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ABSTRACTWe present Rhodium, a new language for writing 
ompileroptimizations that 
an be automati
ally proved sound. Un-like our previous work on Cobalt, Rhodium expresses opti-mizations using expli
it data
ow fa
ts manipulated by lo-
al propagation and transformation rules. This new styleallows Rhodium optimizations to be mutually re
ursivelyde�ned, to be automati
ally 
omposed, to be interpretedin both 
ow-sensitive and -insensitive ways, and to be ap-plied interpro
edurally given a separate 
ontext-sensitivitystrategy, all while retaining soundness. Rhodium also sup-ports in�nite analysis domains while guaranteeing termina-tion of analysis. We have implemented a soundness 
he
kerfor Rhodium and have spe
i�ed and automati
ally proventhe soundness of all of Cobalt's optimizations plus a varietyof optimizations not expressible in Cobalt, in
luding An-dersen's points-to analysis, arithmeti
-invariant dete
tion,loop-indu
tion-variable strength redu
tion, and redundantarray load elimination.Categories and Subje
t Des
riptors: D.2.4 [SoftwareEngineering℄: Software/Program Veri�
ation { 
orre
tnessproofs, reliability, validation; D.3.4 [Programming Lan-guages℄: Pro
essors { 
ompilers, optimization; F.3.1 [Logi
sand Meanings of Programs℄: Spe
ifying and Verifying andReasoning about Programs { me
hani
al veri�
ationGeneral Terms: Reliability, languages, veri�
ation.Keywords: Compiler optimization, automated 
orre
tnessproofs.
1. INTRODUCTIONCompilers are an important part of a programmer's 
om-puting infrastru
ture. If the 
ompiler doesn't generate 
or-re
t 
ode, the whole appli
ation being 
ompiled is 
ompro-mised. As a result, mu
h work has been dire
ted toward
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making 
ompilers trustworthy, in
luding testing, transla-tion validation [25, 23℄, 
redible 
ompilation [26℄, and man-ual proof te
hniques [8, 9, 37, 14, 17, 10℄. In previouswork [19℄, we presented a system in whi
h optimizations
ould be 
he
ked for soundness automati
ally. An optimiza-tion is sound if it is guaranteed to preserve the semanti
sof any program it optimizes. Our solution was 
entered ona domain-spe
i�
 language for writing optimizations, 
alledCobalt. An optimization written in Cobalt was 
he
ked forsoundness by asking an automati
 theorem prover to dis-
harge a small set of simple proof obligations. We provedby hand, on
e and for all, that if a Cobalt optimizationsatis�es these obligations, then the optimization is indeedsound. Unlike testing, 
redible 
ompilation, and translationvalidation, this 
he
king is done on
e when the 
ompiler isdeveloped, separately from any parti
ular programs beingoptimized. Cobalt thus enables a key 
omponent of modernoptimizing 
ompilers to be
ome trusted, and it opens thedoor for users to extend their 
ompilers with appli
ation-spe
i�
 optimizations without 
ompromising the 
orre
tnessof the 
ompiler.Cobalt is expressive enough to allow a range of 
ow-sensitive intrapro
edural optimizations to be de�ned andproved 
orre
t. Using Cobalt, we were able to write andautomati
ally 
he
k the soundness of 
onstant propagation,
opy propagation, dead-assignment elimination, 
ommonsubexpression elimination, partial redundan
y elimination,partial dead-
ode elimination, and simple kinds of pointeranalyses. However, Cobalt's design, where optimizing trans-formations are triggered based on a restri
ted temporal-logi
predi
ate over the entire 
ontrol 
ow graph (CFG), imposeslimits that make it diÆ
ult to extend to a wider range ofoptimizations.In this paper we present Rhodium, a new domain-spe
i�
language for optimizations that 
an express a mu
h greaterrange of optimizations while still proving them sound auto-mati
ally. The key te
hni
al 
hange from Cobalt is to makedata
ow fa
ts expli
it (rather than impli
it in a temporal-logi
 predi
ate) and to use a separate and extensible set oflo
al propagation and transformation rules to generate newdata
ow fa
ts from old data
ow fa
ts and to spe
ify whenstatements are optimized based on in
owing data
ow fa
ts.Ea
h data
ow fa
t is given a semanti
 meaning, in the formof a predi
ate over program states. To prove a Rhodiumoptimization 
orre
t, our system asks an automati
 theo-



rem prover to dis
harge a lo
al soundness lemma for ea
hpropagation and transformation rule, using the meanings ofthe fa
ts manipulated by the rules and the 
on
rete seman-ti
s of the program's statements. We proved, on
e by hand,that these lemmas imply that the optimization is globallysound. Be
ause Rhodium's lo
al propagation model is fun-damentally di�erent from Cobalt's, this hand proof is alsofundamentally di�erent, and 
ou
hed in terms of abstra
tinterpretation [8℄.Rhodium's use of expli
it data
ow fa
ts with lo
al prop-agation and transformation rules enables several importantadvan
es over Cobalt's use of global temporal-logi
 predi-
ates:� Traditional form. A lo
al propagation rule is a kind of
ow- or transfer fun
tion, whi
h may be a more 
omfort-able and understandable model for an optimization writerthan Cobalt's global model.� Extensibility. Rhodium allows new propagation rulesto be added without modifying any existing rules or fa
tde�nitions, enabling optimizations to be enhan
ed moreeasily.� Re
ursively de�ned analyses. When de
idingwhether to generate a parti
ular data
ow fa
t on a state-ment's su

essor edge, a Rhodium propagation rule 
anexamine any other data
ow fa
ts on the statement'sprede
essor edges. Cobalt was in e�e
t only able topropagate the same data
ow fa
t through a statementun
hanged. Rhodium allows the propagation rules ofdata
ow fa
ts to be de�ned mutually re
ursively, signi�-
antly in
reasing their expressiveness and 
larity.� Composed analyses and transformations. By us-ing a model based on lo
al propagation and transforma-tion rules, we 
an exploit previous work on automati
ally
omposing analyses and transformations [18℄ to enableRhodium optimizations to be automati
ally 
omposed.� Flow-insensitive analyses. We show how to interpretRhodium propagation rules in a 
ow-insensitive manner,soundly, yielding more-eÆ
ient analyses with no extraoptimization-writer work. In 
ontrast, Cobalt's globalmodel was inherently 
ow-sensitive.� Interpro
edural analyses. We show how to de-�ne a 
ontext-sensitive interpro
edural analysis from aRhodium intrapro
edural analysis and a spe
i�
ation ofa 
ontext-sensitivity strategy. Rhodium's lo
al propaga-tion model allows the lo
al propagation rule for 
all state-ments to be derived automati
ally. If the intrapro
eduralanalysis is sound, then the interpro
edural one is sound,too.In addition to moving to a lo
al propagation model, wehave also enri
hed Rhodium's expressiveness in the followingorthogonal ways:� Dynami
 semanti
s extensions. Rhodium allows theoptimization-writer to de�ne \virtual" extensions to theintermediate language's dynami
 semanti
s whi
h 
an
ompute properties of program exe
ution tra
es. For ex-ample, the statement at whi
h ea
h memory lo
ation wasallo
ated 
an be 
omputed via a dynami
 semanti
s ex-tension. These extensions 
an then be referen
ed in themeanings of data
ow fa
ts, for instan
e in a points-toanalysis with allo
ation-site heap summaries, enabling a

wider 
lass of optimizations to be proved sound automat-i
ally.� In�nite analysis domains. Rhodium allows data
ow-fa
t domains to be in�nite, leading to in
reased expres-siveness over Cobalt whi
h only allowed �nite domains(su
h as the set of 
onstants, variables, and expressionsthat appeared in the program being optimized). Wepresent suÆ
ient 
onditions, in
luding some adapted fromthe database 
ommunity, for automati
ally guaranteeingthat analyses terminate even in the fa
e of su
h in�nitedomains. Rhodium analyses 
an also spe
ify wideningoperators [8℄, without a�e
ting soundness.The end result is a language that is signi�
antly moreexpressive than Cobalt but nonetheless provides the samestrong soundness guarantees. We have implemented ourstrategy for automati
ally proving Rhodium analyses andoptimizations sound using Simplify, the automati
 theoremprover from ESC/Java [12℄. We de�ned and automati
allyproved sound all of Cobalt's optimizations plus the follow-ing new optimizations and analyses that were not express-ible in Cobalt: loop-indu
tion-variable strength redu
tion,a 
ow-sensitive version of Andersen's points-to analysis [3℄with heap summaries, arithmeti
 invariant dete
tion, 
on-stant propagation through array elements, redundant arrayload elimination, and integer range analysis. Our Rhodium
ode de�nes 24 data
ow fa
ts, 105 propagation rules, and14 transformation rules. Moreover, all these analyses 
anbe interpreted as 
ow-insensitive analyses and/or 
ontext-sensitive or -insensitive interpro
edural analyses, and they
an be automati
ally 
omposed together to yield more-pre
ise solutions, soundly.Se
tion 2 introdu
es the new 
ow-fun
tion-oriented wayof writing optimizations in Rhodium and des
ribes the as-so
iated automated proof strategy based on abstra
t inter-pretation. Se
tion 3 presents our te
hnique for redu
ing the
omplexity of proof obligations using extensions to the dy-nami
 semanti
s and shows how our te
hnique 
an be usedto reason automati
ally about heap summaries. Se
tion 4des
ribes how we support in�nite analysis domains whilestill being able to guarantee termination. Se
tions 5 and 6present our frameworks for building provably sound 
ow-insensitive and interpro
edural optimizations. Se
tion 7 dis-
usses our exe
ution engine for Rhodium in the Whirlwind
ompiler. Finally, se
tions 8 and 9 dis
uss future work andrelated work, respe
tively.
2. RhodiumRhodium optimizations run over a C-like intermediatelanguage (IL) with fun
tions, re
ursion, pointers to dy-nami
ally allo
ated memory and to lo
al variables, andarrays. This se
tion des
ribes how intrapro
edural, 
ow-sensitive analyses are expressed and automati
ally provensound in Rhodium; se
tions 5 and 6 respe
tively dis
uss
ow-insensitive and interpro
edural analyses. Rhodium op-timizations operate over a CFG representation of the IL pro-gram, with ea
h node representing a simple register-transfer-level statement.Data
ow information is en
oded in Rhodium by meansof data
ow fa
ts, whi
h are user-de�ned fun
tion symbolsapplied to a set of terms, for example hasConstValue(x; 5)or exprIsAvailable(x; a+ b). A Rhodium analysis uses prop-agation rules, whi
h are a stylized way of writing 
ow fun
-tions, to spe
ify how data
ow fa
ts propagate a
ross CFG



1. de
l X:Var, Y :Var, Z:Var2. de�ne edge fa
t mustNotPointTo(X:Var, Y :Var)3. with meaning �(X) 6= �(&Y )4. if stmt(X := &Z) ^ Y 6= Z5. then mustNotPointTo(X;Y )�out6. if mustNotPointTo(X;Y )�in ^mustNotDef (X)7. then mustNotPointTo(X;Y )�outFigure 1: Simple pointer analysis in Rhodium.nodes. These user-de�ned 
ow fun
tions impli
itly de�ne adata
ow analysis, whose solution is the least �xed point ofthe standard equations indu
ed by the 
ow fun
tions. On
ean analysis has rea
hed a �xed point, the 
omputed infor-mation 
an be used by Rhodium transformation rules torewrite some of the CFG's nodes.We wish to automati
ally prove Rhodium analyses andtransformations sound. An analysis is sound if, for all ILpro
edures P , the data
ow information 
omputed for P is
onsistent with the pro
edure's 
on
rete semanti
s. A trans-formation is sound if, for all IL pro
edures P , the transfor-mation preserves P 's semanti
s.Se
tion 2.1 illustrates Rhodium's propagation rules, andse
tion 2.2 des
ribes how su
h rules are automati
allyproven sound using abstra
t interpretation. In se
tion 2.3we 
ompare Rhodium's design and proof strategy with thoseof Cobalt and show the expressiveness bene�ts of our newdesign in Rhodium. Se
tion 2.4 dis
usses Rhodium trans-formations and how they are automati
ally proven sound.Se
tion 2.5 shows how to in
orporate pro�tability informa-tion into Rhodium optimizations.
2.1 Propagation RulesWe illustrate Rhodium's propagation rules with a simplepointer analysis, shown in �gure 1. The analysis determinesthat a variable x de�nitely does not point to another variabley if x was assigned the address of a variable di�erent fromy, and then x was not modi�ed afterwards. Be
ause ourstrategy for automated soundness 
he
king is geared towardmust analyses, we en
ode our pointer information using themust-not-point-to relation instead of the may-point-to re-lation. Ea
h edge in the CFG will therefore be annotatedwith fa
ts of the form mustNotPointTo(X;Y ), where X andY range over variables in the asso
iated IL pro
edure. Thede
laration of the mustNotPointTo edge fa
t is shown online 2 of the Rhodium 
ode (for now the meaning on line 3
an be ignored).Propagation rules in Rhodium indi
ate how edge fa
tsare propagated a
ross CFG nodes. For example, the ruleon lines 6-7 of �gure 1 de�nes a 
ondition for preserv-ing a mustNotPointTo fa
t a
ross a node: if the fa
tmustNotPointTo(X;Y ) appears on the in
oming CFG edgeof a node n and n does not modify X, then the data
owfa
t mustNotPointTo(X;Y ) should appear on the outgoingedge of n.The left-hand side of a rule is 
alled the ante
edent andthe right-hand side the 
onsequent. Ea
h propagation ruleis interpreted within the 
ontext of a CFG node. Edgefa
ts are followed by � signs, with the name after the� sign indi
ating the edge on whi
h the fa
t appears.For example, mustNotPointTo(X;Y )�in is true if the in-


oming CFG edge of the 
urrent node is annotated withmustNotPointTo(X;Y ). Fa
ts without � signs are nodefa
ts, and they represent information about the 
urrentnode. For example, the user-de�ned mustNotDef (X) fa
tholds at a node if the node does not modify X. An a

om-panying te
hni
al report [20℄ shows how users 
an de�nethese node fa
ts.The semanti
s of a propagation rule on a CFG is as fol-lows: for ea
h substitution of the rule's free variables thatmake the ante
edent valid at some node in the CFG, thefa
t in the 
onsequent is propagated. For the rule des
ribedabove, the mustNotPointTo(X;Y ) fa
t will be propagatedon the outgoing edge of a node for ea
h substitution of Xand Y with variables that makes the ante
edent valid.While the rule in lines 6-7 of �gure 1 spe
i�es how topreserve mustNotPointTo fa
ts, the rule in lines 4-5 spe
i�eshow to introdu
e them in the �rst pla
e. That rule says thatthe outgoing CFG edge of a statement X := &Z should beannotated with all fa
ts of the form mustNotPointTo(X;Y ),where Y and Z are distin
t variables.All rules in �gure 1 are forward : the ante
edent only refersto a node's in
oming CFG edge and the 
onsequent onlyrefers to a node's outgoing CFG edge. Rhodium also sup-ports ba
kward rules, where the ante
edent only refers toout and the 
onsequent only refers to in. The primary fo-
us of our Rhodium work so far has been on forward analysesand transformations, and so we do not present any ba
kwardrules here. Also, for brevity and 
larity, we only present def-initions and theorems for the forward 
ase, with the ba
k-ward 
ase 
overed in the a

ompanying te
hni
al report [20℄.Se
tion 8 dis
usses the state of ba
kward analyses and trans-formations in Rhodium.A set of propagation rules together impli
itly de�ne adata
ow analysis A whose domain D is the powerset latti
eof all data
ow fa
ts: (D;t;u;v;>;?) = (2Fa
ts ;\;[;�;;;Fa
ts), where Fa
ts is the set of all data
ow fa
ts. Ea
hedge in the CFG is therefore annotated with a set of data
owfa
ts, where bigger sets are more pre
ise than smaller sets.1The 
ow fun
tion F of the analysis is de�ned by the prop-agation rules: given a node and a set of in
oming data
owfa
ts, F returns the set of all data
ow fa
ts propagated byany of the individual rules.Formally, the 
ow fun
tion F is de�ned in terms of themeaning of an ante
edent  , whi
h is given by the fun
tionJ K : Node �D� Subst ! bool (where Node is the set of allCFG nodes and Subst is the set of all substitutions). Givena node n, a set of fa
ts d, and a substitution �, J K(n; d; �)is true i� �( ) holds at node n with in
oming fa
ts d (where�(�) represents substitution appli
ation). The de�nition ofJ K is straightforward, with the interesting 
ase being:Jf(�!t )�inK(n; d; �) = f(�(�!t )) 2 d(where �!t denotes a sequen
e of terms)A 
omplete de�nition of J K is given in the a

ompanyingte
hni
al report [20℄. The 
ow fun
tion F : Node �D ! Dindu
ed by a set R of forward propagation rules is then:F (n; d) = f�(f(�!t )) j [if  then f(�!t )�out ℄ 2 R ^J K(n; d; �)gThe solution of the indu
ed analysis A is the least �xed1We use the abstra
t interpretation 
onvention that ? is themost optimisti
 information, and > is the most 
onservativeinformation.



point of the standard set of data
ow equations generatedfrom F . Although the two rules in �gure 1 propagate thesame data
ow fa
t, di�erent rules 
an propagate di�erentdata
ow fa
ts, and the �xed point is 
omputed over alldata
ow fa
ts simultaneously.In addition to edge fa
ts and node fa
ts, Rhodium alsoprovides virtual data
ow fa
ts, whi
h 
an be used to de-�ne shorthands for boolean 
ombinations of other fa
ts.This fa
ility allows a may-point-to fa
t to be de�ned andreferred to in analyses and transformations if desired:mayPointTo(X;Y ) , :mustNotPointTo(X;Y ). Su
h vir-tual fa
ts get repla
ed with the boolean expression theystand for as a prepro
essing step.Negation is provided in Rhodium only as a 
onvenien
e.After all the virtual fa
ts have been expanded out, and nega-tion has been pushed to the inside through 
onjun
tions,disjun
tions and quanti�ers, we require all negation on edgefa
ts to 
an
el out. The absen
e of negated edge fa
ts guar-antees the monotoni
ity of F , as shown in the a

ompanyingte
hni
al report [20℄. Although disallowing negated edgefa
ts sounds restri
tive, it a
tually 
orresponds to a 
om-mon usage pattern. Be
ause Rhodium fa
ts are all mustfa
ts, the absen
e of a fa
t does not provide any informa-tion { only its presen
e does. As a result, we never foundthe need to use any negated edge fa
ts, ex
ept as a nota-tional 
onvenien
e. For example, in our analyses that usemayPointTo(X;Y ), it is always the la
k of possible points-toinformation, i.e., :mayPointTo(X;Y ), that enables more-pre
ise analysis or transformation, whi
h when expandedyields mustNotPointTo(X;Y ).
2.2 Proving soundness automaticallyOur goal is to ensure automati
ally that the data
ow in-formation 
omputed by the analysis A is sound with respe
tto the 
on
rete 
olle
ting semanti
s of the IL. Our automati
proof strategy separates the proof that A is sound into twoparts: the �rst part is analysis dependent and it is dis
hargedby an automati
 theorem prover; the se
ond part is anal-ysis independent and it was shown by hand on
e and forall. For the analysis-dependent part, we de�ne a suÆ
ientsoundness property that must be satis�ed by ea
h propa-gation rule in isolation, and we ask an automati
 theoremprover to dis
harge this property for ea
h rule. Separately,we have shown manually that if all propagation rules sat-isfy the soundness property, then the data
ow information
omputed by the analysis A is sound. The formalizationof Rhodium, in
luding this manual proof, employs our pre-vious abstra
t-interpretation-based framework for 
ompos-ing data
ow analyses and transformations [18℄. As a result,all Rhodium analyses and transformations 
an be 
omposedsoundly, while allowing them to intera
t in mutually bene-�
ial ways.The de�nition of soundness of a propagation rule dependson meaning de
larations that des
ribe the 
on
rete seman-ti
s of edge fa
ts. The meaning of a fa
t f is a predi
ate on
on
rete exe
ution states, �, with the intent that whenever fappears on an edge, the meaning of f should hold in all 
on-
rete exe
ution states � that 
an appear on that edge. Forexample, the meaning of mustNotPointTo(X;Y ), shown online 3 of the Rhodium 
ode, is �(X) 6= �(&Y ), where �(E)represents the result of evaluating expression E in exe
utionstate �. The meaning ofmustNotPointTo therefore says thatthe value of X in the exe
ution state � should not be equalto the address of Y . We denote the meaning of a fa
t f

by JfK, so that for example JmustNotPointToK(X;Y; �) ,�(X) 6= �(&Y ).To be sound, a propagation rule must preserve meanings:if a rule �res at a CFG node n, and the meanings of all fa
ts
owing into n hold of exe
ution states right before n, thenthe meaning of the propagated fa
t must hold for exe
utionstates right after n. To de�ne this formally, we denote byState the set of 
on
rete exe
ution states �, and we use� n! �0 to say that the exe
ution of n from state � yieldsstate �0. We also use allMeaningsHold(d; �) to say that themeanings of all fa
ts in d hold of a program state �:allMeaningsHold(d; �) , 8f(�!t ) 2 d : JfK(�!t ; �)The soundness of a propagation rule 
an then be stated asfollows:Def 1. A propagation rule if  then f(�!t )�out is saidto be sound i� it satis�es the following property:8(n; �; �0; d; �) 2 Node � State2 �D � Subst :� J K(n; d; �) ^ � n! �0 ^allMeaningsHold(d; �) �) JfK(�(�!t ); �0) (prop-ok)For ea
h propagation rule, we use an automati
 theoremprover to dis
harge (prop-ok). The allMeaningsHold as-sumption provides a one-way link between J K(n; d; �) andmeanings of fa
ts: it allows the theorem prover to deriveJfK(�!t ; �) from f(�!t )�in, but not the other way around.For example, 
onsider the rule in lines 6-7 of �gure 1. Wee�e
tively ask the theorem prover to show that if a state-ment satisfying mustNotDef (X) is exe
uted from a state �in whi
h �(X) 6= �(&Y ), then �0(X) 6= �0(&Y ) in the re-sulting state �0. The truth of this formula follows easilyfrom the user-provided de�nition of mustNotDef and thesystem-provided 
on
rete semanti
s of our IL.If all propagation rules are sound, then it 
an be shownby hand, on
e and for all, that the 
ow fun
tion F is sound.The de�nition of soundness of F is the one from our frame-work on 
omposing data
ow analyses [18℄. This de�nitiondepends on an abstra
tion fun
tion � : D
 ! D, whi
hformalizes the notion of approximation. The 
on
rete se-manti
s of our IL is a 
olle
ting semanti
s, so that elementsof D
 are sets of 
on
rete stores. Meaning de
larations nat-urally indu
e an abstra
tion fun
tion �: given a set 
 2 D
of 
on
rete stores, �(
) returns the set of all data
ow fa
tswhose meanings hold of all stores in 
. An element d 2 Dapproximates an element 
 2 D
 if �(
) v d, or equiva-lently if the meanings of all fa
ts in d hold of all stores in 
.The de�nition of soundness of F , taken from [18℄, is then asfollows (where F
 is the 
on
rete 
olle
ting semanti
s 
owfun
tion):Def 2. A 
ow fun
tion F is said to be sound i� it satis-�es the following property:8 (n; 
; d) 2 Node �D
 �D :�(
) v d) �(F
(n; 
)) v F (n; d)The following lemma, whi
h is proved in the a

ompa-nying te
hni
al report [20℄, formalizes the link between thesoundness of lo
al propagation rules and the soundness ofF .Lemma 1. If all propagation rules are sound, then theindu
ed 
ow fun
tion F is sound.



On
e we know that the 
ow fun
tion F is sound, we 
anuse the following de�nition and lemma from our frameworkon 
omposing data
ow analyses to show that the analysisA is sound (where we denote by EP the set of edges in ILpro
edure P ):Def 3. An analysis A is said be sound i� for any ILprogram P , the 
on
rete solution S
 : EP ! D
 and the ab-stra
t solution SA : EP ! D satisfy the following property:8e 2 EP : �(S
(e)) v SA(e).Lemma 2. If the 
ow fun
tion F is sound, then the anal-ysis A indu
ed by the standard data
ow equations of F issound.A proof of lemma 2 
an be found in the a

ompanyingte
hni
al report [20℄. The following theorem is immediatefrom lemmas 1 and 2:Theorem 1. If all propagation rules are sound, then theanalysis A indu
ed by the propagation rules is sound.Theorem 1 summarizes the part of the soundness proof ofA that was done by hand on
e and for all. The automati
theorem prover is only used to dis
harge (prop-ok) for ea
hpropagation rule, thus establishing the premise of theorem 1that all propagation rules are sound. This way of fa
toringthe proof is 
riti
al to automation. The proof of theorem1 (whi
h in
ludes proofs of lemmas 1 and 2) is relatively
omplex. It requires reasoning about F , � and the �xedpoint 
omputation, ea
h one adding extra 
omplexity. Theproof also requires indu
tion, whi
h would be diÆ
ult tofully automate. In 
ontrast, (prop-ok) is a non-indu
tivelo
al property that requires reasoning only about a singlestate transition at a time. We have found that the heuristi
sused in automati
 theorem provers are well suited for thesekinds of simple proof obligations.
2.3 Comparison with CobaltTo better explain the additional expressive power ofRhodium, we show the Cobalt version of the pointer analysisfrom �gure 1:de
l X:Var, Y :Var, Z:Varstmt(X := &Z) ^ Y 6= Zfollowed bymustNotDef (X)de�nesmustNotPointTo(X;Y )with witness�(X) 6= �(&Y )The Cobalt version says that an edge e should be annotatedwith the mustNotPointTo(X;Y ) fa
t if on all CFG pathsrea
hing e, there exists a statement X := &Z where Y 6= Z,whi
h is followed by zero or more statements that do notmodify X until the edge e is rea
hed. The region betweenthe statement X := &Z and the edge e is 
alled the witness-ing region, and the key property of this region is that thewitness, in this 
ase �(X) 6= �(&Y ), holds of all programstates � in the region.As shown above, the 
ondition for triggering a Cobalttransformation is expressed as a global temporal-logi
 pred-i
ate over the entire 
ontrol 
ow graph (CFG). This styl-ized global 
ondition 
odi�es a s
enario 
ommon to manydata
ow analyses: an enabling statement establishes a

data
ow fa
t, and then a sequen
e of zero or more inno
u-ous statements preserve it. The Cobalt proof strategy wastailored toward su
h analyses: we asked the theorem proverto show that the witness was established by the enablingstatement and preserved by any inno
uous statements. Inthe pointer-analysis example, the theorem prover would beasked to show that �(X) 6= �(&Y ) holds after a statementX := &Z, where Y 6= Z, and that �(X) 6= �(&Y ) is pre-served by statements that don't modify X.While Cobalt 
an express this analysis and prove it soundautomati
ally, Cobalt's global 
ondition for expressing op-timizations has drawba
ks. First, Cobalt's proof strategyonly allows ea
h data
ow fa
t to have one asso
iated global
ondition. This requirement makes it diÆ
ult to extend anexisting Cobalt analysis. In 
ontrast, a Rhodium analysis
an be easily and modularly extended simply by writingnew propagation rules.Se
ond, Cobalt's global 
ondition requires the samedata
ow fa
t to hold throughout the entire witnessing re-gion. In 
ontrast, the Rhodium abstra
t interpretationstrategy allows �ne-grained 
ontrol over how fa
ts are propa-gated. Programmers 
an write propagation rules that stringdi�erent data
ow fa
ts together in 
exible ways. This al-lows Rhodium to express many kinds of global 
onditionsnot supported by Cobalt.Third, Cobalt's metatheory did not allow an analysis torefer to itself, either dire
tly or indire
tly. One 
onsequen
eof this restri
tion is that the mustNotDef fa
t used in ourpointer analysis had to be overly 
onservative be
ause it
ould not make use of the pointer information 
urrentlybeing 
omputed. In 
ontrast, the ante
edents of Rhodiumrules 
an refer to arbitrary fa
ts, even those that are beingpropagated in the 
onsequent. The �xed-point semanti
sof Rhodium and the a

ompanying abstra
t interpretationtheory ensure that su
h re
ursion is well-de�ned.To illustrate some of the additional 
exibility of Rhodium,we extend our simple pointer analysis from �gure 1 with ad-ditional rules, slowly building up toward a 
ow-sensitive ver-sion of Andersen's points-to analysis [3℄. This analysis wasnot expressible in Cobalt. We start with a rule for propa-gating pointer information through simple assignments:de
l X:Var , Y :Var , A:Varif stmt(X := A) ^mustNotPointTo(A;Y )�inthen mustNotPointTo(X;Y )�outThe outgoing information, mustNotPointTo(X;Y ), is adi�erent instantiation of the mustNotPointTo fa
t thanthe in
oming information, mustNotPointTo(A; Y ). Thisway of stringing together mustNotPointTo(X;Y ) andmustNotPointTo(A;Y ) was impossible to a
hieve in Cobalt.Next we extend our Rhodium analysis with a rule for prop-agating pointer information through pointer stores:de
l X:Var , Y :Var , A:Var , B:Varif stmt(�A := B) ^mustPointTo(A;X)�in ^mustNotPointTo(B; Y )�inthen mustNotPointTo(X;Y )�outThe mustPointTo(A;X) fa
t, 
omputed by rules not shownhere, says that A de�nitely points to X, and its meaning is�(A) = �(&X).The above rule for pointer stores performs a strong updatein whi
h we know exa
tly what A points to. We 
an alsowrite a weak-update rule for pointer stores:



de
l X:Var , Y :Var , A:Var , B:Varif stmt(�A := B) ^mustNotPointTo(X;Y )�in ^mustNotPointTo(B; Y )�inthen mustNotPointTo(X;Y )�outFinally, we add a rule for propagating pointer informationthrough pointer loads:de
l X:Var , Y :Var , A:Varif stmt(X := �A) ^mustNotPointToHeap(A)�in ^8 B:Var : mayPointTo(A;B)�in )mustNotPointTo(B; Y )�inthen mustNotPointTo(X;Y )�outThe mustNotPointToHeap(A) fa
t, whose rules are notshown here, says that A does not point to the heap (or equiv-alently, that A points to some variable), and its meaning is9Z : Var : �(A) = �(&Z). The mayPointTo fa
t is a vir-tual data
ow fa
t as de�ned earlier: mayPointTo(X;Y ) ,:mustNotPointTo(X;Y ). The rule as a whole says that Xdoes not point to Y after a statement X := �A if all thevariables in the may-point-to set of A do not point to Y .Starting with a simple pointer analysis and extending itstep by step with additional rules, we have now expressedin Rhodium a 
ow-sensitive intrapro
edural version of An-dersen's pointer analysis. Rhodium's propagation rules arethe key enablers of this expressiveness leap over Cobalt.Propagation rules allow us to de�ne mustNotPointTo re-
ursively, and they allow us to string together instan
es ofthe mustNotPointTo fa
t, and other fa
ts, in 
exible ways.Rhodium's new proof strategy allows us to automati
allyprove this analysis sound, despite the extra expressivenessover Cobalt. In se
tion 3 we will show how to extend ourRhodium pointer analysis even further by adding heap sum-maries, and in se
tions 5 and 6 we will show how to make it
ow-insensitive and/or interpro
edural, all while retainingautomated soundness reasoning.
2.4 Transformation RulesRhodium propagation rules are used to de�ne data
owanalyses. The information 
omputed by these analyses 
anthen be used in transformation rules to optimize IL pro-grams. A transformation rule des
ribes the 
onditions un-der whi
h a node in the CFG 
an be repla
ed by a new nodewithout 
hanging the behavior of the program.To illustrate transformations, �gure 2 shows an arithmeti
simpli�
ation optimization. The optimization is driven byan arithmeti
 invariant analysis that keeps tra
k of invari-ants of the form E1 = E2 � E3, represented in Rhodiumwith the equalsTimes data
ow fa
t. Some of the rules forthis analysis are shown in �gure 2. The optimization per seis performed by a single transformation rule on lines 27-28,whi
h says that a statement Y := I �C 
an be transformedto Y := X if we know that X = I � C holds before thestatement.We want to automati
ally show that a Rhodium optimiza-tion is sound, a

ording to the following de�nition:Def 4. A Rhodium optimization O, whi
h in
ludes anynumber of propagation rules and transformation rules, issound i� for all IL pro
edures P , the optimized version P 0of P , produ
ed by performing some subset of the transfor-mations suggested by O, has the same semanti
s as P .

8. de
l E1:Expr, E2:Expr, E3:Expr9. de
l X:Var, Y :Var, I:Var10. de
l C:Int, C1:Int, C2:Int, C3:Int11. de�ne edge fa
t equalsTimes(E1:Expr, E2:Expr,12. E3:Expr13. with meaning �(E1) = �(E2) � �(E3)14. if equalsTimes(E1; E2; E3)�in ^15. un
hanged(E1) ^ un
hanged (E2) ^16. un
hanged(E3)17. then equalsTimes(E1; E2; E3)�out18. if stmt(X := I � C) ^X 6= I19. then equalsTimes(X; I; C)�out20. if stmt(I := I + C1) ^X 6= I ^21. equalsTimes(X; I; C2)�in22. then equalsTimes(X; I � C1; C2)�out23. if stmt(X := X + C1) ^X 6= I ^24. equalsTimes(X; I � C2; C3)�in ^25. C1 = applyBinaryOp(�; C2; C3)26. then equalsTimes(X; I; C3)�out27. if stmt(Y := I � C) ^ equalsTimes(X; I; C)�in28. then transform Y := XFigure 2: Arithmeti
 simpli�
ation optimization inRhodium. Due to spa
e limitations, only a few rep-resentative rules are shown here.As with propagation rules, our automati
 proof strategyrequires an automati
 theorem prover to dis
harge a lo
alsoundness property for ea
h transformation rule. This prop-erty is given in the following de�nition of soundness for atransformation rule.Def 5. A transformation rule if  then transform n0is said to be sound i� it satis�es the following property:8(n; �; �0; d; �) 2 Node � State2 �D � Subst :� J K(n; d; �) ^ � n! �0 ^allMeaningsHold(d; �) �) � n0! �0The following theorem, whi
h is proven in the a

ompany-ing te
hni
al report [20℄, summarizes the part of the proof ofsoundness of an optimization O that is performed by hand:Theorem 2. If all the propagation rules and transforma-tion rules of a Rhodium optimization O are sound, then Ois sound.As des
ribed earlier, the fa
t that ea
h propagation ruleis sound is suÆ
ient to ensure that the indu
ed analysis Ais sound. This fa
t, along with the fa
t that ea
h transfor-mation rule is sound, is suÆ
ient to show that any subsetof the suggested transformations 
an be performed without
hanging the semanti
s of any IL pro
edure.
2.5 Profitability heuristicsIn many optimizations, the 
ondition that spe
i�es whena transformation is legal 
an be separated from the 
onditionthat spe
i�es when a transformation is pro�table. Rhodiumprovides pro�tability edge fa
ts for implementing pro�tabil-ity de
isions. Be
ause they are not meant to be used forjustifying soundness, these fa
ts have an impli
it meaning of



i := 0;while (...) {...i := i + 1;...if (...) {i := i + 1;}...y := i * 20;}
i := 0;x := i * 20; ( insertedwhile (...) {...i := i + 1;x := x + 20; ( inserted...if (...) {i := i + 1;x := x + 20; ( inserted}...y := x; ( transformed}(a) (b)Figure 3: Code snippet before and after loop-indu
tion-variable strength redu
tion.true , and as a result, they 
an always be safely added to theCFG. We 
an therefore give programmers a lot of freedom in
omputing these fa
ts. In parti
ular, we allow programmersto write regular 
ompiler passes 
alled pro�tability analy-ses, whi
h are given a read-only view of the 
ompiler's datastru
tures, ex
ept for the ability to add pro�tability fa
tsto the CFG. In this way, one 
an for example use standardalgorithms to annotate the CFG with fa
ts indi
ating wherethe loop heads are, what the loop-nest is, or how many timesa variable is a

essed inside of a loop { these algorithms donot have to be expressed using propagation rules. Transfor-mation rules 
an then dire
tly use these fa
ts to sele
t onlythose transformations that are pro�table.To illustrate the use of pro�tability fa
ts, we showhow to write loop-indu
tion-variable strength redu
tion inRhodium. The idea of this optimization is that if all de�-nitions of a variable I inside of a loop are in
rements, andsome expression I � C is used in the loop, then we 
an (1)insert X := I � C before the loop (2) insert X := X + Cright after every in
rement of I in the body of the loop and(3) repla
e I � C with X in the body of the loop. Con-sider for instan
e the 
ode snippet in �gure 3(a). The resultof performing loop-indu
tion-variable strength redu
tion isshown in �gure 3(b). This optimization was not expressiblein Cobalt.The e�e
t of this optimization 
an be a
hieved inRhodium in two passes. The �rst pass inserts assignmentsto the newly 
reated indu
tion variable x. The se
ond passpropagates arithmeti
 invariants in order to determine thatx = i * 20 holds just before the statement y := i * 20,thereby justifying the strength-redu
tion transformation. Adead-assignment elimination pass 
an also be run afterwardsin order to 
lean up the dead assignments to i.For the �rst pass, determining when it is safe to insertan assignment is simple: an assignment X := E 
an be in-serted if X is dead after the insertion point. The tri
ky partof this �rst pass lies in determining whi
h of the many legalinsertions should be performed so that the later arithmeti
-invariant pass 
an justify the desired strength redu
tion.This de
ision of what assignments to insert 
an be guidedby pro�tability fa
ts. A pro�tability analysis running stan-dard algorithms 
an insert the following three pro�tabilityfa
ts:� indVar(I;X;C) is inserted on the edges of a loop (in
lud-

ing the in
oming edge into the loop) to indi
ate that I isa indu
tion variable in the loop, X is a fresh indu
tionvariable that would be pro�table to insert, and C is theanti
ipated multipli
ation fa
tor between I and X.� afterIn
r(I) is inserted on the immediate edge followinga statement I := I + 1.� afterLoopInit(I) is inserted on the immediate edge follow-ing a statement I := E that is at the head of a loop.In the example of �gure 3, indVar(i; x; 20) would be in-serted throughout the loop, afterIn
r(i) would be insertedafter the in
rements of i and afterLoopInit(i) would be in-serted after the assignment i := 0. The following two trans-formation rules then indi
ate whi
h assignments should beinserted:de
l X:Var , I:Var , C:Constif stmt(skip) ^ dead(X)�out ^afterIn
r (I)�in ^ indVar(I;X; C)�inthen transform X := X + Cif stmt(skip) ^ dead(X)�out ^afterLoopInit(I)�in ^ indVar(I;X;C)�inthen transform X := I � CFollowing our previous work on Cobalt, we express inser-tion as repla
ement of a skip statement. These skip state-ments are only virtual, and the 
ompiler impli
itly insertsan in�nite supply of them in between any two nodes in theCFG. The above transformations are sound be
ause of thedead(X) fa
t. The other fa
ts are simply there to guidewhi
h dead assignments to insert. Sin
e their meaning istrue and they are used in a 
onjun
tion, they do not haveany impa
t on soundness 
he
king.2Rhodium's way of in
orporating pro�tability informationis superior to Cobalt's approa
h. Cobalt allowed pro�tabil-ity de
isions to be made in a 
hoose fun
tion that did not af-fe
t soundness: after the set of all legal transformations wasgenerated, the 
hoose fun
tion would sele
t a subset of thesetransformations to a
tually perform. The generate-and-testapproa
h of the 
hoose fun
tion is not always well-suited inpra
ti
e be
ause there may be in�nitely many legal trans-formations to generate. The above example is su
h a 
ase:there are in�nitely many expressions E for whi
h we 
aninsert an assignments X := E when X is dead. Rhodiumsolves this problem by allowing programmers to write ar-bitrarily 
omplex 
ompiler passes for inserting pro�tabilityfa
ts that 
an then be used to prune out the transformationsat the point where they are generated.For the se
ond pass that runs after the dead assign-ments have been inserted, we 
an use the arithmeti
-invariant analysis from �gure 2. The rules in �gure 2are suÆ
ient to trigger the strength-redu
tion transforma-tion in �gure 3(b). The statement x := i * 20 establishesthe data
ow fa
t equalsTimes(x; i; 20). Every sequen
eof i := i + 1 followed by x := x + 20 propagates �rstequalsTimes(x; i-1; 20) and then equalsTimes(x; i; 20). As aresult, equalsTimes(x; i; 20) is propagated to y := i * 20,thereby triggering the transformation to y := x.2This example uses the ba
kward data
ow fa
t dead(X).Se
tion 8 des
ribes the state of ba
kward analyses and trans-formations in Rhodium.



3. DYNAMIC SEMANTICS EXTENSIONSThe meaning of data
ow fa
ts we have seen so far alltalked about the 
on
rete program states o

urring on edgesannotated with the fa
t. Unfortunately, the natural wayto express the meaning of 
ertain data
ow fa
ts is to talkabout 
omplete tra
es of program states rather than singleprogram states.As a motivating example, 
onsider extending our pointeranalysis from se
tion 2.1 with heap summaries, where ea
hallo
ation statement S represents all the memory blo
ks al-lo
ated at S. The meaning of mustNotPointTo(X;S), whereX is a variable and S is an allo
ation site, is that X doesnot point to any of the memory blo
ks allo
ated at S. Thisproperty, however, 
annot be expressed by just looking atthe 
urrent program state, be
ause there is no way to deter-mine whi
h memory blo
ks were allo
ated at site S.We 
ould try to �x this problem by enri
hing our meaningsso that they talk about exe
ution tra
es. From the exe
utiontra
e one 
an easily extra
t the memory blo
ks that wereallo
ated at site S (by evaluating, for ea
h statement S :X := new T in the tra
e, the value of X in the su

essorstate). However, in order to extra
t this information, onehas to use quanti�ers that range over indi
es of unbounded-length tra
es. Unfortunately, we have found the heuristi
sused in automati
 theorem provers for managing quanti�ersto be easily 
onfounded by these kinds of quanti�ed formulasthat arise when using unbounded-length tra
es.In order to solve this problem Rhodium allows the pro-gram state to be extended with user-de�ned 
omponents
alled state extensions. These 
omponents are meant togather the information from a tra
e that is relevant for aparti
ular data
ow fa
t. Instead of referring to the tra
e,the meaning 
an then refer to the state extension. For theabove heap summary example, the state would be extendedwith a map des
ribing whi
h heap lo
ations were allo
atedat whi
h sites, and the meaning of mustNotPointTo 
ouldthen use this map instead of referring to the tra
e.To update the user-de�ned 
omponents of the state, pro-grammers also extend the dynami
 semanti
s of the interme-diate language. Be
ause of the way these extensions to thesemanti
s are de
lared, they are guaranteed to be 
onser-vative, meaning that the tra
e of a program in the originalsemanti
s and the 
orresponding tra
e in the extended se-manti
s agree on all the 
omponents of the program statefrom the original semanti
s. As a result, if we preserve theextended semanti
s using our regular Rhodium proof strat-egy, we are guaranteed to also preserve the original seman-ti
s. User de�ned state extensions are just a formal tool forproving soundness: they 
an be erased without having anyimpa
t on how analyses or IL programs are exe
uted.We present state extensions in more detail by show-ing how they 
an be used to extend our pointer analysiswith heap summaries. In order to de�ne the meaning ofmustNotPointTo over summaries, we de�ne an additional
omponent of the program state 
alled summary of , whi
hmaps ea
h heap lo
ation to the heap summary that repre-sents it. We start by 
onsidering allo
ation site summaries,where the lo
ations 
reated at the same site are summarizedtogether by the node that 
reated them. The de
laration ofsummary of then looks as follows:type HeapSummary = Nodede�ne state extensionsummary of : Lo
 ! HeapSummary

The summary of map gets updated a

ording to the follow-ing dynami
 semanti
s extension:de
l X:Var , T :Typeif stmt(X := new T )then (��out):summary of =(��in):summary of [��out(X) 7! 
urrNode ℄The terms ��in and ��out refer respe
tively to the pro-gram states before and after the 
urrent statement, whilethe spe
ial term 
urrNode refers to the 
urrent CFG node.The rule as a whole says that an allo
ation site X := new Tupdates the summary of 
omponent of the state by mak-ing the newly 
reated lo
ation, obtained by evaluating X in��out , map to the CFG node that was just exe
uted. In allother 
ases the summary of 
omponent impli
itly remainsun
hanged.We 
an easily modify the above de
larations to a
hieveother kinds of summaries. In parti
ular, table 1 shows howto modify the HeapSummary de�nition and 
hange what��out(X) maps to in the dynami
 semanti
s extension inorder to spe
ify di�erent summarization strategies. The restof our treatment of heap summaries applies to all of thestrategies, ex
ept when expli
itly stated. The next step isto de�ne the domain of abstra
t lo
ations:type AbsLo
 = Var j HeapSummaryAn abstra
t memory lo
ation AL is either a variable or aheap summary. The intuition is that AL represents a set of
on
rete memory lo
ations: if AL is a variable, it representsthe address of the variable; if AL is a heap summary, itrepresents the set of summarized heap lo
ations.We 
an now modify our mustNotPointTo fa
t to take ab-stra
t lo
ations, instead of just variables (the meaning isexplained below):de�ne edge fa
t mustNotPointTo(AL1:AbsLo
,AL2:AbsLo
)with meaning8L : Lo
 :belongsTo(L;AL1; �) ^ isLo
(�(�L))):belongsTo(�(�L); AL2; �)de�ne belongsTo(L:Lo
; AL:AbsLo
; �:State) ,isVar(AL)) [L = �(&AL)℄ ^isHeapSummary(AL)) [�:summary of [L℄ = AL℄The meaning of mustNotPointTo says that none of the lo-
ations belonging to AL1 point to any of the lo
ations be-longing to AL2. The lo
ations belonging to AL1 are thoselo
ations L for whi
h belongsTo(L;AL1; �) holds. For allthese lo
ations L, we look up the memory 
ontent of L us-ing �(�L). If the memory 
ontent �(�L) is a lo
ation (asopposed to a s
alar value, whi
h 
annot hold pointers), thenwe want �(�L) to not belong to AL2.The auxiliary fun
tion belongsTo(L;AL; �) returnswhether or not a lo
ation L belongs to an abstra
t lo
a-tion AL in state �. The de�nition of belongsTo is split intotwo 
ases, based on the type of AL. If AL is a variable, thenL belongs to AL if L is exa
tly the address of AL. If ALis a heap summary, then L belongs toAL if �:summary ofmaps L to AL.The rules for our pointer analysis must now be modi�ed totake summaries into a

ount. Be
ause of spa
e limitations,



HeapSummary ��out(X) maps to this in thedynami
 semanti
s extensionAllo
ation site summaries Node 
urrNodeType based summaries Type TVariable based summaries Var XSingle heap summary unit ()Table 1: Various kinds of heap summarization strategies a
hievable by varying the de�nition of HeapSummaryand the dynami
 semanti
s extension.we only present some representative rules here. The 
om-plete set of rules 
an be found in the a

ompanying te
hni
alreport [20℄.The following rule, whi
h only works for allo
ation sitesummaries, says that after an allo
ation site X := new T ,X does not point to any heap summary that is di�erent fromthe 
urrent node:de
l Summary :HeapSummary , X:Var , T :Typeif stmt(X := new T ) ^ Summary 6= 
urrNodethen mustNotPointTo(X; Summary)�outTo prove this rule sound, the theorem prover must showthat the meaning of mustNotPointTo(X; Summary) holdsafter X := new T . Sin
e X is a variable and Summary isa heap summary, the meaning expands to isLo
(�(X)) )�:summary of [�(X)℄ 6= Summary . Sin
e the theoremprover knows that new T returns a lo
ation, it determinesthat isLo
(�(X)) holds, and then the remaining obligationis �:summary of [�(X)℄ 6= Summary . To prove this, thetheorem prover makes use of the user-de�ned extension tothe dynami
 semanti
s. Indeed, if we let � be the programstate right after exe
uting the allo
ation, then the dynami
semanti
s extension tells us that �:summary of [�(X)℄ =
urrNode . In 
onjun
tion with Summary 6= 
urrNode , thisimplies �:summary of [�(X)℄ 6= Summary , whi
h is whatneeded to be shown.The above rule for stmt(X := new T ) only works for al-lo
ation site summaries. Of all the pointer analysis rules,it is the only one that depends on the heap summarizationstrategy. In order to modify it for other kinds of heap sum-maries, the ante
edent of the rule should 
ompare Summarywith the third 
olumn of table 1, rather than with 
urrNode .Finally, we now show the rule of our pointer analysis thatrequires the most 
ompli
ated reasoning from the theoremprover:de
l X:Var , Y :Var , AL2:AbsLo
if stmt(X := �Y ) ^8AL1 : AbsLo
 : mayPointTo(Y;AL1)�in )mustNotPointTo(AL1;AL2)�inthen mustNotPointTo(X;AL2)�outIn the above rule, we again de�ne mayPointTo as before:mayPointTo(AL1;AL2) , :mustNotPointTo(AL1;AL2).The rule as a whole says that X does not point to AL2after X := �Y if for all abstra
t lo
ations AL1 that Y maypoint to, we have that AL1 does not point to AL2.
4. INFINITE ANALYSIS DOMAINSThe domains of data
ow fa
t parameters in Cobaltwere �nite for a parti
ular intermediate language pro-gram. For example, the Const and Expr domains did

not represent all possible 
onstants and expressions, butrather only those 
onstants and expressions that ap-peared in the intermediate-language program being ana-lyzed. Rhodium improves on Cobalt by introdu
ing in�nitedomains. The Expr and Const domains in Rhodium now re-fer to the in�nite unrestri
ted versions whereas ExprInProgand ConstInProg refer to the �nite versions restri
ted to
onstants and expressions in the sour
e program.3The addition of in�nite domains in
reases the expressive-ness of Rhodium. For example, being able to refer to expres-sions that are not in the analyzed program is 
ru
ial for ex-pressing the arithmeti
 invariant analysis equalsTimes fromse
tion 2.4. Rhodium 
an also perform range analysis wherethe end points of the range are not restri
ted to 
onstants inthe program. Finally, Rhodium 
an express a better versionof 
onstant propagation be
ause it 
an 
onstru
t and thenpropagate 
onstants that are not in the sour
e 
ode.However, with this extra 
exibility 
omes a 
hallenge:whereas Cobalt analyses were trivially guaranteed to ter-minate, be
ause all domains were �nite, Rhodium analysesmay now run forever.There are two ways in whi
h a Rhodium analysis mightrun forever. The �rst one is that a parti
ular rule might notterminate. The se
ond is that the �xed-point 
omputationmight not terminate. We deal with ea
h one of these in thenext two subse
tions.
4.1 Termination of a single ruleIn order to guarantee that exe
ution of ea
h rule termi-nates, we must guarantee that the rule has only a �nitenumber of instantiations (i.e., substitutions for its free vari-ables), and that ea
h instantiation 
an be evaluated in �nitetime. For the latter, we restri
t the logi
 of ea
h rule's an-te
edent to the de
idable subset of �rst-order logi
 in whi
hquanti�ers only range over �nite domains.4For the former, we wish to ensure a \�nite-in-�nite-out"property: if a rule is invoked on a node where all in
omingedges have �nite sets of fa
ts, then the rule will have only a�nite number of instantiations and will generate only a �niteset of fa
ts on outgoing edges. Unfortunately, unrestri
tedpropagation rules do not have that property: it is possiblefor a sound rule to propagate in�nitely many data
ow fa
ts,even when the input fa
ts are �nite. For example, 
onsiderthe following sound range-analysis rule:3When we say �nite here, we mean �nite on
e a givenintermediate-language program has been singled out.4Here again, the domain must be �nite for a parti
ular pro-gram, not ne
essarily for all programs.



de�ne edge fa
t inRange(X : Var ; lo : Const ; hi : Const)with meaning lo � �(X) ^ �(X) � hiif stmt(X := C) ^ C1 � C ^ C2 � Cthen inRange(X;C1; C2)�outThere are in�nitely many instantiations of C1 and C2 thatwill make this rule �re, even if the input 
ontains no data
owfa
ts.In order to guarantee that su
h a situation does not o
-
ur, we make use of a notion from database 
ommunity
alled safety [33℄, adapting it to the 
ontext of Rhodium.A Rhodium propagation rule is said to be �nite-safe if ev-ery free variable of in�nite domain in the 
onsequent is�nite-safe. A variable is �nite-safe if it appears (after ex-panding virtual fa
ts and folding away all negations) in theante
edent either in a data
ow fa
t, or on one side of anequality where the other side 
ontains only �nite-safe vari-ables; �nite-safe variables thus are 
onstrained to have a�nite number of instantiations if the input fa
t set is �nite.The range-analysis rule above is not �nite-safe, sin
e neitherC1 nor C2 is �nite-safe.Even if all rules are �nite-safe, a rule 
an still be invokedon an in�nite input set: ?. This 
ase 
an happen at thestart of analysis, sin
e all edges (aside from the entry edge)are initialized with ?. Sin
e it is sound to propagate ? asthe result of any rule invoked with ? on its input, we treat? spe
ially and dire
tly propagate ? to the output withoutinvoking the rule expli
itly.Thus, if all rules are �nite-safe, either they will be invokedon ? and immediately propagate ?, or they will be invokedon a �nite set of input fa
ts and propagate another �nite setof output fa
ts in �nite time.
4.2 Termination of the fixed-point computa-

tionAs dis
ussed in se
tion 2.1, the 
ow fun
tion F is guaran-teed to be monotoni
, and so the data
ow values 
omputedby iterative analysis form an as
ending 
hain. To guaranteetermination, all that is left is to ensure that all as
ending
hains in the latti
e have �nite length.In order to do this, we re
all from se
tion 4.1 that we al-ready imposed the �nite-safe requirement, whi
h led to allpropagated sets being either �nite or ?. We 
an thereforeshrink our latti
e to only in
lude these �nite sets and ?.The original underlying latti
e was the power-set latti
e, inwhi
h the ordering was the superset relation. The shrunkenlatti
e uses this same ordering, whi
h means that all as
end-ing 
hains in the shrunken latti
e must have a �nite length,sin
e the longest 
hain of de
reasing-sized �nite sets is �nite.Noti
e that the latti
e does not have a �nite height, be
ausethere 
an still be in�nite des
ending 
hains.Our te
hnique for guaranteeing termination is e�e
tiveeven in the fa
e of data
ow fa
ts with in�nite-domain pa-rameters. For example, the equalsTimes data
ow fa
t hasall three of its parameters ranging over in�nite domains,and yet we are still able to guarantee that the analysis ter-minates. In this 
ase, the shrunken latti
e is in�nitely wideand in�nitely tall, but its as
ending 
hains are nonethelessguaranteed to be �nite.
4.3 Custom mergesThe range-analysis propagation rule in se
tion 4.1 wassound but not �nite-safe: it 
ould produ
e an in�nite (andnon-?) set of output inRange fa
ts. However, the meaning

of one of the propagated inRange fa
ts, inRange(X;C;C),implies all the others' meanings. So an alternative soundand �nite-safe propagation rule 
ould be the following:if stmt(X := C)then inRange(X;C;C)�outUnfortunately, this propagation rule intera
ts poorly withthe powerset latti
e's join fun
tion, interse
tion. If weuse interse
tion to join the fa
t set finRange(x; 1; 1)g withfinRange(x; 2; 2)g, we get fg. We would prefer instead toget the fa
t set finRange(x; 1; 2)g: this fa
t set is sound (andpre
ise) sin
e its meaning is exa
tly the disjun
tion of themeanings of the two merging fa
t sets.Rhodium avoids this information-loss problem while re-taining �nite-safe propagation rules by allowing program-mers to de�ne their own merges. Rather than provide spe-
ial syntax for de�ning merge fun
tions, we simply intro-du
e a merge statement for whi
h users 
an write ordinaryRhodium propagation rules:de
l X:Var , C1:Int , C2:Int , C3:Int , C4:Intif stmt(merge) ^inRange(X;C1; C2)�in[0℄ ^inRange(X;C3; C4)�in[1℄then inRange(X;min(C1; C3);max(C2; C4))�outThis example introdu
e edge indi
es: in[i℄ refers to the ithCFG input edge. The previously used in was just synta
ti
sugar for in[0℄. Similarly, out 
an also be indexed to re-fer to the true and false su

essor edges of a bran
h node.When a rule refers to multiple input or output edges, thereis one proof obligation sent to the theorem prover for ea
hinput-output-edge pair. The general version of (prop-ok)that handles an arbitrary number of input and output edgesis given in the a

ompanying te
hni
al report [20℄. In theabove 
ase, there would be two proof obligations, one forinput edge 0 and one for input edge 1. For input edge 0, wewould ask the theorem prover to show that if the meaningof inRange(X;C1; C2) holds of some program state �, and� on edge 0 steps to �0 through the merge node, then themeaning of inRange(X;min(C1; C3);max(C2; C4)) holds of�0. A similar proof obligation would be generated for inputedge 1.From a formal point of view, the latti
e of theimpli
itly de�ned data
ow analysis A must be modi-�ed in order to take into a

ount 
ustom merge fun
-tions. Consider the example above, where the merge ofS = finRange(x; 1; 1)g and T = finRange(x; 2; 2)g givesmerge(S; T ) = finRange(x; 1; 2)g. In the powerset latti
e ofall data
ow fa
ts, the expressions S, T and merge(S; T ) areunrelated. To prove the soundness of the 
ustom merge, weinstead need a latti
e in whi
h S t T v merge(S; T ) holds,meaning that the user's merge fun
tion returns an approxi-mation of the best possible merge (whi
h is t).To address this problem, when a user-de�ned merge fun
-tion is spe
i�ed, we make use of the more general latti
e ofpredi
ates: (D;t;u;v;>;?) = (Pred ;_;^;); true ; false).This latti
e subsumes the powerset latti
e sin
e a set ofdata
ow fa
ts 
an be interpreted as a predi
ate by takingthe 
onjun
tion of the meanings of all the data
ow fa
ts inthe set. The view shown to the programmer is still thatsets of data
ow fa
ts are being stored on edges, but froma formal point of view, we interpret these sets as predi-
ates. In the example above, S be
omes 1 � x � 1, T



be
omes 2 � x � 2, and merge(S; T ) be
omes 1 � x � 2.Therefore S t T = (1 � x � 1) _ (2 � x � 2), and sin
e(1 � x � 1) _ (2 � x � 2) ) 1 � x � 2, we nowhave S t T v merge(S; T ) as desired. More generally, ifa merge rule passes property (prop-ok), we are guaranteedthat if S and T are the two in
oming predi
ates to the mergenode, then the outgoing predi
ate merge(S; T ) will satisfyS _ T ) merge(S; T ), or S t T v merge(S; T ) in the latti
eof predi
ates.Unfortunately, the latti
e of predi
ates, even whenshrunken to the meanings of only �nite sets of fa
ts plus?, does not have the �nite-as
ending-
hain property. Con-sider for example the inRange fa
t, and the in�nite sequen
eS0; S1; S2; : : :, where Si = finRange(x; 0; i)g. Ea
h one ofthe sets Si is �nite and therefore belongs to the shrunkenlatti
e; furthermore the sequen
e is an as
ending 
hain, be-
ause ea
h Si implies Si+1. Consequently, termination ofthe �xed-point 
omputation is not guaranteed of analysesusing 
ustom merges, and indeed the kind of range analysisdis
ussed here does not terminate.5To allow the optimization writer to a
hieve terminationin su
h 
ases, as well as allowing the optimization writer tomake terminating analyses 
onverge faster, Rhodium pro-vides widening operators [8℄. A Rhodium widening opera-tor is a fun
tion, written in the underlying language of the
ompiler, that takes a node, an in
oming data
ow fa
t set,and an \unwidened" outgoing data
ow fa
t set, and pro-du
es the widened outgoing fa
t set. After the Rhodiumevaluation engine runs the propagation rules on a node n,given an input set din to produ
e an \unwidened" outputset dout , the widening operator is run on n, din , and doutto produ
e the widened output set dwide . Finally, we 
om-pute merge(dout ; dwide) (using either the default merge or a
ustom merge if one is spe
i�ed) as the �nal outgoing setto propagate. From the soundness of F we know that thefa
t dout is sound, and sin
e merge(dout ; dwide) is more 
on-servative than dout , merge(dout ; dwide) must also be sound,whi
h means that the value dwide returned by the wideningoperator does not a�e
t soundness { it only makes the resultmore 
onservative, thus helping the iterative analysis rea
ha �xed point faster.
5. FLOW-INSENSITIVE ANALYSESAn additional bene�t that falls out from Rhodium's new
ow-fun
tion model is that Rhodium 
an easily supportprovably sound 
ow-insensitive analyses. In parti
ular, we
an interpret propagation rules in a 
ow-insensitive man-ner. Instead of keeping a separate set of data
ow fa
ts atea
h edge, we keep a single set I for the whole pro
edure.Iterative analysis pro
eeds as usual, ex
ept that ea
h timea 
ow fun
tion is run, it takes I as input, and its result ismerged into I. In this way one 
an produ
e a sound 
ow-insensitive analysis from a sound 
ow-sensitive version. Wehave shown on
e by hand that if all the propagation rulesare sound, then the result of running the analysis in 
ow-insensitive mode is also sound. A proof 
an be found in thea

ompanying te
hni
al report [20℄.
6. INTERPROCEDURAL ANALYSESYet another bene�t of using 
ow fun
tions is that we 
anadapt a previous 
ow-fun
tion-based framework [7℄ from the5Or, if using bounded-sized integers, it takes a long time.

Vortex 
ompiler [11℄ in order to automati
ally build prov-ably sound interpro
edural analyses in Rhodium. The pre-vious Vortex framework has been used to write realisti
 in-terpro
edural analyses, su
h as various kinds of 
lass anal-ysis [13℄, 
onstant propagation, side-e�e
t analysis, es
apeanalysis, and various syn
hronization-related analyses [2℄.The 
ontribution of the new Rhodium framework is a rigor-ous formal des
ription 
ombined with a proof of soundness.These are stand-alone 
ontributions whose appli
ations arebroader than just the Rhodium system.Our approa
h revolves around a framework for 
reatinga provably sound interpro
edural analysis from a soundintrapro
edural version. The framework is parameter-ized by a 
ontext-sensitivity strategy that des
ribes what
ontext a fun
tion should be analyzed in at a parti
u-lar 
all site. The 
ontext-sensitivity strategy is embod-ied in a fun
tion sele
tCalleeContext . Given a 
all site n,the 
ontext 
 2 Context in whi
h the 
aller is being an-alyzed, and the data
ow information d at the 
all site,sele
tCalleeContext (n; 
; d) returns the 
ontext for analyz-ing the 
allee at this 
all site.We have instantiated our framework with two 
ommonlyused 
ontext-sensitivity strategies: the transfer fun
tionstrategy (also known as Sharir and Pnueli's fun
tionalapproa
h [27℄), and Shivers's k-CFA algorithm [28℄ (alsoknown as the k-deep 
all-strings strategy of Sharir andPnueli [27℄). Table 2 shows the de�nition of Context andsele
tCalleeContext for these two strategies. The 
ontext-insensitive strategy 
an be a
hieved using 0-CFA.Our key insight is that these instantiations of the frame-work 
an be proven sound by hand on
e and for all, in-dependent of any user-de�ned analysis. As a result, anyinterpro
edural analysis generated by one of these instanti-ations is guaranteed to be sound provided the intrapro
e-dural version is. To build a provably sound interpro
eduralanalysis, the programmer writes the intrapro
edural versionin Rhodium, making sure that it passes all the soundness
he
ks, and then pi
ks one of the prede�ned 
ontext sensitiv-ity strategies. Our framework then automati
ally generatesan interpro
edural version of the analysis that is guaranteedto be sound.The Rhodium framework operates by 
reating an inter-pro
edural 
ow fun
tion Fi from an intrapro
edural versionF . Due to spa
e limitations, we only give an informal de-s
ription of Fi here { a formal des
ription of the framework,a

ompanied by proofs of soundness, 
an be found in thea

ompanying te
hni
al report [20℄.Instead of propagating fa
ts d 2 D, the interpro
edu-ral analysis propagates partial maps 
d 2 Context * Dwhi
h map a 
alling 
ontext 
 to the data
ow informationd that holds in that 
ontext. For nodes that are not fun
-tion 
alls or returns, Fi simply evaluates F pointwise onea
h range d element. For a 
all node n, for ea
h (
 7! d)pair 
owing into the 
all, Fi merges (pointwise) the pair(sele
tCalleeContext (n; 
; d) 7! d) into the map on the en-try edge of the 
allee's CFG, whi
h will 
ause the 
allee tobe further analyzed if the edge information 
hanges. For areturn node, for ea
h (
0 7! d0) pair 
owing into the return,for ea
h 
all site n and in
owing pair (
 7! d) su
h that
0 = sele
tCalleeContext (n; 
; d), the pair (
 7! d0) is mergedinto the map on n's su

essor edge. The a

ompanying te
h-ni
al report [20℄ des
ribes how data
ow fa
ts are translatedfrom 
allers to 
allees and vi
e versa.Analogously to widening operators as dis
ussed in se
-



Strategy Context sele
tCalleeContextTransfer fun
tion D sele
tCalleeContext (n; 
; d) = dk-CFA list [string ℄ sele
tCalleeContext (n; 
; d) = last(
on
at(
; [fnOf (n)℄); k)where: 
on
at(l1; l2) 
on
atenates lists l1 and l2fnOf (n) returns the name of the en
losing fun
tion 
ontaining nlast(l; k) returns the sublist 
ontaining the last k elements of l(or l if l 
ontains fewer than k elements)Table 2: De�nition of Context and sele
tCalleeContext for two 
ommon 
ontext-sensitivity strategies.tion 4.3, we 
ould enri
h Rhodium by allowing optimizationwriters to spe
ify a 
ontext widening operator to 
ontrol theamount of 
ontext-sensitivity. For example, after k di�erent
ontexts have been sele
ted for a fun
tion, all future 
on-texts 
ould be widened to >, bounding the number of timesthe fun
tion is analyzed.
7. EXECUTION ENGINERhodium analyses and transformations are meant to bedire
tly exe
utable; they do not have to be reimplementedin a di�erent language to be run. Using Whirlwind's frame-work for 
omposable optimizations [18℄, we have imple-mented a forward intrapro
edural exe
ution engine for the
ore of the Rhodium language. Rhodium optimizationsin Whirlwind pea
efully 
o-exist with Cobalt optimizationsand with hand-written optimizations. By supporting su
hin
remental adoption, it is possible to provide bene�ts to
ompiler-writers even if the whole optimizer is not writtenin Rhodium.The Rhodium exe
ution engine stores at ea
h edge in theCFG an element of D (ea
h element of D is a set of fa
ts),and propagates fa
ts a
ross statements by interpreting theRhodium rules. The engine's 
ow fun
tion Fexe
 : Node �D ! D operates as follows (where R is the set of forwardpropagation rules that the engine is exe
uting):Fexe
(n; d) = [r2R apply rule(r; n; d)apply rule(if  then f(�!t )�out ; n; d) =let � = sat( ;n; d; [℄) in [�2� ff(�(�!t ))gThe 
ow fun
tion applies ea
h rule separately and returnsthe union of the individual results. The apply rule fun
-tion 
omputes all the fa
ts propagated by a given rule. Todo this, apply rule �rst uses the sat fun
tion to 
omputeall the satisfying substitutions that make the ante
edent  hold. For ea
h returned substitution �, apply rule adds thepropagated fa
t, f(�(�!t )), to the result set.The sat : Pred � Node � D � Subst ! 2Subst fun
tion(where we denote by Pred the set of all Rhodium predi-
ates, and by Subst the set of all substitutions) �nds sat-isfying substitutions: given a predi
ate  , a node n, a setof fa
ts d, and a substitution �, sat( ; n; d; �) returns theset of all substitutions �0 that have the following properties:(1) �0 makes  hold at node n when d 
ows into n, or moreformally, J K(n; d; �0) holds (2) �0 is an extension of � and(3) the additional mappings in �0 are only for free variablesof  . The original 
all to sat passes the empty substitution[℄ for �, and in this 
ase sat( ;n; d; [℄) 
omputes the set ofall substitutions over the free free variables of  that make hold at node n. Here are some representative 
ases fromthe implementation of sat :

sat(true; n; d; �) = f�gsat(false; n; d; �) = ;sat( 1 _  2; n; d; �) = sat( 1; n; d; �) [ sat( 2; n; d; �)sat( 1 ^  2; n; d; �) = let � = sat( 1; n; d; �)in [�02� sat( 2; n; d; �0)sat(t1 = t2; n; d; �) = unify(n; t1; t2; �)sat(f (�!t )�in; n; d; �) = [f(�!s )2d unify terms(n;�!t ;�!s ; �)sat(9x: ; n; d; �) = sat( ;n; d; � n x)[x 7! �(x)℄In the above de�nition, we use � n x to denote � with anymapping of x removed. We also use �[x 7! �(x)℄ to denote[�02�f�0[x 7! �(x)℄g, where �0[x 7! �(x)℄ stands for thesubstitution �0 updated so that it maps x in the same waythat � does: if � maps x to a value, then �0[x 7! �(x)℄ mapsx to the same value, and if � does not have a mapping forx, then neither does �0[x 7! �(x)℄.The sat fun
tion above makes use of a uni�
ation routine:the 
all unify(n; t1; t2; �) attempts to unify �(t1) and �(t2).If the uni�
ation fails, then the empty set is returned. Ifthe uni�
ation su

eeds with substitution �0, then �0 is aug-mented with all the mappings from � to produ
e �00, andthe singleton set f�00g is returned. The unify terms fun
tionworks like unify, ex
ept that it uni�es a sequen
e of terms�!t with another sequen
e �!s . The uni�
ation pro
edure alsotries to evaluate terms su
h as applyBinaryOp(�; C2; C3)from �gure 2. If su
h a term 
an be evaluated, unify re-pla
es the term with what it evaluates to, and then pro
eedsas usual. If su
h a term 
annot be evaluated (be
ause forexample either C2 or C3 is not bound yet), then uni�
ationfails.Universal quanti�ers are handled by expanding them into
onjun
tions over the domain of the quanti�er. This expan-sion is possible be
ause the domain of quanti�ed variables is�nite for any parti
ular intermediate-language program. Forexistential quanti�ers, the sat fun
tion lo
ally skolemizes thequanti�ed variable, and then pro
eeds with the body of thequanti�er. Any mapping of the quanti�ed variable intro-du
ed for satisfying the body of the quanti�er is dis
ardedin the resulting substitutions.
8. CURRENT AND FUTURE WORKWe have so far fo
used our attention primarily on forwardanalyses and transformations in Rhodium. We have im-plemented a fully automated 
he
ker and exe
ution enginefor Rhodium forward analyses and transformations, and wehave �nished the hand proofs for the forward 
ase.We are now extending our work to ba
kward optimiza-tions. We already have a proof strategy for ba
kwardRhodium analyses and transformations, but have not yetimplemented the 
he
ker nor 
ompleted the hand proofs.



We have written in Rhodium the two ba
kward optimiza-tions we had in Cobalt (dead assignment elimination and
ode hoisting), and simulated our proof strategy by handon these optimizations. The proof obligations for these twooptimizations in Rhodium end up being exa
tly the sameas the proof obligations for their Cobalt 
ounterparts. Weare 
urrently working on generating these proof obligationsme
hani
ally, and we are also in the pro
ess of �nishing thehand proofs for the ba
kward 
ase.In future work, we would like to extend our exe
utionengine to handle the full language design, in
luding ba
k-ward analyses and transformations, interpro
edural and
ow-insensitive analyses, pro�tability heuristi
s and user-de�ned widenings.We also plan to explore more eÆ
ient implementationstrategies for our exe
ution engine, su
h as generating spe-
ialized 
ode to run ea
h optimization [30℄. For example,
onsider a rule whose ante
edent is a 
onjun
tion where oneof the 
onjun
ts is stmt(X := &Z). We stati
ally know thatthis rule will only �re on statements of the form X := &Z,but be
ause our 
urrent engine does not make use of thisinformation, the rule is repeatedly 
onsidered on statementsof the \wrong" form. By partially evaluating the rules withrespe
t to ea
h statement kind, we 
an produ
e a spe
ializedset of rules that will be smaller than the whole set (be
ausesome rules will not apply) and in whi
h ea
h rule will besimpler (be
ause the ante
edent 
an be simpli�ed based onthe statement kind). The generated 
ow fun
tion woulddispat
h on the form of the statement being analyzed, andwould dire
tly jump to spe
ialized 
ode that runs the sim-pli�ed rules.Furthermore, we would also like to investigate more ef-�
ient representations of the data
ow information. Forexample, storing the does-not-point-to relation using ex-pli
it pairs 
an in
ur a signi�
ant memory overhead. Wewould like to investigate ways of automati
ally 
onvertingto more spa
e-eÆ
ient representations, for instan
e the in-verted may-point-to relation, or a bit-ve
tor representationof the relation. Also, motivated by re
ent advan
es in theuse of BDDs to represent pointer information [5, 34℄, wewould like to explore ways of inferring when it would bebene�
ial to use BDDs for en
oding our sets of fa
ts.Finally, we want to 
ontinue on our path of pushing moreand more of the burden of 
ompiler-writing onto the 
om-puter. By automating more and more of the tedious, diÆ-
ult and error-prone parts of 
ompiler-writing, we 
an allowthe human to 
on
entrate on the 
reative and interestingparts. One su
h dire
tion is to automati
ally infer propaga-tion rules given only the fa
ts and their meanings. Anotherdire
tion would be to generate the fa
ts, meanings and prop-agation rules for supporting a given CFG rewrite rule.
9. RELATED WORKThe idea of analyzing optimizations written in a domain-spe
i�
 language was introdu
ed byWhit�eld and So�a withthe Gospel language [35℄. The di�eren
es between our workand the Gospel work stem from the di�eren
e in fo
us: weexplore soundness whereas Whit�eld and So�a explore op-timization dependen
ies.Many other frameworks and languages have been pro-posed for spe
ifying data
ow analyses and transformations,in
luding Sharlit [32℄, System-Z [36℄, languages based on reg-ular path queries [29℄, and temporal logi
 [30, 17℄. None of

these approa
hes, however, addresses automated soundness
he
king of the spe
i�ed transformations.A signi�
ant amount of work has been done on manuallyproving data
ow analyses and transformations 
orre
t, in-
luding abstra
t interpretation [8, 9, 10℄, the work on theVLISP 
ompiler [14℄, Kleene algebra with tests [16℄, manualproofs of 
orre
tness for optimizations expressed in temporallogi
 [30, 17℄, and manual proofs of 
orre
tness based on par-tial equivalen
e relations [4℄. Analyses and transformationshave also been proven 
orre
t me
hani
ally, but not auto-mati
ally: the soundness proof is performed with an inter-a
tive theorem prover that requires guidan
e from the user.For example, Young [37℄ has proven a 
ode generator 
or-re
t using the Boyer-Moore theorem prover enhan
ed withan intera
tive interfa
e [15℄. As another example, Ca
heraet. al. [6℄ show how to spe
ify stati
 analyses and prove them
orre
t in 
onstru
tive logi
 using the Coq proof assistant.Via the Curry-Howard isomorphism, an implementation ofthe stati
 analysis algorithm 
an then be extra
ted from theproof of 
orre
tness. Aboul-Hosn and Kozen present KAT-ML [1℄, an intera
tive theorem prover for Kleene Algebrawith Tests, whi
h 
an be used to intera
tively prove prop-erties of programs. In all these 
ases, however, the proofrequires help from the user. In 
ontrast, Rhodium's proofstrategy is fully automated.Instead of proving that the 
ompiler is always 
orre
t,translation validation [25, 23℄ and 
redible 
ompilation [26℄both atta
k the problem of 
he
king the 
orre
tness of agiven 
ompilation run. Therefore, a bug in an optimiza-tion only appears when the 
ompiler is run on a programthat triggers the bug. Our work allows optimizations to beproven 
orre
t before the 
ompiler is even run on
e. How-ever, to do so we require optimizations to be written in aspe
ial-purpose language. Our approa
h also requires theRhodium exe
ution engine to be part of the trusted 
om-puting base, while translation validation and 
redible 
om-pilation do not require trust in any part of the optimizer.Proof-
arrying 
ode [22℄, 
erti�ed 
ompilation [24℄, typedintermediate languages [31℄, and typed assembly lan-guages [21℄ have all been used to prove properties of pro-grams generated by a 
ompiler. However, the kinds of prop-erties that these approa
hes have typi
ally guaranteed aretype safety and memory safety. In our work, we prove thestronger property of semanti
 equivalen
e between the orig-inal and resulting programs.
10. CONCLUSIONWe presented a new language 
alled Rhodium for express-ing data
ow analyses and transformations that is signi�-
antly more expressive than previous work while retainingautomated soundness 
he
king. The key to Rhodium's ex-pressiveness lies in its use of lo
al propagation rules, whi
h
an be used by programmers to implement 
ow fun
tionsthat are 
he
ked automati
ally for soundness, and fromwhi
h 
an be derived 
ow-insensitive, 
ow-sensitive, and in-terpro
edural analyses.
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