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Abstract — This paper studies pricing as a means for the constraint that the number of active users cannot exceed
resource allocation in a wireless Direct-Sequence (DS)-Code- the number of available coddg. Total utility might be max-
Division Multiple-Access (CDMA) system. We consider the for- imized if each user supplies the base with a “pre-determined”
ward link of a single cell with orthogonal codes and voice traffic. ~ utility function based on a desired priority or grade of service.
The base station announces a price per unit transmitted power In that case, the users need not be charged by the base, and the
and a price per code, and the users respond according to their prices serve as internal network parameters for resource allo-
individual utilities. The objective is to set prices to maximize ei- cation. Total revenue would likely be used if the base does not
ther total user utility or total revenue. The solution to the former ~ know the individual utility functions, and the users are directly
problem (maximize utility) is presented. To study the latter prob-  charged by the base.
lem we derive the large system revenue as the number of users  We first formulate the preceding constrained optimization
and codes tend to infinity with fixed ratio. The large system rev- problems with a finite fixed user set. The prices which max-
enue depends on the distribution of utilities and path loss across imize utility are easily obtained. The prices which maximize
the user population, and may not be a unimodal function of the revenue are more difficult to determine, and we resort to a large
prices. Numerical results based on a simple model for user utility system analysis, in which the number of uskrand the num-
show how the optimal prices and revenue vary with the offered ber of codesM tend to infinity with fixed K/M. Both to-
load. tal utility and revenue can then be expressed in terms of the

prices, and distribution functions of user utility and received
I. INTRODUCTION power. We find that the revenue function is not always uni-

. . _modal, but give some specific conditions which guarantee uni-
This paper presents a framework for studying the use of Prigodality whenn, = 0. We also show how the optimal prices

N9 to allocate resources in a wireless DSTCDMA_‘ _system. Ulind revenue vary with offered load numerically based on a sim-
like other approaches FO resource gllocaﬂon, pricing can a”_%]e model for user utility and received power distribution.
cate resources according to perceived user utility, thereby i "Pricing of resources in communications networks in general

creasing the overall utility of the network. Other attractlvehas received much attention during the past few years (see,

properties include the accommodation of a wide range of '[ra1tc-)r example [1, 2, 3, 4, 5, 6]). Work related to that presented
fic flows, and potential simplification or elimination of explicit P

dmission control polici here on pricing for resource allocation in wireless systems is
aamission control policies. . . . reported in [7, 8, 9]. In that work, the emphasis is on conserv-
Here we consider the forward link of a single cell witlh

h | codes. W h IV VO in%lbattery life for the reverse link, and the model is based on a
ortdoaonahco es. ¢ e assume t at.on yvoice use;sl sre pLes% -cooperative game. We consider a different model based on
an t_ atF € ;et o user r.equests IS §tat|onary. though tige forward link, and present a different approach to evaluating
situation is quite simple, it serves to illustrate the framewor| erformance
for performance analysis, which can be generalized to account '
for mixed traffic types and multiple cells. . FORWARD LINK CDMA M ODEL

For the case considered, CDMA “resources” are transmitted . . o .

- . ~We consider a single cell in isolation and assume that each
power and number of codes. Each user has a utility function_. X )
active user is assigned one code from the base. Furthermore,

which is the amount the user is willing to pay for a given Qual- ", . . . :
. . ; <"~ "we ignore multiple-access interference at the receiver (mobile),
ity of Service (QoS). The base station announces a price

. X : Rihich corresponds to the situation in which the codes are or-
unit transmitted powet,, and a price per code., and each

user responds by requesting service to maximize his/her inétﬂ_ogonal and multipath is negligible (or is equalized). ‘The re-
P y req 9 ceived Signal-to-Interference Plus Noise Ratio (SINR) for user

vidual surplus (utility minus cost). The goal is to set price% is theny, = hy Py /Ny , whereh, is the attenuation to user
to maximize either total user utility or total revenue subject tg ", " thke forV\];arla Iini,transmittked power to userand N
’ k 0

“This work was supported by the NU-Motorola Center for CommunicalS the paCkground noise IeV_el- The transmitted power needed
tions and by NSF under grant CCR-9903055. to achieve the target SINR" is thereforeP; = Nov*/hy,.




The attenuatior; depends on the location of the user and The power radiated by the base causes interference to adja-
on random shadowing. We therefore assume thais cho- centcells, and therefore represents an econertérnality To
sen from some probability density functiond.f.) f5, which  account for this, we assume that the base makesafer pay-
in turn determines the transmitted powet. f. across users mentto the network given by P,,;, whereg is a constant and
fp. For the numerical results that follow, we assume that thB,,; is the total power radiated by the base. Ideaflyshould

received power at distanedrom the base is given by depend on the load in neighboring cells. Note thatan also
I\ be interpreted as a Lagrange multiplier which enforces a con-
Pr(r) = Pr(do) <_0> (1) straintonP.
r

Ill. PROBLEM FORMULATION

The objective of the base is to set the pricgsand«,, to
aximize total utility or revenue minus the total transfer pay-

where Pr(dy) is the received power at a close-in reference
pointd, in the far field region of the transmitter antenna, an(iin
n is the path loss exponent. We assume tRatd,) is the

) ) ment, that is,
same as the transmitted power from the base station so that
P, = Pgr(dp), and~y, = P,Cr~"/Ny, whereC = df} is a
constant andy, = Cr—". max (Utot = Z(Uk - ﬂPk)> 4)
In what follows, we will assume that users are distributed (oc,) keS

uniformly throughout the cell, and that= 4. Assuming that
the SINR requirement is satisfied for each user, the density of

transmitted powers over the user population is given by
max | Rt = Z(ac + ap Py, — BF;) (5)
—1/2 (ae,ap "
10 = 557 () € (0.4 NoR/C) e
T N N L PE T where

whereR denotes the cell radius. Of course, other distributions S={k:Us 2 ac+aphi} )

can be derived which account for additional propagation and ihe active user set.

system effects such as random shadowing and soft hand-off. |, response to the announced prices, each user maximizes
Each user is assigneduility function, which reflects the q received surplus,

user’s willingness to pay in dollars vs. the received QoS. For

voice traffic, the QoS is determined by the received SINR. If max [Uy,(7) = (e + apPy)] 7

the received SINR is above a certain threshgld,we assume P

that the user gets acceptable service and is indifferent to _ o . .

increase in received SINR. Conversely, if the received SINR g?i]:irﬁ%léshf;;k /No- For the step utility function considered,

less thary*, then the QoS is unacceptable and the user derivesWe constrair.(a a,) to lie in the feasible regioh

zero utility. For the numerical results which follow, udeis o

assigned a step utility functidii, (y) = Uk, v > v*, Ur(v) = F={(ac,a,):| S| /M <1} (8)

0, v < ~*, wherey* is the target SINR for acceptable voice

quality (say, 3 to 7 dB). The utility derived by usky Uy, is  in which the number of active user$ § | ) is no greater than

assumed to be chosen from some distributfpn Of course, the number of code®/ (i.e., demand does not exceed supply).

utility functions which correspond to other types of traffic canWhenever (8) is binding (S |= M), we say the system eode

also be considered within this framework. limited. It can be shown that there always exists a maximizing
The base announces a price per cadand a price per unit (a.,a,) € F.
powera,. The total charge for service to uselis therefore To maximizeU,,;, we order the users = 1,2,--- , K ac-

a. + a,P;. Each user responds by maximizing the receivedording to decreasind/, — 3F;). Let
surplus (utility minus cost). For a step utility function, this
implies that N = max{k : U, — fP, > 0}

P, = { Nwoy/hk’ gﬁ z ZZ :t zz% (3) andM denote the number of codes. We have the following
. . . éheorem.

Clearly, as the prices increase, the number of active users de-

creases. Among the users that have the same pathhjoss Theorem 1: To maximizé/,;

those with the highest utilities remain active. Among the users '

that have the same utility, those with better channels (less re-

guested transmitted power) are more likely to remain active. ac =Unm — BPur, ap =0 9)

the base station sets



whereM' = min(N, M), so that the first\/’ users are active  In analogy with the solution for the finite system, we have
and the remaining users (if any) are inactive.

However, the choices of utility maximizing, anda,, are
not unique. For instance, if

the following theorem.

Theorem 2: To maximize U in a large system, the base station

max(0, U1 — BPyry1) < ac <Umr — BPur, ap =8 setsa, = f3. a. is chosen to satisfy
(10)

then the same set of users is activatedMf = N, then all / / fu(u) fp(p)dudp=1/p (15)
. L o _ . 0 ac+0p

users are provided service if their utilities are sufficiently high
(Ux > BP). Inthat case, the systemdemand-limitedi.e., or a. = 0 if no positive number can satisfy (15)
the total utility is limited by the number of users which con- Animmediate inference from Theorem 2 is that whed 1,
tribute positive utility toUy,;. If M’ = M, then the system is «, = 0 is always true. As load increases, the system transits
code-limited i.e., the total utility is limited by the number of from demand limitedo code limitedand the optimah.. in-
available codes (bandwidth). creases whereas, remains fixed. The carried load is therefore

The prices which maximize revenue are not as easy to deetermined byx. alone.
termine. As the prices increase, the number of active usersTo determine the prices that maximize revenue, we can take
decreases, but the revenue per user increases. Optimizationdierivatives ofR with respect tax, anda,,. SettingdR/da, =
comes difficult with a set of finite users sinBg,; as a function 0 gives
of a. anda,, is an irregular surface that has many jumps corre-

sponding to the specific prices at which users become activated 0 (u—ac)/ap
or deactivated. / fu(u) /0 fe(p)dp | du

c

IV. LARGE SYSTEM ANALYSIS

To avoid the associated analytical problems with a finite sys-
tem, we compute the large system revenue and utility by letti
the number of userdy, and the number of code3/, tend to
infinity while keeping the loacgh = K/M constant. In the
limit, the utility per usetU;,:/ K and revenue per us@;,./ K
each converge to deterministic values,

-/ L+ (0 - B () fulae + app)dp (16)

the right side of (16) represents the gain in revenue due to a
marginal increase in., and the left side of (16) represents the
corresponding loss in revenue due to users becoming inactive
after the price increase.

Similarly, settingdR/d«,, = 0 gives

Utacia) = [[ lw=pol feo)fotyag @) . (u-ac)/a
@ | ot ( / pfe(p) dp> du
Qe 0
and o
= [ lac+ (@ - Do fe)utac +ap)dp @7
Rlacsay) = [ e+ (@~ 99 Fr)ful) dQ - (12) 0
@ These terms have the analogous interpretations as those in (16).
where Whenq,, = 0 these conditions can be used to obtain the fol-

lowing theorem.

= p<(u-— 1 . .
Q@ ={(u,p) :p < (u—ac)/ap} (13) Theorem 3: For fp given by (2) andv, = 0, and given any
P
is the large system limit of the se& given in (6). (We can concave utility density functiorf;, R(a.,0) is a unimodal
also viewU andR as the expected utility and revenue per usefunction ofac. .
respectively, where expectation is with respect to the randomYnimodality is an important property of the revenue ob-
variables/, and P, with p.d.f.'s fi andfr.) jective function, since it implies that simple gradient search
We wish to selecta,, a,) to maximizel/ or R subject to techniques can be used to maximize revenue withqutiori
the feasibility constraint knowledge of the users’ utility functions. Although we have
not succeeded in proving this for, > 0, we have observed
d 1 14 from numerical results that Theorem 3 remains valid for all
o frfudQ <1/p (14)  concave utility functionsfy considered. We remark that the
revenue is not a unimodal function for arbitrafy and fp.
which is the large system version of (8). Maximizing utility For example, the utility distributiorfy (v) = a;6(u — Uy) +
is equivalent to maximizing the number of active users thdfl — a1)d(u — Uz) consisting of two impulse massedatand
satisfyUy, > BP;. U, typically leads to a non-unimodal revenue function.



fu ~ uniform(1,15)

Prob( user k is active | r, ) vs. r with optimal prices
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Fig. 1: Revenue vs(a., ap) for uniform fi;.
Fig. 2: Conditional prob that a user is active given his distance

V. NUMERICAL RESULTS from baser vs. r with optimal prices and differert’s

Figure 1 shows revenue véa,, ) for the case wherg,
is uniform fromU; = 1toU, = 15, 8 = 5, p < 1 and
fp is given by (2). In this case the revenue cost function is
unimodal, and the global maximum occursxat= U, /2 and
ap, = (/2. Based on further numerical results with different
parameter setdf, Us, (3), we conjecture that for uniform dis-
tribution fiy (u) betweerl/; andU, and when the loag < 1,
the optimal (revenue maximizing) prices are:

a’c‘:U2/2 Oé;:ﬂ/Q forUQZ 2U,
o = Ul a* =0 for U2 < 2U1 fu ~ uniform(1~15) fu ~ uniform(1-15)

14 14
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The large system average power per code can be evaluate .|
as
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Pus g SR / /Q pfu(w)fr(p)dQ  (18)

m
T

revenue per person with optimal prices

and depends offa.,a,, ). As an example, for the case
B = 15U, = 1,U, = 15, the average power per code with

fevenue per person without pricing on power
»
T

the optimal(a., ;) is 2.3 dB less than ify, = 0 anda, alone 2p 2f
is chosen to maximize revenue. gf = 20, then this differ- , . T it
ence increases to 3.6 dB. This is due to the fact that as ° %road aamy ° Zroaa geny

creases, the more stringent the power constraint becomes, and
the more important,, is for discriminating against users vyho Fig. 3: Revenue vs. load with uniforifi;. The curves on the
have high path loss. Namely, ag increases, the distribution
of active users becomes skewed more towards the center of 8 correspond to optimah(,, o;,), and the curves on the right
cell, reducing the average power per code. Figure 2 shows t _
conditional probability that a user is active given its distanchrrespond tay, =0.
from base whep < 1. It verifies that ag? and/ora,, increase,
the distribution of active users indeed becomes skewed more
toward the center of the cell.

Figure 3 shows two sets of curves. First, revenue is plotted
as a function of load</M with optimal (revenue maximizing)



Uy, With prices which max(R ) and max(U, )

" it butions, this appears to be difficult for the revenue objective
e function. Still, the behavior of the revenue as a function of
T 1 load and prices can be observed numerically.
= l Our analytical and numerical results indicate that for the step
/ utility function considered, the revenue function is unimodal
T / | for a large class of utility distributions. Numerical examples
o J l show that pricing for power increases the total utility or rev-
K enue, and that this benefit increases with load. Conversely,
f | power pricing can reduce the average transmitted power for a
o 1 given total utility. Of course, the analytical framework pre-
sented here can be used to study the performance with differ-
T ent utility functions, such as those corresponding to data ser-
vices. Pricing for multi-cell resource allocation is currently
being studied.

Fig. 4: Utility vs. load with prices that maximizes utility and
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