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ABSTRACTWe present Rhodium, a new language for writing ompileroptimizations that an be automatially proved sound. Un-like our previous work on Cobalt, Rhodium expresses opti-mizations using expliit dataow fats manipulated by lo-al propagation and transformation rules. This new styleallows Rhodium optimizations to be mutually reursivelyde�ned, to be automatially omposed, to be interpretedin both ow-sensitive and -insensitive ways, and to be ap-plied interproedurally given a separate ontext-sensitivitystrategy, all while retaining soundness. Rhodium also sup-ports in�nite analysis domains while guaranteeing termina-tion of analysis. We have implemented a soundness hekerfor Rhodium and have spei�ed and automatially proventhe soundness of all of Cobalt's optimizations plus a varietyof optimizations not expressible in Cobalt, inluding An-dersen's points-to analysis, arithmeti-invariant detetion,loop-indution-variable strength redution, and redundantarray load elimination.Categories and Subjet Desriptors: D.2.4 [SoftwareEngineering℄: Software/Program Veri�ation { orretnessproofs, reliability, validation; D.3.4 [Programming Lan-guages℄: Proessors { ompilers, optimization; F.3.1 [Logisand Meanings of Programs℄: Speifying and Verifying andReasoning about Programs { mehanial veri�ationGeneral Terms: Reliability, languages, veri�ation.Keywords: Compiler optimization, automated orretnessproofs.
1. INTRODUCTIONCompilers are an important part of a programmer's om-puting infrastruture. If the ompiler doesn't generate or-ret ode, the whole appliation being ompiled is ompro-mised. As a result, muh work has been direted toward
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making ompilers trustworthy, inluding testing, transla-tion validation [25, 23℄, redible ompilation [26℄, and man-ual proof tehniques [8, 9, 37, 14, 17, 10℄. In previouswork [19℄, we presented a system in whih optimizationsould be heked for soundness automatially. An optimiza-tion is sound if it is guaranteed to preserve the semantisof any program it optimizes. Our solution was entered ona domain-spei� language for writing optimizations, alledCobalt. An optimization written in Cobalt was heked forsoundness by asking an automati theorem prover to dis-harge a small set of simple proof obligations. We provedby hand, one and for all, that if a Cobalt optimizationsatis�es these obligations, then the optimization is indeedsound. Unlike testing, redible ompilation, and translationvalidation, this heking is done one when the ompiler isdeveloped, separately from any partiular programs beingoptimized. Cobalt thus enables a key omponent of modernoptimizing ompilers to beome trusted, and it opens thedoor for users to extend their ompilers with appliation-spei� optimizations without ompromising the orretnessof the ompiler.Cobalt is expressive enough to allow a range of ow-sensitive intraproedural optimizations to be de�ned andproved orret. Using Cobalt, we were able to write andautomatially hek the soundness of onstant propagation,opy propagation, dead-assignment elimination, ommonsubexpression elimination, partial redundany elimination,partial dead-ode elimination, and simple kinds of pointeranalyses. However, Cobalt's design, where optimizing trans-formations are triggered based on a restrited temporal-logiprediate over the entire ontrol ow graph (CFG), imposeslimits that make it diÆult to extend to a wider range ofoptimizations.In this paper we present Rhodium, a new domain-spei�language for optimizations that an express a muh greaterrange of optimizations while still proving them sound auto-matially. The key tehnial hange from Cobalt is to makedataow fats expliit (rather than impliit in a temporal-logi prediate) and to use a separate and extensible set ofloal propagation and transformation rules to generate newdataow fats from old dataow fats and to speify whenstatements are optimized based on inowing dataow fats.Eah dataow fat is given a semanti meaning, in the formof a prediate over program states. To prove a Rhodiumoptimization orret, our system asks an automati theo-



rem prover to disharge a loal soundness lemma for eahpropagation and transformation rule, using the meanings ofthe fats manipulated by the rules and the onrete seman-tis of the program's statements. We proved, one by hand,that these lemmas imply that the optimization is globallysound. Beause Rhodium's loal propagation model is fun-damentally di�erent from Cobalt's, this hand proof is alsofundamentally di�erent, and ouhed in terms of abstratinterpretation [8℄.Rhodium's use of expliit dataow fats with loal prop-agation and transformation rules enables several importantadvanes over Cobalt's use of global temporal-logi predi-ates:� Traditional form. A loal propagation rule is a kind ofow- or transfer funtion, whih may be a more omfort-able and understandable model for an optimization writerthan Cobalt's global model.� Extensibility. Rhodium allows new propagation rulesto be added without modifying any existing rules or fatde�nitions, enabling optimizations to be enhaned moreeasily.� Reursively de�ned analyses. When deidingwhether to generate a partiular dataow fat on a state-ment's suessor edge, a Rhodium propagation rule anexamine any other dataow fats on the statement'spredeessor edges. Cobalt was in e�et only able topropagate the same dataow fat through a statementunhanged. Rhodium allows the propagation rules ofdataow fats to be de�ned mutually reursively, signi�-antly inreasing their expressiveness and larity.� Composed analyses and transformations. By us-ing a model based on loal propagation and transforma-tion rules, we an exploit previous work on automatiallyomposing analyses and transformations [18℄ to enableRhodium optimizations to be automatially omposed.� Flow-insensitive analyses. We show how to interpretRhodium propagation rules in a ow-insensitive manner,soundly, yielding more-eÆient analyses with no extraoptimization-writer work. In ontrast, Cobalt's globalmodel was inherently ow-sensitive.� Interproedural analyses. We show how to de-�ne a ontext-sensitive interproedural analysis from aRhodium intraproedural analysis and a spei�ation ofa ontext-sensitivity strategy. Rhodium's loal propaga-tion model allows the loal propagation rule for all state-ments to be derived automatially. If the intraproeduralanalysis is sound, then the interproedural one is sound,too.In addition to moving to a loal propagation model, wehave also enrihed Rhodium's expressiveness in the followingorthogonal ways:� Dynami semantis extensions. Rhodium allows theoptimization-writer to de�ne \virtual" extensions to theintermediate language's dynami semantis whih anompute properties of program exeution traes. For ex-ample, the statement at whih eah memory loation wasalloated an be omputed via a dynami semantis ex-tension. These extensions an then be referened in themeanings of dataow fats, for instane in a points-toanalysis with alloation-site heap summaries, enabling a

wider lass of optimizations to be proved sound automat-ially.� In�nite analysis domains. Rhodium allows dataow-fat domains to be in�nite, leading to inreased expres-siveness over Cobalt whih only allowed �nite domains(suh as the set of onstants, variables, and expressionsthat appeared in the program being optimized). Wepresent suÆient onditions, inluding some adapted fromthe database ommunity, for automatially guaranteeingthat analyses terminate even in the fae of suh in�nitedomains. Rhodium analyses an also speify wideningoperators [8℄, without a�eting soundness.The end result is a language that is signi�antly moreexpressive than Cobalt but nonetheless provides the samestrong soundness guarantees. We have implemented ourstrategy for automatially proving Rhodium analyses andoptimizations sound using Simplify, the automati theoremprover from ESC/Java [12℄. We de�ned and automatiallyproved sound all of Cobalt's optimizations plus the follow-ing new optimizations and analyses that were not express-ible in Cobalt: loop-indution-variable strength redution,a ow-sensitive version of Andersen's points-to analysis [3℄with heap summaries, arithmeti invariant detetion, on-stant propagation through array elements, redundant arrayload elimination, and integer range analysis. Our Rhodiumode de�nes 24 dataow fats, 105 propagation rules, and14 transformation rules. Moreover, all these analyses anbe interpreted as ow-insensitive analyses and/or ontext-sensitive or -insensitive interproedural analyses, and theyan be automatially omposed together to yield more-preise solutions, soundly.Setion 2 introdues the new ow-funtion-oriented wayof writing optimizations in Rhodium and desribes the as-soiated automated proof strategy based on abstrat inter-pretation. Setion 3 presents our tehnique for reduing theomplexity of proof obligations using extensions to the dy-nami semantis and shows how our tehnique an be usedto reason automatially about heap summaries. Setion 4desribes how we support in�nite analysis domains whilestill being able to guarantee termination. Setions 5 and 6present our frameworks for building provably sound ow-insensitive and interproedural optimizations. Setion 7 dis-usses our exeution engine for Rhodium in the Whirlwindompiler. Finally, setions 8 and 9 disuss future work andrelated work, respetively.
2. RhodiumRhodium optimizations run over a C-like intermediatelanguage (IL) with funtions, reursion, pointers to dy-namially alloated memory and to loal variables, andarrays. This setion desribes how intraproedural, ow-sensitive analyses are expressed and automatially provensound in Rhodium; setions 5 and 6 respetively disussow-insensitive and interproedural analyses. Rhodium op-timizations operate over a CFG representation of the IL pro-gram, with eah node representing a simple register-transfer-level statement.Dataow information is enoded in Rhodium by meansof dataow fats, whih are user-de�ned funtion symbolsapplied to a set of terms, for example hasConstValue(x; 5)or exprIsAvailable(x; a+ b). A Rhodium analysis uses prop-agation rules, whih are a stylized way of writing ow fun-tions, to speify how dataow fats propagate aross CFG



1. del X:Var, Y :Var, Z:Var2. de�ne edge fat mustNotPointTo(X:Var, Y :Var)3. with meaning �(X) 6= �(&Y )4. if stmt(X := &Z) ^ Y 6= Z5. then mustNotPointTo(X;Y )�out6. if mustNotPointTo(X;Y )�in ^mustNotDef (X)7. then mustNotPointTo(X;Y )�outFigure 1: Simple pointer analysis in Rhodium.nodes. These user-de�ned ow funtions impliitly de�ne adataow analysis, whose solution is the least �xed point ofthe standard equations indued by the ow funtions. Onean analysis has reahed a �xed point, the omputed infor-mation an be used by Rhodium transformation rules torewrite some of the CFG's nodes.We wish to automatially prove Rhodium analyses andtransformations sound. An analysis is sound if, for all ILproedures P , the dataow information omputed for P isonsistent with the proedure's onrete semantis. A trans-formation is sound if, for all IL proedures P , the transfor-mation preserves P 's semantis.Setion 2.1 illustrates Rhodium's propagation rules, andsetion 2.2 desribes how suh rules are automatiallyproven sound using abstrat interpretation. In setion 2.3we ompare Rhodium's design and proof strategy with thoseof Cobalt and show the expressiveness bene�ts of our newdesign in Rhodium. Setion 2.4 disusses Rhodium trans-formations and how they are automatially proven sound.Setion 2.5 shows how to inorporate pro�tability informa-tion into Rhodium optimizations.
2.1 Propagation RulesWe illustrate Rhodium's propagation rules with a simplepointer analysis, shown in �gure 1. The analysis determinesthat a variable x de�nitely does not point to another variabley if x was assigned the address of a variable di�erent fromy, and then x was not modi�ed afterwards. Beause ourstrategy for automated soundness heking is geared towardmust analyses, we enode our pointer information using themust-not-point-to relation instead of the may-point-to re-lation. Eah edge in the CFG will therefore be annotatedwith fats of the form mustNotPointTo(X;Y ), where X andY range over variables in the assoiated IL proedure. Thedelaration of the mustNotPointTo edge fat is shown online 2 of the Rhodium ode (for now the meaning on line 3an be ignored).Propagation rules in Rhodium indiate how edge fatsare propagated aross CFG nodes. For example, the ruleon lines 6-7 of �gure 1 de�nes a ondition for preserv-ing a mustNotPointTo fat aross a node: if the fatmustNotPointTo(X;Y ) appears on the inoming CFG edgeof a node n and n does not modify X, then the dataowfat mustNotPointTo(X;Y ) should appear on the outgoingedge of n.The left-hand side of a rule is alled the anteedent andthe right-hand side the onsequent. Eah propagation ruleis interpreted within the ontext of a CFG node. Edgefats are followed by � signs, with the name after the� sign indiating the edge on whih the fat appears.For example, mustNotPointTo(X;Y )�in is true if the in-

oming CFG edge of the urrent node is annotated withmustNotPointTo(X;Y ). Fats without � signs are nodefats, and they represent information about the urrentnode. For example, the user-de�ned mustNotDef (X) fatholds at a node if the node does not modify X. An aom-panying tehnial report [20℄ shows how users an de�nethese node fats.The semantis of a propagation rule on a CFG is as fol-lows: for eah substitution of the rule's free variables thatmake the anteedent valid at some node in the CFG, thefat in the onsequent is propagated. For the rule desribedabove, the mustNotPointTo(X;Y ) fat will be propagatedon the outgoing edge of a node for eah substitution of Xand Y with variables that makes the anteedent valid.While the rule in lines 6-7 of �gure 1 spei�es how topreserve mustNotPointTo fats, the rule in lines 4-5 spei�eshow to introdue them in the �rst plae. That rule says thatthe outgoing CFG edge of a statement X := &Z should beannotated with all fats of the form mustNotPointTo(X;Y ),where Y and Z are distint variables.All rules in �gure 1 are forward : the anteedent only refersto a node's inoming CFG edge and the onsequent onlyrefers to a node's outgoing CFG edge. Rhodium also sup-ports bakward rules, where the anteedent only refers toout and the onsequent only refers to in. The primary fo-us of our Rhodium work so far has been on forward analysesand transformations, and so we do not present any bakwardrules here. Also, for brevity and larity, we only present def-initions and theorems for the forward ase, with the bak-ward ase overed in the aompanying tehnial report [20℄.Setion 8 disusses the state of bakward analyses and trans-formations in Rhodium.A set of propagation rules together impliitly de�ne adataow analysis A whose domain D is the powerset lattieof all dataow fats: (D;t;u;v;>;?) = (2Fats ;\;[;�;;;Fats), where Fats is the set of all dataow fats. Eahedge in the CFG is therefore annotated with a set of dataowfats, where bigger sets are more preise than smaller sets.1The ow funtion F of the analysis is de�ned by the prop-agation rules: given a node and a set of inoming dataowfats, F returns the set of all dataow fats propagated byany of the individual rules.Formally, the ow funtion F is de�ned in terms of themeaning of an anteedent  , whih is given by the funtionJ K : Node �D� Subst ! bool (where Node is the set of allCFG nodes and Subst is the set of all substitutions). Givena node n, a set of fats d, and a substitution �, J K(n; d; �)is true i� �( ) holds at node n with inoming fats d (where�(�) represents substitution appliation). The de�nition ofJ K is straightforward, with the interesting ase being:Jf(�!t )�inK(n; d; �) = f(�(�!t )) 2 d(where �!t denotes a sequene of terms)A omplete de�nition of J K is given in the aompanyingtehnial report [20℄. The ow funtion F : Node �D ! Dindued by a set R of forward propagation rules is then:F (n; d) = f�(f(�!t )) j [if  then f(�!t )�out ℄ 2 R ^J K(n; d; �)gThe solution of the indued analysis A is the least �xed1We use the abstrat interpretation onvention that ? is themost optimisti information, and > is the most onservativeinformation.



point of the standard set of dataow equations generatedfrom F . Although the two rules in �gure 1 propagate thesame dataow fat, di�erent rules an propagate di�erentdataow fats, and the �xed point is omputed over alldataow fats simultaneously.In addition to edge fats and node fats, Rhodium alsoprovides virtual dataow fats, whih an be used to de-�ne shorthands for boolean ombinations of other fats.This faility allows a may-point-to fat to be de�ned andreferred to in analyses and transformations if desired:mayPointTo(X;Y ) , :mustNotPointTo(X;Y ). Suh vir-tual fats get replaed with the boolean expression theystand for as a preproessing step.Negation is provided in Rhodium only as a onveniene.After all the virtual fats have been expanded out, and nega-tion has been pushed to the inside through onjuntions,disjuntions and quanti�ers, we require all negation on edgefats to anel out. The absene of negated edge fats guar-antees the monotoniity of F , as shown in the aompanyingtehnial report [20℄. Although disallowing negated edgefats sounds restritive, it atually orresponds to a om-mon usage pattern. Beause Rhodium fats are all mustfats, the absene of a fat does not provide any informa-tion { only its presene does. As a result, we never foundthe need to use any negated edge fats, exept as a nota-tional onveniene. For example, in our analyses that usemayPointTo(X;Y ), it is always the lak of possible points-toinformation, i.e., :mayPointTo(X;Y ), that enables more-preise analysis or transformation, whih when expandedyields mustNotPointTo(X;Y ).
2.2 Proving soundness automaticallyOur goal is to ensure automatially that the dataow in-formation omputed by the analysis A is sound with respetto the onrete olleting semantis of the IL. Our automatiproof strategy separates the proof that A is sound into twoparts: the �rst part is analysis dependent and it is dishargedby an automati theorem prover; the seond part is anal-ysis independent and it was shown by hand one and forall. For the analysis-dependent part, we de�ne a suÆientsoundness property that must be satis�ed by eah propa-gation rule in isolation, and we ask an automati theoremprover to disharge this property for eah rule. Separately,we have shown manually that if all propagation rules sat-isfy the soundness property, then the dataow informationomputed by the analysis A is sound. The formalizationof Rhodium, inluding this manual proof, employs our pre-vious abstrat-interpretation-based framework for ompos-ing dataow analyses and transformations [18℄. As a result,all Rhodium analyses and transformations an be omposedsoundly, while allowing them to interat in mutually bene-�ial ways.The de�nition of soundness of a propagation rule dependson meaning delarations that desribe the onrete seman-tis of edge fats. The meaning of a fat f is a prediate ononrete exeution states, �, with the intent that whenever fappears on an edge, the meaning of f should hold in all on-rete exeution states � that an appear on that edge. Forexample, the meaning of mustNotPointTo(X;Y ), shown online 3 of the Rhodium ode, is �(X) 6= �(&Y ), where �(E)represents the result of evaluating expression E in exeutionstate �. The meaning ofmustNotPointTo therefore says thatthe value of X in the exeution state � should not be equalto the address of Y . We denote the meaning of a fat f

by JfK, so that for example JmustNotPointToK(X;Y; �) ,�(X) 6= �(&Y ).To be sound, a propagation rule must preserve meanings:if a rule �res at a CFG node n, and the meanings of all fatsowing into n hold of exeution states right before n, thenthe meaning of the propagated fat must hold for exeutionstates right after n. To de�ne this formally, we denote byState the set of onrete exeution states �, and we use� n! �0 to say that the exeution of n from state � yieldsstate �0. We also use allMeaningsHold(d; �) to say that themeanings of all fats in d hold of a program state �:allMeaningsHold(d; �) , 8f(�!t ) 2 d : JfK(�!t ; �)The soundness of a propagation rule an then be stated asfollows:Def 1. A propagation rule if  then f(�!t )�out is saidto be sound i� it satis�es the following property:8(n; �; �0; d; �) 2 Node � State2 �D � Subst :� J K(n; d; �) ^ � n! �0 ^allMeaningsHold(d; �) �) JfK(�(�!t ); �0) (prop-ok)For eah propagation rule, we use an automati theoremprover to disharge (prop-ok). The allMeaningsHold as-sumption provides a one-way link between J K(n; d; �) andmeanings of fats: it allows the theorem prover to deriveJfK(�!t ; �) from f(�!t )�in, but not the other way around.For example, onsider the rule in lines 6-7 of �gure 1. Wee�etively ask the theorem prover to show that if a state-ment satisfying mustNotDef (X) is exeuted from a state �in whih �(X) 6= �(&Y ), then �0(X) 6= �0(&Y ) in the re-sulting state �0. The truth of this formula follows easilyfrom the user-provided de�nition of mustNotDef and thesystem-provided onrete semantis of our IL.If all propagation rules are sound, then it an be shownby hand, one and for all, that the ow funtion F is sound.The de�nition of soundness of F is the one from our frame-work on omposing dataow analyses [18℄. This de�nitiondepends on an abstration funtion � : D ! D, whihformalizes the notion of approximation. The onrete se-mantis of our IL is a olleting semantis, so that elementsof D are sets of onrete stores. Meaning delarations nat-urally indue an abstration funtion �: given a set  2 Dof onrete stores, �() returns the set of all dataow fatswhose meanings hold of all stores in . An element d 2 Dapproximates an element  2 D if �() v d, or equiva-lently if the meanings of all fats in d hold of all stores in .The de�nition of soundness of F , taken from [18℄, is then asfollows (where F is the onrete olleting semantis owfuntion):Def 2. A ow funtion F is said to be sound i� it satis-�es the following property:8 (n; ; d) 2 Node �D �D :�() v d) �(F(n; )) v F (n; d)The following lemma, whih is proved in the aompa-nying tehnial report [20℄, formalizes the link between thesoundness of loal propagation rules and the soundness ofF .Lemma 1. If all propagation rules are sound, then theindued ow funtion F is sound.



One we know that the ow funtion F is sound, we anuse the following de�nition and lemma from our frameworkon omposing dataow analyses to show that the analysisA is sound (where we denote by EP the set of edges in ILproedure P ):Def 3. An analysis A is said be sound i� for any ILprogram P , the onrete solution S : EP ! D and the ab-strat solution SA : EP ! D satisfy the following property:8e 2 EP : �(S(e)) v SA(e).Lemma 2. If the ow funtion F is sound, then the anal-ysis A indued by the standard dataow equations of F issound.A proof of lemma 2 an be found in the aompanyingtehnial report [20℄. The following theorem is immediatefrom lemmas 1 and 2:Theorem 1. If all propagation rules are sound, then theanalysis A indued by the propagation rules is sound.Theorem 1 summarizes the part of the soundness proof ofA that was done by hand one and for all. The automatitheorem prover is only used to disharge (prop-ok) for eahpropagation rule, thus establishing the premise of theorem 1that all propagation rules are sound. This way of fatoringthe proof is ritial to automation. The proof of theorem1 (whih inludes proofs of lemmas 1 and 2) is relativelyomplex. It requires reasoning about F , � and the �xedpoint omputation, eah one adding extra omplexity. Theproof also requires indution, whih would be diÆult tofully automate. In ontrast, (prop-ok) is a non-indutiveloal property that requires reasoning only about a singlestate transition at a time. We have found that the heuristisused in automati theorem provers are well suited for thesekinds of simple proof obligations.
2.3 Comparison with CobaltTo better explain the additional expressive power ofRhodium, we show the Cobalt version of the pointer analysisfrom �gure 1:del X:Var, Y :Var, Z:Varstmt(X := &Z) ^ Y 6= Zfollowed bymustNotDef (X)de�nesmustNotPointTo(X;Y )with witness�(X) 6= �(&Y )The Cobalt version says that an edge e should be annotatedwith the mustNotPointTo(X;Y ) fat if on all CFG pathsreahing e, there exists a statement X := &Z where Y 6= Z,whih is followed by zero or more statements that do notmodify X until the edge e is reahed. The region betweenthe statement X := &Z and the edge e is alled the witness-ing region, and the key property of this region is that thewitness, in this ase �(X) 6= �(&Y ), holds of all programstates � in the region.As shown above, the ondition for triggering a Cobalttransformation is expressed as a global temporal-logi pred-iate over the entire ontrol ow graph (CFG). This styl-ized global ondition odi�es a senario ommon to manydataow analyses: an enabling statement establishes a

dataow fat, and then a sequene of zero or more innou-ous statements preserve it. The Cobalt proof strategy wastailored toward suh analyses: we asked the theorem proverto show that the witness was established by the enablingstatement and preserved by any innouous statements. Inthe pointer-analysis example, the theorem prover would beasked to show that �(X) 6= �(&Y ) holds after a statementX := &Z, where Y 6= Z, and that �(X) 6= �(&Y ) is pre-served by statements that don't modify X.While Cobalt an express this analysis and prove it soundautomatially, Cobalt's global ondition for expressing op-timizations has drawbaks. First, Cobalt's proof strategyonly allows eah dataow fat to have one assoiated globalondition. This requirement makes it diÆult to extend anexisting Cobalt analysis. In ontrast, a Rhodium analysisan be easily and modularly extended simply by writingnew propagation rules.Seond, Cobalt's global ondition requires the samedataow fat to hold throughout the entire witnessing re-gion. In ontrast, the Rhodium abstrat interpretationstrategy allows �ne-grained ontrol over how fats are propa-gated. Programmers an write propagation rules that stringdi�erent dataow fats together in exible ways. This al-lows Rhodium to express many kinds of global onditionsnot supported by Cobalt.Third, Cobalt's metatheory did not allow an analysis torefer to itself, either diretly or indiretly. One onsequeneof this restrition is that the mustNotDef fat used in ourpointer analysis had to be overly onservative beause itould not make use of the pointer information urrentlybeing omputed. In ontrast, the anteedents of Rhodiumrules an refer to arbitrary fats, even those that are beingpropagated in the onsequent. The �xed-point semantisof Rhodium and the aompanying abstrat interpretationtheory ensure that suh reursion is well-de�ned.To illustrate some of the additional exibility of Rhodium,we extend our simple pointer analysis from �gure 1 with ad-ditional rules, slowly building up toward a ow-sensitive ver-sion of Andersen's points-to analysis [3℄. This analysis wasnot expressible in Cobalt. We start with a rule for propa-gating pointer information through simple assignments:del X:Var , Y :Var , A:Varif stmt(X := A) ^mustNotPointTo(A;Y )�inthen mustNotPointTo(X;Y )�outThe outgoing information, mustNotPointTo(X;Y ), is adi�erent instantiation of the mustNotPointTo fat thanthe inoming information, mustNotPointTo(A; Y ). Thisway of stringing together mustNotPointTo(X;Y ) andmustNotPointTo(A;Y ) was impossible to ahieve in Cobalt.Next we extend our Rhodium analysis with a rule for prop-agating pointer information through pointer stores:del X:Var , Y :Var , A:Var , B:Varif stmt(�A := B) ^mustPointTo(A;X)�in ^mustNotPointTo(B; Y )�inthen mustNotPointTo(X;Y )�outThe mustPointTo(A;X) fat, omputed by rules not shownhere, says that A de�nitely points to X, and its meaning is�(A) = �(&X).The above rule for pointer stores performs a strong updatein whih we know exatly what A points to. We an alsowrite a weak-update rule for pointer stores:



del X:Var , Y :Var , A:Var , B:Varif stmt(�A := B) ^mustNotPointTo(X;Y )�in ^mustNotPointTo(B; Y )�inthen mustNotPointTo(X;Y )�outFinally, we add a rule for propagating pointer informationthrough pointer loads:del X:Var , Y :Var , A:Varif stmt(X := �A) ^mustNotPointToHeap(A)�in ^8 B:Var : mayPointTo(A;B)�in )mustNotPointTo(B; Y )�inthen mustNotPointTo(X;Y )�outThe mustNotPointToHeap(A) fat, whose rules are notshown here, says that A does not point to the heap (or equiv-alently, that A points to some variable), and its meaning is9Z : Var : �(A) = �(&Z). The mayPointTo fat is a vir-tual dataow fat as de�ned earlier: mayPointTo(X;Y ) ,:mustNotPointTo(X;Y ). The rule as a whole says that Xdoes not point to Y after a statement X := �A if all thevariables in the may-point-to set of A do not point to Y .Starting with a simple pointer analysis and extending itstep by step with additional rules, we have now expressedin Rhodium a ow-sensitive intraproedural version of An-dersen's pointer analysis. Rhodium's propagation rules arethe key enablers of this expressiveness leap over Cobalt.Propagation rules allow us to de�ne mustNotPointTo re-ursively, and they allow us to string together instanes ofthe mustNotPointTo fat, and other fats, in exible ways.Rhodium's new proof strategy allows us to automatiallyprove this analysis sound, despite the extra expressivenessover Cobalt. In setion 3 we will show how to extend ourRhodium pointer analysis even further by adding heap sum-maries, and in setions 5 and 6 we will show how to make itow-insensitive and/or interproedural, all while retainingautomated soundness reasoning.
2.4 Transformation RulesRhodium propagation rules are used to de�ne dataowanalyses. The information omputed by these analyses anthen be used in transformation rules to optimize IL pro-grams. A transformation rule desribes the onditions un-der whih a node in the CFG an be replaed by a new nodewithout hanging the behavior of the program.To illustrate transformations, �gure 2 shows an arithmetisimpli�ation optimization. The optimization is driven byan arithmeti invariant analysis that keeps trak of invari-ants of the form E1 = E2 � E3, represented in Rhodiumwith the equalsTimes dataow fat. Some of the rules forthis analysis are shown in �gure 2. The optimization per seis performed by a single transformation rule on lines 27-28,whih says that a statement Y := I �C an be transformedto Y := X if we know that X = I � C holds before thestatement.We want to automatially show that a Rhodium optimiza-tion is sound, aording to the following de�nition:Def 4. A Rhodium optimization O, whih inludes anynumber of propagation rules and transformation rules, issound i� for all IL proedures P , the optimized version P 0of P , produed by performing some subset of the transfor-mations suggested by O, has the same semantis as P .

8. del E1:Expr, E2:Expr, E3:Expr9. del X:Var, Y :Var, I:Var10. del C:Int, C1:Int, C2:Int, C3:Int11. de�ne edge fat equalsTimes(E1:Expr, E2:Expr,12. E3:Expr13. with meaning �(E1) = �(E2) � �(E3)14. if equalsTimes(E1; E2; E3)�in ^15. unhanged(E1) ^ unhanged (E2) ^16. unhanged(E3)17. then equalsTimes(E1; E2; E3)�out18. if stmt(X := I � C) ^X 6= I19. then equalsTimes(X; I; C)�out20. if stmt(I := I + C1) ^X 6= I ^21. equalsTimes(X; I; C2)�in22. then equalsTimes(X; I � C1; C2)�out23. if stmt(X := X + C1) ^X 6= I ^24. equalsTimes(X; I � C2; C3)�in ^25. C1 = applyBinaryOp(�; C2; C3)26. then equalsTimes(X; I; C3)�out27. if stmt(Y := I � C) ^ equalsTimes(X; I; C)�in28. then transform Y := XFigure 2: Arithmeti simpli�ation optimization inRhodium. Due to spae limitations, only a few rep-resentative rules are shown here.As with propagation rules, our automati proof strategyrequires an automati theorem prover to disharge a loalsoundness property for eah transformation rule. This prop-erty is given in the following de�nition of soundness for atransformation rule.Def 5. A transformation rule if  then transform n0is said to be sound i� it satis�es the following property:8(n; �; �0; d; �) 2 Node � State2 �D � Subst :� J K(n; d; �) ^ � n! �0 ^allMeaningsHold(d; �) �) � n0! �0The following theorem, whih is proven in the aompany-ing tehnial report [20℄, summarizes the part of the proof ofsoundness of an optimization O that is performed by hand:Theorem 2. If all the propagation rules and transforma-tion rules of a Rhodium optimization O are sound, then Ois sound.As desribed earlier, the fat that eah propagation ruleis sound is suÆient to ensure that the indued analysis Ais sound. This fat, along with the fat that eah transfor-mation rule is sound, is suÆient to show that any subsetof the suggested transformations an be performed withouthanging the semantis of any IL proedure.
2.5 Profitability heuristicsIn many optimizations, the ondition that spei�es whena transformation is legal an be separated from the onditionthat spei�es when a transformation is pro�table. Rhodiumprovides pro�tability edge fats for implementing pro�tabil-ity deisions. Beause they are not meant to be used forjustifying soundness, these fats have an impliit meaning of



i := 0;while (...) {...i := i + 1;...if (...) {i := i + 1;}...y := i * 20;}
i := 0;x := i * 20; ( insertedwhile (...) {...i := i + 1;x := x + 20; ( inserted...if (...) {i := i + 1;x := x + 20; ( inserted}...y := x; ( transformed}(a) (b)Figure 3: Code snippet before and after loop-indution-variable strength redution.true , and as a result, they an always be safely added to theCFG. We an therefore give programmers a lot of freedom inomputing these fats. In partiular, we allow programmersto write regular ompiler passes alled pro�tability analy-ses, whih are given a read-only view of the ompiler's datastrutures, exept for the ability to add pro�tability fatsto the CFG. In this way, one an for example use standardalgorithms to annotate the CFG with fats indiating wherethe loop heads are, what the loop-nest is, or how many timesa variable is aessed inside of a loop { these algorithms donot have to be expressed using propagation rules. Transfor-mation rules an then diretly use these fats to selet onlythose transformations that are pro�table.To illustrate the use of pro�tability fats, we showhow to write loop-indution-variable strength redution inRhodium. The idea of this optimization is that if all de�-nitions of a variable I inside of a loop are inrements, andsome expression I � C is used in the loop, then we an (1)insert X := I � C before the loop (2) insert X := X + Cright after every inrement of I in the body of the loop and(3) replae I � C with X in the body of the loop. Con-sider for instane the ode snippet in �gure 3(a). The resultof performing loop-indution-variable strength redution isshown in �gure 3(b). This optimization was not expressiblein Cobalt.The e�et of this optimization an be ahieved inRhodium in two passes. The �rst pass inserts assignmentsto the newly reated indution variable x. The seond passpropagates arithmeti invariants in order to determine thatx = i * 20 holds just before the statement y := i * 20,thereby justifying the strength-redution transformation. Adead-assignment elimination pass an also be run afterwardsin order to lean up the dead assignments to i.For the �rst pass, determining when it is safe to insertan assignment is simple: an assignment X := E an be in-serted if X is dead after the insertion point. The triky partof this �rst pass lies in determining whih of the many legalinsertions should be performed so that the later arithmeti-invariant pass an justify the desired strength redution.This deision of what assignments to insert an be guidedby pro�tability fats. A pro�tability analysis running stan-dard algorithms an insert the following three pro�tabilityfats:� indVar(I;X;C) is inserted on the edges of a loop (inlud-

ing the inoming edge into the loop) to indiate that I isa indution variable in the loop, X is a fresh indutionvariable that would be pro�table to insert, and C is theantiipated multipliation fator between I and X.� afterInr(I) is inserted on the immediate edge followinga statement I := I + 1.� afterLoopInit(I) is inserted on the immediate edge follow-ing a statement I := E that is at the head of a loop.In the example of �gure 3, indVar(i; x; 20) would be in-serted throughout the loop, afterInr(i) would be insertedafter the inrements of i and afterLoopInit(i) would be in-serted after the assignment i := 0. The following two trans-formation rules then indiate whih assignments should beinserted:del X:Var , I:Var , C:Constif stmt(skip) ^ dead(X)�out ^afterInr (I)�in ^ indVar(I;X; C)�inthen transform X := X + Cif stmt(skip) ^ dead(X)�out ^afterLoopInit(I)�in ^ indVar(I;X;C)�inthen transform X := I � CFollowing our previous work on Cobalt, we express inser-tion as replaement of a skip statement. These skip state-ments are only virtual, and the ompiler impliitly insertsan in�nite supply of them in between any two nodes in theCFG. The above transformations are sound beause of thedead(X) fat. The other fats are simply there to guidewhih dead assignments to insert. Sine their meaning istrue and they are used in a onjuntion, they do not haveany impat on soundness heking.2Rhodium's way of inorporating pro�tability informationis superior to Cobalt's approah. Cobalt allowed pro�tabil-ity deisions to be made in a hoose funtion that did not af-fet soundness: after the set of all legal transformations wasgenerated, the hoose funtion would selet a subset of thesetransformations to atually perform. The generate-and-testapproah of the hoose funtion is not always well-suited inpratie beause there may be in�nitely many legal trans-formations to generate. The above example is suh a ase:there are in�nitely many expressions E for whih we aninsert an assignments X := E when X is dead. Rhodiumsolves this problem by allowing programmers to write ar-bitrarily omplex ompiler passes for inserting pro�tabilityfats that an then be used to prune out the transformationsat the point where they are generated.For the seond pass that runs after the dead assign-ments have been inserted, we an use the arithmeti-invariant analysis from �gure 2. The rules in �gure 2are suÆient to trigger the strength-redution transforma-tion in �gure 3(b). The statement x := i * 20 establishesthe dataow fat equalsTimes(x; i; 20). Every sequeneof i := i + 1 followed by x := x + 20 propagates �rstequalsTimes(x; i-1; 20) and then equalsTimes(x; i; 20). As aresult, equalsTimes(x; i; 20) is propagated to y := i * 20,thereby triggering the transformation to y := x.2This example uses the bakward dataow fat dead(X).Setion 8 desribes the state of bakward analyses and trans-formations in Rhodium.



3. DYNAMIC SEMANTICS EXTENSIONSThe meaning of dataow fats we have seen so far alltalked about the onrete program states ourring on edgesannotated with the fat. Unfortunately, the natural wayto express the meaning of ertain dataow fats is to talkabout omplete traes of program states rather than singleprogram states.As a motivating example, onsider extending our pointeranalysis from setion 2.1 with heap summaries, where eahalloation statement S represents all the memory bloks al-loated at S. The meaning of mustNotPointTo(X;S), whereX is a variable and S is an alloation site, is that X doesnot point to any of the memory bloks alloated at S. Thisproperty, however, annot be expressed by just looking atthe urrent program state, beause there is no way to deter-mine whih memory bloks were alloated at site S.We ould try to �x this problem by enrihing our meaningsso that they talk about exeution traes. From the exeutiontrae one an easily extrat the memory bloks that werealloated at site S (by evaluating, for eah statement S :X := new T in the trae, the value of X in the suessorstate). However, in order to extrat this information, onehas to use quanti�ers that range over indies of unbounded-length traes. Unfortunately, we have found the heuristisused in automati theorem provers for managing quanti�ersto be easily onfounded by these kinds of quanti�ed formulasthat arise when using unbounded-length traes.In order to solve this problem Rhodium allows the pro-gram state to be extended with user-de�ned omponentsalled state extensions. These omponents are meant togather the information from a trae that is relevant for apartiular dataow fat. Instead of referring to the trae,the meaning an then refer to the state extension. For theabove heap summary example, the state would be extendedwith a map desribing whih heap loations were alloatedat whih sites, and the meaning of mustNotPointTo ouldthen use this map instead of referring to the trae.To update the user-de�ned omponents of the state, pro-grammers also extend the dynami semantis of the interme-diate language. Beause of the way these extensions to thesemantis are delared, they are guaranteed to be onser-vative, meaning that the trae of a program in the originalsemantis and the orresponding trae in the extended se-mantis agree on all the omponents of the program statefrom the original semantis. As a result, if we preserve theextended semantis using our regular Rhodium proof strat-egy, we are guaranteed to also preserve the original seman-tis. User de�ned state extensions are just a formal tool forproving soundness: they an be erased without having anyimpat on how analyses or IL programs are exeuted.We present state extensions in more detail by show-ing how they an be used to extend our pointer analysiswith heap summaries. In order to de�ne the meaning ofmustNotPointTo over summaries, we de�ne an additionalomponent of the program state alled summary of , whihmaps eah heap loation to the heap summary that repre-sents it. We start by onsidering alloation site summaries,where the loations reated at the same site are summarizedtogether by the node that reated them. The delaration ofsummary of then looks as follows:type HeapSummary = Nodede�ne state extensionsummary of : Lo ! HeapSummary

The summary of map gets updated aording to the follow-ing dynami semantis extension:del X:Var , T :Typeif stmt(X := new T )then (��out):summary of =(��in):summary of [��out(X) 7! urrNode ℄The terms ��in and ��out refer respetively to the pro-gram states before and after the urrent statement, whilethe speial term urrNode refers to the urrent CFG node.The rule as a whole says that an alloation site X := new Tupdates the summary of omponent of the state by mak-ing the newly reated loation, obtained by evaluating X in��out , map to the CFG node that was just exeuted. In allother ases the summary of omponent impliitly remainsunhanged.We an easily modify the above delarations to ahieveother kinds of summaries. In partiular, table 1 shows howto modify the HeapSummary de�nition and hange what��out(X) maps to in the dynami semantis extension inorder to speify di�erent summarization strategies. The restof our treatment of heap summaries applies to all of thestrategies, exept when expliitly stated. The next step isto de�ne the domain of abstrat loations:type AbsLo = Var j HeapSummaryAn abstrat memory loation AL is either a variable or aheap summary. The intuition is that AL represents a set ofonrete memory loations: if AL is a variable, it representsthe address of the variable; if AL is a heap summary, itrepresents the set of summarized heap loations.We an now modify our mustNotPointTo fat to take ab-strat loations, instead of just variables (the meaning isexplained below):de�ne edge fat mustNotPointTo(AL1:AbsLo,AL2:AbsLo)with meaning8L : Lo :belongsTo(L;AL1; �) ^ isLo(�(�L))):belongsTo(�(�L); AL2; �)de�ne belongsTo(L:Lo; AL:AbsLo; �:State) ,isVar(AL)) [L = �(&AL)℄ ^isHeapSummary(AL)) [�:summary of [L℄ = AL℄The meaning of mustNotPointTo says that none of the lo-ations belonging to AL1 point to any of the loations be-longing to AL2. The loations belonging to AL1 are thoseloations L for whih belongsTo(L;AL1; �) holds. For allthese loations L, we look up the memory ontent of L us-ing �(�L). If the memory ontent �(�L) is a loation (asopposed to a salar value, whih annot hold pointers), thenwe want �(�L) to not belong to AL2.The auxiliary funtion belongsTo(L;AL; �) returnswhether or not a loation L belongs to an abstrat loa-tion AL in state �. The de�nition of belongsTo is split intotwo ases, based on the type of AL. If AL is a variable, thenL belongs to AL if L is exatly the address of AL. If ALis a heap summary, then L belongs toAL if �:summary ofmaps L to AL.The rules for our pointer analysis must now be modi�ed totake summaries into aount. Beause of spae limitations,



HeapSummary ��out(X) maps to this in thedynami semantis extensionAlloation site summaries Node urrNodeType based summaries Type TVariable based summaries Var XSingle heap summary unit ()Table 1: Various kinds of heap summarization strategies ahievable by varying the de�nition of HeapSummaryand the dynami semantis extension.we only present some representative rules here. The om-plete set of rules an be found in the aompanying tehnialreport [20℄.The following rule, whih only works for alloation sitesummaries, says that after an alloation site X := new T ,X does not point to any heap summary that is di�erent fromthe urrent node:del Summary :HeapSummary , X:Var , T :Typeif stmt(X := new T ) ^ Summary 6= urrNodethen mustNotPointTo(X; Summary)�outTo prove this rule sound, the theorem prover must showthat the meaning of mustNotPointTo(X; Summary) holdsafter X := new T . Sine X is a variable and Summary isa heap summary, the meaning expands to isLo(�(X)) )�:summary of [�(X)℄ 6= Summary . Sine the theoremprover knows that new T returns a loation, it determinesthat isLo(�(X)) holds, and then the remaining obligationis �:summary of [�(X)℄ 6= Summary . To prove this, thetheorem prover makes use of the user-de�ned extension tothe dynami semantis. Indeed, if we let � be the programstate right after exeuting the alloation, then the dynamisemantis extension tells us that �:summary of [�(X)℄ =urrNode . In onjuntion with Summary 6= urrNode , thisimplies �:summary of [�(X)℄ 6= Summary , whih is whatneeded to be shown.The above rule for stmt(X := new T ) only works for al-loation site summaries. Of all the pointer analysis rules,it is the only one that depends on the heap summarizationstrategy. In order to modify it for other kinds of heap sum-maries, the anteedent of the rule should ompare Summarywith the third olumn of table 1, rather than with urrNode .Finally, we now show the rule of our pointer analysis thatrequires the most ompliated reasoning from the theoremprover:del X:Var , Y :Var , AL2:AbsLoif stmt(X := �Y ) ^8AL1 : AbsLo : mayPointTo(Y;AL1)�in )mustNotPointTo(AL1;AL2)�inthen mustNotPointTo(X;AL2)�outIn the above rule, we again de�ne mayPointTo as before:mayPointTo(AL1;AL2) , :mustNotPointTo(AL1;AL2).The rule as a whole says that X does not point to AL2after X := �Y if for all abstrat loations AL1 that Y maypoint to, we have that AL1 does not point to AL2.
4. INFINITE ANALYSIS DOMAINSThe domains of dataow fat parameters in Cobaltwere �nite for a partiular intermediate language pro-gram. For example, the Const and Expr domains did

not represent all possible onstants and expressions, butrather only those onstants and expressions that ap-peared in the intermediate-language program being ana-lyzed. Rhodium improves on Cobalt by introduing in�nitedomains. The Expr and Const domains in Rhodium now re-fer to the in�nite unrestrited versions whereas ExprInProgand ConstInProg refer to the �nite versions restrited toonstants and expressions in the soure program.3The addition of in�nite domains inreases the expressive-ness of Rhodium. For example, being able to refer to expres-sions that are not in the analyzed program is ruial for ex-pressing the arithmeti invariant analysis equalsTimes fromsetion 2.4. Rhodium an also perform range analysis wherethe end points of the range are not restrited to onstants inthe program. Finally, Rhodium an express a better versionof onstant propagation beause it an onstrut and thenpropagate onstants that are not in the soure ode.However, with this extra exibility omes a hallenge:whereas Cobalt analyses were trivially guaranteed to ter-minate, beause all domains were �nite, Rhodium analysesmay now run forever.There are two ways in whih a Rhodium analysis mightrun forever. The �rst one is that a partiular rule might notterminate. The seond is that the �xed-point omputationmight not terminate. We deal with eah one of these in thenext two subsetions.
4.1 Termination of a single ruleIn order to guarantee that exeution of eah rule termi-nates, we must guarantee that the rule has only a �nitenumber of instantiations (i.e., substitutions for its free vari-ables), and that eah instantiation an be evaluated in �nitetime. For the latter, we restrit the logi of eah rule's an-teedent to the deidable subset of �rst-order logi in whihquanti�ers only range over �nite domains.4For the former, we wish to ensure a \�nite-in-�nite-out"property: if a rule is invoked on a node where all inomingedges have �nite sets of fats, then the rule will have only a�nite number of instantiations and will generate only a �niteset of fats on outgoing edges. Unfortunately, unrestritedpropagation rules do not have that property: it is possiblefor a sound rule to propagate in�nitely many dataow fats,even when the input fats are �nite. For example, onsiderthe following sound range-analysis rule:3When we say �nite here, we mean �nite one a givenintermediate-language program has been singled out.4Here again, the domain must be �nite for a partiular pro-gram, not neessarily for all programs.



de�ne edge fat inRange(X : Var ; lo : Const ; hi : Const)with meaning lo � �(X) ^ �(X) � hiif stmt(X := C) ^ C1 � C ^ C2 � Cthen inRange(X;C1; C2)�outThere are in�nitely many instantiations of C1 and C2 thatwill make this rule �re, even if the input ontains no dataowfats.In order to guarantee that suh a situation does not o-ur, we make use of a notion from database ommunityalled safety [33℄, adapting it to the ontext of Rhodium.A Rhodium propagation rule is said to be �nite-safe if ev-ery free variable of in�nite domain in the onsequent is�nite-safe. A variable is �nite-safe if it appears (after ex-panding virtual fats and folding away all negations) in theanteedent either in a dataow fat, or on one side of anequality where the other side ontains only �nite-safe vari-ables; �nite-safe variables thus are onstrained to have a�nite number of instantiations if the input fat set is �nite.The range-analysis rule above is not �nite-safe, sine neitherC1 nor C2 is �nite-safe.Even if all rules are �nite-safe, a rule an still be invokedon an in�nite input set: ?. This ase an happen at thestart of analysis, sine all edges (aside from the entry edge)are initialized with ?. Sine it is sound to propagate ? asthe result of any rule invoked with ? on its input, we treat? speially and diretly propagate ? to the output withoutinvoking the rule expliitly.Thus, if all rules are �nite-safe, either they will be invokedon ? and immediately propagate ?, or they will be invokedon a �nite set of input fats and propagate another �nite setof output fats in �nite time.
4.2 Termination of the fixed-point computa-

tionAs disussed in setion 2.1, the ow funtion F is guaran-teed to be monotoni, and so the dataow values omputedby iterative analysis form an asending hain. To guaranteetermination, all that is left is to ensure that all asendinghains in the lattie have �nite length.In order to do this, we reall from setion 4.1 that we al-ready imposed the �nite-safe requirement, whih led to allpropagated sets being either �nite or ?. We an thereforeshrink our lattie to only inlude these �nite sets and ?.The original underlying lattie was the power-set lattie, inwhih the ordering was the superset relation. The shrunkenlattie uses this same ordering, whih means that all asend-ing hains in the shrunken lattie must have a �nite length,sine the longest hain of dereasing-sized �nite sets is �nite.Notie that the lattie does not have a �nite height, beausethere an still be in�nite desending hains.Our tehnique for guaranteeing termination is e�etiveeven in the fae of dataow fats with in�nite-domain pa-rameters. For example, the equalsTimes dataow fat hasall three of its parameters ranging over in�nite domains,and yet we are still able to guarantee that the analysis ter-minates. In this ase, the shrunken lattie is in�nitely wideand in�nitely tall, but its asending hains are nonethelessguaranteed to be �nite.
4.3 Custom mergesThe range-analysis propagation rule in setion 4.1 wassound but not �nite-safe: it ould produe an in�nite (andnon-?) set of output inRange fats. However, the meaning

of one of the propagated inRange fats, inRange(X;C;C),implies all the others' meanings. So an alternative soundand �nite-safe propagation rule ould be the following:if stmt(X := C)then inRange(X;C;C)�outUnfortunately, this propagation rule interats poorly withthe powerset lattie's join funtion, intersetion. If weuse intersetion to join the fat set finRange(x; 1; 1)g withfinRange(x; 2; 2)g, we get fg. We would prefer instead toget the fat set finRange(x; 1; 2)g: this fat set is sound (andpreise) sine its meaning is exatly the disjuntion of themeanings of the two merging fat sets.Rhodium avoids this information-loss problem while re-taining �nite-safe propagation rules by allowing program-mers to de�ne their own merges. Rather than provide spe-ial syntax for de�ning merge funtions, we simply intro-due a merge statement for whih users an write ordinaryRhodium propagation rules:del X:Var , C1:Int , C2:Int , C3:Int , C4:Intif stmt(merge) ^inRange(X;C1; C2)�in[0℄ ^inRange(X;C3; C4)�in[1℄then inRange(X;min(C1; C3);max(C2; C4))�outThis example introdue edge indies: in[i℄ refers to the ithCFG input edge. The previously used in was just syntatisugar for in[0℄. Similarly, out an also be indexed to re-fer to the true and false suessor edges of a branh node.When a rule refers to multiple input or output edges, thereis one proof obligation sent to the theorem prover for eahinput-output-edge pair. The general version of (prop-ok)that handles an arbitrary number of input and output edgesis given in the aompanying tehnial report [20℄. In theabove ase, there would be two proof obligations, one forinput edge 0 and one for input edge 1. For input edge 0, wewould ask the theorem prover to show that if the meaningof inRange(X;C1; C2) holds of some program state �, and� on edge 0 steps to �0 through the merge node, then themeaning of inRange(X;min(C1; C3);max(C2; C4)) holds of�0. A similar proof obligation would be generated for inputedge 1.From a formal point of view, the lattie of theimpliitly de�ned dataow analysis A must be modi-�ed in order to take into aount ustom merge fun-tions. Consider the example above, where the merge ofS = finRange(x; 1; 1)g and T = finRange(x; 2; 2)g givesmerge(S; T ) = finRange(x; 1; 2)g. In the powerset lattie ofall dataow fats, the expressions S, T and merge(S; T ) areunrelated. To prove the soundness of the ustom merge, weinstead need a lattie in whih S t T v merge(S; T ) holds,meaning that the user's merge funtion returns an approxi-mation of the best possible merge (whih is t).To address this problem, when a user-de�ned merge fun-tion is spei�ed, we make use of the more general lattie ofprediates: (D;t;u;v;>;?) = (Pred ;_;^;); true ; false).This lattie subsumes the powerset lattie sine a set ofdataow fats an be interpreted as a prediate by takingthe onjuntion of the meanings of all the dataow fats inthe set. The view shown to the programmer is still thatsets of dataow fats are being stored on edges, but froma formal point of view, we interpret these sets as predi-ates. In the example above, S beomes 1 � x � 1, T



beomes 2 � x � 2, and merge(S; T ) beomes 1 � x � 2.Therefore S t T = (1 � x � 1) _ (2 � x � 2), and sine(1 � x � 1) _ (2 � x � 2) ) 1 � x � 2, we nowhave S t T v merge(S; T ) as desired. More generally, ifa merge rule passes property (prop-ok), we are guaranteedthat if S and T are the two inoming prediates to the mergenode, then the outgoing prediate merge(S; T ) will satisfyS _ T ) merge(S; T ), or S t T v merge(S; T ) in the lattieof prediates.Unfortunately, the lattie of prediates, even whenshrunken to the meanings of only �nite sets of fats plus?, does not have the �nite-asending-hain property. Con-sider for example the inRange fat, and the in�nite sequeneS0; S1; S2; : : :, where Si = finRange(x; 0; i)g. Eah one ofthe sets Si is �nite and therefore belongs to the shrunkenlattie; furthermore the sequene is an asending hain, be-ause eah Si implies Si+1. Consequently, termination ofthe �xed-point omputation is not guaranteed of analysesusing ustom merges, and indeed the kind of range analysisdisussed here does not terminate.5To allow the optimization writer to ahieve terminationin suh ases, as well as allowing the optimization writer tomake terminating analyses onverge faster, Rhodium pro-vides widening operators [8℄. A Rhodium widening opera-tor is a funtion, written in the underlying language of theompiler, that takes a node, an inoming dataow fat set,and an \unwidened" outgoing dataow fat set, and pro-dues the widened outgoing fat set. After the Rhodiumevaluation engine runs the propagation rules on a node n,given an input set din to produe an \unwidened" outputset dout , the widening operator is run on n, din , and doutto produe the widened output set dwide . Finally, we om-pute merge(dout ; dwide) (using either the default merge or austom merge if one is spei�ed) as the �nal outgoing setto propagate. From the soundness of F we know that thefat dout is sound, and sine merge(dout ; dwide) is more on-servative than dout , merge(dout ; dwide) must also be sound,whih means that the value dwide returned by the wideningoperator does not a�et soundness { it only makes the resultmore onservative, thus helping the iterative analysis reaha �xed point faster.
5. FLOW-INSENSITIVE ANALYSESAn additional bene�t that falls out from Rhodium's newow-funtion model is that Rhodium an easily supportprovably sound ow-insensitive analyses. In partiular, wean interpret propagation rules in a ow-insensitive man-ner. Instead of keeping a separate set of dataow fats ateah edge, we keep a single set I for the whole proedure.Iterative analysis proeeds as usual, exept that eah timea ow funtion is run, it takes I as input, and its result ismerged into I. In this way one an produe a sound ow-insensitive analysis from a sound ow-sensitive version. Wehave shown one by hand that if all the propagation rulesare sound, then the result of running the analysis in ow-insensitive mode is also sound. A proof an be found in theaompanying tehnial report [20℄.
6. INTERPROCEDURAL ANALYSESYet another bene�t of using ow funtions is that we anadapt a previous ow-funtion-based framework [7℄ from the5Or, if using bounded-sized integers, it takes a long time.

Vortex ompiler [11℄ in order to automatially build prov-ably sound interproedural analyses in Rhodium. The pre-vious Vortex framework has been used to write realisti in-terproedural analyses, suh as various kinds of lass anal-ysis [13℄, onstant propagation, side-e�et analysis, esapeanalysis, and various synhronization-related analyses [2℄.The ontribution of the new Rhodium framework is a rigor-ous formal desription ombined with a proof of soundness.These are stand-alone ontributions whose appliations arebroader than just the Rhodium system.Our approah revolves around a framework for reatinga provably sound interproedural analysis from a soundintraproedural version. The framework is parameter-ized by a ontext-sensitivity strategy that desribes whatontext a funtion should be analyzed in at a partiu-lar all site. The ontext-sensitivity strategy is embod-ied in a funtion seletCalleeContext . Given a all site n,the ontext  2 Context in whih the aller is being an-alyzed, and the dataow information d at the all site,seletCalleeContext (n; ; d) returns the ontext for analyz-ing the allee at this all site.We have instantiated our framework with two ommonlyused ontext-sensitivity strategies: the transfer funtionstrategy (also known as Sharir and Pnueli's funtionalapproah [27℄), and Shivers's k-CFA algorithm [28℄ (alsoknown as the k-deep all-strings strategy of Sharir andPnueli [27℄). Table 2 shows the de�nition of Context andseletCalleeContext for these two strategies. The ontext-insensitive strategy an be ahieved using 0-CFA.Our key insight is that these instantiations of the frame-work an be proven sound by hand one and for all, in-dependent of any user-de�ned analysis. As a result, anyinterproedural analysis generated by one of these instanti-ations is guaranteed to be sound provided the intraproe-dural version is. To build a provably sound interproeduralanalysis, the programmer writes the intraproedural versionin Rhodium, making sure that it passes all the soundnessheks, and then piks one of the prede�ned ontext sensitiv-ity strategies. Our framework then automatially generatesan interproedural version of the analysis that is guaranteedto be sound.The Rhodium framework operates by reating an inter-proedural ow funtion Fi from an intraproedural versionF . Due to spae limitations, we only give an informal de-sription of Fi here { a formal desription of the framework,aompanied by proofs of soundness, an be found in theaompanying tehnial report [20℄.Instead of propagating fats d 2 D, the interproedu-ral analysis propagates partial maps d 2 Context * Dwhih map a alling ontext  to the dataow informationd that holds in that ontext. For nodes that are not fun-tion alls or returns, Fi simply evaluates F pointwise oneah range d element. For a all node n, for eah ( 7! d)pair owing into the all, Fi merges (pointwise) the pair(seletCalleeContext (n; ; d) 7! d) into the map on the en-try edge of the allee's CFG, whih will ause the allee tobe further analyzed if the edge information hanges. For areturn node, for eah (0 7! d0) pair owing into the return,for eah all site n and inowing pair ( 7! d) suh that0 = seletCalleeContext (n; ; d), the pair ( 7! d0) is mergedinto the map on n's suessor edge. The aompanying teh-nial report [20℄ desribes how dataow fats are translatedfrom allers to allees and vie versa.Analogously to widening operators as disussed in se-



Strategy Context seletCalleeContextTransfer funtion D seletCalleeContext (n; ; d) = dk-CFA list [string ℄ seletCalleeContext (n; ; d) = last(onat(; [fnOf (n)℄); k)where: onat(l1; l2) onatenates lists l1 and l2fnOf (n) returns the name of the enlosing funtion ontaining nlast(l; k) returns the sublist ontaining the last k elements of l(or l if l ontains fewer than k elements)Table 2: De�nition of Context and seletCalleeContext for two ommon ontext-sensitivity strategies.tion 4.3, we ould enrih Rhodium by allowing optimizationwriters to speify a ontext widening operator to ontrol theamount of ontext-sensitivity. For example, after k di�erentontexts have been seleted for a funtion, all future on-texts ould be widened to >, bounding the number of timesthe funtion is analyzed.
7. EXECUTION ENGINERhodium analyses and transformations are meant to bediretly exeutable; they do not have to be reimplementedin a di�erent language to be run. Using Whirlwind's frame-work for omposable optimizations [18℄, we have imple-mented a forward intraproedural exeution engine for theore of the Rhodium language. Rhodium optimizationsin Whirlwind peaefully o-exist with Cobalt optimizationsand with hand-written optimizations. By supporting suhinremental adoption, it is possible to provide bene�ts toompiler-writers even if the whole optimizer is not writtenin Rhodium.The Rhodium exeution engine stores at eah edge in theCFG an element of D (eah element of D is a set of fats),and propagates fats aross statements by interpreting theRhodium rules. The engine's ow funtion Fexe : Node �D ! D operates as follows (where R is the set of forwardpropagation rules that the engine is exeuting):Fexe(n; d) = [r2R apply rule(r; n; d)apply rule(if  then f(�!t )�out ; n; d) =let � = sat( ;n; d; [℄) in [�2� ff(�(�!t ))gThe ow funtion applies eah rule separately and returnsthe union of the individual results. The apply rule fun-tion omputes all the fats propagated by a given rule. Todo this, apply rule �rst uses the sat funtion to omputeall the satisfying substitutions that make the anteedent  hold. For eah returned substitution �, apply rule adds thepropagated fat, f(�(�!t )), to the result set.The sat : Pred � Node � D � Subst ! 2Subst funtion(where we denote by Pred the set of all Rhodium predi-ates, and by Subst the set of all substitutions) �nds sat-isfying substitutions: given a prediate  , a node n, a setof fats d, and a substitution �, sat( ; n; d; �) returns theset of all substitutions �0 that have the following properties:(1) �0 makes  hold at node n when d ows into n, or moreformally, J K(n; d; �0) holds (2) �0 is an extension of � and(3) the additional mappings in �0 are only for free variablesof  . The original all to sat passes the empty substitution[℄ for �, and in this ase sat( ;n; d; [℄) omputes the set ofall substitutions over the free free variables of  that make hold at node n. Here are some representative ases fromthe implementation of sat :

sat(true; n; d; �) = f�gsat(false; n; d; �) = ;sat( 1 _  2; n; d; �) = sat( 1; n; d; �) [ sat( 2; n; d; �)sat( 1 ^  2; n; d; �) = let � = sat( 1; n; d; �)in [�02� sat( 2; n; d; �0)sat(t1 = t2; n; d; �) = unify(n; t1; t2; �)sat(f (�!t )�in; n; d; �) = [f(�!s )2d unify terms(n;�!t ;�!s ; �)sat(9x: ; n; d; �) = sat( ;n; d; � n x)[x 7! �(x)℄In the above de�nition, we use � n x to denote � with anymapping of x removed. We also use �[x 7! �(x)℄ to denote[�02�f�0[x 7! �(x)℄g, where �0[x 7! �(x)℄ stands for thesubstitution �0 updated so that it maps x in the same waythat � does: if � maps x to a value, then �0[x 7! �(x)℄ mapsx to the same value, and if � does not have a mapping forx, then neither does �0[x 7! �(x)℄.The sat funtion above makes use of a uni�ation routine:the all unify(n; t1; t2; �) attempts to unify �(t1) and �(t2).If the uni�ation fails, then the empty set is returned. Ifthe uni�ation sueeds with substitution �0, then �0 is aug-mented with all the mappings from � to produe �00, andthe singleton set f�00g is returned. The unify terms funtionworks like unify, exept that it uni�es a sequene of terms�!t with another sequene �!s . The uni�ation proedure alsotries to evaluate terms suh as applyBinaryOp(�; C2; C3)from �gure 2. If suh a term an be evaluated, unify re-plaes the term with what it evaluates to, and then proeedsas usual. If suh a term annot be evaluated (beause forexample either C2 or C3 is not bound yet), then uni�ationfails.Universal quanti�ers are handled by expanding them intoonjuntions over the domain of the quanti�er. This expan-sion is possible beause the domain of quanti�ed variables is�nite for any partiular intermediate-language program. Forexistential quanti�ers, the sat funtion loally skolemizes thequanti�ed variable, and then proeeds with the body of thequanti�er. Any mapping of the quanti�ed variable intro-dued for satisfying the body of the quanti�er is disardedin the resulting substitutions.
8. CURRENT AND FUTURE WORKWe have so far foused our attention primarily on forwardanalyses and transformations in Rhodium. We have im-plemented a fully automated heker and exeution enginefor Rhodium forward analyses and transformations, and wehave �nished the hand proofs for the forward ase.We are now extending our work to bakward optimiza-tions. We already have a proof strategy for bakwardRhodium analyses and transformations, but have not yetimplemented the heker nor ompleted the hand proofs.



We have written in Rhodium the two bakward optimiza-tions we had in Cobalt (dead assignment elimination andode hoisting), and simulated our proof strategy by handon these optimizations. The proof obligations for these twooptimizations in Rhodium end up being exatly the sameas the proof obligations for their Cobalt ounterparts. Weare urrently working on generating these proof obligationsmehanially, and we are also in the proess of �nishing thehand proofs for the bakward ase.In future work, we would like to extend our exeutionengine to handle the full language design, inluding bak-ward analyses and transformations, interproedural andow-insensitive analyses, pro�tability heuristis and user-de�ned widenings.We also plan to explore more eÆient implementationstrategies for our exeution engine, suh as generating spe-ialized ode to run eah optimization [30℄. For example,onsider a rule whose anteedent is a onjuntion where oneof the onjunts is stmt(X := &Z). We statially know thatthis rule will only �re on statements of the form X := &Z,but beause our urrent engine does not make use of thisinformation, the rule is repeatedly onsidered on statementsof the \wrong" form. By partially evaluating the rules withrespet to eah statement kind, we an produe a speializedset of rules that will be smaller than the whole set (beausesome rules will not apply) and in whih eah rule will besimpler (beause the anteedent an be simpli�ed based onthe statement kind). The generated ow funtion woulddispath on the form of the statement being analyzed, andwould diretly jump to speialized ode that runs the sim-pli�ed rules.Furthermore, we would also like to investigate more ef-�ient representations of the dataow information. Forexample, storing the does-not-point-to relation using ex-pliit pairs an inur a signi�ant memory overhead. Wewould like to investigate ways of automatially onvertingto more spae-eÆient representations, for instane the in-verted may-point-to relation, or a bit-vetor representationof the relation. Also, motivated by reent advanes in theuse of BDDs to represent pointer information [5, 34℄, wewould like to explore ways of inferring when it would bebene�ial to use BDDs for enoding our sets of fats.Finally, we want to ontinue on our path of pushing moreand more of the burden of ompiler-writing onto the om-puter. By automating more and more of the tedious, diÆ-ult and error-prone parts of ompiler-writing, we an allowthe human to onentrate on the reative and interestingparts. One suh diretion is to automatially infer propaga-tion rules given only the fats and their meanings. Anotherdiretion would be to generate the fats, meanings and prop-agation rules for supporting a given CFG rewrite rule.
9. RELATED WORKThe idea of analyzing optimizations written in a domain-spei� language was introdued byWhit�eld and So�a withthe Gospel language [35℄. The di�erenes between our workand the Gospel work stem from the di�erene in fous: weexplore soundness whereas Whit�eld and So�a explore op-timization dependenies.Many other frameworks and languages have been pro-posed for speifying dataow analyses and transformations,inluding Sharlit [32℄, System-Z [36℄, languages based on reg-ular path queries [29℄, and temporal logi [30, 17℄. None of

these approahes, however, addresses automated soundnessheking of the spei�ed transformations.A signi�ant amount of work has been done on manuallyproving dataow analyses and transformations orret, in-luding abstrat interpretation [8, 9, 10℄, the work on theVLISP ompiler [14℄, Kleene algebra with tests [16℄, manualproofs of orretness for optimizations expressed in temporallogi [30, 17℄, and manual proofs of orretness based on par-tial equivalene relations [4℄. Analyses and transformationshave also been proven orret mehanially, but not auto-matially: the soundness proof is performed with an inter-ative theorem prover that requires guidane from the user.For example, Young [37℄ has proven a ode generator or-ret using the Boyer-Moore theorem prover enhaned withan interative interfae [15℄. As another example, Caheraet. al. [6℄ show how to speify stati analyses and prove themorret in onstrutive logi using the Coq proof assistant.Via the Curry-Howard isomorphism, an implementation ofthe stati analysis algorithm an then be extrated from theproof of orretness. Aboul-Hosn and Kozen present KAT-ML [1℄, an interative theorem prover for Kleene Algebrawith Tests, whih an be used to interatively prove prop-erties of programs. In all these ases, however, the proofrequires help from the user. In ontrast, Rhodium's proofstrategy is fully automated.Instead of proving that the ompiler is always orret,translation validation [25, 23℄ and redible ompilation [26℄both attak the problem of heking the orretness of agiven ompilation run. Therefore, a bug in an optimiza-tion only appears when the ompiler is run on a programthat triggers the bug. Our work allows optimizations to beproven orret before the ompiler is even run one. How-ever, to do so we require optimizations to be written in aspeial-purpose language. Our approah also requires theRhodium exeution engine to be part of the trusted om-puting base, while translation validation and redible om-pilation do not require trust in any part of the optimizer.Proof-arrying ode [22℄, erti�ed ompilation [24℄, typedintermediate languages [31℄, and typed assembly lan-guages [21℄ have all been used to prove properties of pro-grams generated by a ompiler. However, the kinds of prop-erties that these approahes have typially guaranteed aretype safety and memory safety. In our work, we prove thestronger property of semanti equivalene between the orig-inal and resulting programs.
10. CONCLUSIONWe presented a new language alled Rhodium for express-ing dataow analyses and transformations that is signi�-antly more expressive than previous work while retainingautomated soundness heking. The key to Rhodium's ex-pressiveness lies in its use of loal propagation rules, whihan be used by programmers to implement ow funtionsthat are heked automatially for soundness, and fromwhih an be derived ow-insensitive, ow-sensitive, and in-terproedural analyses.
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