
THE PICARD GROUP OF TOPOLOGICAL MODULAR FORMS VIA

DESCENT THEORY

AKHIL MATHEW AND VESNA STOJANOSKA

Abstract. This paper starts with an exposition of descent-theoretic techniques in the study of

Picard groups of E∞-ring spectra, which naturally lead to the study of Picard spectra. We then
develop tools for efficient and explicit determination of differentials in the associated descent

spectral sequences for the Picard spectra thus obtained. As a major application, we calculate
the Picard groups of the periodic spectrum of topological modular forms TMF , as well as the

non-periodic and non-connective Tmf . We find that Pic(TMF ) is cyclic of order 576, generated

by the suspension ΣTMF (a result originally due to Hopkins), while Pic(Tmf) = Z⊕ Z/24, so
that in particular, there exists an invertible Tmf -module which is not equivalent to a suspension

of Tmf .
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1. Introduction

Elliptic curves and modular forms occupy a central role in modern stable homotopy theory in
the guise of the variants of topological modular forms: the connective tmf , the periodic TMF ,
and Tmf which interpolates between them. These are structured ring spectra which have demon-
strated surprising connections between the arithmetic of elliptic curves and v2-periodicity in stable
homotopy. For example, tmf detects a number of 2-torsion and 3-torsion classes in the stable
homotopy groups of spheres through the Hurewicz image. Even more interestingly, the more
geometric-natured TMF can be used to detect and describe, using congruences between modular
forms, the 2-line of the Adams-Novikov spectral sequence at primes p ≥ 5, according to [Beh09].

From a different perspective, the structure of topological modular forms as E∞-ring spectra
leads to well-behaved symmetric monoidal∞-categories of modules which give rise to well-behaved
invariants of algebraic or algebro-geometric type. For instance, [Mei12] has studied TMF -modules
which become free when certain level structures are introduced; these can be thought of as locally
free sheaves with respect to a pre-determined cover.

Our goal in this paper is to understand another such invariant, the Picard group. Any symmetric
monoidal category has an associated group of objects invertible under the tensor product, which
is called the Picard group. The classical examples are the Picard group Pic(R) of a ring R, i.e.,
of the category Mod(R) of its modules, or the Picard group of a scheme X, i.e., of the category
Mod(OX) of quasi-coherent modules over its structure sheaf. In homotopy theory, the interest
in Picard groups arose when Mike Hopkins made the observation that the homotopy categories
of En-local and K(n)-local spectra have interesting Picard groups, particularly when the prime
at hand is small in comparison with n. Here, En is the Lubin-Tate spectrum and K(n) is the
Morava K-theory spectrum at height n. In the few existing computations of such groups, notably
[HMS94, HS99, KS07, GHMR12, Hea14], one often uses that an invertible En-module must be a
suspension of En itself.

The K(2)-localization of either of the three versions of topological modular forms gives a spec-
trum closely related to the Lubin-Tate spectrum E2; namely, this localization is the homotopy
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fixed point spectrum of a finite group action on E2. More generally, each En is an E∞-ring spec-
trum with an action, through E∞-ring maps, by a profinite group Gn called the Morava stabilizer
group (see [Rez98] for the E1-ring case). The K(n)-local sphere is obtained then as EhGn

n . How-
ever, Gn also has interesting finite subgroups when the prime is relatively small with respect to
n. If G is such a subgroup, the homotopy fixed points EhGn are an E∞-ring spectrum, which is
in theory easier to study than the K(n)-local sphere, but hopefully contains a lot of information
about the K(n)-local sphere. For instance, Hopkins has observed that in all known examples, the
Picard group of EhGn (unlike that of the K(n)-local category) is very simple as it only contains
suspensions of EhGn , and raised the following natural question.

Question (Hopkins). Let G be a finite subgroup of the Morava stabilizer group Gn at height n. Is
it true that any invertible K(n)-local module over EhGn is a suspension of EhGn ?

The periodic TMF is closer to its K(2)-localization than Tmf , and this is demonstrated by
the following result, originally due to Hopkins but unpublished.

Theorem A (Hopkins). The Picard group of TMF is isomorphic to Z/576, generated by the
suspension ΣTMF .

In the paper at hand, we prove Theorem A using a descent-theoretic approach. In particular, our
method is different from Hopkins’s. The descent-theoretic approach also enables us to prove that,
nonetheless, the non-connective, non-periodic flavor of topological modular forms Tmf behaves
differently and has a more interesting Picard group.

Theorem B. The Picard group of Tmf is isomorphic to Z ⊕ Z/24, generated by the suspension
ΣTmf and a certain 24-torsion invertible object.

In addition, we explicitly construct the 24-torsion module in 8.4.2.

We hope that our method of proof of Theorem A and Theorem B, which is very general, will
also be of interest to those not directly concerned with TMF . Our method is inspired by and
analogous to the forthcoming work of Gepner-Lawson [GL] on Galois descent of Brauer as well as
Picard groups, though the key ideas are classical.

Take, for example, the periodic variant TMF . Its essential property is that it arises as the global
sections of the structure sheaf Otop of a regular “derived stack” (Mell,Otop) over the moduli stack
of elliptic curves Mell. Thus

TMF = Γ(Mell,Otop) = lim←−
SpecR→Mell

Γ(SpecR,Otop),

where the maps SpecR → Mell range over all étale maps from affine schemes to Mell. Moreover,
the E∞-ring spectra Γ(SpecR,Otop) are even periodic; thus we have TMF as the homotopy
limit of a diagram of even periodic E∞-rings. It follows by the main result of [MM13] that the
module category of TMF can also be represented as the inverse limit of the module categories
Mod(Otop(SpecR)), that is, as quasi-coherent sheaves on the derived stack. In any analogous
situation, our descent techniques for calculating Picard groups apply.

Over an affine chart SpecR→Mell, the Picard group of Γ(SpecR,Otop) (i.e. that of an elliptic
spectrum) is purely algebraic, by a classical argument of [HMS94, BR05] with “residue fields.”
This results from the fact that the ring π∗Γ(SpecR,Otop) is homologically simple: in particular, it
has finite global dimension, which makes the study of Γ(SpecR,Otop)-modules much easier. One
attempts to use this together with descent theory to compute the Picard group of TMF itself;
however, doing so necessitates the consideration of higher homotopy coherences. For this, it is
important to work with Picard spectra rather than Picard groups, as they have a better formal
theory of descent.
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The Picard spectrum pic(A) of an E∞-ring A is a delooping of the unit spectrum gl1(A) of
[May77]1: it is connective, its π0 is the Picard group of A, and its 1-connective cover τ≥1pic(A)
is equivalent to Σgl1(A). We find that the Picard spectrum of TMF is the connective cover of
the homotopy limit of pic(Otop(SpecR)), taken over étale maps SpecR → Mell. This statement
is a homotopy-theoretic expression of the descent theory that we need. Thus, we get a descent
spectral sequence for the homotopy groups of pic(TMF ), which is a computational tool for under-
standing the aforementioned homotopy coherences concretely. We use this technique to compute
π0(pic(TMF )), the group we are after.

The descent spectral sequence has many consequences in cases where it degenerates simply for
dimensional reasons, or in cases where the information sought is coarse. For instance, in a specific
example (Proposition 2.4.8), we show that the Picard group of the E∞-ring C∗(S1;Q[ε]/ε2) is given
by Z × Q, which yields a counterexample to a general conjecture of Balmer [Bal10, Conjecture
74] on the Picard groups of tensor-triangulated categories with local spectrum. We also prove the
following general results in Sections 4 and 5.

Theorem C. Let A be an even periodic, Landweber exact E∞-ring with π0(A) regular. Let n ≥ 1
be an integer, and let Ln denote localization with respect to the Lubin-Tate spectrum En. The
Picard group of LnA is

Pic(LnA) = Pic(π0(A))× Z/2× π−1(LnA),

where Pic(π0(A)) refers to the (algebraic) Picard group of the ordinary commutative ring π0(A).

Theorem D. Let A be an E∞-ring such that π0(A) is a field of characteristic zero and such that
πi(A) = 0 for i > 0. Then Pic(A) is infinite cyclic, generated by ΣA.

Theorem E. Let G be a finite group, and let A → B be a faithful G-Galois extension of E∞-
rings in the sense of Rognes [Rog08]. Then the relative Picard group of B/A (i.e., the kernel of
Pic(A)→ Pic(B)) is |G|-power torsion of finite exponent.

For TMF , the descent spectral sequence does not degenerate so nicely, and we need to work
further to obtain our main results. The homotopy groups of the Picard spectrum of an E∞-ring
A, starting with π2, are simply those of A: in fact, we have a natural equivalence of spaces

Ω∞+2pic(A) ' Ω∞+1A.

This determines the E2-page and many of the differentials in the descent spectral sequence for
Pic(TMF ), but not the ones that affect π0. A key step in our argument is the identification
of the differentials of the descent spectral sequence for the Picard spectra, in a certain range of
dimensions, with that of the (known) descent spectral sequence for π∗(TMF ). We prove this in a
general setting in Section 5 below.

At the prime 2, this technique is not sufficient to determine all the differentials in the de-
scent spectral sequence, and we need to determine in addition the first “unstable” differential in
the Picard spectral sequence (in comparison to the usual descent spectral sequence). We give a
“universal” formula for this first differential in Theorem 6.1.1, which we hope will have further
applications.

Acknowledgments. We would like to thank Mike Hopkins for suggesting this project, and David
Gepner, Hans-Werner Henn, and Tyler Lawson for helpful discussions.

1See [ABG+08] for a very important application.
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Part I. Generalities

2. Picard groups

We begin by giving an introduction to Picard groups in stable homotopy theory. General
references here include [HMS94, May01].

2.1. Generalities. Let (C,⊗,1) be a symmetric monoidal category.

Definition 2.1.1. The Picard group of C is the group of isomorphism classes of objects x ∈ C
which are invertible, i.e. such that there exists an object y ∈ C such that x⊗y ' 1. We will denote
this group by Pic(C).

When C is the category of quasi-coherent sheaves on a scheme (or stack) X, then this recovers
the usual Picard group of X: line bundles are precisely the invertible objects. The goal of this
paper is to compute a Picard group in a homotopy-theoretic setting.

We will repeatedly use the following simple principle, which follows from the observation that
tensoring with an invertible object induces an autoequivalence of categories:

Proposition 2.1.2. Let C0 ⊂ C be a full subcategory that is preserved under any autoequivalence
of C. Suppose the unit object 1 ∈ C belongs to C0. Then any x ∈ Pic(C) belongs to C0 as well.

For example, if 1 is a compact object (that is, if HomC(1, ·) commutes with filtered colimits),
then so is x.

Suppose now that, more generally, C is a symmetric monoidal∞-category in the sense of [Lur12],
which is the setting that we will be most interested in. Then we can still define the Picard group
Pic(C) of C, which is the same as Pic(Ho(C)). Moreover, Proposition 2.1.2 is valid, but where one
is allowed to (and often should) use ∞-categorical properties.

Example 2.1.3. Suppose that C is a symmetric monoidal stable ∞-category such that the tensor
product commutes with finite colimits. Then one has a natural homomorphism

Z→ Pic(C),
sending n 7→ Σn1.

Example 2.1.4. Let Sp be the ∞-category of spectra with the smash product. Then it is a
classical result [HMS94, p. 90] that Pic(C) ' Z, generated by the sphere S1. A quick proof based
on the above principle (which simplifies the argument in [HMS94] slightly) is as follows. If T ∈ Sp
is invertible, so that there exists a spectrum T ′ such that T ∧ T ′ ' S0, then we need to show that
T is a suspension of S0.

Since the unit object S0 ∈ Sp is compact (that is, HomSp(S0, ·) commutes with filtered ∞-
categorical colimits), it follows that T is compact: that is, it is a finite spectrum. By suspending
or desuspending, we may assume that T is connective, and that π0T 6= 0. By the Künneth formula,
it follows easily that H∗(T ;F ) is concentrated in one dimension for each field F . Since H∗(T ;Z)
is finitely generated, an argument with the universal coefficient theorem implies that H∗(T ;Z) is
torsion-free of rank one and is concentrated in dimension zero: i.e. H0(T ;Z) ' Z. By the Hurewicz
theorem, T ' S0.

Example 2.1.5. Other variants of the stable homotopy category can have more complicated
Picard groups. For instance, if E ∈ Sp, one can consider the ∞-category LESp of E-local spectra,
with the symmetric monoidal structure given by the E-localized smash product (X,Y ) 7→ LE(X ∧
Y ). The Picard group of LESp is generally much more complicated than Z. When E is given by
the Morava E-theories En or the Morava K-theories K(n), the resulting Picard groups have been
studied in [HMS94] and [HS99], among other references.
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Another important example of this construction arises for R an E∞-ring, when we can consider
the symmetric monoidal ∞-category Mod(R) of R-modules.

Definition 2.1.6. Given an E∞-ring R, we write Pic(R) for the Picard group Pic(Mod(R)).

Using the same argument as in Example 2.1.4, it follows that any invertible R-module is nec-
essarily compact (i.e. perfect): in particular, the invertible modules actually form a set rather
than a proper class. Note that if R is simply an E2-ring spectrum, then Mod(R) is a monoidal
∞-category, so one can still define a Picard group. This raises the following natural question.

Question 2.1.7. Is there an example of an E2-ring whose Picard group is nonabelian?

We will only work with E∞-rings in the future, as it is for these highly commutative multipli-
cations that we will be able to obtain good (from the point of view of descent theory) infinite loop
spaces that realize Pic(R) on π0.

2.2. Picard ∞-groupoids. If (C,⊗,1) is a symmetric monoidal ∞-category, we reviewed in the
previous section the Picard group of C. There is, however, a more fundamental invariant of C,
where we remember all isomorphisms (and higher isomorphisms), and which behaves better with
respect to descent processes.

Definition 2.2.1. Let Pic(C) denote the ∞-groupoid (i.e. space) of invertible objects in C and
equivalences between them. We will refer to this as the Picard ∞-groupoid of C; it is a group-like
E∞-space, and thus the delooping of a connective Picard spectrum pic(C).

We have in particular
π0Pic(C) ' Pic(C).

However, we can also describe the higher homotopy groups of Pic(C). Recall that since C is
symmetric monoidal, End(1) is canonically an E∞-space and Aut(1) consists of the grouplike
components. Since

ΩPic(C) ' Aut(1),

we get the relations

π1Pic(C) = (π0End(1))×, πiPic(C) = πi−1End(1) for i ≥ 2.

Example 2.2.2. Let R be an E∞-ring. We will write

Pic(R)
def
= Pic(Mod(R)), pic(R)

def
= pic(Mod(R)).

Then Pic(R) is a delooping of the space of units GL1(R) studied in [May77] and more recently
using ∞-categorical techniques in [ABG+08]. In particular, the homotopy groups of Pic(R) look
very much like those of R (with a shift), starting at π2. In fact, if we take the connected components
at the basepoint, we have a natural equivalence of spaces

τ≥1(GL1R) ' τ≥1(ΩPic(R)) ' τ≥1(Ω∞R),

given by subtracting 1. Nonetheless, the spectra pic(R) and R are generally very different: that is,
the infinite loop structure on Pic(R) behaves very differently from that of Ω∞R.

Unlike the group-valued functor Pic, Pic (as well as pic) has the fundamental property, upon
which the calculations in this paper are based, that it commutes with homotopy limits.

Proposition 2.2.3. The functor
pic : Cat⊗ → Sp≥0,

from the ∞-category Cat⊗ of symmetric monoidal ∞-categories to the ∞-category Sp≥0 of con-

nective spectra, commutes with limits and filtered colimits, and Pic = Ω∞ ◦ pic : Cat⊗ → S∗ does
as well.
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Proof. We will treat the case of limits; the case of filtered colimits is similar and easier. It suffices
to show that Pic commutes with homotopy limits, since Ω∞ : Sp≥0 → S∗ creates limits. Let
CAlg(S) be the ∞-category of E∞-spaces. Now, Pic is the composite inv ◦ ι where:

(1) ι : Cat⊗ → CAlg(S) sends a symmetric monoidal ∞-category to the symmetric monoidal
∞-groupoid (i.e. E∞-space) obtained by excluding all non-invertible morphisms.

(2) inv : CAlg(S) → S∗ sends an E∞-space X to the union of those connected components
which are invertible in the commutative monoid π0X, with basepoint given by the identity.

It thus suffices to show that ι and inv both commute with limits.

(1) The functor ι : Cat→ S that sends an ∞-category C to its core ιC commutes with limits:
in fact, it is right adjoint to the inclusion S → Cat that regards a space as an∞-groupoid.
See for instance [Rie14, §17.2]. Now, to see that ι commutes with limits, we observe that
limits either in Cat⊗ or in CAlg(S) are calculated at the level of the underlying spaces
(resp. ∞-categories), so the fact that ι commutes with limits implies that ι does too.

(2) It is easy to see that inv commutes with arbitrary products. Therefore, we need to show
that inv turns pullbacks in CAlg(S) into pullbacks in S∗. Suppose given a homotopy
pullback

A

��

// B

��
C // D

in CAlg(S); we need to show that

inv(A)

��

// inv(B)

��
inv(C) // inv(D)

is one too, in S∗. Given the construction of inv as a union of connected components, it
suffices to show that if x ∈ π0(A) has the property that x maps to invertible elements in
the monoids π0(B), π0(C), then x itself is invertible.

Consider the union of the connected components in B,C,D that are multiples of the
image of x, to get new E∞-spaces B0, C0, D0. The relevant connected component of A
(given by x) is actually a connected component of B0×C0

D0. But B0, C0, D0 are grouplike
E∞-spaces, and therefore the deloopings of connective spectra [Seg74]. Thus, B0 ×C0

D0

is also the delooping of a connective spectrum (given by the connective cover of the fiber
product of the deloopings of B0, C0, D0) and x must be invertible.

�

2.3. Descent. Let R → R′ be a morphism of E∞-rings. Recall the cobar construction, a cosim-
plicial E∞ −R-algebra

R′ →→R
′ ⊗R R′

→
→
→
. . . ,

important in descent procedures, which receives an augmentation from R. The cobar construction
is the Čech nerve (see [Lur09, 6.1.2]) of R→ R′, in the opposite ∞-category.

Definition 2.3.1. We say that R → R′ is faithfully flat if π0R → π0R
′ is faithfully flat and the

natural map π∗R⊗π0R π0R
′ → π∗R

′ is an isomorphism.

In this case, the theory of faithfully flat descent goes into effect. We have:
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Theorem 2.3.2 ([Lur11b, Theorem 6.1]). Suppose R → R′ is a faithfully flat morphism of E∞-
rings. Then the symmetric monoidal ∞-category Mod(R) can be recovered as the limit of the
cosimplicial diagram of symmetric monoidal ∞-categories

Mod(R′)→→Mod(R′ ⊗R R′)
→
→
→
. . . .

As a result, by Proposition 2.2.3, Pic(R) can be recovered as a totalization of spaces,

(2.1) Pic(R) ' Tot(Pic(R′⊗(•+1))).

Equivalently, one has an equivalence of connective spectra

(2.2) pic(R) ' τ≥0Tot(pic(R′⊗(•+1))).

In this paper, we will apply a version of this, except that we will work with morphisms of ring
spectra that are not faithfully flat on the level of homotopy groups. As we will see, the descent
spectral sequences given by (2.1) and (2.2) are not very useful in the faithfully flat case for our
purposes.

Example 2.3.3. A more classical example of this technique (e.g. [Har77, Exercise 6.9]) is as
follows. Let X be a nodal cubic curve over the complex numbers C. Then X can be obtained from
its normalization P1 by gluing together 0 and ∞. There is a pushout diagram of schemes

{0,∞}

��

// ∗

��
P1 // X.

Therefore, one would like to say that the QCoh(X) of on X fits into a homotopy pullback square

(2.3) QCoh(X)

��

// QCoh(∗)

��
QCoh(P1) // QCoh(∗ t ∗),

and that therefore, therefore, the Picard groupoid of X fits into the homotopy cartesian square

(2.4) Pic(X)

��

// Pic(∗)

��
Pic(P1) // Pic(∗)× Pic(∗).

Unfortunately, (2.3) is not a pull-back square of categories, because restricting to a closed sub-
scheme is not an exact functor. It is possible to remedy this (up to connectivity issues) by working
with derived ∞-categories [Lur11a, Theorem 7.1], or by noting that we are working with locally
free sheaves and applying a version of [Mil71, Theorems 2.1–2.3]. In any event, one can argue that
(2.4) is homotopy cartesian.

Alternatively, we obtain a homotopy pullback diagram of connective spectra. Using the long
exact sequence on π∗, it follows that we have a natural short exact sequence

0→ C× → Pic(X)→ Pic(P1) ' Z→ 0.

The approach of this paper is essentially an elaboration of this example.
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2.4. Picard groups of E∞-rings. We now specialize to the case of interest to us in this paper.
Let R be an E∞-ring, and consider the Picard group Pic(R), and better yet, the Picard∞-groupoid
Pic(R) and the Picard spectrum pic(R). This situation has been studied by Baker-Richter in the
paper [BR05], and we start by recalling some of their results.

We start with the following useful property.

Proposition 2.4.1. The functor R 7→ Pic(R) commutes with filtered colimits in R.

Proof. This is a consequence of a form of “noetherian descent” [Gro66, §8]. Given an E∞-ring
T , let Modω(T ) denote the ∞-category of perfect T -modules. If I is a filtered ∞-category and
{Ri}i∈I is a filtered system of E∞-rings indexed by I, then the functor of symmetric monoidal
∞-categories

(2.5) lim−→
i∈I

Modω(Ri)→ Modω(lim−→
I

Ri)

is an equivalence. We outline the proof of this below.

Assume without loss of generality that I is a filtered partially ordered set and write R = lim−→I
Ri.

To see that (2.5) is an equivalence, observe that the∞-category lim−→i∈I Modω(Ri) has objects given

by pairs (M, i) where i ∈ I and M ∈ Modω(Ri). The space of maps between (M, i) and (N, j) is
given by lim−→k≥i,j HomMod(Rk)(Rk ⊗Ri M,Rk ⊗Rj N). For instance, this implies that if i′ ≥ i, the

pair (M, i) is (canonically) equivalent to the pair (Ri′ ⊗Ri
M, i′). Thus, the assertion that (2.5) is

fully faithful is equivalent to the assertion that if M,N ∈ Modω(Ri) for some i, then the natural
map

(2.6) lim−→
j≥i

HomModω(Rj)(Rj ⊗Ri
M,Rj ⊗Ri

N)→ HomModω(R)(R⊗Ri
M,R⊗Ri

N)

is an equivalence. But (2.6) is clearly an equivalence if M = Ri for any N . The collection of
M ∈ Modω(Ri) such that (2.6) is an equivalence is closed under finite colimits, desuspensions, and
retracts, and therefore it is all of Modω(Ri). It therefore follows that (2.5) is fully faithful.

Moreover, the image of (2.5) contains R ∈ Modω(R) and is closed under desuspensions and
cofibers (thus finite colimits). Let C ⊂ Modω(R) be the subcategory generated by R under finite
colimits and desuspensions. We have shown the image of the fully faithful functor (2.5) contains
C. Any object M ∈ Modω(R) is a retract of an object X ∈ C, associated to an idempotent map
e : X → X. We can “descend” X to some Xi ∈ Modω(Ri) and the map e to a self-map ei : Xi → Xi

such that e2
i is homotopic to ei. Now form the filtered colimit Yi of Xi

ei→ Xi
ei→ . . . . Lifting our

way up the tower · · · → Hom(Xi, Xi)
ei→ Hom(Xi, Xi), we can form a map Yi → Xi such that the

natural composite Xi → Yi → Xi is given by ei, and it follows that Yi is a direct summand of Xi

and in particular belongs to Modω(Ri). The tensor product R⊗Ri
Yi is the direct summand of X

given by the idempotent e and is therefore equivalent to M .

The association C 7→ Pic(C) commutes with filtered colimits of symmetric monoidal∞-categories
by Proposition 2.2.3. Taking Picard groups in the equivalence (2.5), the proposition follows. �

To begin getting a hold of Pic(R), purely algebraic information can be used. Let Pic(R∗) be
the Picard group of the symmetric monoidal category of graded R∗-modules. The starting point
of [BR05] is the following.

Construction 2.4.2. There is a monomorphism

Φ: Pic(R∗)→ Pic(R),
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constructed as follows. If M∗ is an invertible R∗-module, it has to be finitely generated and
projective of rank one. Consequently, there is a finitely generated free R∗-module F∗ of which M∗

is a direct summand, i.e. there is a projection p∗ with a section s∗, F∗ p∗
// M∗

s∗tt
.

Clearly, F∗ can be realized as an R-module F which is a finite wedge sum of copies of R or its
suspensions. Let e∗ be the idempotent given by composition s∗ ◦ p∗. Since F is free over R, e∗
can be realized as an R-module map e : F → F which must be idempotent. Define M to be the
colimit of the sequence

F
e→ F

e→ . . . ,

i.e. the image of the idempotent e. Observe that the homotopy groups of M are given by M∗, as
desired. If M ′∗ is the inverse to M∗ in the category of graded R∗-modules, we can construct an
analogous R-module M ′, and clearly M ⊗RM ′ ' R by the degeneration of the Künneth spectral
sequence. Thus, M ∈ Pic(R). The association M∗ 7→ M defines Φ, and the Künneth spectral
sequence again shows that Φ is a homomorphism.

Note that Φ is clearly a monomorphism as isomorphisms of R-modules are detected on homotopy
groups.

Definition 2.4.3. When Φ is an isomorphism, we say that Pic(R) is algebraic.

Baker-Richter [BR05] determine certain conditions which imply algebraicity. There are, in
particular, two fundamental examples. The first one generalizes Example 2.1.4.

Theorem 2.4.4 (Baker-Richter [BR05]). Suppose R is a connective E∞-ring. Then the Picard
group of R is algebraic.

Proof. Since the formulation in [BR05, Theorem 5.3] assumed a coherence hypothesis on π∗(R),
we explain briefly how this (slightly stronger) version can be deduced from the theory of flatness
of [Lur12, §8.2.2]. Recall that an R-module M is flat if π0M is a flat π0R-module and the natural
map

π∗R⊗π0R π0M → π∗(M),

is an isomorphism.

Since the Picard group commutes with filtered colimits in R, we may assume that R is finitely
presented in the∞-category of connective E∞-rings: in particular, by [Lur12, Proposition 8.2.5.31],
π0(R) is a finitely generated Z-algebra and in particular noetherian; moreover, each πj(R) is a
finitely generated π0(R)-module. These are the properties that will be critical for us.

Let M be an invertible R-module. We will show that π∗(M) is a flat module over π∗(R), which
immediately implies the claim of the theorem. Localizing at a prime ideal of π0(R), we may assume
that π0(R) is a noetherian local ring; in this case we will show the Picard group is Z generated
by the suspension of the unit. We saw that M is perfect, so we can assume by shifting that M is
connective and that π0(M) 6= 0. Now for every map R→ k, for k a field, we have that M ⊗R k is
necessarily concentrated in a single dimension: in fact, it is an invertible object in Mod(k) and one
can apply the Künneth formula to see that Pic(Mod(k)) ' Z generated by Σk. By Nakayama’s
lemma, since π0(M) 6= 0, the homotopy groups of M ⊗R k must be concentrated in degree zero.
Thus, M ⊗R k ' k itself. Using Lemma 2.4.5 below, it follows that M is equivalent to R as an
R-module, so we are done. �
Lemma 2.4.5. Let R be a connective E∞-ring with π0(R) noetherian local with residue field k.
Suppose moreover each πi(R) is a finitely generated π0(R)-module. Suppose M is a connective,
perfect R-module. Then, for n ≥ 0, the following are equivalent:

(1) M ' Rn.
(2) M ⊗R k ' kn.
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Proof. Suppose M ⊗R k is isomorphic to kn and concentrated in degree zero. Note that π0(M ⊗R
k) ' π0(M) ⊗π0(R) k. Choose a basis x1, . . . , xn of this k-vector space and lift these elements to
x1, . . . , xn ∈ π0(M). These define a map Rn → M which induces an equivalence after tensoring
with k, since M ⊗R k ' kn.

Now consider the cofiber C of Rn → M . It follows that C ⊗R k is contractible. Suppose C
itself is not contractible. The hypotheses on π∗(R) imply that C is connective and each πj(C) is
a finitely generated module over the noetherian local ring π0(R). If j is chosen minimal such that
πj(C) 6= 0, then

0 = πj(C ⊗R k) ' πj(C)⊗π0(R) k,

and Nakayama’s lemma implies that πj(C) = 0, a contradiction. �

Some of our analyses in the computational sections will rest upon the next result about the
Picard groups of periodic ring spectra.

Theorem 2.4.6 (Baker-Richter [BR05, Theorem 8.8]). Suppose R is an even periodic E∞-ring
with π0(R) regular noetherian. Then the Picard group of R is algebraic.

The result in [BR05, Theorem 8.8] actually assumes that π0(R) is a complete regular local
ring. However, one can remove the hypotheses by replacing R with the localization Rp for any
p ∈ Specπ0R and then by forming the completion at the maximal ideal.

We will need a slight strengthening of Theorem 2.4.6, though.

Corollary 2.4.7. Suppose R is an E∞-ring satisfying the following assumptions.

(1) π0(R) is regular noetherian.
(2) πi(R) = 0 if i 6≡ 0 mod 2k.
(3) There exists a unit in π2k(R) for some k > 0.

Then the Picard group of R is algebraic.

Proof. Using the obstruction theory of [Ang04] (as well as localization), we can construct “residue
fields” in R as E1-algebras in Mod(R) (which will be 2k-periodic rather than 2-periodic). After
this, the same argument as in Theorem 2.4.6 goes through. �

An example of a non-algebraic Picard group, based on [Mat14b, Example 6.1], is as follows.

Proposition 2.4.8. The Picard group of the rational E∞-ring R = Q[ε0, ε−1]/ε20 (free on two
generators ε0, ε−1 of degree 0 and −1, and with the relation ε20 = 0) is given by Z×Q.

Proof. The key observation is that R is equivalent, as an E∞-ring, to cochains over S1 on the
(discrete) E∞-ring Q[ε0]/ε20, because C∗(S1;Q) is equivalent to Q[ε−1]. By [Mat14a, Remark 7.9],
we have a fully faithful, symmetric monoidal imbedding Mod(R) ⊂ LocS1(Mod(Q[ε0]/ε20)) into
∞-category of local systems of Q[ε0]/ε20-modules over the circle, whose image consists of those
local systems of Q[ε0]/ε20-modules such that the monodromy action on π∗(S

1) is ind-unipotent.

In particular, to give an object in Pic(R) is equivalent to giving an element in Pic(Q[ε0]/ε20)
(of which there are only the suspensions of the unit, by Theorem 2.4.4) and an ind-unipotent
(monodromy) automorphism, which is necessarily given by multiplication by 1 + qε for q ∈ Q. We
observe that this gives the right group structure to the Picard group because (1 + qε)(1 + q′ε) =
1 + (q + q′)ε. �

Proposition 2.4.8 provides a counterexample to [Bal10, Conjecture 74], which states that in a
tensor triangulated category generated by the unit with a local spectrum (e.g. with no nontrivial
thick subcategories), any element L in the Picard group has the property that L⊗n is a suspension
of the unit for suitable n > 0. In fact, one can take the (homotopy) category of perfect R-modules
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for R as in Proposition 2.4.8, which has no nontrivial thick subcategories by [Mat14b, Theorem
1.3].

Remark 2.4.9. Other examples of Picard groups come from the theory of stable module ∞-
categories of a p-group G over a field k of characteristic p, which from a homotopy-theoretic
perspective can be expressed as the module ∞-categories of the Tate construction ktG. The
Picard groups of stable module ∞-categories have been studied in the modular representation
theory literature (under the name endotrivial modules) starting with [Dad78], where it is proved
that the Picard group is algebraic (and cyclic) in the case where G is elementary abelian. The
classification for a general p-group appears in [CT05].

3. The descent spectral sequence

In this section, we describe a descent spectral sequence for calculating Picard groups. The
spectral sequence (studied originally by Gepner and Lawson [GL] in a closely related setting) is
based on the observation (Proposition 2.2.3) that the association C 7→ Pic(C), from symmetric
monoidal ∞-categories to E∞-spaces, commutes with homotopy limits. We will describe several
examples and applications of this in the present section. Explicit computations will be considered
in later parts of this paper.

For example, let {CU} be a sheaf of symmetric monoidal ∞-categories on a site, and let Γ(C)
denote the global sections (i.e. the homotopy limit) ∞-category. Then we have an equivalence of
connective spectra

pic(Γ(C)) ' τ≥0Γ(pic(CU )),

and one can thus use the descent spectral sequence for a sheaf of spectra to approach the compu-
tation of pic(Γ(C)). We will use this approach, together with a bit of descent theory, to calculate
Pic(TMF ). The key idea is that while TMF itself has sufficiently complicated homotopy groups
that results such as Theorem 2.4.6 cannot apply, the ∞-category of TMF -modules is built up as
an inverse limit of module categories over E∞-rings with better behaved homotopy groups.

3.1. Refinements. Let X be a Deligne-Mumford stack equipped with a flat map X → MFG to
the moduli stack of formal groups. We will use the terminology of [MM13].

Definition 3.1.1. An even periodic refinement of X is a sheaf Otop of E∞-rings on the affine,
étale site of X, such that for any étale map

SpecR→ X,

the multiplicative homology theory associated to the E∞-ringOtop(SpecR) is functorially identified
with the (weakly) even-periodic Landweber exact theory2 associated to the formal group classified
by SpecR→ X →MFG. We will denote the refinement of the ordinary stack X by X.

A very useful construction from the refinement X is the E∞-ring of “global sections” Γ(X,Otop),
which is the homotopy limit of the Otop(SpecR) as SpecR → X ranges over the affine, étale site
of X.

Example 3.1.2. When X is the moduli stack Mell of elliptic curves, with the natural map
Mell →MFG that assigns to an elliptic curve its formal group, Goerss-Hopkins obstruction theory
can be used to prove the existence of an even periodic refinement Mell; the global sections of Mell

are defined to be the E∞-ring TMF of topological modular forms; for a survey, see [Goe10]. There
is a similar picture for the compactified moduli stack Mell, whose global sections are denoted Tmf .

Definition 3.1.3. Given the refinement X, one has a natural symmetric monoidal stable ∞-
category QCoh(X) of quasi-coherent sheaves on X, given as a homotopy limit of the (stable, sym-
metric monoidal) ∞-categories Mod(Otop(SpecR)) for each étale map SpecR→ X.

2See [Lur10, Lecture 18] for an exposition of the theory of weakly even-periodic theories.
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There is an adjunction

(3.1) Mod(Γ(X,Otop))� QCoh(X),

where the left adjoint “tensors up” and the right adjoint takes global sections.

Our main goal in this paper is to investigate the left hand side; however, the right hand side
is sometimes easier to work with, since even periodic, Landweber-exact spectra have convenient
properties. Therefore, the following result will be helpful.

Theorem 3.1.4 ([MM13, Theorem 4.1]). Suppose X is noetherian and separated, and X →MFG

is quasi-affine. Then the adjunction (3.1) is an equivalence of symmetric monoidal ∞-categories.

For example, since the map Mell → MFG is affine, it follows that Mod(TMF ) is equivalent
to QCoh(Mell). This was originally proved by Meier, away from the prime 2, in [Mei12]. Theo-
rem 3.1.4 implies the analog for Tmf and the derived compactified moduli stack, as well [MM13,
Theorem 7.2].

Suppose X → MFG is quasi-affine. In particular, it follows that there is a sheaf of symmetric
monoidal ∞-categories on the affine, étale site of X, given by

(SpecR→ X)→ Mod(Otop(SpecR)),

whose global sections are given by Mod(Γ(X,Otop)). This diagram of ∞-categories is a sheaf in
view of the descent theory of [Lur11b, Theorem 6.1], but [MM13, Theorem 4.1] gives the global
sections. We are now in the situation of the introduction to this section. In particular, we obtain
a descent spectral sequence for pic(Γ(X,Otop)), and we turn to studying it in detail.

3.2. The Gepner-Lawson spectral sequence. Keep the notation of the previous subsection:
X is a Deligne-Mumford stack equipped with a quasi-affine flat map X →MFG, and (X,Otop) is
an even periodic refinement.

Our goal in this subsection is to prove:

Theorem 3.2.1. Suppose that X is a regular and connected Deligne-Mumford stack with a quasi-
affine flat map X →MFG, and suppose X is an even periodic refinement of X. There is a spectral
sequence

(3.2) Es,t2 =


Z/2 t = s = 0,

Hs(X,O×X) t− s = 1− s,
Hs(X,ω(t−1)/2) t ≥ 3 odd,

0 otherwise,

whose abutment is πt−sΓ(X, pic(Otop)). In particular, for t−s ≥ 0, the abutment is πt−spic(Γ(X,Otop)).

The differentials run dr : Es,tr → Es+r,t+r−1.

The analogous spectral sequence for a faithful Galois extension has been studied in work of
Gepner and Lawson [GL], and our approach is closely based on theirs.

Proof. In this situation, as we saw in the previous subsection, we get an equivalence of symmetric
monoidal ∞-groupoids,

Pic(Γ(X,Otop)) ' holimSpecR→XPic(Otop(SpecR)),

where SpecR → X ranges over the affine étale maps. Equivalently, we have an equivalence of
connective spectra

pic(Γ(X,Otop)) ' τ≥0

(
holimSpecR→Xpic(Otop(SpecR))

)
.

Let us study the descent spectral sequence associated to this. We need to understand the
homotopy group sheaves of the sheaf of connective spectra (SpecR→ X) 7→ pic(Otop(SpecR)) (i.e.
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the sheafification of the homotopy group presheaves (SpecR→ X) 7→ πipic(Otop(SpecR))). First,
we know that

π1pic(Otop(SpecR)) ' R×,
and, for i ≥ 2, we have

πi
(
pic(Otop(SpecR)

)
' πi−1Otop(SpecR) =

{
ω(i−1)/2 i odd

0 i even.

It remains to determine the homotopy group sheaf π0. If X is a regular Deligne-Mumford stack,
so that each ring R that enters is regular, then we can do this using Theorem 2.4.6. In fact, it
follows if R is a local ring, then π0pic(Otop(SpecR)) ' Z/2. Thus, up to suitably suspending once,
invertible sheaves are locally trivial. Using the descent spectral sequence for a sheaf of spectra, we
get that the above descent spectral sequence for Γ(X, pic(Otop)) is almost entirely the same as the
descent spectral sequence for Γ(X,Otop) in the sense that the cohomology groups that appear for
t ≥ 3, i.e. Hs(X,ω(t−1)/2), are the same as those that appear in the descent spectral sequence for
Γ(X,Otop). However, the terms for t = 1 are the étale cohomology of Gm on X. In particular, we
obtain the term

H1(X,O×X) ' Pic(X),

which is the Picard group of the underlying ordinary stack. �

Remark 3.2.2. One may think of the spectral sequence as arising from a totalization, or rather
as a filtered colimit of totalizations. Choose an étale hypercover A given by U• → X by affine
schemes {Un}. For any E∞-ring A, denote by PicZ(A) the symmetric monoidal subcategory of
Pic(A) spanned by those A-modules such that, after restricting to each connected component of

Specπ0A, become equivalent to a suspension of A. Denote by picZ(A) the associated connective
spectrum. Then we form the totalization

Tot(picZ(Otop(U•))),

whose associated infinite loop space Ω∞Tot(picZ(Otop(U•))) is, by descent theory, the symmetric
monoidal ∞-groupoid of Pic(Γ(X,Otop)) spanned by those invertible modules which become (up
to a suspension) trivial after pullback along U0 → X. In particular, the filtered colimit of these
totalizations is the spectrum we are after. The descent spectral sequence of Theorem 3.2.1 is the
filtered colimit of these Tot spectral sequences.

3.3. Galois descent. We next describe the setting of the spectral sequence that was originally
considered in [GL]. Let A → B be a faithful G-Galois extension of E∞-ring spectra in the sense
of [Rog08]. In particular, G acts on B in the ∞-category of E∞-A-algebras and A → BhG is
an equivalence. Then A → B is an analog of a G-Galois étale cover in the sense of ordinary
commutative algebra or algebraic geometry. As in ordinary algebraic geometry, there is a good
theory of Galois descent along A → B, as has been observed by several authors, for instance
[GL, Mei12].

Theorem 3.3.1 (Galois descent). Let A→ B be a faithful G-Galois extension of E∞-rings. Then
there is a natural equivalence of symmetric monoidal ∞-categories Mod(A) ' Mod(B)hG.

The “strength” of the descent is in fact very good. As shown in [Mat14a, Theorem 3.36], any
faithful Galois extension A→ B satisfies a form of descent up to nilpotence: the thick tensor-ideal
that B generates in Mod(A) is equal to all of Mod(A). This imposes strong restrictions on the
descent spectral sequences that can arise.

Applying the Picard functor, we get an equivalence of spaces

(3.3) Pic(A) ' Pic(B)hG,



THE PICARD GROUP OF TOPOLOGICAL MODULAR FORMS VIA DESCENT THEORY 15

or an equivalence of connective spectra

(3.4) pic(A) ' τ≥0pic(B)hG.

Remark 3.3.2. The spectrum Σgl1B is equivalent to τ≥1(picB); consider the induced map of
G-homotopy fixed point spectral sequences. All the differentials involving the t − s = 0 line will
be the same for picB and Σgl1B. Hence, we obtain a short exact sequence

0→ π0(Σgl1B)hG → π0(picB)hG → E0,0
∞ → 0,

where E0,0
∞ is the kernel of all the differentials supported on H0(G, π0picB). This short exact

sequence exhibits π0(Σgl1B)hG as the relative Picard group of A→ B, which consists of invertible
A-modules which after smashing with B become isomorphic to B itself.

Our main interest in Galois theory, for the purpose of this paper, comes from the observation,
due to Rognes, that there are numerous examples of G-Galois extensions of E∞-rings A→ B where
the homotopy groups of B are significantly simpler than that of A. In particular, one hopes to
understand the homotopy groups of pic(B), and then use (3.3) and (3.4) together with an analysis
of the associated homotopy fixed-point spectral sequence

Hs(G, πtpic(B))⇒ πt−s(picB)hG,(3.5)

whose abutment for t = s is the Picard group Pic(A).

Example 3.3.3 ([Rog08, Proposition 5.3.1]). The map KO → KU and the C2-action on KU
arising from complex conjugation exhibit KU as a C2-Galois extension of KO.

Example 3.3.3 is fundamental and motivational to us: the study of KO-modules, which is a
priori difficult because of the complicated structure of the ring π∗(KO), can be approached via
Galois descent together with the (much easier) study of KU -modules. In particular, we obtain

pic(KO) ' τ≥0pic(KU)hC2 ,

and one can hope to use the homotopy fixed-point spectral sequence (HFPSS) to calculate pic(KO).
This approach is due to Gepner-Lawson [GL],3 and we shall give a version of it below in Section 7.1
(albeit using a different method of deducing differentials).

Other examples of Galois extensions come from the theory of topological modular forms with
level structure.

Example 3.3.4. Let n ∈ N, and let TMF (n) denote the periodic version of TMF for ellip-
tic curves over Z[1/n]-algebras with a full level n structure. Then, by [MM13, Theorem 7.6],
TMF [1/n]→ TMF (n) is a faithful GL2(Z/n)-Galois extension. The advantage is that, if n ≥ 3,
the moduli stack of elliptic curves with level n structure is actually a regular affine scheme (by
[KM85, Corollary 2.7.2], elliptic curves with full level n ≥ 3 structure have no nontrivial automor-
phisms). In particular, TMF (n) is even periodic with regular π0, and one can compute its Picard
group purely algebraically by Theorem 2.4.6. One can then hope to use GL2(Z/n)-descent to get
at the Picard group of TMF [1/n]. We will take this approach below.

3.4. The En-local sphere. In addition, descent theory can be used to give a spectral sequence
for pic(LnS

0). This is related to work of Kamiya-Shimomura [KS07] and the upper bounds that
they obtain on Pic(LnS

0).

Consider the cobar construction on LnS
0 → En, i.e. the cosimplicial E∞-ring

En
→
→En ∧ En

→
→
→
. . . ,

whose homotopy limit is LnS
0. It is a consequence of the Hopkins-Ravenel smash product theorem

that this cosimplicial diagram has “effective descent.”

3The original calculation of the Picard group of KO, by related techniques, is unpublished work of Mike Hopkins.
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Proposition 3.4.1. The natural functor

Mod(LnS
0)→ Tot

(
Mod(E∧(•+1)

n )
)
,

is an equivalence of symmetric monoidal ∞-categories.

Proof. According to the Hopkins-Ravenel smash product theorem, the map of E∞-rings LnS
0 →

En has the property that the thick tensor-ideal that En generates in Mod(LnS
0) is all of Mod(LnS

0).
According to [Mat14a, Proposition 3.21], this implies the desired descent statement (the condi-
tion is there called “admitting descent”). The argument is a straightforward application of the
Barr-Beck-Lurie monadicity theorem [Lur12, §6.2]. �

In particular, we find that

pic(LnS
0) ' τ≥0Totpic(E∧(•+1)

n ).

Let us try to understand the associated spectral sequence.

The higher homotopy groups πi, i ≥ 2 of pic(E
∧(•+1)
n ) are determined in terms of those of

E
∧(•+1)
n . Once again, it remains to determine π0. Now En is an even periodic E∞-ring whose π0

is regular local, so Pic(En) ' π0pic(En) ' Z/2 by Theorem 2.4.6. The iterated smash products
E∧mn are also even periodic, so their Picard group contains at least a Z/2. We do not need to know
their exact Picard groups, however, to run the spectral sequence, as only the Z/2 component is
relevant for the spectral sequence (as it is all that comes from π0pic(En)).

Next, we need to determine the algebraic Picard group. After taking π0, the simplicial scheme

. . .
→
→
→

Specπ0(En ∧ En)→→Specπ0En,

is a presentation of the moduli stack M≤nFG of formal groups (over Z(p)-algebras) of height at most
n.

Proposition 3.4.2. Pic(M≤nFG) ' Z, generated by ω.

Proof. We use the presentation of MFG (localized at p) via the simplicial stack

(3.6) . . .
→
→
→

(Spec(MU ∧MU)∗)/Gm→→ (SpecMU∗)/Gm.

Since the Picard group of a polynomial ring over Z(p) is trivial, and each smash power of MU has
a polynomial ring for π∗, the Picard group of each of the terms in the simplicial stack without the
Gm-quotient is trivial, and the group of units is Z×(p), constant across the simplicial object. In other

words, the Picard groupoid of each Spec(MU∧(s+1))∗ is BZ×(p). When we add the Gm-quotient, we

get Z×BZ×(p) for the Picard groupoid of each term in the simplicial stack because of the possibility

of twisting by a character of Gm: this twisting corresponds to the powers of ω. By descent theory,
this shows that Pic(MFG) ' Z, generated by ω. More precisely, the Picard groupoid of MFG is
the totalization of the Picard groupoids of Spec(MU∧(s+1))∗/Gm, and each of these is Z×BZ×(p):
that is, the cosimplicial diagram of Picard groupoids is constant and the totalization is Z×BZ×(p)
again.

When we replace MFG by M≤nFG, we can replace the above presentation by excising from each
term the closed substack cut out by (p, v1, . . . , vn). This does not affect the Picard groupoid since
the codimension of the substack removed is at least 2 (i.e. neither the Picard group nor the group
of units is affected). That is, when we modify each term in (3.6) to form the associated presentation

of M≤nFG, the Picard groupoid is unchanged. It follows by faithfully flat descent that the inclusion

M≤nFG →MFG induces an isomorphism on Picard groups (or groupoids) and that the Picard group
is generated by ω. �

We conclude the following result.



THE PICARD GROUP OF TOPOLOGICAL MODULAR FORMS VIA DESCENT THEORY 17

Theorem 3.4.3. There is a spectral sequence

Es,t2 =


Z/2 t = s = 0,

Hs(M≤nFG,O×MFG
) t− s = 1− s,

Hs(M≤nFG, ω
(t−1)/2) t ≥ 3 odd,

0 otherwise,

which converges for t − s ≥ 0 to πt−spic(LnS
0). The relevant occurrences of the second case are

H0(M≤nFG,O×MFG
) ' Z×(p) and H1(M≤nFG,O×MFG

) ' Z.

Note in particular that the E2-term is determined entirely in terms of the Adams-Novikov
spectral sequence for the En-local sphere. As we will see in Section 5, many of the differentials are
also determined by the ANSS.

4. First examples

In this section, we will give several examples where descent theory gives a quick calculation of the
Picard group. In these examples, we will not need to analyze differentials in the descent spectral
sequence (3.5). The main examples of interest, where there will be a number of differentials to
determine, will be treated in the last part of this paper.

4.1. The faithfully flat case. We begin with the simplest case. Suppose R→ R′ is a morphism
of E∞-rings which is faithfully flat. In this case, we know from [Lur11b, Theorem 6.1] and The-
orem 2.3.2 that the tensor-forgetful adjunction Mod(R) � Mod(R′) is comonadic and we get a
descent spectral sequence for the Picard group of R, as

pic(R) ' τ≥0Tot pic(R′⊗(•+1)).

This spectral sequence, however, gives essentially no new information that is not algebraic in
nature. That is, the entire E2-term Es,t2 for t > 1 vanishes, as it can be identified with the E2-term

for the cobar resolution R′⊗(•+1) of R, and this cobar resolution has a degenerate spectral sequence
with non-zero terms only for s = 0 at E2. For example, an element in Pic(R) is algebraic if and
only if its image in Pic(R′) is algebraic, by faithful flatness.

Thus, faithfully flat descent will be mostly irrelevant to us as a tool of computing the non-
algebraic parts of Picard groups. In the examples of interest, we want π∗(R

′) to be significantly
simpler homologically than π∗(R), so that we will be able to conclude (using results such as
Theorem 2.4.6) that the Picard group of R′ is entirely algebraic. But if π∗(R

′) is faithfully flat
over π∗(R), it cannot be much simpler homologically. (Recall for example that regularity descends
under faithfully flat extensions of noetherian rings.)

4.2. Cochain E∞-rings and local systems. In this subsection, we give another example of a
family of E∞-ring spectra whose Picard groups can be determined, or at least bounded.

Let X be a space and R an E∞-ring. Let RX = C∗(X;R) be the E∞-ring of R-valued cochains
on X.

Definition 4.2.1. Let LocX(Mod(R)) = Fun(X,Mod(R)) denote the∞-category of local systems
of R-module spectra on X.

Then we have a fully faithful imbedding of symmetric monoidal ∞-categories

Modω(RX) ⊂ LocX(Mod(R)),
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which sends RX to the constant local system at R and is determined by that. As discussed in
[Mat14a, §7], this imbedding is often useful for relating invariants ofRX to those ofR. In particular,
since any invertible RX -module is perfect, we have a fully faithful functor of ∞-groupoids

Pic(RX)→ Pic(LocX(Mod(R))) = Map(X,Pic(Mod(R))),

where the last identification follows because Pic commutes with homotopy limits (Proposition 2.2.3).
Thus, we get the following useful upper bound for the Picard group of RX .

Proposition 4.2.2. If R is an E∞-ring and X is any space, then Pic(RX) is a subgroup of
π0(pic(R)X).

Without loss of generality, we will assume that X is connected. Note that we have a cofiber
sequence

Σgl1(R)→ pic(R)→ H(Pic(R)),

where H(Pic(R)) denotes the Eilenberg-MacLane spectrum associated to the group Pic(R). If we
take the long exact sequence after taking maps from X, we get an exact sequence

(4.1) 0→ π−1(gl1(R)X)→ π0(pic(R)X)→ Pic(R).

Our object of interest, Pic(RX), is a subobject of the middle term, by the above proposition.

Let us unwind the exact sequence further. First, the composite map Pic(RX)→ π0(pic(R)X)→
Pic(R) comes from the map of E∞-rings RX → R given by choosing a basepoint of X. In
particular, it is split surjective as it has a section given by R → RX (so (4.1) is a split ex-
act sequence). Next, observe that, using the truncation map gl1(R) → HR×0 , we have a map
π−1(gl1(R)X) → π−1((HR×0 )X) = Hom(π1(X), R×0 ). We can understand this map in terms of
Pic(RX). Very explicitly, suppose given an invertible RX -module M with associated local system
L ∈ LocX(Mod(R)). Then if the image of M in Pic(R) is trivial, we conclude that Lx ' R for any
basepoint x ∈ X. An element in π1(X,x) induces a monodromy automorphism of Lx and thus
defines an element of R×0 . This defines a map in Hom(π1(X,x), R×0 ). Let Pic0(RX) be the kernel
of Pic(RX)→ Pic(R). Then we have just described the map

(4.2) Pic0(RX)
φ→ Hom(π1(X,x), R×0 ),

that comes from the exact sequence (4.1).

The monodromy action cannot be arbitrary, since this local system is not arbitrary: it is in the
image of Modω(RX) and can be therefore built up as a colimit of copies of the unit. As in [Mat14a,
§8], it follows that the monodromy action of any element of the fundamental group must be ind-
unipotent. In particular, fix an element M of Pic0(RX). Given any loop γ ∈ π1(X,x), the associ-
ated element u = uγ,M ∈ R×0 under the homomorphism φ(M) : Pic0(RX) → Hom(π1(X,x), R×0 )
of (4.2) must have the property that u− 1 is nilpotent.

Hence if R0 is a reduced ring, we deduce from (4.1) the following conclusion.

Corollary 4.2.3. If R is an E∞-ring with π0(R) reduced, and X is any connected space, then we
have a split short exact sequence

0→ A→ Pic(RX)→ Pic(R)→ 0,

where A ⊂ π−1(gl1(R)X) is actually contained in π−1((τ≥1gl1(R))X) ⊂ π−1((gl1(R))X). In par-
ticular, if π−1((τ≥1gl1(R))X) = 0, then Pic(R)→ Pic(RX) is an isomorphism.

Again, we note that the map π−1((τ≥1gl1(R))X)→ π−1(gl1(R)X) is injective, by the long exact
sequence and the fact that π0(gl1(R)X)→ π0((HR×0 )X) ' R×0 is surjective.

As an application, we obtain a calculation of the Picard group of a nonconnective E∞-ring in a
setting far from regularity.
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Theorem 4.2.4. Let A be any finite abelian group and let En be Morava E-theory. Then the
Picard group of EBAn is Z/2, generated by the suspension ΣEBAn . The same conclusion holds for
any finite group G whose p-Sylow subgroup is abelian, where p is the prime of definition for En.

Proof. We induct upon the rank of A. When A = 0, then EBAn ' En and Theorem 2.4.6 implies
that the Picard group is Z/2.

If the rank of A is positive, write A ' Z/pm × A′ where A′ has smaller rank. The inductive

hypothesis gives us that the Picard group of EBA
′

n is Z/2. Now EBAn ' (EBA
′

n )BZ/pm . Moreover,

EBA
′

n is well-known to be even periodic (though its π0 is not regular).

We claim now that π−1((τ≥1gl1(EBAn ))BZ/pm) = 0. To see this, we observe that the homo-

topy groups of τ≥1gl1(EBA
′

n ) are concentrated in even degrees and are all given by torsion-free
p-local abelian groups. Therefore, the cohomology groups Hi(Z/pm;πjτ≥1gl1(EBAn )) vanish if i
is odd, since the Z/pm-action on them is trivial. In the homotopy fixed point spectral sequence
for (τ≥1gl1(EBAn ))BZ/pm (i.e. the Atiyah-Hirzebruch spectral sequence), there is no room for con-

tributions to π−1. In fact, there is no room for differentials at all, which indicates that any lim1

terms cannot occur either. Now Corollary 4.2.3 shows that the map EBA
′

n → EBAn induces an
equivalence on Picard groups, which completes the inductive step.

For the last claim, fix any finite group G with an abelian p-Sylow subgroup A ⊂ G. For any
connected space X, denote as before Pic0(RX) the kernel of Pic(RX) → Pic(R). We have a
commutative square

Pic0(EBGn ) //
� _

��

Pic0(EBAn )� _

��
π−1(τ≥1gl1(En)BG) // π−1(τ≥1gl1(En)BA)

The bottom horizontal map is injective since τ≥1gl1(En) is p-local and BG is p-locally a wedge

summand of BA. It follows that Pic0(EBGn )→ Pic0(EBAn ) is injective, and since the latter is zero,
the former must be as well. �

Note that the spectrum E1 is p-complete complex K-theory.

Proposition 4.2.5. Let G be any finite group. Then the Picard group of EBG1 is finite.

Proof. In fact, π−1

(
τ≥1gl1(E1)BG

)
is finite. We know that τ≥3gl1(E1) ' Σ4kup̂ by a theorem of

Adams-Priddy [AP76]. Moreover, (kup̂)
∗(BG) is finite in each odd dimension, by comparing with

E∗1 (BG) which vanishes in odd dimensions. It follows now from Corollary 4.2.3 that the desired
Picard group has to be finite. �

Question 4.2.6. Let G be any finite group. Can the Picard group of EBG1 be any larger than
Z/2? What about the higher Morava E-theories?

4.3. Coconnective rational E∞-rings. We can also determine the Picard groups of coconnective
rational E∞-ring spectra. A rational E∞-ring R is said to be coconnective if

(1) π0(R) is a field (of characteristic zero), and
(2) πi(R) = 0 for i > 0.

Theorem D. If R is a coconnective rational E∞-ring, then the Picard group Pic(R) ' Z, gener-
ated by ΣR.

Proof. Let k = π0(R). We use [Lur11c, Proposition 4.3.3] to conclude that R ' Tot(A•), where A•

is a cosimplicial E∞-k-algebra with each Ai of the form k⊕ V [−1], where V is a discrete k-vector
space; the E∞-structure given is the “square-zero” one.
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We thus begin with the case of R = k⊕V [−1]: we will show that Pic(R) ' Z in this case. Since
Pic commutes with filtered colimits, we may assume that V is a finite-dimensional vector space.
In this case,

R ' kS1∨···∨S1

,

where the number of copies of S1 in the wedge summand is equal to the dimension n = dimk V ;
by [Lur11c, Proposition 4.3.1], any rational E∞-ring with these homotopy groups is equivalent to

k ⊕ V [−1]. But we can now use Corollary 4.2.3 to see that the Picard group of kS
1∨···∨S1

is Z,
generated by the suspension, because τ≥1gl1(k) = 0.

Now suppose that R is arbitrary. As above, we have an equivalence R ' Tot(A•) where each
Ai is a coconnective E∞-ring of the form k⊕ V [−1] for V a discrete k-vector space. We have seen
above that Pic(Ai) ' Z. We know, moreover, that we have a fully faithful imbedding of symmetric
monoidal ∞-categories

Modω(R) ⊂ Tot(Mod(A•)),

which implies that we have a fully faithful functor of ∞-groupoids

Pic(R)→ Tot(Pic(A•)).

But each Pic(Ai), as an ∞-groupoid, has homotopy groups given by

πjPic(Ai) '
{
Z j = 0

k× j = 1
,

and in particular, in the cosimplicial diagram Pic(A•), all the maps are equivalences. This is a
helpful consequence of coconnectivity. Thus, we find that TotPic(A•) maps by equivalences to
each Pic(Ai), and we get an upper bound of Z for Pic(R). This upper bound is realized by the
suspension ΣR (which hits the generator of Z ' π0 Tot(Pic(A•))). �
Remark 4.3.1. If k = Q, then a large class of coconnective E∞-rings with π0 ' Q (e.g. those
with reasonable finiteness hypotheses and vanishing π−1) arise as cochains on a simply connected
space, by Quillen-Sullivan’s rational homotopy theory. The comparison with local systems can be
carried out directly here to prove D for these E∞-rings.

4.4. Quasi-affine cases. We now consider a case where the descent spectral sequence enables us
to produce nontrivial elements in the Picard group. Let A be a weakly even-periodic E∞-ring with
π0(A) regular noetherian, and write ω = π2(A). Then A leads to a sheaf of E∞-rings on the affine,
étale site of Specπ0A. That is, for every étale π0A-algebra A′0, there is (functorially) associated
[Lur12, §8.5] E∞-ring A′ with π0A

′ ' A′0 and A′ flat over A. We will denote this sheaf by Otop.

Now let a1, . . . , an ∈ π0(A) be a regular sequence, for n ≥ 2. We consider the complement U
in Specπ0(A) of the closed subscheme V (a1, . . . , an) and the sections A = Γ(U,Otop). A is an
E∞-A-algebra and is a type of localization of A, albeit not (directly) an arithmetic one.4 Note
that Pic(A) is algebraic by Theorem 2.4.6, but the situation for A is more complicated.

The homotopy groups π∗(A) are given by the abutment of a descent spectral sequence

Hs(U, ω⊗t) =⇒ π2t−s(A).(4.3)

We can, first, determine the zero-line. We have

H0(U, ω⊗t) = H0(Specπ0A,ω
⊗t),

because Specπ0A is regular and U ⊂ Specπ0A is obtained by removing a codimension ≥ 2 sub-
scheme.

Proposition 4.4.1. The only other nonzero term in the descent spectral sequence (4.3) occurs for
s = n− 1. The descent spectral sequence degenerates.

4A piece of forthcoming work of Bhatt and Halpern-Leinster identifies the universal property of A.
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Proof. Cover the scheme U by the n open affine subsets Ui = Specπ0(A) \ V (ai), for 1 ≤ i ≤ n.
Given any quasi-coherent sheaf F on U , it follows that the coherent cohomology H∗(U,F) is that
of the Cech complex (which starts in degree zero)

n⊕
i=1

F(Ui)→
⊕
i<j

F(Ui ∩ Uj)→ · · · → F(U1 ∩ · · · ∩ Un).

Let R = π0(A), and suppose F is the restriction to U ⊂ SpecR of the quasi-coherent sheaf M̃ on
SpecR for an R-module M . Then the final term is the cokernel of the map

n⊕
i=1

M [(a1 . . . âi . . . an)−1]→M [(a1 . . . an)−1],

where the hat denotes omission. If M is flat, the complex is exact away from degrees 0 and n− 1
as the sequence a1, . . . , an is regular, using a Koszul complex argument (see for instance [ILL+07]),
and the zeroth cohomology is given by M itself.

Now, in view of the map A→ A, clearly everything in the zero-line of the E2-page of the spectral
sequence survives, so the spectral sequence must degenerate. �

We now study the Picard group of A: as above, π∗(A) is not regular but instead has a great
deal of square-zero material. Let U = (U,Otop|U ) denote the “derived scheme” consisting of the
topological space U ⊂ Specπ0A, but equipped with the sheaf Otop of E∞-rings. A arises as the
global sections of the structure sheaf Otop over the derived scheme U.

Since U is quasi-affine as an (ordinary!) scheme, it follows by [MM13, Corollary 3.24]5 that the
global sections functor is the right adjoint of an inverse equivalence

Mod(A)� QCoh(U),

of symmetric monoidal ∞-categories. In particular, the Picard group Pic(A) can be computed as
Pic(QCoh(U)).

As before, we have a descent spectral sequence (3.2) converging to πt−spic(A). But from (3.2),
we know that almost all of the terms at E2 are identified with the descent spectral sequence for
π∗(A). In addition, we know thatH1(U,O×U ) ' Pic(π0(A)), as π0(A) is regular and the complement

of U has codimension ≥ 2. These classes must be permanent cycles as they are realized in Pic(A):
in fact, they are realized in Pic(A) itself. Thus, the descent spectral sequence for pic degenerates
as well, and we get:

Theorem 4.4.2. Let A = Γ(U,Otop) as above. Then we have a natural isomorphism

Pic(A) ' Z/2× Pic(π0A)× π−1(A).

Observe, moreover, that

(4.4) π−1(A) =

{
coker

(⊕n
i=1 ω

n/2−1[(a1 . . . âi . . . an)−1]→ ωn/2−1[(a1 . . . an)−1]
)

n ≥ 4 even

0 n odd.

Example 4.4.3. Let A be a Landweber-exact, even periodic E∞-ring with π0A regular noetherian;
for instance, A could be Morava E-theory En. In this case, we take a1, . . . , ak = p, v1, . . . , vk−1,
so that A ' LkA. This gives C as a special case of Theorem 4.4.2.

5This result is originally due to Jacob Lurie.
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Part II. Computational tools

5. The comparison tool in the stable range

This is a technical section in which we develop a tool that will enable us to compare many
of the differentials in a Picard spectral sequence for Galois or étale descent with the analogous
differentials in the corresponding descent spectral sequence before taking the Picard functor (i.e.
for the E∞-rings themselves). For example, in the Galois descent setting, we are given a G-Galois
extension A → B, and we know the descent, i.e. homotopy fixed point, spectral sequence for
A ' BhG. The tool we develop in this section will allow us to deduce many differentials in the
homotopy fixed point spectral sequence for (picB)hG.

For a spectrum or a pointed space X, and integers a, b, we denote by τ≥aX, τ≤bX, and τ[a,b]
the truncations of X with homotopy groups in the designated range. Our main observation is that
if R is any E∞-ring, then for any n ≥ 2, there is a natural equivalence of spectra

τ[n,2n−1]R ' τ[n,2n−1]gl1(R).

This equivalence is natural at the level of ∞-categories, and enables us to identify a large number
of differentials in descent spectral sequences for gl1 and therefore also for pic. This observation,
however, fails if we increase the range by 1, and an identification of the relevant discrepancy (as
observed in such spectral sequences) will be the subject of the following section and the formula
(6.1).

5.1. Truncated spaces and spectra. Throughout, n ≥ 2.

Definition 5.1.1. Let Sp[n,2n−1] ⊂ Sp denote the ∞-category of spectra with homotopy groups

concentrated in degrees [n, 2n − 1]. Let S∗ denote the ∞-category of pointed spaces, and let
S∗,[a,b] ⊂ S∗ denote the subcategory spanned by those pointed spaces whose homotopy groups are
concentrated in the interval [a, b].

Theorem 5.1.2. The functor Ω∞ : Sp[n,2n−1] → S∗ is fully faithful. The functor Ω∞ : Sp[n,2n−2] →
S∗,[n,2n−2] is an equivalence of ∞-categories.

Proof. Let X,Y ∈ Sp[n,2n−1]. We want to show that the natural map

(5.1) HomSp(X,Y )→ HomS∗(Ω
∞X,Ω∞Y )

is a homotopy equivalence. By adjointness, we can identify this with the map

HomSp(X,Y )→ HomSp(Σ∞Ω∞X,Y )

that arises from the counit map Σ∞Ω∞X → X. Observe that we have a natural equivalence
HomSp(Σ∞Ω∞X,Y ) ' HomSp(τ≤2n−1Σ∞Ω∞X,Y ) because Y is (2n−1)-truncated. In particular,
to prove Theorem 5.1.2, it will suffice to show that the natural map of spectra

τ≤2n−1Σ∞Ω∞X → X ' τ≤2n−1X,

is an equivalence, for any X ∈ Sp[n,2n−1]. Equivalently, we need to show that for any such spectrum
X, the map

(5.2) πk(Σ∞Ω∞X)→ πk(X)

is an isomorphism for k ≤ 2n− 1. But we have maps of spaces

Ω∞X → Ω∞Σ∞Ω∞X → Ω∞X,

where the composite is the identity. The first map is the unit Y → Ω∞Σ∞Y applicable for any
Y ∈ S∗, and the second map is Ω∞ applied to the counit. By the Freudenthal suspension theorem,
the first map induces an isomorphism on homotopy groups πk, k ≤ 2n−1, and therefore the second
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map does as well. This proves the claim that (5.2) is an isomorphism and the first part of the
theorem.

The functor Ω∞ : Sp[n,2n−1] → S∗,[n,2n−1] is not essentially surjective, because spaces with

homotopy groups concentrated in degrees [n, 2n− 1] can still have Whitehead products, and spaces
with nontrivial Whitehead products can never be in the image of Ω∞. However, we claimed in
the statement of the theorem that the functor Ω∞ : Sp[n,2n−2] → S∗,[n,2n−2] is an equivalence of
∞-categories. To show this, it suffices to show that the functor is essentially surjective.

Given a pointed space X with homotopy groups in the desired range, we suppose inductively
(on k) that τ≤kX is in the image of Ω∞. If k ≥ 2n − 2, then we are done. Otherwise, we have a
pullback square

τ≤k+1X

��

// ∗

��
τ≤kX // K(πk+1X, k + 2).

Observe that the three pointed spaces τ≤kX,K(πk+1X, k + 2), and ∗ are all in the image of Ω∞

(the first by the inductive hypothesis), and K(πk+1X, k + 2) ∈ S∗,[n,2n−1]. Moreover, the maps
in the diagram are in the image of Ω∞ by the previous part of the result. Therefore, the object
τ≤k+1X is in the image of Ω∞, as Ω∞ preserves homotopy fiber squares. �

Given an integer k, we could precompose the functor of Theorem 5.1.2 with the equivalence
Ωk : Sp[n+k,2n+k−1] → Sp[n,2n−1], and obtain the following:

Corollary 5.1.3. For any integer k, the functor Ω∞+k : Sp[n+k,2n+k−1] → S∗ is fully faithful.

5.2. Comparisons for E∞-rings. Our basic example for all this comes from the spectrum gl1(R)
associated to an E∞-ring R, and the comparison between the two. This comparison is the main
obstacle in understanding the descent spectral sequence for the Picard group: it is generally easier
to understand descent spectral sequences for the E∞-rings themselves (e.g. for TMF ).

Given an E∞-ring R, the spectra R, gl1(R) are generally very different.

Example 5.2.1 (T. Lawson [hl]). Consider the commutative, differential graded algebra F2[x]/x3

where |x| = 1 and dx = 0 (so d ≡ 0). Let R be the associated E∞-ring under F2. Then gl1(R) has
homotopy groups in dimensions 1, 2 given by F2; however, they are connected by multiplication by
η. In particular, gl1(R) is not an F2-module spectrum.

More generally, let R be the E∞-ring associated to the commutative, differential graded algebra
F2[x]/x3 where |x| = n, dx = 0. R can also be constructed by applying the Postnikov section τ≤2n

to the free E∞-F2-algebra on a class in degree n. Then πn(gl1(R)) ' π2n(gl1(R)) ' F2 and all
the other homotopy groups of gl1(R) vanish. Therefore, gl1(R) is the fiber of a k-invariant map
HF2[n]→ HF2[2n+ 1]. In this case, we can identify the k-invariant map and thus identify gl1(R).

Proposition 5.2.2. Given R as above, the k-invariant of gl1(R) is given by the map Sqn+1 :
HF2[n]→ HF2[2n+ 1].

Proof. We first argue, following Lawson, that gl1(R) cannot be the spectrum HF2[n] ∨HF2[2n].
In fact, in this case, the map of spectra HF2[n]→ gl1(R) would, by adjointness [ABG+08] lead to
a map of E∞-rings

Σ∞+ K(F2, n)→ R,

carrying the class in πnK(F2, n) to the nonzero class in πnR. Smashing with HF2, we would get
a map of E∞-HF2-algebras

HF2 ∧ Σ∞+ K(F2, n)→ R
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with the same property. Now πn(HF2 ∧ Σ∞+ K(F2, n)) ' F2, with the nontrivial class coming
from πn(K(F2, n)). However, this class squares to zero by [CLM76, Lemma 6.1, Ch. 1] while the
nonzero class in πnR does not square to zero. This is a contradiction and proves that such a map
cannot exist. Consequently, the k-invariant map for gl1(R) must be nontrivial.

On the other hand, we know Ω∞gl1(R) ' K(F2, n) × K(F2, 2n) because Ω∞gl1(R) is the
connected component at 1 of Ω∞R. In particular, the k-invariant HF2[n] → HF2[2n + 1] defines
upon applying Ω∞ the trivial cohomology class in H2n+1(K(F2, n);F2).

So, for the k-invariant of gl1(R), we need a nonzero element φ of degree n + 1 in the (mod 2)
Steenrod algebra such that, if ιn ∈ Hn(K(F2, n);n) is the tautological class, then φιn = 0. By the
calculation of the cohomology of Eilenberg-MacLane spaces (see [MT68] for a textbook reference),
the only possibility is Sqn+1. �

Nonetheless, we will show that right below the range of the previous example, the spectra gl1(R)
and R can be identified.

Corollary 5.2.3. Let n ≥ 2 and let R be any E∞-ring. Then there is an equivalence of spectra,
functorial in R,

τ[n,2n−1]gl1(R) ' τ[n,2n−1]R.

Similarly, there is an equivalence of spectra, functorial in R,

τ[n+1,2n]pic(R) ' Στ[n,2n−1]R.

Proof. For any E∞-ring R, the space Ω∞gl1(R) = GL1(R) is a union of those components of
Ω∞R that correspond to units in π0R. In particular, Ω∞τ≥1gl1(R) is canonically identified with
Ω∞τ≥1R in S∗. Applying Theorem 5.1.2, we now get a canonical identification as desired in the
corollary. The second half of Corollary 5.2.3 follows from the first, as τ≥0Ωpic(R) ' gl1(R) as
spectra. �

Take now a faithful G-Galois extension A→ B of E∞-rings, and consider the HFPSS (3.5) for
picB. We want to understand π0(pic(B)hG), or equivalently π−1(Ωpic(B)hG), and we can do this
by understanding the HFPSS for the G-action on Ωpic(B). Observe first that πtΩpic(B) ' πtB
functorially for t ≥ 1: in fact, Ω∞(Ωpic(B)) ' GL1(B). In other words, the spectrum Ωpic(B)
equipped with the G-action has the property that, after applying Ω∞, it is identified with a union
of connected components of Ω∞B (with the G-action on B).

As a result, we have a map of spaces with G-action

Ω∞(Ωpic(B))→ Ω∞B,

which identifies the former with a union of connected components of the latter. As a result, we
can identify the respective HFPSS for the spaces Ω∞(Ωpic(B)), Ω∞B for t > 0, both at E2 and
differentials (including the “fringed” ones).

In particular, shifting by one again, most of the differentials in the HFPSS for pic(B) are
determined by the HFPSS for B. More precisely, any differential out of Es,tr for t− s > 0, s > 0,
depends only on the G-space ΩPic(B), so the equivalence of ΩPic(B) with a union of connected
components of Ω∞B implies that the differential can be identified with the analogous differential
in the HFPSS for B.

However, to understand π0(pic(B)hG) ' π0(Pic(B)hG) ' Pic(A), we need to determine differ-
entials out of Es,tr with t = s. These differentials cannot be determined by ΩPic(B), as a space
with a G-action. Our strategy to determine these differentials is to use the equivalence of spectra
with G-action

τ[n+1,2n]pic(B) ' Στ[n,2n−1]B,

which is a special case of Corollary 5.2.3.
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Assume that r ≤ t − 1. In this case, any differential dr : Et,t∗ → Et+r,t+r−1
∗ in the HF-

PSS for pic(B) is determined by the G-action on τ[t,t+r−1]pic(B). Since we have an equivalence
τ[t,t+r−1]pic(B) ' Στ[t−1,t+r−2]B, compatible with the G-actions, we can identify the differentials.

Denote the differentials in the homotopy fixed point spectral sequence

Hs(G, πtpicB)⇒ πt−s(picB)hG

by ds,tr (picB), and similarly ds,tr (B) for those in the HFPSS for B. The upshot of this discussion
is the following.

Comparison Tool 5.2.4. Let A → B be a G-Galois extension of E∞ rings. Whenever 2 ≤ r ≤
t− 1, we have an equality of differentials dt,tr (picB) = dt,t−1

r (B).

Of course, we also have an identification of differentials out of (s, t) if t− s > 0, s > 0.

Remark 5.2.5. Our original approach to the Comparison Tool 5.2.4 was somewhat more com-
plicated than the above and has been described in [MS14]. Namely, our strategy was to iden-
tify the HFPSS with a Bousfield-Kan spectral sequence for a certain cosimplicial space X• built
from Pic(B) with its G-action, and argue that these differentials only depended on the fiber of
Tott+r(X

•)→ Tott−1(X•) (as well as the other fibers in between). In the appropriate range, these
fibers depend only on ΩX• as a cosimplicial space. However, ΩX• can be (almost) identified with
the analogous cosimplicial space for the G-action on Ω∞−1(τ≥0B) because ΩPic(B) is a union of
components Ω∞B. This forces the differentials to correspond to one another.

For the same reasons, we would have an analogous comparison results for the spectral sequence
as Theorem 3.2.1. Again, any differential in the descent spectral sequence for pic(Γ(X,Otop)) that
only depends on the diagram τ[n+1,2n]pic(Otop) can be identified with the corresponding differential
in the descent spectral sequence for Γ(X,Otop), thanks to the equivalence of diagrams of spectra
τ[n+1,2n]pic(Otop) ' Στ[n,2n−1]Otop.

Remark 5.2.6. The equivalence τ[n,2n−1]R ' τ[n,2n−1]gl1(R) resembles the following observation
in commutative algebra. Let A be an ordinary commutative ring and let I ⊂ A be a square-zero
ideal. Then 1 + I ⊂ A× and there is an isomorphism of groups

I ' 1 + I ⊂ A×, x 7→ 1 + x.

This correspondence is a very degenerate version of the exponential and logarithm.

Suppose p is a prime number and (p − 1)! is invertible in A. Then if J ⊂ A is an ideal with
Jp = 0, we have 1 + J ⊂ A× and a natural isomorphism of groups

J ' 1 + J, x 7→ 1 + x+
x2

2
+ · · ·+ xp−1

(p− 1)!
,

given by a p-truncated exponential. Motivated by this, we conjecture:

Conjecture 5.2.7. Let R be an E∞-ring with (p − 1)! invertible. Then, for any n, there is a
functorial equivalence of spectra τ[n,pn−1]R ' τ[n,pn−1]gl1(R).

In the case of rational E∞-ring spectra R, we should obtain a functorial equivalence of spectra
τ≥1gl1(R) ' τ≥1R. At the level of cohomology theories, this is described in §2.5 of [Rez06], but
the construction there does not give naturality at the ∞-categorical level.

5.3. A general result on Galois descent. As a quick application of the preceding ideas, we
can prove a general result about Galois descent for Picard groups.

Theorem E. Let A→ B be a faithful G-Galois extension of E∞-rings. Then the relative Picard
group of B/A is |G|-power torsion of finite exponent.
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Proof. We know that the relative Picard group of A → B is given by π−1(gl1(B)hG) (compare
Remark 3.3.2). There is a HFPSS that converges to the homotopy groups, which begins with the
group cohomology (with coefficients in G) of π∗(gl1(B)). Every contributing term is |G|-power
torsion: in fact, every term is a Hi(G; ·) for i > 0 and is thus killed by |G|. However, in view of
the potential infiniteness of the filtration, as well as the possibilities of nontrivial extensions, this
alone does not force π−1(gl1(B)hG) to be |G|-power torsion.

Our strategy is to compare the HFPSS for π−1(gl1(B)hG) with that of π−1(BhG). The map
A → B admits descent in the sense of [Mat14a, Definition 3.17]. In particular, by [Mat14a,
Corollary 4.4], the descent spectral sequence for A→ B (equivalently, the HFPSS) has a horizontal
vanishing line at a finite stage. It follows that, above a certain filtration, everything in the HFPSS
for π∗(A) ' π∗(BhG) is killed by a dk for k bounded.

In view of our Comparison Tool 5.2.4, it follows that any class in the relative Picard group has
bounded filtration (though possibly the bound is weaker than the analog in π−1(B)). Since every
term in the spectral sequence is killed by |G|, the theorem follows. �

6. The first unstable differential

6.1. Context. Let R• be a cosimplicial E∞-ring, and consider the Bousfield-Kan spectral se-

quences (BKSS) {Es,tr } ,
{
E
s,t

r

}
for the two cosimplicial objects gl1(R•) and R•, converging to

πt−s of the respective totalizations in Sp.

For t−s ≥ 0, the spectral sequences and the differentials are mostly identified with one another,
as the space Ω∞gl1(R) is a union of connected components of Ω∞R. But for t − s = −1, we get
differentials

dr : Et+1,t
r → Et+r+1,t+r−1

r , dr : Et+1,t
r → Et+r+1,t+r−1

r .

These depend on more than the spaces Ω∞R,Ω∞gl1(R): they require the one-fold deloopings.
As we saw in Corollary 5.2.3, for any n ≥ 2, in the range [n, 2n − 1], the cosimplicial spectra
τ[n,2n−1]R

•, τ[n,2n−1]gl1(R•) are identified, and as a result, for r ≤ t, the groups in question are

(canonically) identified and dr = dr.

But in general, dt+1 6= dt+1. Since all the previous differentials entering or leaving this spot
between the two spectral sequences were identified, the groups in question are identified. We let

the correspondence Et+1,t
t+1 ' E

t+1,t

t+1 be given as x 7→ x. Similarly, we have a correspondence

E2t+2,2t+1
t+1 ' E2t+2,2t+1

t+1 .

In this subsection, we will give a universal formula for the first differential out of the stable
range. We will need this for the 2-primary Picard group of TMF .

Theorem 6.1.1. We have the formula

(6.1) dt+1(x) = dt+1(x) + x2, x ∈ Et+1,t
t+1 .

Remark 6.1.2. The above formula actually makes dt+1 into a linear operator. This follows from
the graded-commutativity of the BKSS for R•. Note in particular that the difference between dt+1

and dt+1 is annihilated by two.

Remark 6.1.3. If Conjecture 5.2.7 is true, then we suspect that there is a similar universal formula
for the first differential if (p− 1)! is invertible.

6.2. The universal example. The proof of (6.1) follows a standard technique in algebraic topol-
ogy: we reduce to a “universal” case and show that (6.1) is essentially the only possibility. We

want to consider the universal case of a cosimplicial E∞-ring R• with a class in Et+1,t
t+1 . This class

represents an element in π−1Tot2t+1(R•) trivialized in Tott(R
•); the differential dt+1 represents the
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obstruction to lifting to Tot2t+2. So, we need to make the analysis of differentials in the cosimplicial
E∞-ring which corepresents the functor R• 7→ Ω∞

(
Σ−1fib (Tot2t+1(R•)→ Tott(R

•))
)
.

The relevant cosimplicial E∞-ring X• can be constructed as follows.

Definition 6.2.1. Let Lan denote the operation of left Kan extension, and let Lan∆≤t→∆(∗)
denote the left Kan extension of the constant functor ∆≤t → S at a point to ∆. Similarly, define
Lan∆≤2t+1→∆(∗). Consider the homotopy pushout

(6.2) Lan∆≤t→∆(∗)+

��

// ∗

��
Lan∆≤2t+1→∆(∗)+

// F •,

where F • : ∆→ S∗ is a functor to the ∞-category S∗ of pointed spaces.

Consider Σ∞F • : ∆→ Sp and the functor

X • = FreeCAlg(Σ∞−1F •) : ∆→ CAlg,

into the∞-category CAlg of E∞-rings, obtained by applying the free algebra functor everywhere to
Σ∞−1F •. Then X •, by construction, corepresents the functor we are interested in. In particular,
it suffices to prove (6.1) for this particular functor. As we will see in the next paragraph, F • takes
values in connective spectra and therefore so does X •. Since we are only interested in differentials
in a particular range, we may (by naturality) only consider the Postnikov section τ≤2tX •. We get
the following basic step.

Proposition 6.2.2. In order to prove Theorem 6.1.1, it suffices to prove it for the τ≤2tX • (and
the tautological class).

In fact, we have a reasonable handle on what the functor τ≤2tX • looks like and can entirely
determine the BKSS. To see this, we recall the construction of F ; compare also the discussion in
[MS14]. The functor

Lan∆≤t→∆(∗) : ∆→ S,
sends any finite nonempty totally ordered set T to the nerve of the category ∆≤t/T of all order-

preserving morphisms {S → T} where:

(1) S is a finite, nonempty totally ordered set, and
(2) |S| ≤ t+ 1.

Proposition 6.2.3. Lan∆≤t→∆(∗) is naturally equivalent to the functor which sends T ∈ ∆ to the
nerve of the poset P≤t+1(T ) of nonempty subsets of T of cardinality ≤ t+ 1.

Proof. In fact, for any T , there is a natural map P≤t+1(T )→ ∆≤t/T , which is a homotopy equivalence

as it is right adjoint to the functor ∆≤t/T → P≤t+1(T ) which sends S → T to image(S → T ) ⊂ T . �

As in [MS14], the nerve of P≤t+1(T ), for any choice of T , is (pointwise) homotopy equivalent to
a wedge of t-spheres, and contractible if |T | ≤ t+ 1. We get from (6.2):

Proposition 6.2.4. The functor F • : ∆→ S∗ constructed above has the following properties:

(1) For any T , F (T ) is always a wedge of copies of St+1 and S2t+1.
(2) Restricted to ∆≤t, F • is contractible. Restricted to ∆≤2t, F • is pointwise a wedge of

copies of St+1.
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6.3. Some technical lemmas. Our first goal is to understand the BKSS for Σ∞−1F •. Observe
that pointwise, this cosimplicial spectrum is a wedge of copies of St and S2t. In order to do this,
we need to understand the cosimplicial abelian group π∗(Σ

∞−1F •). We will prove the following:

Proposition 6.3.1. The cohomology Hs(π∗(Σ
∞−1F •)) is given by

(6.3) Hs(π∗(Σ
∞−1F •)) '

{
π∗(S

t) s = t+ 1

π∗(S
2t) s = 2(t+ 1).

In the spectral sequence, the differential dt+1 is an isomorphism.
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Figure 1. Bousfield-Kan spectral sequence for Σ∞−1F •, with t = 2.

πk denotes πkS
0

The spectral sequence is depicted in Figure 1. The proof of Proposition 6.3.1 will take work
and will be spread over two subsections. In the present subsection, our main result is that the
totalization of Σ∞−1F • (and related cosimplicial spectra) is contractible, and we will deduce the
differentials from that. The approach to this is not computational and relies instead on ideas
involving the ∞-categorical Dold-Kan correspondence of Lurie.

We recall from [Lur09, 1.2.8.4] the cone construction, which associates to a simplicial set K,
the cone KC. If K is an ∞-category, KC is as well, and is obtained by adding a new initial object
to K.

Lemma 6.3.2. Let K be a simplicial set and D an ∞-category with colimits. Let F : KC → D
be a functor with the property that F carries the cone point to an initial object of D. Then the
natural map

lim−→
K

F |K → lim−→
KC

F

is an equivalence in D.

Proof. If K is the empty simplicial set, then the assertion is obvious, since the colimit over the
empty set is given by the initial object of D. If K = ∆n for some n ≥ 0, so that KC = ∆n+1, then
the colimit of F is simply F evaluated at the terminal vertex, and the assertion is again evident.
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Suppose we have a pushout diagram of simplicial sets

K0

��

// K2

��
K1

// K,

and a functor F : K → C. Assume moreover that one of the maps K0 → K1,K0 → K2 is an
inclusion. Then we have a pushout (and homotopy pushout) diagram of simplicial sets

KC
0

��

// KC
2

��
KC

1
// KC,

because the functor L 7→ LC from simplicial sets to pointed simplicial sets preserves colimits [Lur09,
Remark 1.2.8.2]. By [Lur09, Proposition 4.4.2.2], given any functor F : KC → D, the following
diagrams in D are pushouts:

lim−→K0
F |K0

��

// lim−→K2
F |K2

��
lim−→K1

F |K1
// lim−→K

F |K ,

lim−→KC
0

F |KC
0

��

// lim−→KC
2

F |KC
2

��
lim−→KC

1

F |KC
1

// lim−→KC F.

It thus follows that if the statement of the lemma is true for K0,K1, and K2, then it must be true
for K, since we have a natural transformation between the above two squares.

As a result, consider the collection A of simplicial sets for which the above lemma is true. Then:

(1) A contains ∅ and all the standard simplices ∆n, n ≥ 0.
(2) A is closed under pushouts of inclusions.
(3) A is closed under filtered colimits. This follows using a similar argument as above, using

instead the results of [Lur09, §4.2.3] and in particular [Lur09, Remark 4.2.3.9].

It now follows that A is the collection of all simplicial sets. Indeed, the third condition allows
us to reduce to showing that A contains every finite simplicial set. Then, using induction on the
dimension and a cell decomposition of the simplicial set, we can conclude using the first two items.

�

Lemma 6.3.3. Let C,D be ∞-categories and assume that D has colimits. Let F : CC → D be a
functor such that F carries the cone point to an initial object of D. Let C′ ⊂ C be a full subcategory.
Then the following are equivalent:

(1) F |C is a left Kan extension of its restriction to C′.
(2) F is a left Kan extension of its restriction to C′C.

Proof. Suppose the first condition satisfied. Then if c ∈ C is arbitrary, the natural map

lim−→
c′→c∈C′

/c

F (c′)→ F (c)

is an equivalence. Now, we have an equivalence of ∞-categories (C′/c)C ' (C′C)/c, because C adds

a new initial object. Therefore, if c ∈ C is arbitrary, we also get that the natural map

lim−→
c′→c∈(C′C)/c

F (c′) ' lim−→
c′→c∈(C′

/c
)C

F (c′)→ F (c)
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is an equivalence, thanks to Lemma 6.3.2. At the cone point, the left Kan extension condition is
automatic. Thus, it follows that F is a left Kan extension of F |C′C . The converse is proved in the
same way. �
Proposition 6.3.4. Let C be a stable ∞-category and let F : ∆≤n → C be any functor. Suppose
F is a left Kan extension of its restriction to ∆≤n−1. Then lim←−∆≤n

F is contractible.

Proof. Observe that the cone (∆≤n)C is given by the category ∆≤n+ of the finite totally ordered

sets {[i]}−1≤i≤n since [−1] is an initial object of this category. Consider the functor F̃ : ∆≤n+ '
(∆≤n)C → C extending F that sends the cone point to the initial object (one can always make

such an extension). In order to show that lim←−∆≤n
F is contractible, it suffices to show that F̃ is a

right Kan extension of F = F̃ |∆≤n .

Now, we recall a basic result of Lurie [Lur12, Lemma 1.2.4.19] (which we use for the opposite
category), a piece of the∞-categorical version of the Dold-Kan correspondence: given any functor

G : ∆≤n+ → C, G is a right Kan extension of G|∆≤n if and only if G is a left Kan extension of

G|
∆
≤n−1
+

. In our case, it follows that to show that F̃ is a right Kan extension of F (as we would

like to see), it suffices to show that F̃ is a left Kan extension of F̃ |
∆
≤n−1
+

. But by Lemma 6.3.3,

this follows from the fact that F̃ |∆≤n = F is a left Kan extension of F̃ |∆≤n−1 = F |∆≤n−1 . �

6.4. The BKSS for F . The goal of this subsection is to complete the proof of Proposition 6.3.1.
To begin with, we analyze the BKSS for the functor Σ∞+ Lan∆≤t→∆(∗) : ∆→ Sp.

Proposition 6.4.1. The BKSS for the cosimplicial spectrum Σ∞+ Lan∆≤t→∆(∗) satisfies

(6.4) Es,∗2 = Hs(π∗(Σ
∞
+ Lan∆≤t→∆(∗))) =

{
π∗(S

0) s = 0

π∗(S
t) s = t+ 1.

The differential dt+1 is an isomorphism. (The result for t = 2 is displayed in Figure 2.)
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Figure 2. Bousfield-Kan spectral sequence for Σ∞+ Lan∆≤t→∆, with t = 2.

Proof. Observe that Lan∆≤t→∆(∗) is, pointwise, a wedge of t-spheres, so to compute the desired
cohomology Hs(π∗(Σ

∞
+ Lan∆≤t→∆(∗))), it suffices to do this for πt. (The disjoint basepoint con-

tributes the π∗(S
0) for s = 0 in cohomology.) In other words, we may consider the cosimplicial

HZ-module M• = HZ∧Σ∞+ Lan∆≤t→∆(∗). Now we know that, for each n, π∗(M
n) is concentrated

in degrees 0 and t, and that π0(M•) is the constant cosimplicial abelian group Z. Moreover, by
Proposition 6.3.4, Tot(M•) is contractible. A look at the spectral sequence for Tot(M•) shows
that Hs(πtM

•) must be concentrated in degree s = t+ 1 and must be a Z there. The claim about
differentials also follows from contractibility of the totalization. �
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Proof of Proposition 6.3.1. The definition (6.2) of F •, and Proposition 6.4.1 gives the E2-page of
the spectral sequence, when one uses the long exact sequence in homotopy groups. The differentials
are forced, again, by Proposition 6.3.4 which implies that Tot(Σ∞−1F •) is contractible. �

6.5. Completion of the proof. Now we need to consider the cosimplicial E∞-ring

Y •
def
= τ≤2tX

• ' τ≤2tFreeCAlg(Σ∞−1F •).

In this subsection, we will determine the relevant piece of the BKSS for Y and then complete the
proof. We have that

Y • ' τ≤2tS
0 ∨ τ≤2tΣ

∞−1F • ∨ τ≤2t

(
Σ∞−1F •

)∧2

hΣ2
.

In particular, the cohomology Hs(π∗(Y •)) picks up a copy of π∗(S
0) for s = 0 (which is mostly

irrelevant). In Proposition 6.3.1, we determined the BKSS for F ; in bidegrees (t + 1, t) and
(2t + 2, 2t), this picks up copies of Z such that the first one hits the second one with a dt+1. We
will prove:

Proposition 6.5.1. E2t+2,2t
2 ' Z⊕ Z/2 in the BKSS for Y . The Z/2 is generated by the square

of the class in bidegree (t+ 1, t).

Proof. We will use the notation and results of Appendix C. Let A• be the cosimplicial abelian
group πtΣ

∞−1F •. As we have seen (Proposition 6.3.1), Ht+1(A•) ' Z and the other cohomology
of A• vanishes. Now, using the notation of Definition C.1,

π2t(Σ
∞−1F )∧2

hΣ2
=

{
Sym2A

• t even

S̃ym2A
• t odd.

By Proposition C.5, we find that the E2t+2,2t
2 term of (Σ∞−1F )∧2

hΣ2
is as claimed. �

We are now ready to complete the proof and determine the differential in the gl1 spectral

sequence. Using the notation of the beginning of this section, it follows that Et+1,t
t+1 ' Z and

E2t+1,2t
t+1 ' Z⊕Z/2, and similarly for E. The dt+1 carries the Z into the other Z. By naturality of

the spectral sequence, it follows that there must exist a universal formula

(6.5) dt+1(x) = adt+1(x) + εx2, a ∈ Z, ε ∈ {0, 1}.
The main claim is that a = ε = 1. Our first goal is to compute a.

Lemma 6.5.2. We have an equivalence of∞-categories between the∞-category FunL(Sp≥0,Sp≥0)
of cocontinuous functors Sp≥0 → Sp≥0 and Sp≥0 given by evaluating at the sphere. The inverse
equivalence sends a connective spectrum Y to the functor X 7→ X ⊗ Y .

Proof. It suffices to show that evaluation at the sphere induces an equivalence of ∞-categories
FunL(Sp≥0,Sp) ' Sp (with inverse given as above). But the ∞-category Sp is the stabilization

[Lur12, §1.4] of Sp≥0, so that we have an equivalence (by [Lur12, Corollary 1.4.4.5]) FunL(Sp,Sp) '
FunL(Sp≥0,Sp) given by restriction. But we know that FunL(Sp,Sp) ' Sp by evaluation at the
sphere spectrum, with inverse given by the smash product (see [Lur12, §4.8.2]). �

We need the following fact about gl1.

Proposition 6.5.3. Let X be a connective spectrum, and let S0 ∨X be the square-zero E∞-ring.
Then there is a natural equivalence of spectra,

gl1(S0 ∨X) ' gl1(S0) ∨X.
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Proof. Given the connective spectrum X, we can use the composite S0 → S0 ∨X → S0, in which
the second map sends X to 0, to get a natural splitting

gl1(S0 ∨X) ' gl1(S0) ∨ F (X),

where F : Sp≥0 → Sp≥0 is a certain functor that we want to claim is naturally isomorphic to the
identity. First, observe that F commutes with colimits. Namely, F commutes with filtered colimits
(as one can check on homotopy groups), F takes ∗ to ∗, and given a pushout square

(6.6) X1

��

// X2

��
X3

// X4,

in Sp≥0, the analogous diagram

(6.7) F (X1)

��

// F (X2)

��
F (X3) // F (X4)

is a pushout square in Sp≥0. This in turn follows by considering long exact sequences in homotopy
groups. More precisely, given the pushout square (6.6), the diagram of E∞-rings

S0 ∨X1

��

// S0 ∨X2

��
S0 ∨X3

// S0 ∨X3,

is a homotopy pullback in E∞-rings, so that applying gl1 (which is a right adjoint) leads to a
pullback square

gl1(S0 ∨X1)

��

// gl1(S0 ∨X2)

��
gl1(S0 ∨X3) // gl1(S0 ∨X4),

and in particular, (6.7) is homotopy cartesian too in Sp≥0. Therefore, it is homotopy cocartesian
as well if we can show that the map

π0(gl1(S0 ∨X3))⊕ π0(gl1(S0 ∨X2))→ π0(gl1(S0 ∨X4))

is surjective. This, however, follows from the analogous fact that π0(X3) ⊕ π0(X2) → π0(X4) is
surjective as (6.6) is a pushout.

Therefore, as both F commutes with colimits, F is necessarily of the form X 7→ X⊗Y for some
Y ∈ Sp≥0, by Lemma 6.5.2. For X = HZ, we find F (X) = HZ, so that HZ ⊗ Y is concentrated

in degree zero and is isomorphic to HZ. This forces Y ' S0 and proves the claim. �

Proof of Theorem 6.1.1. Proposition 6.5.3 implies that in the universal formula (6.5), the constant
a = 1. In fact, we know that if X• is any cosimplicial spectrum, then the cosimplicial spectra
gl1(S0∨X•) and gl1(S0)∨X• are identified. In particular, the differentials in the spectral sequence
for gl1(S0 ∨X•) and in the spectral sequence for S0 ∨X• are identified, forcing a = 1.

It remains to show that ε = 1. For this, we need an example where the two differentials do not
agree. This will be a generalization of Example 5.2.1. Consider the E∞-ring of Proposition 5.2.2,
with n = t, so that, in particular, gl1(R) has homotopy groups in dimensions t and 2t only.
Proposition 5.2.2 shows that the k-invariant is nontrivial.
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Consider the space X = K(F2, t + 1), and consider the Atiyah-Hirzebruch spectral sequences
for the homotopy groups of gl1(R)X and RX (these can be identified with BKSS’s by choosing
simplicial resolutions of X by points). The latter clearly degenerates, but the former does not. In
fact, the Atiyah-Hirzebruch spectral sequence for BGL1(R)K(F2,t+1) fails to degenerate precisely
because BGL1(R) has a nontrivial k-invariant in spaces. That is, we can produce a map of spaces
K(F2, t + 1) → BΩ∞R inducing an isomorphism on πt+1, but we cannot do this with BΩ∞R
replaced by BGL1(R).

This completes the proof of Theorem 6.1.1. �

Part III. Computations

7. Picard groups of real K-theory and its variants

Before we embark on the lengthy computations for the Picard groups of the various versions
of topological modular forms, let us work out in detail the case of real K-theory, as well as the
Tate K-theory spectrum KO((q)). In particular, these examples will illustrate our methodology
without being computationally cumbersome.

7.1. Real K theory. In this subsection, we compute the Picard group of KO using C2-Galois
descent from the C2-Galois extension KO → KU and the Comparison Tool 5.2.4 (but not the
universal formula of Theorem 6.1.1).

We begin with the basic case of complex K-theory.

Example 7.1.1 (Complex K-theory). The complex K theory spectrum has a very simple ring
of homotopy groups KU∗ = Z[u±1] with u in degree 2. In particular, KU is even periodic with
a regular noetherian π0, so its Picard group is algebraic by Theorem 2.4.6. The inner workings
of Theorem 2.4.6 would use that the only (homogeneous) maximal ideals of KU∗ are generated
by prime numbers p; for each p, there is a corresponding residue field spectrum, namely mod-p
K-theory, also known as an extension of the Morava K-theory of height one at the given prime.
As the Picard group of KU0 = Z is trivial, and Pic(KU∗) ' Z/2, any invertible KU -module is
equivalent to either KU or ΣKU .

To compute Pic(KO), we start with this knowledge that thanks to Example 7.1.1, π0pic(KU) =
Pic(KU) is Z/2. We have the spectral sequence from (3.5)

H∗(C2, π∗pic(KU))⇒ π∗pic(KU)hC2 ' π∗pic(KO) for ∗ ≥ 0,

which will allow us to compute π0(pic(KU))hC2 ' PicKO. We note that π1pic(KU) ' (KU0)× =
Z/2, and

H∗(C2,Z/2) = Z/2[x],

where x is in cohomological degree 2. The higher homotopy groups of pic(KU) coincide (as C2-
modules) with those of KU , suitably shifted by one.

Recall, moreover, that the E2-page of the HFPSS for π∗(KO) is given by the bigraded ring

E∗,∗2 = Z[u2, u−2, h1]/(2h2
1), |u2| = (4, 0), h1 = (1, 2),

where u2 is the square of the Bott class in π∗(KU) ' Z[u±1], and h1 detects in homotopy the Hopf
map η. The class h1 is in bidegree (s, t) = (1, 2), so it is drawn using Adams indexing in the (1, 1)
place. The differentials are determined by d3(u2) = h3

1 and the spectral sequence collapses at E4.
For convenience, we reproduce a picture in Figure 3; the interested reader can find the detailed
computation of this spectral sequence in [HS14, Sec.5].

Therefore, the E2-page of the spectral sequence for pic(KU)hC2 is as in Figure 4. To deduce
differentials, we use our Comparison Tool 5.2.4: in the homotopy fixed point spectral sequence
for KU , there are only d3-differentials. By the Comparison Tool 5.2.4, we conclude that we can
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Figure 3. Homotopy fixed point spectral sequence for π∗(KO) ' π∗(KUhC2)
• denotes Z/2 and � denotes Z

“import” those differentials to the HFPSS for pic(KU) when they involve terms with t ≥ 4. In
particular, we see that the differentials drawn in Figure 4 are non-zero; moreover, everything that
is above the drawn range and in the s = t column either supports or is the target of a non-zero
differential. Note that we are not claiming that there are no other differentials, but these suffice
for our purposes.
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Figure 4. Homotopy fixed point spectral sequence for pic(KU)hC2

We deduce from this that π0pic(KU)hC2 = Pic(KO) has cardinality at most eight. On the other
hand, the fact that KO is 8-periodic gives us a lower bound Z/8 on PicKO. Thus we get:

Theorem 7.1.2 (Hopkins; Gepner-Lawson [GL]). Pic(KO) is precisely Z/8, generated by ΣKO.

Theorem 7.1.2 was proved originally by Hopkins (unpublished) using related techniques. The
approach via descent theory is due to Gepner-Lawson in [GL]. Their identification of the differ-
entials in the spectral sequence is, however, different from ours: they use an explicit knowledge of
the structure of gl1(KU) with its C2-action (which one does not have for TMF ).

Remark 7.1.3. In view of Remark 3.3.2, we conclude that the relative Picard group of the C2-
extension KO → KU is π−1(gl1KU)hC2 ' Z/4.

Remark 7.1.4. In the usual descent spectral sequence for KO, the class
h3
1

u2 in red supports a d3.

By Theorem 6.1.1 and the multiplicative structure of the usual SS,
h3
1

u2 does not support a d3 in

the descent SS for Pic. We saw that above by counting: if
h3
1

u2 did not survive, the Picard group of
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KO would be too small. For 2-local TMF , simple counting arguments will not suffice and we will
actually need to use Theorem 6.1.1 as well.

Remark 7.1.5. We can also deduce from the spectral sequence that the cardinality of the relative
Brauer group for KO/KU , which is isomorphic to π−1(picKU)hC2 , is most eight. However, we do
not know how to construct necessarily non-trivial elements of this Brauer group in order to deduce
a lower bound as in the Picard group case.

7.2. KO[q],KO[[q]] and KO((q)). We now include a variant of the above example where one
adds a polynomial (resp. power series, Laurent series) generator, where we will also be able to
confirm the answer using a different argument. This example can be useful for comparison with
TMF using topological q-expansion maps. We begin by introducing the relevant E∞-rings. This
subsection will not be used in the sequel and may be safely skipped by the reader.

Definition 7.2.1. We write for S0[x] the suspension spectrum Σ∞+ Z≥0. Since Z≥0 is an E∞-
monoid in spaces (in fact, a strictly commutative monoid), S0[x] naturally acquires the structure
of an E∞-ring. Given an E∞-ring R, we will write R[x] = R ∧ S0[x].

We can also derive several other variants:

(1) We will let R[[x]] denote the x-adic completion of R[x], so its homotopy groups look like
a power series ring over π∗(R).

(2) We will let R[x±1] denote the localization R[x][1/x], so its homotopy groups are given by
Laurent polynomials in π∗(R).

(3) We will let R((x)) = R[[x]][1/x], so that its homotopy groups look like formal Laurent
series over π∗(R).

On the one hand, π∗(R[x]) ' π∗(R)[x] is a polynomial ring over π∗(R) on a generator in degree
zero. On the other hand, as an E∞-algebra under R, the universal property of R[x] is significantly
more complicated than that of the “free” E∞-R-algebra on a generator (which is often denoted
R {x}). A map R[x]→ R′, for an E∞-R-algebra R′, is equivalent to an E∞-map

Z≥0 → Ω∞R′,

where Ω∞R′ is regarded as an E∞-space under multiplication. In general, given a class in π0(R′),
there is no reason to expect an E∞-map R[x]→ R′ carrying x to it, since Z≥0 as an E∞-monoid
is quite complicated. Such classes are called “strictly commutative.”

Example 7.2.2. There is a map R[x]→ R sending x→ 1. This comes from the map of E∞-spaces
Z≥0 → ∗ → Ω∞S0 where ∗ maps to the unit in Ω∞S0.

Example 7.2.3. There is a map R[x] → R sending x → 0. To obtain this, we start with the
E∞-monoid M with elements {1, e} with e2 = e. There is a morphism of E∞-monoids (in fact, of
strictly commutative monoids)

Z≥0 →M,

sending n ∈ Z≥0 to 1 for n = 0 and e for n > 0, giving a map of E∞-R-algebras

R[x]→ R ∧ Σ∞+ M.

But π∗(R ∧Σ∞+ M) ' π∗(R)[e]/(e2 − e), so R ∧Σ∞+ M is étale as an E∞-R-algebra. Therefore, we
get by the étale obstruction theory (see for instance [Lur12, §8.5]) a canonical map R∧Σ∞+ M → R
carrying e 7→ 0. Composing the maps R[x] → R ∧ Σ∞+ M → R gives the map we want. Note also
that this map factors over the completion to give a map R[[x]]→ R sending x→ 0.

The map R[x] → R given in Example 7.2.3 has the property that it exhibits the R[x]-module
R as the cofiber R[x]/x. It follows in particular that if R′ is any E∞-R-algebra and x′ ∈ π0(R′) is
a strictly commutative element, then we can give the cofiber R′/x′ ' R′ ⊗R[x] R the structure of
an E∞-R′-algebra.
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Remark 7.2.4. Consider the sphere spectrum S0. Then no cofiber S0/n for n /∈ {±1, 0} can
admit the structure of an E∞-ring by, for example, [MNN14, Remark 4.3].6 It follows that the
only element of π0(S0) ' Z, besides 0 and 1, that can potentially be strictly commutative is −1.
Now, −1 is not strictly commutative in the K(1)-local sphere LK(1)S

0 at the prime 2 because

of the operator θ of [Hop]: we have θ(−1) = (−1)2−(−1)
2 = 1 6= 0, while power operations such

as θ annihilate strictly commutative elements. Therefore, it cannot be strictly commutative in
S0. (One could have applied a similar argument with power operations to every other integer,
too.) However, we observe that −1 is strictly commutative in S0[1/2]: the obstruction is entirely
2-primary (Proposition 7.2.7 below).

Remark 7.2.5. Spaces of strictly commutative elements in K(n)-local E∞-rings have been re-
cently studied in unpublished work of Hopkins-Lurie.

Example 7.2.6. Let a, b ∈ π0(R) be strictly commutative elements for R an E∞-ring. Then ab
is also strictly commutative. If a is a unit, then a−1 is strictly commutative. This follows because
there is a natural addition on E∞-maps Z≥0 → Ω∞R.

Proposition 7.2.7. Let R be an E∞-ring with n invertible. Then any u ∈ π0(R) with un = 1
(i.e., an nth root of unity) is strictly commutative.

Proof. We consider the map of E∞-monoids Z≥0 → Z/nZ and the induced map of E∞-ring spectra

(7.1) R[x]→ R ∧ Σ∞+ Z/nZ.

Since 1
n ∈ π0(R), R∧Σ∞+ Z/nZ is étale over R and the homotopy groups are given by π∗(R)[x]/(xn−

1). We can thus produce a map of E∞-rings R ∧ Σ∞+ (Z/nZ) → R sending 1 ∈ Z/nZ to u by
étaleness. Composing with (7.1) gives us the strictly commutative structure on u. �

Using these ideas, we will be able to give a direct computation of the Picard group of the E∞-ring
KO[[q]]. (We have renamed the power series variable to “q” in accordance with “q-expansions.”)

Proposition 7.2.8. The map PicKO → PicKO[[q]] is an isomorphism, where q is in degree zero.

Proof. Suppose M is an invertible KO[[q]]-module such that M/qM 'M⊗KO[[q]]KO is equivalent
to KO. We will show that then M is equivalent to KO[[q]] using Bocksteins. Specifically, consider
the generating class in π0(M/qM) ' Z; we will lift this to a class in π0(M). It follows that the
induced map KO[[q]] → M becomes an equivalence after tensoring with KO ' KO[[q]]/q; since
M is q-adically complete, it will follow that KO[[q]] 'M .

By induction on k, suppose that:

(1) π−1(M/qkM) = 0.
(2) π0(M/qkM)→ π0(M/qM) is a surjection.

These conditions are clearly satisfied for k = 1. If these conditions are satisfied for k, then the
cofiber sequence of KO[[q]]-modules

M/qkM →M/qk+1M →M/qM

shows that they are satisfied for k + 1. In the limit, we find that there is a map KO[[q]] → M
which lifts the generator of π0(M/qM), which proves the claim. �

Proposition 7.2.8 can also be proved using Galois descent, but unlike for KO, we need to use
Theorem 6.1.1.

6It is an unpublished result of Hopkins that no Moore spectrum can even admit the structure of an E1-algebra.



THE PICARD GROUP OF TOPOLOGICAL MODULAR FORMS VIA DESCENT THEORY 37

Second proof of Proposition 7.2.8. The faithful C2-Galois extension KO → KU induces upon
base-change a faithful C2-Galois extension KO[[q]] → KU [[q]]. The Picard group of KU [[q]],
again by Theorem 2.4.6, is Z/2 generated by the suspension. Consider now the descent spectral
sequence for pic, which is a modification of the descent spectral sequence for KO in Figure 4. One
difference is that every term with t ≥ 2 is replaced by its tensor product over Z with Z[[q]]; the
other is that the t = 1 line now contains the C2-cohomology of the units in π0KU [[q]], which is a
bigger module than (π0KU)× = Z/2. Namely, these units are Z/2⊕qZ[[q]], with trivial C2-action.
The resulting E2-page is displayed in Figure 5.
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Figure 5. Homotopy fixed point spectral sequence for pic(KU [[q]])hC2

• denotes Z/2, � denotes Z/2[[q]], and � denotes Z[[q]]

Since the d3 is the only differential in the ordinary HFPSS for π∗(KO[[q]]), as before, it follows
that the only contributions to Pic(KO[[q]]) can come from the Z/2 with t = s = 0 (the suspension),
the Z/2 with (s, t) = (1, 1) (i.e., the algebraic Picard group), and the Z/2[[q]] in bi-degree (s, t) =
(3, 3).

But here, E3,3
2 = Z/2[[q]]

h3
1

u2 is infinite, so unlike previously, we do not get the automatic upper
bound of eight on |Pic(KO[[q]])|. On the other hand, we can use Theorem 6.1.1 to determine the
d3 supported here. Note that in the HFPSS for (KU [[q]])hC2 , we have

d3

(
f(q)

h3
1

u2

)
= f(q)

h6
1

u4
, f(q) ∈ Z/2[[q]].

Therefore, in view of (6.1), in the HFPSS for pic(KU [[q]])hC2 , we have

d3

(
f(q)

h3
1

u2

)
=
(
f(q) + f(q)2

) h6
1

u4
.

(Note that a crucial point here is that in the HFPSS for KO, d3

(
h3
1

u2

)
equals its square.) It follows

from this that in the HFPSS, the kernel of d3 on E3,3
2 is Z/2 generated by 1

h3
1

u2 : the equation

f(q) + f(q)2 = 0 has only the solutions f(q) ≡ 0, 1. Therefore, we do get an upper bound of eight

on the cardinality of Pic(KO[[q]]) after all, as nothing else in E3,3
2 lives to E4. �

Corollary 7.2.9. The maps KO → KO[q], KO → KO((q)) induce isomorphisms on Picard
groups.

Proof. This result is not a corollary of Proposition 7.2.8 but rather of its second proof. In fact,
the same argument shows that d3 has a Z/2 as kernel on the relevant term E3,3

2 , which gives an
upper bound of cardinality eight on the Picard group of KO[q] or KO((q)) as before. �
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Remark 7.2.10. Corollary 7.2.9 cannot be proved using the Bockstein spectral sequence argument
used in the first proof of Proposition 7.2.8. However, a knowledge of the Picard group of KO[[q]]
can be used to describe enough of the C2-descent spectral sequence to make it possible to prove
Corollary 7.2.9 without the explicit formula (6.1). We leave this to the reader.

8. Picard groups of topological modular forms

In the rest of the paper we proceed to use descent to compute the Picard groups of various
versions of topological modular forms. We will analyze the following descent-theoretic situations:

• The Galois extension TMF [1/2]→ TMF (2), with structure group GL2(Z/2), also known
as the symmetric group on three letters.

• The Galois extension TMF [1/3] → TMF (3), with structure group GL2(Z/3); this is a
group of order 48, which is a nontrivial extension of the binary tetrahedral group and C2.

• Étale descent from the (derived) moduli stack of elliptic curves or its compactification.

In each of these cases, we will start with the knowledge of the original descent spectral sequence,
computing the homotopy groups of the global sections or homotopy fixed point spectrum. This
information plus some additional computation of the differing cohomology groups will provide the
data for the E2-page of the descent spectral sequence for the Picard spectrum. The additional
computations are somewhat lengthy, hence we are including them separately in the Appendix. Our
computation in Appendix B is inspired by an analogous K(2)-local version which Hans-Werner
Henn has generously shared with us.

8.1. The Picard group of TMF [1/2]. When 2 is inverted, the moduli stack of elliptic curves
Mell has a GL2(Z/2)-Galois cover by Mell(2), the moduli stack of elliptic curves with full level 2
structure. This remains the case for the derived versions of these stacks, and on global sections
gives a Galois extension TMF [1/2]→ TMF (2). The extension is useful for the purposes of descent
as the homotopy groups of TMF (2) are cohomologically very simple.

To be precise, we have that

TMF (2)∗ = Z[1/2][λ±1
1 , λ±1

2 ][(λ1 − λ2)−1],

where the (topological) degree of each λi is four. To see this, one can use the presentation of
the moduli stack Mell(2) from [Sto12, Sec.7]: there it is computed that Mell(2) is equivalent to
(the stacky) ProjZ[1/2][λ1, λ2], and that the locus classifying smooth curves, i.e., Mell(2), is given
by the non-vanishing of λ2

1λ
2
2(λ1 − λ2)2. More precisely, Mell(2), as a stack, is the Gm-quotient

of the ring Z[1/2][λ1, λ2, (λ
2
1λ

2
2(λ1 − λ2))−1], where the Gm-action is as follows: a unit u acts as

λi 7→ u2λi for i = 1, 2, so that it is an open substack of a weighted projective stack.

In particular, TMF (2)∗ has a unit in degree 4, and is zero in degrees not divisible by 4. It
will be helpful to write TMF (2)∗ differently, so as to reflect this periodicity more explicitly; for
example, we have that TMF (2)∗ = TMF (2)0[λ±1

2 ], and

TMF (2)0 = Z[1/2][s±1, (s− 1)−1],(8.1)

where s = λ1

λ2
. Therefore, Corollary 2.4.7 applies to give the following conclusion.

Lemma 8.1.1. The Picard group of TMF (2) is Z/4, generated by the suspension ΣTMF (2).

Remark 8.1.2. The proof of Corollary 2.4.7 relies on the construction of residue field spectra; let
us specify what they are in the case at hand. The maximal ideals in TMF (2)0 are m = (p, s− a),
where p is an odd prime and a 6≡ 0, 1 modulo p. For each of these ideals, we have a residue field
spectrum which is (an extension of) mod p Morava K-theory at height one or two. By [Sil86,
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V.4.1], height two occurs precisely when

(p−1)/2∑
i=0

(
(p− 1)/2

i

)
ai

is zero modulo p.

Next we use descent from TMF (2) to TMF [1/2] to obtain the following result.

Theorem 8.1.3. The Picard group of TMF [1/2] is Z/72, generated by the suspension ΣTMF [1/2].
In particular, this Picard group is algebraic.

Proof. We use the homotopy fixed point spectral sequence (3.5)

Hs(GL2(Z/2), πtpic(TMF (2)))⇒ πt−spic(TMF (2))hGL2(Z/2).(8.2)

To begin with, note that the homotopy groups πtpic(TMF (2)) for t ≥ 2 are isomorphic to
πt−1TMF (2) as GL2(Z/2)-modules. This tells us that the t ≥ 2 part of the E2-page of the
HFPSS (8.2) for pic(TMF (2)) is a shifted version of the corresponding part for TMF (2).

The latter is immediately obtained from the analogous computation for Tmf(2) in [Sto12]
(depicted in Figure 2 of loc.cit.), as we now describe. Recall that TMF (2) ' Tmf(2)[∆−1];
the non-negative homotopy groups π≥0Tmf(2) are the graded polynomial ring Λ = Z[1/2][λ1, λ2]
[Prop.8.1,loc.cit.], and the class ∆ ∈ π24Tmf(2) is

∆ = 16λ2
1λ

2
2(λ2 − λ1)2

by [Prop.10.3,loc.cit.]. Now, by [Prop.10.8,loc.cit.] we have that

H∗
(
GL2(Z/2), π∗TMF (2)

)
= H∗

(
GL2(Z/2),Λ

)
[∆−1].

In particular, the invariants H0
(
GL2(Z/2),Λ

)
[∆−1] are the ring of modular forms

Z[1/2][c4, c6,∆
±1]/(123∆− c34 + c26).

The higher cohomology H>0
(
GL2(Z/2),Λ

)
is computed in [Sec.10.1, loc.cit.], and in particular is

killed by c4 and c6. Consequently,

H>0
(
GL2(Z/2), π≥0TMF (2)

)
= H>0

(
GL2(Z/2),Λ

)
= H>0(GL2(Z/2), π≥0Tmf(2)).

Let us recall (the names of) certain interesting classes in these cohomology groups:

(1) There is a in H1(GL2(Z/2), π4TMF (2)) = Z/3, hence in H1
(
GL2(Z/2), π5pic(TMF (2))

)
(so, a is in bidegree (s, t) = (1, 5) in the Picard HFPSS, and depicted in position (s, t−s) =
(1, 4) using the Adams convention). In homotopy, this element detects the Greek element
α1 in the Hurewicz image in TMF [1/2].

(2) There is b in H2
(
GL2(Z/2), π13pic(TMF (2))

)
= Z/3 (b is in bidegree (2, 13) or position

(2, 11)); in homotopy it detects β1.

Then, H>0
(
GL2(Z/2), TMF (2)∗

)
is precisely the ideal of Z/3[a, b][∆±1]/(a2) of positive coho-

mological degree. For example

H5
(
GL2(Z/2), π5pic(TMF (2))

)
= H5

(
GL2(Z/2), π4TMF (2)

)
= Z/3,

generated by ab2∆−1. We see this class depicted red below in Figure 6.

Next, we turn to the information which is new for the Picard HFPSS, i.e., the group cohomology
of π0 and π1 of the spectrum pic(TMF (2)). By Lemma 8.1.1, we know that the zeroth homotopy
group is Z/4, and since it is generated by the suspension ΣTMF (2), the action of GL2(Z/2) on this
Z/4 is trivial. Even though for our purposes only the invariants H0

(
GL2(Z/2), π0pic(TMF (2))

)
are necessary, we can in fact compute all the cohomology groups. This is done in Lemma A.1 of
Appendix A.
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The last piece of data needed for the determination of the E2-page of the Picard HFPSS is
the group cohomology with coefficients in π1pic(TMF (2)) = (π0TMF (2))×. This is done in
Proposition A.2. The range s ≤ 15 and −6 ≤ t−s ≤ 7 of spectral sequence is depicted in Figure 6.
Note that in this range, the t− s = 0 column has three non-zero entries: there is a Z/4 for s = 0,
Z/6 for s = 1, and Z/3 for s = 5.
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Figure 6. Homotopy fixed point spectral sequence for (picTMF (2))hGL2(Z/2)

(� denotes Z, • denotes Z/2, and × denotes Z/3)

Now we are ready to study the differentials in the HFPSS for pic(TMF (2))hGL2(Z/2). Compar-
ison with the HFPSS for the GL2(Z/2)-action on TMF (2) gives a number of differentials, using
our Comparison Tool 5.2.4. To distinguish between the differentials in the two spectral sequences,
let us denote by dor those in the HFPSS of TMF (2). The superscript o stands for “original.”

Recall that in the HFPSS for TMF (2), there are non-zero do5 and do9 differentials, which are
obtained, for example, by a comparison with the HFPSS for Tmf(2) which is fully determined in
[Sto12]. In particular, in the HFPSS for TMF (2), the first differential is do5(∆) = ab2, and the
rest of the do5’s are determined by multiplicativity. In particular, we have

do5

(
b5

∆2

)
=
ab7

∆3
do5

(
b3

∆

)
= −ab

5

∆2
.(8.3)

Next (and last) is do9; we have that do9(a∆2) = b5. Consequently, we also have

do9

(
ab2

∆

)
=

b7

∆3
.(8.4)

Let us now see which of these differentials also occur in the HFPSS for picTMF (2); according to
Comparison Tool 5.2.4, the d5-differentials are imported in the range t > 5, and the d9-differentials
in the t > 9 range. In particular, the differentials in (8.3) are the same in the Picard HFPSS; these
are the two differentials drawn in Figure 6. Moreover, everything in the zero column and above
the depicted region, i.e., such that s = t > 16, either supports a differential or is killed by one
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which originates in the t > 9 range. Hence, everything above the depicted region is killed in the
spectral sequence and nothing survives to the E∞-page.

Note, however, that we cannot (and should not attempt to) import the differential (8.4); this
would be a d9-differential with t = 5, so it does not satisfy the hypothesis of Comparison Tool 5.2.4.

Let us analyze the potentially remaining contributions to π0pic(TMF (2))GL2(Z/2); regardless of
what the rest of the differentials could possibly be, we have:

• a group of order at most 4 (and dividing 4) in position (0, 0),
• a group of order at most 6 (and dividing 6) in position (0, 1), and
• a group of order at most 3 (and dividing 3) in position (0, 5).

Therefore PicTMF [1/2] = π0pic(TMF (2))GL2(Z/2) has order at most 4 × 6 × 3 = 72, and divid-
ing 72. This is an upper bound. But we also have a well-known lower bound: the suspension
ΣTMF [1/2] generates a nontrivial element of Pic(TMF [1/2]) of order 72 because TMF [1/2] is
72-periodic. Thus we have proven the result. �

Remark 8.1.4. Our computations give an independent proof of the result of Fulton-Olsson [FO10]
that the Picard group of the classical moduli stack of elliptic curves Mell over Z[1/2] is Z/12.
(Fulton-Olsson carry out the analysis over any base, though.) This is a toy analog of the above
analysis.

In fact, the Picard groupoid of the moduli stack Mell[1/2] is the homotopy fixed points of the
GL2(Z/2)-action on the Picard groupoid of Mell(2). Now the Picard group of Mell(2) is Z/2,
as Mell(2) is an open subset in a weighted projective stack over a UFD, so that quasi-coherent
sheaves on Mell(2) correspond simply to graded modules over Z[1/2, λ1, λ2, (λ

2
1λ

2
2(λ1−λ2))−1] and

the only nontrivial invertible object is the shift by one of the unit.

In the HFPSS for computing Pic(Mell[1/2]), we see by the above computation of

H1
(
GL2(Z/2); Γ(Mell(2),O×)

)
that one gets a contribution of order 6. Thus, |Pic(Mell[1/2])| ≤ 12, but we know that ω has order
twelve, so we are done.

8.2. The Picard group of TMF [1/3]. This section will be similar to Section 8.1, but with
more complicated computations as is to be expected from 2-torsion. In this case we will use
the GL2(Z/3)-Galois extension TMF [1/3] → TMF (3), coming from the Galois cover Mell(3) →
Mell[1/3] of the moduli stack of elliptic curves with 3 inverted by the moduli stack of elliptic curves
equipped with a full level 3-structure.

From [Sto14, 4.2], we can immediately compute the homotopy groups of TMF (3): the moduli
stack Mell(3) is affine, and is given as the locus of non-vanishing of

∆ = 3−5ζ(1− ζ)γ3
1γ

3
2(γ1 + ζγ2)3(γ2 − ζγ1)3

in the compact moduli stack Mell(3) = ProjZ[1/3, ζ][γ1, γ2]. Here γi are variables in (topological)
degree 2, and ζ is a primitive third root of unity, whose appearance is due to the fact that the Weil
pairing on the 3-torsion points of an elliptic curve equips Mell(3) with a map to SpecZ[1/3, ζ].
Hence the descent spectral sequence computing TMF (3)∗ collapses to give

TMF (3)∗ = Z[1/3, ζ][γ±1
1 , γ±1

2 ][(γ1 + ζγ2)−1, (γ2 − ζγ1)−1].

Written differently, we have that TMF (3)∗ = TMF (3)0[γ±1
2 ], and

TMF (3)0 = Z[1/3, ζ][t±1, (1− ζt)−1, (1 + ζ2t)−1],(8.5)

for t = γ1
γ2

. In particular TMF (3)0 is regular noetherian, and TMF (3) is even periodic. Thus,

Theorem 2.4.6 (together with the fact that the ring Z[ζ, t] and hence any of its localizations has
unique factorization) implies the following conclusion.
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Lemma 8.2.1. The Picard group Pic(TMF (3)) is Z/2 generated by ΣTMF (3).

Naturally, we will use this lemma as an input in computing the HFPSS for the associated Picard
spectra.

Theorem 8.2.2. The Picard group of TMF [1/3] is Z/192, generated by the suspension ΣTMF [1/3].
In particular, this Picard group is algebraic.

Proof. As is to be expected, we use the HFPSS (3.5)

Hs(GL2(Z/3), πtpic(TMF (3)))⇒ πt−spic(TMF (3))hGL2(Z/3).(8.6)

The homotopy groups πt(picTMF (3)) for t ≥ 2 are isomorphic to πt−1TMF (3) as GL2(Z/3)-
modules, hence the t ≥ 2 part of the E2-page of the HFPSS for picTMF (3) is same as the
corresponding part in the HFPSS for TMF (3). We will use the fact that TMF (3) ' Tmf(3)[∆−1]
to identify this part of the spectral sequence for TMF (3) and therefore for pic(TMF (3)).

The E2-page of the HFPSS commuting the homotopy groups of Tmf 2̂ as (Tmf(3)2̂)hGL2(Z/3)

is computed in [Sto14], and depicted in Figure 9 of loc.cit. Since we are working with 3 inverted,
and 2 and 3 are the only primes dividing the order of GL2(Z/3), we conclude that

H>0(GL2(Z/3), π∗Tmf(3)) = H>0(GL2(Z/3), π∗Tmf(3)2̂).

The invariants H0(GL2(Z/3), π>0Tmf(3)) are the ring of modular forms Z[1/3][c4, c6,∆]/(123∆−
c34 + c26).

Let Γ denote the graded ring Z[1/3, ζ][γ1, γ2]. As in the case of level 2-structures, we have that

H∗(GL2(Z/3), π∗TMF (3)) = H∗(GL2(Z/3),Γ)[∆−1].

In the group cohomology of Γ, computed and depicted in Figure 7 of [Sto14], there are a number
of interesting torsion classes, including:

(1) h1 in bidegree (s, t) = (1, 2), depicted in position (s, t − s) = (1, 1), which detects (the
Hurewicz image of) the Hopf map η in homotopy.

(2) h2 in position (1, 3), which detects (the Hurewicz image of) the Hopf map ν.
(3) d in position (2, 14), which detects in homotopy the class known as κ.
(4) g in position (4, 20), which detects in homotopy the class κ̄.
(5) c in position (2, 8), which detects in homotopy the class ε.

The homotopy elements detected by these classes satisfy some relations; for example,

η3 = 4ν, κν2 = 4κ̄.

Let us also name one of the less famous elements in the descent spectral sequence for tmf(2), which
also appear in the HFPSS for TMF [1/3]. Namely, there is a Z/2 in position (1, 5); we will the
generating class by the generic name x (in [Bau08] it bears the name a2

1h1).

All torsion classes with the exception of (powers of) h1 are annihilated by c4 and c6. In the Picard
spectral sequence, all of these classes appear shifted by one to the right; we have labeled some such
classes in Figure 9. A “zoomed in” portion of the Picard spectral sequence is depicted in Figure 8.
There, and in all of the related spectral sequences, lines of slope 1 denote h1-multiplication, and
lines of slope 1/3 denote h2-multiplication.

A “zoomed out” portion of the Picard HFPSS (8.6) is depicted in Figure 7; the elements that
are to the right of the t = 2 line are, of course, a shift of the corresponding elements in the spectral
sequence for TMF [1/3]. However, to avoid cluttering the picture, a family of classes is not shown,

with the exception of the elements depicted in green, namely h3
1
c4c6
∆ and h6

1
c24
∆ , as well as the tower

supported on 1, which do belong to this family. The family consists precisely of the h1-power
multiples of non-torsion classes. In the “zoomed in” Figure 9 this family is also not shown.
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Figure 7. Homotopy fixed point spectral sequence for pic(TMF (3))hGL2(Z/3)

(� denotes Z, • denotes Z/2, � denotes Z/2[j], and × denotes Z/3)

More specifically, the non-torsion subring of the E2-page of the TMF [1/3]-spectral sequence is
precisely the part in cohomological degree 0 and consists of the ring of modular forms MF∗[1/3] =
Z[1/3][c4, c6,∆

±1]/(123∆ − c34 + c26). On the E2-page, these support infinite h1-multiples, i.e.,
MF∗[1/3][h1] is a subring of the E2-page. Note that in degree zero, MF∗[1/3] = Z[j], where
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j =
c34
∆ is the classical j-invariant. What we have omitted drawing in Figure 7 and 9 is all of the

elements coming from this subring, with the exception of the mentioned classes. For comparison,
these elements are drawn in the smaller-range Figure 8.

Remark 8.2.3. These two classes, which we have depicted in green, do not appear in the spectral
sequence for Tmf [1/3], since they involve a negative power of ∆. Another difference between the
Tmf and TMF situation is that in the E2-page of the latter, there are infinite groups, isomorphic
to Z/2[j] and generated by h1, h2

1, h3
1, etc., in positions (1, 1), (2, 2), (3, 3), etc. Moreover, the

element x in position (1, 5) also generates an infinite Z/2[j], as do all of its h1-multiples.

Note that in the range that we are considering (namely, t > 1), the HFPSS for the GL2(Z/3)-
action on Tmf(3) coincides with the descent spectral for Tmf [1/3] as the sections of Otop over
Mell[1/3], and the differentials in the latter have been fully determined in Johan Konter’s master
thesis [Kon]. Of course, these differentials really come from the connective tmf , whose descent
spectral sequence is fully computed in [Bau08]. In these spectral sequences, do3 is the first non-
trivial differential, followed by do5, d

o
7, d

o
9 . . . d

o
23. In particular, we have the following differentials

[Bau08, Sec.8]:

(8.7)

do3(c6) = c4h
3
1 do3(x) = h4

1

do5(∆) = gh2 do7(4∆) = gh3
1

do9(∆2h1) = g2c do11(d∆2) = g3h1,

and a number of others.

Let us see now which of these differentials we can import using our Comparison Tool 5.2.4. In

the TMF [1/3] spectral sequence, we have that do3(h3
1
c4c6
∆ ) = h6

1
c24
∆ ; in the Picard SS, the element

corresponding to h3
1
c4c6
∆ has t = 3, thus we cannot import this differential. We deal with this class

later, i.e., in the next paragraph. However, all the other classes which are on the s = t column
and are h1-power multiples of non-torsion classes, i.e., members of the family which we have not
drawn in Figure 7, are well within the t > 3 range, so that we can indeed conclude by Comparison
Tool 5.2.4 that they either support a differential or are killed by one. For example, the h1-multiple

of the differential just discussed does happen, i.e., in the Picard SS we have d3(h4
1
c4c6
∆ ) = h7

1
c24
∆ . In

particular, we need not worry about these omitted classes any more.

Now we turn to the question of whether any differentials are supported on the (s, t− s) = (3, 0)
position in the HFPSS for pic(TMF (3))hGL2(Z/3). For this purpose we use the universal formula

(6.1) of Theorem 6.1.1, just as we did in the second proof of Proposition 7.2.8. We have that E3,3
2

of the Picard spectrum HFPSS is Z/2[j] generated by h3
1
c4c6
∆ ; the corresponding element in the

original HFPSS has

do3

(
h3

1

c4c6
∆

)
= h6

1

c24
∆
.

Now we have that (
h3

1

c4c6
∆

)2

= h6
1

c24c
2
6

∆2
= (j − 123)h6

1

c24
∆

= jh6
1

c24
∆
,

using the fact that 123∆ = c34 − c26 and that by definition, j =
c34
∆ . Therefore, we conclude by (6.1)

that in the Picard HFPSS, the differential d3 : E3,3
2 → E6,5

2 is given by

d3

(
f(j)h3

1

c4c6
∆

)
= (f(j) + jf(j)2)h6

1

c24
∆
,

where
(
f(j)h3

1
c4c6
∆

)
is an arbitrary element of E3,3

2 . However, (f(j) + jf(j)2) in Z/2[j] is zero
only if f(j) is zero, hence this d3 is injective and has trivial kernel. (Note this is an interesting

difference between this situation and the one in Proposition 7.2.8.) Consequently, E3,3
4 is zero.



THE PICARD GROUP OF TOPOLOGICAL MODULAR FORMS VIA DESCENT THEORY 45

�4 �2 0 2 4 6

0

2

4

6

8

10

12

14

?

?

⇤

⇥

?

?

?

?

h3
1

c4c6

�

h6
1

c2
4

�

h1

h2

1

Figure 8. Homotopy fixed point spectral sequence for pic(TMF (3))hGL2(Z/3)

(� denotes Z, • denotes Z/2, � denotes Z/2[j], and × denotes Z/3)



46 AKHIL MATHEW AND VESNA STOJANOSKA

�4 �2 0 2 4 6

0

2

4

6

8

10

12

14

16

18

?

?

⇤

⇥

?

?

?

?

h3
1

c4c6

�

h6
1

c2
4

�

h1

h2
x

x g
�

h1
g
�

h2
g
�

c g2

�2

d g3

�3

dh1
g4

�4

1

Figure 9. Homotopy fixed point spectral sequence for pic(TMF (3))hGL2(Z/3)

(� denotes Z, • denotes Z/2, � denotes Z/2[j], and × denotes Z/3)



THE PICARD GROUP OF TOPOLOGICAL MODULAR FORMS VIA DESCENT THEORY 47

Further use of Comparison Tool 5.2.4 determines the all the differentials we have drawn in blue
in Figures 7 to 9. Note that of the classes in the s = t column, i.e., the one which contributes to
the Picard group of TMF [1/3], everything with s ≥ 8 is killed. However, h2

g
∆ , generating a Z/4

in s = 5, and h3
1
g
∆ generating a Z/2 in s = 7, remain. In the original spectral sequence, the first

one of these supported a do5 and a do13, and the second supported a do25.

Next we need to determine the rest of the spectral sequence, i.e., the part which involves π0 and
π1 of the Picard spectrum of TMF (3). Computations for this are deferred to the Appendix; the
results that we care about are, according to Lemma B.2 and Proposition B.5, H∗(GL2(Z/3),Z/2) =
Z/2 for each 0 ≤ ∗ ≤ 2, and H∗(GL2(Z/3), π0pic(TMF (3))) is a group of order 12.

At this point we are ready to make conclusions about the Picard group of TMF [1/3]: in the
t = s vertical line of the HFPSS, i.e., the one that abuts to π0picTMF [1/3] = PicTMF [1/3],
nothing above the s = 7 line survives the spectral sequence. The following might survive:

• at most a group of order 2 in position (0, 0),
• at most a group of order 12 in (1, 0),
• at most a group of order 4 in (5, 0), and
• at most a group of order 2 in (7, 0).

The upshot is that we get an upper bound of 2×12×4×2 = 192 on the order of the Picard group.
But TMF [1/3] is 192-periodic, so this upper bound must also be a lower bound. In conclusion,

Pic(TMF [1/3]) = Z/192

as claimed, generated by ΣTMF [1/3]. �
Remark 8.2.4. As in Remark 8.1.4, we can use some of our computations to reprove Fulton-
Olsson’s [FO10] result that the moduli stack of elliptic curves Mell[1/3] also has a Picard group
Z/12. Namely, we start with the knowledge that Pic(Mell(3)) is trivial, as Mell(3) is the prime
spectrum of a UFD. Then, we consider the Picard HFPSS for the algebraic stack Mell[1/3], which
must collapse due to sparsity. The only contribution towards the Picard group is

H1
(
GL2(Z/3),Γ(Mell(3),O×)

)
which we saw by Proposition B.5 has order 12. But ω has order 12, hence PicMell[1/3] is cyclic of
order 12.

8.3. Calculation of Pic(TMF ). In this section we will compute the Picard group of the integral
period version of topological modular forms TMF . The result, as stated in the introduction, is:

Theorem A. The Picard group of integral TMF is Z/576, generated by ΣTMF .

Proof. There is no nontrivial Galois extension of the integral TMF by [Mat14a, Theorem 10.1],
but we can use étale descent, as TMF is obtained as the global sections of the sheaf Otop of
even-periodic E∞-rings on the moduli stack of elliptic curves. Namely, we can use Theorem 3.2.1
because the map Mell →MFG is known to be affine. The spectral sequence is

Hs(Mell, πtpicOtop)⇒ πt−sΓ(picOtop),
and we are interested in π0. Using Theorem 3.2.1, the E2-page of this spectral sequence is given
by

Es,t2 =


Z/2 t = s = 0

Hs(Mell,O×Mell
) t = 1

Hs(Mell, ω
(t−1)/2) t ≥ 3, odd

0 otherwise.

Over a field k of characteristic 6= 2, 3, Mumford [Mum65] showed that

H1((Mell)k,O×Mell
) ' Z/12,



48 AKHIL MATHEW AND VESNA STOJANOSKA

i.e., the Picard group of the moduli stack is Z/12, generated by the line bundle ω that assigns to an
elliptic curve the dual of its Lie algebra. This result is also true over Z by the work of Fulton-Olsson
[FO10]. However, using descent we can reprove that result. Namely, in Remarks 8.1.4 and 8.2.4 we
saw that the Picard groups of both Mell[1/2] and Mell[1/3] are Z/12, both generated by ω. Cover
the integral stack Mell by these two; their intersection is Mell[1/6], which is the weighted projective
stack ProjZ[1/6][c4, c6] (with c4 and c6 in degrees7 4 and 6 respectively), and which therefore has
Picard group Z/12 also generated by ω. The descent spectral sequence for pic associated to this
cover gives the result.

Because Mell[1/6] has no higher cohomology, the groups Hs(Mell, ω
(t−1)/2), when s > 0, are

given as the direct sum of the corresponding cohomology groups of Mell[1/2] and Mell[1/3]. These
groups, in turn, are isomorphic to

Hs(GL2(Z/p), πt−1TMF (p)) = Hs(GL2(Z/p), H0(Mell(p), ω
(t−1)/2)),

where p is 2 or 3, as the map Mell(p)→Mell[1/p] is Galois, and Mell(p) has no higher cohomology.
We computed these groups in the previous examples.

The machinery of Section 5 now allows us to compare this Picard descent spectral sequence to
the one which computes the homotopy groups of TMF . From Corollary 5.2.3 and an analogue
of Comparison Tool 5.2.4, we conclude that the differentials involving 3-torsion classes wipe out
everything above the s = 5 line, and those involving 2-torsion classes wipe out everything above the
s = 7 line. These differentials are identical to what happens in the homotopy fixed point spectral
sequences in the previous two examples. We conclude that the following are the only groups that
can survive:

• at most a group of order 2 in (t− s, s) = (0, 0),
• at most a group of order 12 in (0, 1),
• at most a group of order 2 in (0, 3),
• at most a group of order 12 in (0, 5), and
• at most a group of order 2 in (0, 7).

This gives us an upper bound 2732 on the cardinality of π0, which is twice the periodicity of TMF .
The spectral sequence is depicted in Figure 10. �

8.4. Calculation of Pic(Tmf). We will now prove the following result stated in the introduction:

Theorem B. The Picard group of Tmf is Z⊕Z/24, generated by ΣTmf and a certain 24-torsion
invertible module.

Note that while Tmf [1/n], for n = 2, 3, can be described as the homotopy fixed point spectrum
Tmf(n)hGL2(Z/n) just as in the periodic case, the extension Tmf [1/n] → Tmf(n) is not Galois,
and therefore we cannot use Galois descent to compute the Picard group. However, we can use
Theorem 3.2.1 for the compactified moduli stack Mell.

First, we need a lemma.

Lemma 8.4.1. Let L be the line bundle on Mell obtained by gluing the trivial line bundles on
Mell = Mell[∆

−1] and Mell[c
−1
4 ] via the clutching function j. Then L ' ω−12.

Proof. To give a section of L⊗ω12 over Mell is equivalent to giving sections s1 ∈ Γ(Mell, ω
12) and

s2 ∈ Γ(Mell[c
−1
4 ], ω12) such that (js1)|Mell[c

−1
4 ] = (s2)|Mell[c

−1
4 ]. We take s1 = ∆ and s2 = c34, and

we get a nowhere vanishing section of L ⊗ ω12. �

7These are the algebraic degrees, which get doubled in topology
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Figure 10. Descent spectral sequence for Γ(picOtop) on Mell
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Proof of Theorem B. The relevant part of the (Picard) descent spectral sequence is similar as for
TMF , with the following exceptions: the algebraic part H1(Mell,O×) is now Z, by Fulton-Olsson
[FO10], and all the torsion groups are now finite, i.e., there are no Z/2[j]’s appearing. In particular,

E3,3
2 is zero, and we have

• at most a group of order 2 in (t− s, s) = (0, 0),
• a sub-quotient of Z in (0, 1),
• at most a group of order 12 in (0, 5), and
• at most a group of order 2 in (0, 7),

as potential contributions to the E0
∞-page. The depiction is in Figure 11.

Note that the Z/2 in (0, 0), which corresponds to a single suspension of the even-periodic spectra
that Tmf is built from, is represented by ΣTmf in the Picard group of Tmf . Similarly, the element
1 ∈ Z = E0,1

2 = PicMell corresponds to the line bundle ω, which topologically is represented by
Σ2Tmf . Thus these groups survive to the E∞-page and are related by an extension. The rest of
the E∞-filtration now tells us that PicTmf sits in an extension

0→ A→ PicTmf → Z→ 0,

where A is a finite group of order at most 24.

We claim that A = Z/24 and therefore Pic(Tmf) = Z⊕ Z/24. To see this, we will construct a
line bundle I such that I⊗24 ' Otop, but no lower power of I is equivalent to Otop.
Construction 8.4.2. Consider the cover of Mell by Mell[∆

−1] = Mell and Mell[c
−1
4 ] which fit in

the pushout diagram

Mell[∆
−1, c−1

4 ] //

��

Mell[∆
−1]

��
Mell[c

−1
4 ] // Mell.

Let J be the line bundle on the derived moduli stack Mell = (Mell,Otop) obtain by gluing Otop
on Mell[∆

−1] and Otop on Mell[c
−1
4 ] using the clutching function j =

c34
∆ on Mell[∆

−1, c−1
4 ].

We claim that J is not a suspension of Otop, and that I = Σ24J is an element of the Picard
group of order 24.

To see this, we note that π0J is ω⊗−12, so if J is a suspension of Otop, it ought to be Σ−24Otop.
However, Σ−24Otop restricted to Mell[∆

−1] is Σ−24Otop, whereas J restricts to Otop on Mell[∆
−1].

As we know from Section 8.3, these are not isomorphic on Mell[∆
−1]; nonetheless, they do become

isomorphic after taking 24-th tensor powers. Consequently, J⊗24 ' (Σ24Otop)⊗24 ' Σ−576Otop.
Note that this analysis also shows that no lower power of J is a suspension of O. Therefore
I = Σ24J defines an element of order 24 of the Picard group of Mell and thus of Tmf . �

The same analysis shows that PicTmf(2) = Z ⊕ Z/8 and PicTmf(3) = Z ⊕ Z/3, the torsion
being generated by the respective localizations of I. Moreover, PicTmf(p), for p > 3 is Z.

8.5. Relation to the E2-local Picard group. Notice that I is the only “exotic” element in all
of our examples involving the various forms of topological modular forms. Let us see how it relates
to the exotic piece of the Picard group of the category of E2-local spectra, i.e., modules over the
E2-local sphere spectrum. The exotic phenomena only occur at p = 2 and p = 3, but since only
the 3-primary E2-local Picard group is known, let us concentrate on that case for the remainder
of this section.

In [GHMR12], the authors compute κ2, the exotic part of the Picard group of the category of
3-primary K(2)-local spectra; they show κ2 = Z/3× Z/3.
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Figure 11. Descent spectral sequence for Γ(picOtop) on Mell
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In addition, they look at the localization map from the E2-local category to the K(2)-local
category, and show that it induces an isomorphism κL2 → κ2, where κL2 denotes the exotic
E2-local Picard group.

Consider now the commutative diagram

κL2
//

t

��

κ2

tK(2)

��
PicTmf(3)

// PicTmfK(2),

in which the horizontal maps are given by K(2)-localization, and the vertical maps are given by
smashing with Tmf and TmfK(2), respectively. In Thm.5.5 of loc.cit, the authors show that there

is an element P of κ2 such that LK(2)(P ∧ TmfK(2)) ' Σ48TmfK(2), i.e., tK(2)P = 48 ∈ Z/72 ⊆
PicTmfK(2). Under the top horizontal isomorphism, this P lifts to an element P̃ of κL2

, such that

t(P̃ ) has order three in PicTmf and such that the K(2)-localization of t(P̃ ) is LK(2)(Σ
48Tmf).

Therefore, t(P̃ ) must be twice the class of I. In other words, the exotic element P̃ of κL2
is

detected as an exotic element of PicTmf(3).

The other Z/3 in κ2, i.e., κ2 modulo the subgroup generated by P , is generated by a spectrum

Q such that tK(2)Q = 0. This Q lifts to Q̃ ∈ κL2
, still of order 3, which must map under t to an

element of order 3 in PicTmf which is in the kernel of the bottom localization map. But there are

no non-trivial elements of finite order in this kernel, hence Q̃ is not detected in PicTmf(3).

Perhaps at the prime 2 as well there is an element of the exotic E2-local Picard group which is
detected in the torsion of PicTmf(2).

Appendices

Appendix A. Group cohomology computations for TMF (2)

In this section of the appendix we compute the group cohomology for the GL2(Z/2)-action on
π0pic(TMF (2)) = Z/4 (with trivial action), and on π1pic(TMF (2)) = TMF (2)×0 with the natural
action. The group GL2(Z/2) is the symmetric group on three letters, so it has a (unique) normal
subgroup of order 3, which we denote C3, with quotient C2. We can therefore use the associated
Lyndon-Hochschild-Serre spectral sequence (LHSSS)

Hp(C2, H
q(C3,M))⇒ Hp+q(GL2(Z/2),M)(A.1)

for GL2(Z/2)-modules M .

Let us first deal with the easier case.

Lemma A.1. The group cohomology for the GL2(Z/2)-action on the trivial module Z/4 is

H∗(GL2(Z/2), π0pic(TMF (2))) =

{
Z/4, ∗ = 0

Z/2, ∗ > 0.

Proof. Since 3 is invertible in Z/4, we have that H∗(C3,Z/4) = Z/4 concentrated in degree zero,
and with trivial action by C2 = GL2(Z/2)/C3. Hence the LHSSS (A.1) collapses, giving

Hs(GL2(Z/2),Z/4) = Hs(C2,Z/4),

which is Z/4 for s = 0 and Z/2 otherwise. �

Next we will compute the group cohomology for the action of GL2(Z/2) on π1pic(TMF (2))
which is the multiplicative group of units in π0TMF (2). First of all, we should explicitly describe
the module that we are working with.
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Let σ and τ be the generators of GL2(Z/2) of order 3 and 2 respectively as chosen in [Sto12,
Lem.7.3]; of course, σ generates the normal subgroup C3. For brevity, let M denote the module of
units in TMF (2)0; by (8.1) is isomorphic to Z/2 ⊕ Z⊕3, where Z/2 is multiplicatively generated
by −1, and the Z’s are multiplicatively generated by 2, s and (s− 1). The action is determined by
[Lem.7.3,loc.cit.], where it is shown that the chosen generators σ and τ act as

σ : s 7→ s− 1

s
τ : s 7→ 1

s
.

For example, a generic element m in M is transformed by σ as

m = (−1)ε2ksa(s− 1)b 7→ σm = (−1)ε+b2ks−a−b(s− 1)a

7→ σ2m(−1)ε+a+b2ksb(s− 1)−a−b,

which, written additively gives

σ : (ε, k, a, b) 7→ (ε+ b, k,−a− b, a) 7→ (ε+ a+ b, k, b,−a− b).

To use the LHSSS (A.1), the first step is to compute H∗(C3,M). From our formula for the σ
action, we see that

(1− σ)(ε, k, a, b) = (b, 0, 2a+ b, b− a)

Nσ(ε, k, a, b) = (1 + σ + σ2)(ε, k, a, b) = (ε+ a, 3k, 0, 0);

thus we conclude that for q ≥ 1

H0(C3,M) = MC3

= ker(1− σ) = Z/2⊕ Z = {±2k}
H2q(C3,M) = ker(1− σ)/ im(Nσ) = Z/3 = 2Z/23Z

H2q−1(C3,M) = kerNσ/ im(1− σ) = Z/3 = (−s)Z/(−s)3Z.

In the odd cohomology groups kerNσ/ im(1− σ), (s− 1) is congruent to (−s)2.

Further, τ acts trivially on Hs(C3,M) when s ≡ 0, 1 modulo 4, and nontrivially when s ≡ 2, 3
modulo 4. This gives the E2-page of the LHSSS, which must collapse and give the following
computation:

(A.2) Hs(GL2(Z/2),M) =



Z/2⊕ Z, for s = 0

Z/2⊕ Z/3, for s ≡ 1(4)

Z/2⊕ Z/2, for s ≡ 2(4)

Z/2, for s ≡ 3(4)

Z/2⊕ Z/2⊕ Z/3, for s ≡ 0(4), s > 0.

We have thus proven the following result.

Proposition A.2. The group cohomology for the GL2(Z/2)-action on π0pic(TMF (2)) = (TMF (2)0)×

is as in (A.2). In particular, we have that H1(GL2(Z/2), TMF (2)×0 ) = Z/6.

Appendix B. Group cohomology computations for TMF (3)

This section of the appendix is devoted to computing the group cohomology for GL2(Z/3)
acting on π0pic(TMF (3)) = Z/2, and π1pic(TMF (3)0)×. The group GL2(Z/3) has order 48 and
has the binary tetrahedral group as normal subgroup, in the guise of SL2(Z/3). We have found
it difficult to compute the higher cohomology groups of (TMF (3)0)×, but since we are only using
H1(GL2(Z/3), (TMF (3)0)×) in Section 8.2, we will concentrate on computing this group only.
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From (8.1), we see that TMF (3)×0 ⊂ TMF (3)0 is Z/2⊕ Z/3⊕ Z⊕4 multiplicatively generated
by −1, ζ, 3, t, (1− ζt), and (1+ ζ2t). The GL2(Z/3)-module structure is determined in [Sto14, 4.3];
to describe it, let x, y, z be the elements of GL2(Z/3) chosen in loc.cit. Explicitly,

x =

(
0 −1
1 0

)
, y =

(
−1 −1
−1 1

)
, z =

(
0 −1
1 −1

)
.

Then x and y generate a quaternion group Q8, and x, y, z generate SL2(Z/3). Let σ be the matrix(
1 0
0 −1

)
. These generate the whole group, and their action on the element t = γ1

γ2
is as determined

in loc.cit. to be

x(t) = −1

t
y(t) = ζ2 1− ζt

1 + ζ2t
z(t) = ζ2 t

1− ζt σ(t) =
1

t
.

The rest is is determined by the fact that everything fixes Z[1/3] ⊂ TMF (3)0, a matrix A in
GL2(Z/3) takes ζ to ζdetA, and the action respects the ring structure.

Consequently, we see that the submodule Z of TMF (3)×0 multiplicatively generated by 3 has
trivial action and splits off. Let M be its complement in TMF (3)×0 ; then for any integer s we have

Hs(GL2(Z/3), TMF (3)×0 ) = Hs(GL2(Z/3),Z)⊕Hs(GL2(Z/3),M).(B.1)

Lemma B.1. The first cohomology group H1(GL2(Z/3),Z) of the trivial module Z is zero.

Proof. We show this by a couple of applications of the LHSSS. Recall from [CE99, XII.7] that
Hs(Q8,Z) is Z for s = 0, Z/2 ⊕ Z/2 for s = 4p + 2, Z/8 for s = 4p, and zero otherwise. In
particular, H1 is zero. Now look at the LHSSS for the extension

1→ Q8 → SL2(Z/3)→ C3 → 1;

since H1(C3,Z) = 0, we get that H1(SL2(Z/3),Z) is also trivial. Next we apply the LHSSS for
the extension

1→ SL2(Z/3)→ GL2(Z/3)→ C2 → 1;

again H1(C2,Z) = 0, proving the result. �

While we are working with trivial modules, let us also compute the cohomology of Z/2.

Lemma B.2. The cohomology Hs(GL2(Z/3),Z/2) is Z/2 for 0 ≤ s ≤ 2.

Proof. The method of proof is same as for the previous lemma; however, now we start with the
fact that

Hs(Q8,Z/2) =

{
Z/2, for s ≡ 0, 3(4)

Z/⊕ Z/2, for s ≡ 1, 2(4).

See for example [CE99, XII.7]. The modules Z/2⊕Z/2 in degrees congruent to 1 or 2 modulo 4 have
non-trivial C3-action (without fixed points), where C3 is the quotient SL2(Z/3)/Q8. Therefore,
the LHSSS gives that Hs(SL2(Z/3),Z/2) is non-zero for s ≡ 0, 3 modulo 4, in which case it is
Z/2, and is zero otherwise. Hence in the last LHSSS iteration

Hp(C2, H
q(SL2(Z/3,Z/2)))⇒ Hp+q(GL2(Z/3),Z/2),

for s = p+ q ≤ 2, only q = 0 can contribute, and contributes precisely a Z/2. Due to scarcity, no
differentials can possibly happen in this initial part of the spectral sequence. �

Going back to the case of interest, i.e. TMF (2)×0 , we conclude by Lemma B.1 that

H1(GL2(Z/3), TMF (3)×0 ) = H1(GL2(Z/3),M),(B.2)
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and we now compute the latter cohomology group. The module M is isomorphic to Z/2⊕Z/3⊕Z⊕3

as an abelian group, and the action is as follows. If an element of M is written as m = (ε, α, a, b, c),
then the group generators x, y, z, σ act as

(B.3)

x : m 7→(ε+ a+ c, α+ b− c,−a− b− c, c, b)
y : m 7→(ε+ b+ c, α− a− c, b, a,−a− b− c)
z : m 7→(ε, α− a, a,−a− b− c, b)
σ : m 7→(ε+ b,−α− b+ c,−a− b− c, b, c).

There is a (non-split) short exact sequence

0→ Z/2→M → M̄ → 0;

we will show below in Proposition B.3 that H1(GL2(Z/3), M̄) = Z/12, and by Lemma B.2 we
know the first few cohomology groups of Z/2. Moreover, one easily sees that the invariant group
H0(GL2(Z/3), M̄) is trivial. The long exact sequence in cohomology associated to this exact
sequence of modules is, therefore,

0→ Z/2→ H1(GL2(Z/3),M)→ Z/12
∂1−→ Z/2;(B.4)

in Proposition B.5, we will compute the connecting homomorphism ∂1 : Z/12→ Z/2.

Proposition B.3. The cohomology group H1(GL2(Z/3), M̄) is cyclic of order 12.

Proof. There is a short exact sequence

0→ M̄ → M̃ → Z→ 0

of GL2(Z/3)-modules, in which M̃ can be described as the multiplicative group of units in(
TMF (3)0[(1− t)−1]

)
/2.

Note that M̄ has a similar description, as the group of units in
(
TMF (3)0

)
/2. As an abelian group,

M̄ is isomorphic to Z/3⊕Z⊕3, multiplicatively generated (in
(
TMF (3)0

)
/2) by ζ, t, (1 + ζt), and

(1 + ζ2t). The module M̃ is isomorphic as an abelian group to Z/3 ⊕ Z⊕4, where in addition to

the generators for M̄ , the last Z is generated by (1 + t). The map M̃ → Z is simply given by
projection onto this last coordinate.

The action ofGL2(Z/3) is the one induced from the action on
(
TMF (3)0[(1−t)−1]

)
/2; explicitly,

if m̃ = (α, a, b, c, d) ∈ M̃ , the group elements x, y, z, σ act as

(B.5)

x : m̃ 7→(α+ b− c,−a− b− c− d, c, b, d)

y : m̃ 7→(α− a− c+ d, b, a,−a− b− c− d, d)

z : m̃ 7→(α− a, a,−a− b− c− d, b, d)

σ : m̃ 7→(−α− b+ c,−a− b− c− d, b, c, d).

We will show below in Proposition B.4 that H1(GL2(Z/3), M̃) = 0, implying that we have an
exact sequence

0→ H0(GL2(Z/3), M̃)→ Z ∂0−→ H1(GL2(Z/3), M̄)→ 0.(B.6)

Let us determine the invariants in M̃ ; an element m̃ = (α, a, b, c, d) is invariant if and only if

a = b = c = −a− b− c− d,
and

α ≡ α+ b− c ≡ α− a− c+ d ≡ α− a ≡ −α− b+ c mod(3).
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The first set of these equalities implies that d = −4a, and the second implies that amust be divisible

by 3, and that α = 0. Therefore, the invariants in M̃ are Z, generated by (0,−3,−3,−3, 12). This
also proves that the map

Z = H0(GL2(Z/3), M̃)→ H0(GL2(Z/3),Z) = Z,

induced by projection onto the last coordinate, is multiplication by 12. Hence, (B.6) identifies the
cohomology group H1(GL2(Z/3), M̄) with Z/12. �

Proposition B.4. For the module M̃ defined in the proof of Proposition B.3 above, we have

H1(GL2(Z/3), M̃) = 0.

Proof. In this proof we first consider GL2(Z/3) via a different extension from Lemma B.1 and B.2
above. Namely, we look at the center Z = C2 of GL2(Z/3) generated by x2 = y2, and hence

1→ Z → GL2(Z/3)→ PGL2(Z/3)→ 1.

Note that Z acts trivially on M̃ , and therefore, as M̃ has no 2-torsion, H1(Z, M̃) is zero. Conse-
quently, from the LHSSS associated to this extension

Hp(PGL2(Z/3), Hq(Z, M̃))⇒ Hp+q(GL2(Z/3), M̃),

we see that H1(GL2(Z/3), M̃) = H1(PGL2(Z/3), M̃). It is this latter group that we will compute
by a couple of more applications of the LHSSS.

The (reductions modulo the center Z of the) elements x, y generate a normal subgroup of
PGL2(Z/3) isomorphic to C2 × C2, and along with z, the three elements generate a subgroup of
order 12 that we will therefore call G12. This group G12 is also normal in GL2(Z/3).

First, let us compute the C2 × C2 cohomology; to do so, use the LHSSS for the extension

1→ Cx2 → C2 × C2 → Cy2 → 1,

where the subgroup is the C2 generated by x and the quotient by y. From (B.5), we see that

H0(Cx2 , M̃) = M̃x = ker(1− x) = Z/3⊕ Z⊕ Z

generated by (1, 0, 0, 0, 0), (0, 1, 0, 0,−2), and (0, 0, 1, 1,−2). To compute H1, note that ker(1 + x)
is Z ⊕ Z generated by (0, 1, 0, 0, 0) and (−1, 0, 1,−1, 0), by (B.5). Both of these are in the image
of (1 − x); the first is (1 − x)(0, 0, 0, 0, 1), and the second is (1 − x)(0, 0, 0,−1, 1), implying that

H1(Cx2 , M̃) = 0. Therefore, for s = 0 and s = 1, we have that

Hs(C2 × C2, M̃) = Hs(Cy2 , M̃
x).

Denote an element of M̃x as (α, a, b), in the basis given in the previous paragraph. This element

corresponds to (α, a, b, b,−2a− 2b) ∈ M̃ . Then, by (B.5), we have that

y(α, a, b) = (α, b, a).

By computing the kernel of (1− y) on M̃x we get that

H0(C2 × C2, M̃) = M̃x,y = Z/3⊕ Z,

generated by the elements (1, 0, 0) and (0, 1, 1) of M̃x. The kernel of the norm (1 + y) on M̃x is

Z, but it is contained in the image of (1− x), hence H1(C2 × C2, M̃) = 0.

Now we turn to computing the G12 cohomology, for which by the above we have that if s = 0
or s = 1,

Hs(G12, M̃) = Hs(C3, M̃
x,y),
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where the C3 is generated by z, or more precisely, the image of z under a suitable quotient. Similarly

as above, since M̃x,y = Z/3⊕Z, denote an element of it by (α, a). Then (α, a) corresponds to the

element (α, a, a, a,−4a) ∈ M̃ , so by (B.5), z acts on it by

z(α, a) = (α− a, a).

The kernel of (1− z) on M̃x,y therefore is

Z/3⊕ Z = H0(G12, M̃) = M̃x,y,z,

consisting of elements of the form (α, 3a), whereas the kernel of the norm (1 + z + z2) is (Z/3)

generated by (1, 0). However, ker(1 + z + z2) = im(1− z), hence H1(G12, M̃) = 0.

By the above discussion, we get that for s = 0, 1,

Hs(PGL2(Z/3), M̃) = Hs(Cσ2 , M̃
x,y,z).

To compute what this is, note that a generic element of M̃x,y,z is (α, 3a), corresponding to

(α, 3a, 3a, 3a,−12a) ∈ M̃ , and by (B.5),

σ(α, 3a) = (−α, 3a).

Again we have that ker(1 + σ) = im(1− σ), hence H1(Cσ2 , M̃
x,y,z) is trivial, implying the claimed

result. �

Proposition B.5. The connecting homomorphism ∂1 : H1(GL2(Z/3), M̄)
∂1−→ H2(GL2(Z/3),Z/2)

induced by the short exact sequence in (B.4) above is the surjection Z/12 → Z/2. Therefore, we
have an exact sequence

0→ Z/2→ H1(GL2(Z/3),M)→ Z/6→ 0.

The proof will consist of explicitly computing this connecting homomorphism, by its very defini-
tion. Therefore, let us first recall the construction of connecting homomorphisms in group cohomol-
ogy. Let G be a finite group, and let A be a G-module. Then the group cohomology H∗(G,A) can
be computed as the cohomology of the cochain complex C•(G,A), where Cn(A) = Map(G×n, A)
is the abelian group of set maps from the n-fold direct product G×n to A, and the differential
dnA : Cn(A)→ Cn+1(A) takes an n-cochain ϕ to the cochain dnAϕ defined by

(dnAϕ)(g0, g1, . . . , gn) = g0ϕ(g1, . . . , gn) +

n∑
i=1

(−1)iϕ(g0 . . . , gi−1gi, . . . ) + (−1)n+1ϕ(g0, . . . , gn−1).

(See, for example, [Wei94, 6.5].) For example C0(A) = A, and d0
A(a)(g) = ga− a. Let Zn(A) and

Bn(A) denote the groups of n-cocycles (i.e. the kernel of dnA) and n-coboundaries (i.e. the image

of dn−1
A ), respectively.

Now suppose we have a short exact sequence

0→ A
ι−→ B

π−→ C → 0

of G-modules. It is easily seen that then for each n ≥ 0,

0→ Cn(A)→ Cn(B)→ Cn(C)→ 0

is also exact. Then, an application of the Snake lemma to the map of exact sequences

0 // Cn(A) //

dnA
��

Cn(B) //

dnB
��

Cn(C) //

dnC
��

0

0 // Cn+1(A) // Cn+1(B) // Cn+1(C) // 0

is what gives the connecting homomorphism ∂n : Hn(G,C)→ Hn+1(G,A). Explicitly, let ϕ̄ be an
element of Hn(G,C) = Zn(C)/Bn(C), and let ϕ ∈ Zn(C) ⊆ Cn(C) be any representative of ϕ̄.
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(The connecting map ∂n does not depend on this choice.) Since the map π : B → C is surjective,
there exists a lift ϕ̃ : Gn → B such that ϕ = π ◦ ϕ̃. This ϕ̃ need not be a cocycle, but ψ = dnBϕ̃
surely is. However, since ϕ is a cocycle, π ◦ ψ is identically zero, hence there is a (unique) lift

ψ̃ : Gn+1 → A of ψ, i.e. such that ψ = ι ◦ ψ̃. This ψ̃ is also a cocycle, by the injectivity of ι, and

∂n(ϕ̄) is defined to be the class of ψ̃ in Hn+1(G,A). In particular, ∂n(ϕ̄) is zero if and only if ψ̃ is
a coboundary.

Proof of Proposition B.5. To start, let us understand the cocycle representatives of

H1(GL2(Z/3), M̄) ∼= Z/12.

In other words, for we are looking for set maps f : G → M̄ , which are cocycles, i.e such that
f(gh) = gf(h)+f(g), and which are not coboundaries. We can do this by computing the boundary
homomorphism from (B.6)

∂0 : H0(GL2(Z/3),Z) = Z→ H1(GL2(Z/3), M̄),

which we saw is surjective. It came from the exact sequence

0→ M̄ → M̃ → Z→ 0.

Indeed, let d ∈ Z be an arbitrary element, i.e. a zero cocyle; then, by the procedure described

above, we lift d arbitrarily to M̃ , for example as d̃ = (0, 0, 0, 0, d) ∈ M̃ = C0(M̃). Next we take

ψd = d0
M̃

: G→ M̃ ; by definition, it is the set function

ψd(g) = gd̃− d̃.
Since ψd(g) maps to zero in Z for every g ∈ GL2(Z/3), it is in image of M̄ . Call the resulting

function ψ̃d : G → M̄ . Then ψ̃d represents the image of d in H1(GL2(Z/3), M̄) under ∂0. In

particular, unless d is a multiple of 12, there is no m ∈ M̄ such that ψ̃d is of the form ψ̃d(g) =
gm−m.

Using (B.5), we can explicitly compute the values of ψ̃d in M̄ . For example,

(B.7)
ψ̃d(x) = (0,−d, 0, 0) ψ̃d(z) = (0, 0,−d, 0) ψ̃d(z

2) = (0, 0, 0,−d)

ψ̃d(y) = (d, 0, 0,−d) ψ̃d(σ) = (0,−d, 0, 0).

Next, we compute the connecting homomorphism

∂1 : H1(GL2(Z/3), M̄)→ H2(GL2(Z/3),Z/2)

of the function ψ̃d by the same procedure. To do so, we take an arbitrary lift of it to a set function
ρd : G→M ; for example, choose ρd to be the function which is always zero in the first coordinate,
i.e. the coordinate which corresponds to Z/2 ⊂ M . (Recall, M̄ = M/(Z/2).) Next we apply the
differential d1

M to this ρd; we have that d1
Mρd : G×G→M is given by

(d1
Mρd)(g, h) = gρd(h)− ρd(gh) + ρd(g).

For all g, h ∈ G, d1
Mρd maps to zero in M̄ , hence is in the image of Z/2 → M . Call the resulting

function ξd : G×G→ Z/2. This ξd represents the image of ψ̃d under ∂1.

Notice that we can simplify the formula for ξd(g, h) because we chose ρd(g) = (0, ψ̃d). Namely,
we have

(d1
Mρd)(g, h) = gρd(h)− ρd(gh) + ρd(g) = g(0, ψ̃d(h))− (0, ψ̃d(gh)) + (0, ψ̃d(g));

from where it follows that ξd(g, h) equals the first (i.e. the Z/2-) coordinate of the element

g(0, ψ̃d(h)) ∈ M . Let us use this, along with results from (B.7) (and the action described in
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(B.3)), to compute some values of ξd:

(B.8)

ξd(z,−) = 0

ξd(x, x) = d ξd(x, y) = d ξd(x, z) = 0 ξd(x, σ) = d ξd(σz, σ) = d

ξd(y, x) = 0 ξd(y, y) = d ξd(y, z) = d ξd(y, σ) = 0 ξd(xy, z
2) = 0

ξd(σ, x) = 0 ξd(σ, y) = 0 ξd(σ, z) = d ξd(σ, σ) = 0 ξd(xy, σ) = d.

The question is whether ξ = ξ1 is a coboundary, i.e. whether there exists a set function
λ : G→ Z/2 such that

ξ(g, h) = gλ(h)− λ(gh) + λ(g).

Since the action on Z/2 must be trivial, and −1 = 1 in Z/2, this condition is the same as

ξ(g, h) = λ(g) + λ(h) + λ(gh).

We will show that such λ cannot exist, therefore showing that ξ is not a coboundary, i.e. that it
must represent the non-trivial cocycle in H2(GL2(Z/3),Z/2) = Z/2, meaning that ∂1 is surjective.

Assume the contrary, i.e. assume that such λ exists. Then we would have for all g ∈ GL2(Z/3)
that λ(g2) = ξ(g, g). In particular, we get (using (B.8) ) that λ(z2) = 0 = λ(z), that λ(1) =
λ(σ2) = 0, and λ(x2) = λ(y2) = 1. Next, we have

ξ(x, z) = 0 = λ(x) + λ(z) + λ(xz)

ξ(z, y3) = 0 = λ(z) + λ(y3) + λ(zy3);

the relation xz = zy3 therefore implies that (after adding these two equalities)

λ(x) + λ(y3) = 0.

On the other hand, we also have

ξ(y, y2) = 0 = 1 + λ(y) + λ(y3),

so we conclude that

λ(x) + λ(y) = 1.

However,

ξ(x, y) = 1 = λ(x) + λ(y) + λ(xy)

then implies that λ(xy) = 0.

Now we will use the relation σzσz = xy in GL2(Z/3). On the one hand, we have

ξ(σz, σz) = λ(σzσz) = λ(xy) = 0,

but on the other, we can directly compute ξ(σz, σz) to be 1 (see the next paragraph for details).
This is a contradiction, hence such λ does not exist, hence ξ is not a coboundary, and our connecting
map must be a surjection as claimed.

Here is how to compute ξ(σz, σz). First of all we compute ψ̃1(σz); by construction this is

obtained by looking at the element 1̃ = (0, 0, 0, 0, 1) ∈ M̃ , and acting on it by σz. We have by
(B.5) that

σz(1̃) = σ(0, 0,−1, 0, 1) = (1, 0,−1, 0, 1),

hence ψ̃1(σz) = (1, 0,−1, 0) ∈ M̄ . Next, by the argument above (B.8), we take the element
(0, 1, 0,−1, 0) ∈M , act on it by σz to get (by (B.3))

σz(0, 1, 0,−1, 0) = σ(0, 1, 0, 1,−1) = (1, 0, 0, 1,−1),

and the value of ξ(σz, σz) is the first coordinate in this result, i.e. 1. �
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Appendix C. Derived functors of the symmetric square

The purpose of this appendix is to prove the necessary auxiliary results on symmetric squares
of cosimplicial abelian groups. The main lemma (Lemma C.3 below) is by no means new; it is
stated (without proof) as a special case of a more general result in [Goe90, Ch. II, Prop. 3.7], but
for the convenience of the reader, we include proofs here.

Definition C.1. Let A be an abelian group. We write Sym2(A) = (A⊗A)C2 be the C2-invariants
in the tensor square A ⊗ A and we let Sym2(A) = (A ⊗ A)C2

be the coinvariants. We also let

S̃ym2(A) denote the C2-coinvariants in (A⊗A)⊗Zε where the first factor is given the permutation
action and Zε is the sign representation.

We will need some tools for comparing these different functors. Let V be any finite-dimensional
F2-vector space. Then, we have a norm map

Sym2(V )→ Sym2(V ),

from coinvariants to invariants. The composite

V ⊗ V → Sym2(V ) ' (V ⊗ V )C2

N→ (V ⊗ V )C2

sends v ⊗ w 7→ v ⊗ w + w ⊗ v.

Proposition C.2. For any F2-vector space V , there is a natural exact sequence

(C.1) 0→ V → Sym2(V )
N→ Sym2(V )→ V → 0,

where the first map is the “Frobenius” that sends v ∈ V to the image of v⊗v ∈ V ⊗V in Sym2(V ).

The identification of the cokernel of the norm map with V is similar: it sends v ∈ V to the
image of v ⊗ v ∈ Sym2(V ) in the cokernel.

Proof. It is easy to see that we have a natural sequence V → Sym2(V )→ Sym2(V ), and a natural
map from V to the cokernel of the norm map given by v 7→ v ⊗ v. In other words, we get maps
φ1 : V → ker(N), φ2 : V → coker(N).

It remains to verify that φ1, φ2 are isomorphisms. Without loss of generality, we may assume
that dimF2

V <∞, since all terms involved commute with filtered colimits in V . Let {e1, . . . , en}
be a basis for V . Then Sym2(V ) has basis vectors {eiej}i≤j and Sym2(V ) has basis vectors given by

{ei ⊗ ej + ej ⊗ ei}i<j ∪ {ei ⊗ ei}. Under the norm map, the subspace of Sym2(V ) spanned by the

{eiej}i<j is mapped isomorphically to the subspace of Sym2(V ) spanned by {ei ⊗ ej + ej ⊗ ei}i<j ,
while the subspace spanned by the

{
e2
i

}
is annihilated. The cokernel of the norm map has a basis

given by the images of the {ei ⊗ ei}, and so the map from V to it is an isomorphism. Similarly,
we see that φ1 is an isomorphism. �

Our basic lemma is the following.

Lemma C.3. Let r ≥ 3, and let A• be a cosimplicial abelian group such that Hi(A•) = Z if i = r
and 0 otherwise. Then we have

H2r(Sym2(A• ⊗Z F2)) ' F2.

generated by the square. Moreover, Hi(Sym2(A• ⊗Z F2)) = 0 for i > 2r.

If one works modulo 2 (and it is easy to see that 2 is the relevant prime here), a more general
result, giving the computation of the homotopy groups of the symmetric square (stated in terms
of the dual simplicial F2-vector space) is given in [Goe90, Prop. 3.7, Ch II].
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Proof. We will reduce Lemma C.3 to a known statement about the homology of the symmetric
squares of spheres. Indeed, let A• = A• ⊗Z F2. It suffices now to compute the homology of the
simplicial F2-vector space

Sym2(A
∨
• ) ' Sym2(A

•
)∨,

and show that H2r(Sym2(A
∨
• )) ' F2. So, in general, our problem is equivalent to the following:

given a simplicial F2-vector space B• with Hr(B•) ' F2 and Hs(B•) = 0 for s 6= r, we need to
show that

(C.2) H2r(Sym2B•) ' F2, Hi(Sym2B•) = 0 for i > 2r.

In other words, we need to understand the nonabelian derived functors of the functor Sym2 on
vector spaces.

Unfortunately, (C.2) is phrased in terms of the functor Sym2 rather than the more classically
studied Sym2. We can get around this using Proposition C.2. We consider the exact sequence of
simplicial F2-vector spaces from (C.1),

0→ B• → Sym2(B•)
N→ Sym2(B•)→ B• → 0,

and the induced exact sequence in chain complexes obtained by applying the Dold-Kan correspon-
dence. But B• has homology only in degree r. It follows that the norm map Sym2(B•)→ Sym2(B•)
induces an isomorphism on homology in degrees 2r and above. Therefore, it suffices to show that
H2r(Sym2(B•)) ' F2 and Hi(Sym2(B•)) = 0 for i > 2r.

For this, in turn, the choice of simplicial F2-vector space B• is entirely irrelevant. In particular,
if we choose a pointed simplicial set X• modeling Sr, we may take B• ' F2[X•]/F2[∗]. In this
case, it follows that Sym2(B•) ' Sym2(F2[X•]/F2[∗]), and we have a natural isomorphism

(C.3) Sym2(B•) ' Sym2(F2[X•])/F2[X•],

because for any F2-vector space V with a one-dimensional subspace F2ι ⊂ V , we have a natural
isomorphism

Sym2(V/F2) ' Sym2(V )/V,

where V ⊂ Sym2(V ) via v 7→ v.ι.

Since F2[X•] has homology concentrated in degrees 0, r, it follows that we have a natural iso-
morphism

Hi(Sym2(F2[X•])) ' Hi(Sym2(B•)), i ≥ 2r.

But the simplicial vector space Sym2(F2[X•]) is the simplicial F2-homology of the simplicial set
Sym2(X•) ' (X• × X•)C2

. This simplicial set, via geometric realization, is a model for the
topological symmetric square (Sr ×Sr)C2 ; this follows as geometric realization for finite simplicial
sets commutes with finite products and colimits. Our assertion is now, finally, reduced to the
following Lemma. �

Lemma C.4. Let Sr be the r-sphere. Then H2r(Sym2(Sr);F2) ' F2.

Proof. This is a special case of the calculation [Nak58] of the homology of the symmetric powers
of spheres. �

Proposition C.5. Let t ≥ 2 and let A• be a cosimplicial abelian group with H∗(A•) concentrated
in degree ∗ = t+ 1 and Ht+1(A•) = Z generated by ι. Then:

(1) If t is even, H2t+2(Sym2A
•) ' Z/2, generated by ι2.

(2) If t is odd, then H2t+2(S̃ym2A
•) ' Z/2, generated by ι2.
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Proof. Consider first the case t even. In this case, we have maps of cosimplicial abelian groups

Sym2A
• → A• ⊗A• → Sym2A

•

where the first map is the norm map and the second map is projection. The composite is multi-
plication by two. Note that H2t+2(A• ⊗ A•) ' Z, but since t is even, the C2-action is the sign
representation, so that the map H∗(Sym2A

•)→ H∗(A•⊗A•) must be the zero map as it lands in
the C2-invariants on cohomology. In particular, the cohomology of Sym2(A•) is all annihilated by
2. By the universal coefficient theorem, it suffices to show that H2t+2(Sym2A

• ⊗Z Z/2) ' F2 and
Hk(Sym2A

• ⊗Z Z/2) = 0 for k > 2t+ 2, which we showed in Lemma C.3. Moreover, Lemma C.3
gives us our claim that ι2 generates the cohomology.

Now suppose t is odd. Again, using the norm maps

S̃ym2A
• → A• ⊗A• ⊗ ε→ S̃ym2A

•,

we find that the cohomology of S̃ym2A
• is annihilated by two. We note that S̃ym2A

• ⊗Z F2 '
Sym2A

•⊗ZF2 at the level of cosimplicial abelian groups. If we take the derived tensor product, we

obtain in addition a copy of A•⊗ZF2 (i.e., the 2-torsion in S̃ym2A
•) in π1 that does not contribute

in the relevant dimension, so we may ignore it. In this case, we know that Hk(S̃ym2A
•⊗ZF2) ' F2

for k = 2t + 2 and 0 for k > 2t + 2, so that we can apply the universal coefficient theorem as in
the previous case. �
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