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Abstract – This paper studies pricing as a means for
resource allocation in a wireless Direct-Sequence (DS)-Code-
Division Multiple-Access (CDMA) system. We consider the for-
ward link of a single cell with orthogonal codes and voice traffic.
The base station announces a price per unit transmitted power
and a price per code, and the users respond according to their
individual utilities. The objective is to set prices to maximize ei-
ther total user utility or total revenue. The solution to the former
problem (maximize utility) is presented. To study the latter prob-
lem we derive the large system revenue as the number of users
and codes tend to infinity with fixed ratio. The large system rev-
enue depends on the distribution of utilities and path loss across
the user population, and may not be a unimodal function of the
prices. Numerical results based on a simple model for user utility
show how the optimal prices and revenue vary with the offered
load.

I. I NTRODUCTION

This paper presents a framework for studying the use of pric-
ing to allocate resources in a wireless DS-CDMA system. Un-
like other approaches to resource allocation, pricing can allo-
cate resources according to perceived user utility, thereby in-
creasing the overall utility of the network. Other attractive
properties include the accommodation of a wide range of traf-
fic flows, and potential simplification or elimination of explicit
admission control policies.

Here we consider the forward link of a single cell withM
orthogonal codes. We assume that only voice users are present,
and that the set of user requests is stationary. Although this
situation is quite simple, it serves to illustrate the framework
for performance analysis, which can be generalized to account
for mixed traffic types and multiple cells.

For the case considered, CDMA “resources” are transmitted
power and number of codes. Each user has a utility function
which is the amount the user is willing to pay for a given Qual-
ity of Service (QoS). The base station announces a price per
unit transmitted power�p and a price per code�c, and each
user responds by requesting service to maximize his/her indi-
vidual surplus (utility minus cost). The goal is to set prices
to maximize either total user utility or total revenue subject to
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the constraint that the number of active users cannot exceed
the number of available codesM . Total utility might be max-
imized if each user supplies the base with a “pre-determined”
utility function based on a desired priority or grade of service.
In that case, the users need not be charged by the base, and the
prices serve as internal network parameters for resource allo-
cation. Total revenue would likely be used if the base does not
know the individual utility functions, and the users are directly
charged by the base.

We first formulate the preceding constrained optimization
problems with a finite fixed user set. The prices which max-
imize utility are easily obtained. The prices which maximize
revenue are more difficult to determine, and we resort to a large
system analysis, in which the number of usersK and the num-
ber of codesM tend to infinity with fixedK=M . Both to-
tal utility and revenue can then be expressed in terms of the
prices, and distribution functions of user utility and received
power. We find that the revenue function is not always uni-
modal, but give some specific conditions which guarantee uni-
modality when�p = 0. We also show how the optimal prices
and revenue vary with offered load numerically based on a sim-
ple model for user utility and received power distribution.

Pricing of resources in communications networks in general
has received much attention during the past few years (see,
for example [1, 2, 3, 4, 5, 6]). Work related to that presented
here on pricing for resource allocation in wireless systems is
reported in [7, 8, 9]. In that work, the emphasis is on conserv-
ing battery life for the reverse link, and the model is based on a
non-cooperative game. We consider a different model based on
the forward link, and present a different approach to evaluating
performance.

II. FORWARD LINK CDMA M ODEL

We consider a single cell in isolation and assume that each
active user is assigned one code from the base. Furthermore,
we ignore multiple-access interference at the receiver (mobile),
which corresponds to the situation in which the codes are or-
thogonal and multipath is negligible (or is equalized). The re-
ceived Signal-to-Interference Plus Noise Ratio (SINR) for user
k is thenk = hkPk=N0 , wherehk is the attenuation to user
k, Pk is the forward link transmitted power to userk, andN0

is the background noise level. The transmitted power needed
to achieve the target SINR� is thereforeP �k = N0

�=hk.



The attenuationhk depends on the location of the user and
on random shadowing. We therefore assume thathk is cho-
sen from some probability density function (p:d:f:) fh, which
in turn determines the transmitted powerp:d:f: across users
fP . For the numerical results that follow, we assume that the
received power at distancer from the base is given by

PR(r) = PR(d0)

�
d0
r

�n
(1)

wherePR(d0) is the received power at a close-in reference
point d0 in the far field region of the transmitter antenna, and
n is the path loss exponent. We assume thatPR(d0) is the
same as the transmitted power from the base station so that
Pk = PR(d0), andk = PkCr

�n=N0, whereC = dn0 is a
constant andhk = Cr�n.

In what follows, we will assume that users are distributed
uniformly throughout the cell, and thatn = 4. Assuming that
the SINR requirement is satisfied for each user, the density of
transmitted powers over the user population is given by

fP (p) =
C

2�N0R2

�
pC

�N0

��1=2
; p 2 (0; �N0R

4=C)

(2)

whereR denotes the cell radius. Of course, other distributions
can be derived which account for additional propagation and
system effects such as random shadowing and soft hand-off.

Each user is assigned autility function, which reflects the
user’s willingness to pay in dollars vs. the received QoS. For
voice traffic, the QoS is determined by the received SINR. If
the received SINR is above a certain threshold,�, we assume
that the user gets acceptable service and is indifferent to an
increase in received SINR. Conversely, if the received SINR is
less than�, then the QoS is unacceptable and the user derives
zero utility. For the numerical results which follow, userk is
assigned a step utility functionUk() = Uk,  > �, Uk() =
0,  < �, where� is the target SINR for acceptable voice
quality (say, 3 to 7 dB). The utility derived by userk, Uk, is
assumed to be chosen from some distributionfU . Of course,
utility functions which correspond to other types of traffic can
also be considered within this framework.

The base announces a price per code�c and a price per unit
power�p. The total charge for service to userk is therefore
�c + �pPk. Each user responds by maximizing the received
surplus (utility minus cost). For a step utility function, this
implies that

Pk =

�
N0

�=hk; Uk � �c + �pPk
0; Uk < �c + �pPk

(3)

Clearly, as the prices increase, the number of active users de-
creases. Among the users that have the same path losshk,
those with the highest utilities remain active. Among the users
that have the same utility, those with better channels (less re-
quested transmitted power) are more likely to remain active.

The power radiated by the base causes interference to adja-
cent cells, and therefore represents an economicexternality. To
account for this, we assume that the base makes atransfer pay-
mentto the network given by�Ptot, where� is a constant and
Ptot is the total power radiated by the base. Ideally,� should
depend on the load in neighboring cells. Note that� can also
be interpreted as a Lagrange multiplier which enforces a con-
straint onPtot.

III. PROBLEM FORMULATION

The objective of the base is to set the prices�c and�p to
maximize total utility or revenue minus the total transfer pay-
ment, that is,

max
(�c;�p)

 
Utot =

X
k2S

(Uk � �Pk)

!
(4)

or

max
(�c;�p)

 
Rtot =

X
k2S

(�c + �pPk � �Pk)

!
(5)

where

S = fk : Uk � �c + �pPkg (6)

is the active user set.
In response to the announced prices, each user maximizes

the received surplus,

max
Pk

[Uk()� (�c + �pPk)] (7)

where = hkPk=N0. For the step utility function considered,
this implies (3).

We constrain(�c; �p) to lie in the “feasible region”

F = f(�c; �p) : j S j =M � 1g (8)

in which the number of active users (j S j ) is no greater than
the number of codesM (i.e., demand does not exceed supply).
Whenever (8) is binding (j S j= M ), we say the system iscode
limited. It can be shown that there always exists a maximizing
(�c; �p) 2 F .

To maximizeUtot, we order the usersk = 1; 2; � � � ;K ac-
cording to decreasing (Uk � �Pk). Let

N = maxfk : Uk � �Pk � 0g

andM denote the number of codes. We have the following

theorem.

Theorem 1: To maximizeUtot, the base station sets

�c = UM 0 � �PM 0 ; �p = � (9)



whereM 0 = min(N;M), so that the firstM 0 users are active
and the remaining users (if any) are inactive.

However, the choices of utility maximizing�c and�p are
not unique. For instance, if

max(0; UM 0+1 � �PM 0+1) < �c � UM 0 � �PM 0 ; �p = �
(10)

then the same set of users is activated. IfM 0 = N , then all
users are provided service if their utilities are sufficiently high
(Uk � �Pk). In that case, the system isdemand-limited, i.e.,
the total utility is limited by the number of users which con-
tribute positive utility toUtot. If M 0 = M , then the system is
code-limited, i.e., the total utility is limited by the number of
available codes (bandwidth).

The prices which maximize revenue are not as easy to de-
termine. As the prices increase, the number of active users
decreases, but the revenue per user increases. Optimization be-
comes difficult with a set of finite users sinceRtot as a function
of �c and�p is an irregular surface that has many jumps corre-
sponding to the specific prices at which users become activated
or deactivated.

IV. L ARGE SYSTEM ANALYSIS

To avoid the associated analytical problems with a finite sys-
tem, we compute the large system revenue and utility by letting
the number of users,K, and the number of codes,M , tend to
infinity while keeping the load� = K=M constant. In the
limit, the utility per userUtot=K and revenue per userRtot=K
each converge to deterministic values,

U(�c; �p) =

ZZ
Q

[u� �p] fP (p)fU (u) dQ (11)

and

R(�c; �p) =

ZZ
Q

[�c + (�p � �)p] fP (p)fU (u) dQ (12)

where

Q = f(u; p) : p � (u� �c)=�pg (13)

is the large system limit of the setS given in (6). (We can
also viewU andR as the expected utility and revenue per user,
respectively, where expectation is with respect to the random
variablesUk andPk with p:d:f:’s fU andfP .)

We wish to select(�c; �p) to maximizeU or R subject to
the feasibility constraintZ

Q

fP fUdQ � 1=� (14)

which is the large system version of (8). Maximizing utility
is equivalent to maximizing the number of active users that
satisfyUk � �Pk.

In analogy with the solution for the finite system, we have

the following theorem.

Theorem 2: To maximize U in a large system, the base station

sets�p = �. �c is chosen to satisfyZ
1

0

Z
1

�c+�p

fU (u)fP (p) du dp = 1=� (15)

or �c = 0 if no positive number can satisfy (15).
An immediate inference from Theorem 2 is that when� � 1,

�c = 0 is always true. As load increases, the system transits
from demand limitedto code limitedand the optimal�c in-
creases whereas�p remains fixed. The carried load is therefore
determined by�c alone.

To determine the prices that maximize revenue, we can take
derivatives ofR with respect to�c and�p. Setting@R=@�c =
0 gives

Z
1

�c

fU (u)

 Z (u��c)=�p

0

fP (p) dp

!
du

=

Z
1

0

[�c + (�p � �)p]fP (p)fU (�c + �pp) dp (16)

The right side of (16) represents the gain in revenue due to a
marginal increase in�c, and the left side of (16) represents the
corresponding loss in revenue due to users becoming inactive
after the price increase.

Similarly, setting@R=@�p = 0 gives

Z
1

�c

fU (u)

 Z (u��c)=�p

0

pfP (p) dp

!
du

=

Z
1

0

[�c + (�p � �)p]pfP (p)fU (�c + �pp) dp (17)

These terms have the analogous interpretations as those in (16).
When�p = 0 these conditions can be used to obtain the fol-

lowing theorem.

Theorem 3: For fP given by (2) and�p = 0, and given any
concave utility density functionfU , R(�c; 0) is a unimodal
function of�c.

Unimodality is an important property of the revenue ob-
jective function, since it implies that simple gradient search
techniques can be used to maximize revenue withouta priori
knowledge of the users’ utility functions. Although we have
not succeeded in proving this for�p > 0, we have observed
from numerical results that Theorem 3 remains valid for all
concave utility functionsfU considered. We remark that the
revenue is not a unimodal function for arbitraryfU andfP .
For example, the utility distributionfU (u) = a1�(u � U1) +
(1�a1)�(u�U2) consisting of two impulse masses atU1 and
U2 typically leads to a non-unimodal revenue function.
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Fig. 1: Revenue vs.(�c; �p) for uniformfU .

V. NUMERICAL RESULTS

Figure 1 shows revenue vs.(�c; �p) for the case wherefU
is uniform fromU1 = 1 to U2 = 15, � = 5, � � 1 and
fP is given by (2). In this case the revenue cost function is
unimodal, and the global maximum occurs at�c = U2=2 and
�p = �=2. Based on further numerical results with different
parameter sets (U1; U2; �), we conjecture that for uniform dis-
tributionfU (u) betweenU1 andU2 and when the load� � 1 ,
the optimal (revenue maximizing) prices are:

��c = U2=2 ��p = �=2 for U2 � 2U1
��c = U1 ��p = 0 for U2 < 2U1

The large system average power per code can be evaluated
as

Pav =
1

M

KX
k=1

Pk �!
K !1

�

Z Z
Q

pfU (u)fP (p)dQ (18)

and depends on(�c; �p; �). As an example, for the case
� = 15; U1 = 1; U2 = 15, the average power per code with
the optimal(�c; �p) is 2.3 dB less than if�p = 0 and�c alone
is chosen to maximize revenue. If� = 20, then this differ-
ence increases to 3.6 dB. This is due to the fact that as� in-
creases, the more stringent the power constraint becomes, and
the more important�p is for discriminating against users who
have high path loss. Namely, as�p increases, the distribution
of active users becomes skewed more towards the center of the
cell, reducing the average power per code. Figure 2 shows the
conditional probability that a user is active given its distance
from base when� � 1. It verifies that as� and/or�p increase,
the distribution of active users indeed becomes skewed more
toward the center of the cell.

Figure 3 shows two sets of curves. First, revenue is plotted
as a function of loadK=M with optimal (revenue maximizing)
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�p and�c for different transfer payments�. Second, revenue
vs. load is shown with optimal�c, but with�p = 0 (no charge
for power). The utility and power distributions are the same
as those used to generate Figure 1. As expected, both sets of
curves monotonically increase with load. As� increases, cor-
responding to a smaller constraint on total transmitted power,
the difference in revenue between the two cases increases. For
fixed�, this difference in revenue also increases with load.

Figure 4 shows utility as a function of load with prices
selected to maximize revenue and maximize utility, respec-
tively. The difference in the resulting utility is the greatest
when the load is less than 2. Both systems aredemand-limited
when the load is less than 1 andcode-limitedwhen the load
is greater than 2. However, the utility-maximizing system
is code-limitedwhen the load is between 1 and 2, while the
revenue-maximizing system isdemand-limitedin this interval.
The two curves converge as the load increases above 2.

These results illustrate that the benefit derived from pricing
of power increases as resources (namely, power) become more
limited. The fact that revenue increases indicates that pricing
selects those users who derive the highest utility from the net-
work. For the model considered, an explicit admission control
policy is unnecessary.

VI. CONCLUSIONS

We have studied pricing as an approach to forward-link re-
source allocation in a wireless CDMA network. The base sta-
tion sets prices for codes and transmitted power, and the users
respond by maximizing individual surplus. The system goal is
to set prices to maximize either total utility or revenue. Large
system optimization problems were formulated in which the
large system utility and revenue depend on the distribution of
powers and utitilies across the user population. This enables
a framework for studying the effect of load and prices on sys-
tem performance. Whereas the prices that maximize utility can
be explicitly determined for arbitrary utility and power distri-

butions, this appears to be difficult for the revenue objective
function. Still, the behavior of the revenue as a function of
load and prices can be observed numerically.

Our analytical and numerical results indicate that for the step
utility function considered, the revenue function is unimodal
for a large class of utility distributions. Numerical examples
show that pricing for power increases the total utility or rev-
enue, and that this benefit increases with load. Conversely,
power pricing can reduce the average transmitted power for a
given total utility. Of course, the analytical framework pre-
sented here can be used to study the performance with differ-
ent utility functions, such as those corresponding to data ser-
vices. Pricing for multi-cell resource allocation is currently
being studied.
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