�1�2 � � � �sj+1) 1sj+1 (100)because of the monotonicity of (�j)j and �nally�sj+1 � 2n�1=(sj+1)(�1�2 � � � �sj+1) 1sj+1 : (101)Using the de�nition of �(n) we thus conclude �sj+1 � �(n)=4. If this happensto be the case for �1 we have �n(D) � �1 which proves the theorem.If this is not the case there exists an index sj such that �sj+1 � �(n)=4 < �sj .Hence the corresponding sectional operatorDsj : `p ! `p withDsj (x1; x2; : : : ; xsj ; xsj+1; : : :) = (�1x1; �2x2; : : : ; �sjxsj ; 0; 0; : : :) (102)31



is of rank sj and the image Dsj (Up) of the closed unit ball Up of `p is isometricto the subset D(sj)(U (sj)p ) of `sjp . In any case Dsj (Up) is a precompact subset of`p. So let y1; y2; : : : ; yN be a maximal system of elements in Dsj (Up) withkyj � y�|k > �(n)=2 for j 6= �|: (103)The maximality of this system guarantees thatDsj (Up) � N[j=1�yj + �(n)2 Up� (104)and thus �N (Dsj ) � �(n)=2. In order to get an estimate for �N (D) we split theoperator D into two parts D = (D �Dsj ) +Dsj which allows us to bound�N (D) � kD �Dsjk+ �N (Dsj ): (105)Using kD �Dsjk = �sj+1 � �(n)=4 and the bound on �N (Dsj ) we arrive at�N (D) � 34�(n): (106)The �nal step is to show that N � n as then by substituting in the de�nitionof �(n) into (106) yields the result. This is again achieved by a comparisonof volumes. Consider the sets fyj + (�(n)=4)U sjp g as subsets of the space `sjpwhich is possible since yj 2 Dsj (Up) and Dsj (Up) = D(sj)(U sjp ). These sets areobviously pairwise disjoint. On the other hand we haveN[j=1�yj + �(n)4 U sjp � � D(sj)(U sjp ) + �(n)4 U sjp ) � 2D(sj)(U sjp ) (107)as �(n)=4 < �1. Now a comparison of the d-dimensional Euclidean volumesvol d provides N ��(n)4 �sj vol sj (U sjp ) � 2sj�1�2 � � � �sjvol sj (U sjp ) (108)and therefore N � (8=�(n))sj�1�2 � � � �sj . Using the de�nition of �(n) this yieldsN � n.D Proof of Proposition 23Proof We will completely ignore the fact that we are actually dealing with acountable set of eigenvalues on a lattice and replace all summations by integralswithout further worry. Of course this is not accurate but still will give us thecorrect rates for the entropy numbers.Denote 1=� := (2�=v) d2 the size of a unit cell, i.e. � = (v=(2�)) d2 the32



density of lattice points in frequency space as given in section 6. Then we getfor in�nitesimal volumes dV and numbers of points dN in frequency spacedV = Sd�1rd�1dr and therefore dN = �Sd�1rd�1dr (109)(here Sd�1 denotes the volume of the d� 1 dimensional unit sphere) leading toN(r; d) = 1d�Sd�1rd: (110)We introduce a scaling operator whose eigenvalues decay like a(!) = e� �2 k!kpfor � 2 [0; �). It is straightforward to check that all these values lead to bothuseful and admissible scaling operators. Now we will estimate the separateterms in (76).�p�iai �i2̀2 � Z dN(!) �(!)a2(!) = Sd�1�Z 10 rd�1�2e�(���)k!kp= Sd�1��2(�� �)� dp � �dp� p�1 (111)Next we have ln�n� 1N(r;d)� = � d�Sd�1rd0 lnn (112)and ln �a1 � a2 � � � aN(r;d)� 1N(r;d) = � d�Sd�1rd0 N(r;d)Xj=1 lnaj� dr�d Z r0 !d�1 lna(!)d! (113)= �dr�d Z r0 !d�1 �2!pd! = ��2 dd+ prp:(114)This leads to�n � 6Ck�rSd�1��� dp�p inf�2[0;�)(�� �)� d2p supr2R+ exp�� d�Sd�1rd lnn� �2 dd+prp� :(115)Computing the supr2R+ yieldsr = � 2��Sd�1 (d+ p)dp lnn� 1d+p (116)and therefore�n � 6Ck�rSd�1��� dp�p inf�2[0;�)(���)� d2p exp ���2� dd+p � (d+p)dp lnn�Sd�1� pd+p! :(117)33



Already from this expression one can observe the rate bounds on �n. Whatremains to be done is to compute the inf� . This can be done by di�erentiating(117) w.r.t. � . De�ne Tn := �(d+ p)dp lnn�Sd�1� pd+p (118)which leads to the optimality condition on �(�� �)�� pd+p = d+ p2Tnp 2 dd+p with � 2 (0; �] (119)which can be solved numerically.
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