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Purpose: Brain tumor radiotherapy requires the volume measurements and the localization of several individual
brain structures. Any tool that can assist the physician to perform the delineation would then be of great help.
Among segmentation methods, those that are atlas-based are appealing because they are able to segment several
structures simultaneously, while preserving the anatomy topology. This study aims to evaluate such a method in
a clinical context.
Methods and Materials: The brain atlas is made of two three-dimensional (3D) volumes: the first is an artificial
3D magnetic resonance imaging (MRI); the second consists of the segmented structures in this artificial MRI. The
elastic registration of the artificial 3D MRI against a patient 3D MRI dataset yields an elastic transformation that
can be applied to the labeled image. The elastic transformation is obtained by minimizing the sum of the square
differences of the image intensities and derived from the optical flow principle. This automatic delineation (AD)
enables the mapping of the segmented structures onto the patient MRI. Parameters of the AD have been
optimized on a set of 20 patients. Results are obtained on a series of 6 patients’ MRI. A comprehensive validation
of the AD has been conducted on performance of atlas-based segmentation in a clinical context with volume,
position, sensitivity, and specificity that are compared by a panel of seven experimented physicians for the brain
tumor treatments.
Results: Expert interobserver volume variability ranged from 16.70 cm3 to 41.26 cm3. For patients, the ratio of
minimal to maximal volume ranged from 48% to 70%. Median volume varied from 19.47 cm3 to 27.66 cm3 and
volume of the brainstem calculated by AD varied from 17.75 cm3 to 24.54 cm3. Medians of experts ranged,
respectively, for sensitivity and specificity, from 0.75 to 0.98 and from 0.85 to 0.99. Median of AD were,
respectively, 0.77 and 0.97. Mean of experts ranged, respectively, from 0.78 to 0.97 and from 0.86 to 0.99. Mean
of AD were, respectively, 0.76 and 0.97.
Conclusions: Results demonstrate that the method is repeatable, provides a good trade-off between accuracy and
robustness, and leads to reproducible segmentation and labeling. These results can be improved by enriching the
atlas with the rough information of tumor or by using different laws of deformation for the different structures.
Qualitative results also suggest that this method can be used for automatic segmentation of other organs such as
neck, thorax, abdomen, pelvis, and limbs. © 2005 Elsevier Inc.
Brain tumors, Radiotherapy, Magnetic resonance imaging, Segmentation matching.
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INTRODUCTION

rain tumors

The majority of the primary tumors of the central nervous
ystem are from astrocytic or oligodendroglial origin. The
reatment of these tumors may require surgery, radiother-
py, or chemotherapy. Since the 1980s, the incidence of the
rimary and secondary tumors of the central nervous system
as been increasing among all age categories, whereas mor-
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ality has been decreasing for patients younger than 65 years
ld (1).

The treatments of high-grade glioma are disappointing.
naplastic astrocytomas and glioblastomas represent the
ost aggressive tumors. Despite the various research

reatment protocols, overall survival is about 1 year. The
verall survival is similar for combined treatments and is
uite comparable to results of other series that used
adiotherapy alone (2). The efficiency of chemotherapy

-mail: pierre-yves.bondiau@cal.nice.fnclcc.fr
Received Feb 3, 2004, and in revised form Aug 9, 2004. Ac-
epted for publication Aug 16, 2004.
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eems to be low (3, 4). Patients with high-grade astrocy-
omas are treated by radiotherapy protocols using three-
imensional (3D) treatment planning and conformal ra-
iotherapy. Other radiation methods used to treat this
ind of tumor are hadron therapy (5), radiosurgery,
amma knife (6), or CyberKnife treatment. These high-
ose conformal radiotherapies could improve disease sur-
ival and change the pattern of failure (7). Further dose
scalation seems reasonable, based on the same target
olume definition criteria.

D conformal radiotherapy and 3D reconstruction
Conformal radiotherapy (CRT) consists of a set of

trict procedures allowing high-precision radiotherapy
or improvement of local tumor control and reduction of
omplications. Recent data from the literature show a
ignificant reduction of adverse effects as compared with
onventional radiotherapy and the possibility of increas-
ng tumoral control by using conformal techniques (8, 9).

oreover, conformal radiotherapy enables a dose distri-
ution of high precision in cerebral structures. However,
t requires the accurate delineation of structures of inter-
st in the brain and the tumor to determine the best
haracteristics of the treatment plans. A deeper interpre-
ation of the results of the CRT also requires the accurate
ocalization of other cerebral structures to estimate the
rradiation dose of each of them. Furthermore, the local-
zation of the same cerebral structures is still needed for
atient follow-up. Long-term evaluation of adverse ef-
ects should take into account the functional results,
hich could be related to the dose to normal cerebral

tructures. Thus the knowledge of doses delivered in each
erebral structure is also necessary to evaluate the func-
ional results.

Before now, the delineation of brain structures was a

ig. 1. Atlas purpose-built for radiotherapy. (Left) Symmetrical
rtificial magnetic resonance imaging (MRI) (data from Brain-
eb); basilar artery was added to avoid matching this structure
ith the brainstem. (Right) Result of the segmentation of the

rtificial MRI and the three-dimensional view. Main organs at risk
re: eyes, optic nerve, optic chiasm and optic tract, pituitary gland,
rainstem, and basal ganglia (thalamus, caudate ganglia, putamen,
nd pallidum). Fat, skull, and skin are segmented for radiotherapy
urposes.
anual procedure structure with each structure drawn in c
ach slice of the 3D magnetic resonance imaging (MRI)
ataset, which yields a poor 3D coherence. The mean
ime for the analysis and delineation of a typical brain

RI dataset has been evaluated to 86 min, with poor
eproducibility. The interobserver coefficient of variation
stimate is 11 � 5.8% and the intraobserver coefficient of
ariation is 9 � 5.2% (10, 11). The treatment team
pends significant time delimiting the various structures
f interest. Moreover, this delineation is not reproduc-
ble, which is a drawback for a consistent statistical
nalysis and patient follow-up.

Obviously, any image processing tool that can assist
he physician to perform the delineation of the cerebral
tructures will be of great value because it will both
educe the delineation time and ensure better reproduc-
bility of the segmentation results. Image segmentation
as already been widely studied in the literature. One
hoice is to segment each structure of interest separately
ith an ad hoc approach. However, inconsistencies (e.g.,
verlap of adjacent structures) are likely to occur. A more
ppealing approach is an atlas-based segmentation that
llows simultaneous mapping of all the structures in the
atient’s image dataset. Software able to accurately de-
ineate and label all the cerebral structures of interest for
ny patient is very attractive. It allows clinical benefits:
utomatic evaluation of the radiotherapy doses delivered
n the cerebral structures of interest, better treatment
lanning by minimizing irradiation of normal tissue and

ig. 2. Flowchart of the automatic delineation. (1) Magnetic res-
nance imaging (MRI) to be segmented. (2) Artificial MRI, high-
efinition. (3) Atlas of (2). First, (2) is put in the geometry of (1)
ith a rigid transformation A: this yields (4). There is no defor-
ation of internal structures in (4). Then, a nonrigid transforma-

ion B is used to match (4) on (1); that yields (5). There is
eformation of internal structures; for example, deformation of the
eft ventricle by the tumor. (6) Automatic delineation segmented
mage. We deformed (3) by C, which is the A�B transformation.
ritical structures, and better patient follow-up and pro-
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ocol evaluation by studying doses in brain structures.
owever, because of the difficulty of such a task, a very

areful validation study has to be conducted. This is
utside the scope of the present work, which intends to
emonstrate, on a small number of subjects, the feasibil-
ty of automatic delineation with an atlas-based approach.

METHODS AND MATERIALS

The automatic delineation (AD) was performed by an atlas-
ased segmentation technique whose results on brainstem were
ompared with the experts’ delineation. Atlas-based segmenta-
ion consisted of a series of image alignments (or matching) that
llowed the propagation of the labeled structures onto the MRI.
his MRI was used to elaborate the treatment planning. It
elped obtain a rigorous anatomical model and offered an
lternative to the usual manual method. Thus the pivotal point
as the computation of an elastic transformation between the

tlas and the patient MR image.

tlas
Practically, our atlas was made of two images, an MRI and a

eries of structures labeled in this image. In our first experi-
ents, the atlas was built from the T1-W MRIs of healthy

ubjects. However, those images showed that the individual
ariation of our healthy subject introduced a systematic error
eported on every patient MRI. To overcome this issue, a fully
rtificial MRI was chosen. This artificial MRI dataset was
enerated with BrainWeb (12) software. However, asymmetries
till introduced errors; therefore, we then mirrored the right side
f the head to generate a perfectly symmetrical atlas MRI (Fig.

Table 2. Image sequences

MRI T1W, T1W with contrast T2W

E (ms) 1.7 102
R (ms) 7.9 5000
andwidth 15.153 31.25
OV (cm) 26 26
xcitation 2 2

Abbreviations: MRI � magnetic resonance imaging; T1W � T1

Table 1. Ima

MRI T1W, T1W with contrast

XDIM 256
YDIM 256
ZDIM 60
TYPE Unsigned fixed
PIXSIZE 16 bits
VX (mm) 1.015623
VY (mm) 1.015625
VZ (mm) 2.000000
Field (mm) 173 * 230

Abbreviations: MRI � magnetic resonance imag
teighted; T2W � T2 weighted; FOV � field of view.
). Artificial MRI characteristics are shown in Table 1. To
inimize partial volume effects during the registration process,
high-definition MRI with smaller voxels than on the patient
RI was used. An expert delineated the contours of each

erebral structure of interest in this artificial MRI. Because our
rimary interest was radiotherapy, we focused on structures of
nterest for this application: that is, the organs at risk and
rominent normal structures. The main organs at risk (OAR) are
yes, optic nerve, optic chiasm and optic tract, pituitary gland,
rainstem, and basal ganglia (thalamus, caudate ganglia, puta-
en, and pallidum). Prominent normal structures are skull,

entricular system, brain (gray matter and white matter), brain-
tem, and cerebellum. Fat and skin were added in the atlas for
more realistic radiotherapy representation. Basilar artery was

dded in the artificial MRI to avoid matching of the brainstem
ith this structure. The delineation of all these structures was
one manually according to anatomical data of the atlas of
alairach. Although it was a tedious task, we are convinced that

t was necessary given the potential benefits of this automatic
egmentation approach.

omputation of the warping transformation
Given the atlas and an input patient MRI, we needed to compute

n elastic transformation that would enable warping the labeled
tructures of the atlas onto the patient images (13). We performed
transformation search as a process of computing a deformation
eld; that is, a 3D vector per each 3D point, which yielded to a

arge number of unknown parameters.
To facilitate this computation, we first roughly aligned the MRI

f the atlas with the patient’s image using a block-matching
lgorithm. In this case, a 3D version of the approach is detailed in
eferences (14, 15). This yielded a 3D rigid transformation (three
arameters for the translation, three parameters for the rotation)
hat allowed the resampling of the original atlas MRIs and yielded
o an individualized low-resolution atlas MRI roughly aligned with
he patient’s image.

We then computed the deformation field that consisted of the
esidual deformations between the low-resolution atlas MRIs and
he patient’s MRI. This was done by minimizing the sum of the
quare differences of the image intensities.

The elastic transformation was done by minimizing the sum of
he squares and was derived from optical flow principles (16). This
lgorithm provided a method to find the transformation that maps

racteristics

MR1 T2W

Artificial
MRI

T1WRR

256 181
256 217
64 181

Unsigned fixed Signed fixed
16 bits 16 bits
1.015641 0.6
1.015625 0.6
1.900000 0.6
173 * 230

W � T1 weighted; T2W � T2 weighted.
ge cha
he intensities of one image to those of another (Fig. 2) to provide



a
s
t

P

p
s
m
2
G
h

I

f
M
l
c
T
j
a
t
f
p
w
c
m

E

n
e
r
W
s
w

c
d

p
p
a
t
i
M
t

V
c

f
t
t
m
e
(
t
p
d
b
v
t
n
t
c

w

the 20

292 I. J. Radiation Oncology ● Biology ● Physics Volume 61, Number 1, 2005
n AD for image segmentation. In our database, all MRIs had the
ame intensity scale; if images could have quite different intensi-
ies, one would have also to correct for this by intensity scaling.

arameter estimation
The ability to determine a reasonable estimate of the critical

arameters was essential to a successful matching. To this end, we
elected the best parameters set of the rigid and nonrigid automatic
atching methods by visually inspecting the results of the AD for

0 patients’ MRIs (Fig. 3) with different pathologies (astrocytoma
rade 3, glioblastoma, meningioma, and metastasis). This was
elpful to the calibration of the AD.

mages
Standard MRI protocols for brain tumor radiotherapy were used

or this study, which was more challenging but of higher interest.
RI acquisition was performed with a head coil. The MRIs were

ater matched via rigid matching techniques with the dosimetric
omputed tomography image for treatment planning purposes.
hree sequences—T1, T2, and T1—with gadolinium contrast in-

ection were acquired, with strictly the same imaging sequence for
ll patients (see details of the imaging sequences in Table 2). For
his work, we used only T1-weighted images exported in Dicom-3
ormat; image characteristics are shown in Table 1. Because our
urpose was to validate the atlas-based segmentation in MRI, we
ill not describe the rigid matching between patient MRI and

omputed tomography scan image, which can be done by various
ethods.

xpert segmentation
A variety of brain specialists formed our panel of experts:

eurosurgeons, neuroradiologists, and radiotherapists. Moreover,
ach radiotherapist had a particular competence in proton therapy,
adiosurgery, conformal radiotherapy, or gamma-knife treatment.

e chose the brainstem to estimate the quality of our atlas-based
egmentation because of its moderate size (a smaller structure

Fig. 3. Results of the automatic delineation (AD) for a s
calibration of the AD with the same parameters set for
ould have induced too much variability between experts), its 0
entral localization, and the frequency with which our experts
elineate it.
Experts were asked to manually delineate the brainstem in 6

atients. These 6 patients were randomly chosen out of the 20
atients. The experts did the delineation with a mouse by drawing
curve outside of the delineated structure. There was no lesion in

he brainstem, but patients did have brain lesions elsewhere. The
mages used for the manual segmentations were the T1-weighted

RIs with gadolinium contrast injection that were rigidly regis-
ered beforehand against the T1-weighted MR images.

alidation study of atlas-based segmentation in
linical context

For each patient, the experts’ delineation of the brainstem was
used with the approach described by Warfield (17). This expec-
ation-maximization algorithm allows the estimation of a “ground
ruth” segmentation from a group of experts’ segmentation and a
easure of the quality (in terms of sensitivity and specificity) of

ach expert. This “ground truth” was a 3D map of probabilities
Wi) in which Wi expressed the probability of voxel i belonging to
he brainstem. The sensitivity can be described as the ratio of the
robability for a voxel to be correctly classified by the automatic
elineation as a brainstem voxel over the probability of a voxel to
elong to the brainstem. The specificity was the probability for a
oxel to have been incorrectly classified as part of the brainstem by
he automatic delineation with respect to the probability of a voxel
ot to belong to the brainstem. Given a probabilistic segmentation,
he expressions of the sensitivity, P, and the specificity, Q, be-
ome:

P �
�
Di�1

Wi

�
Di�1

Wi � �
Di�0

Wi

and Q �
�
Di�0

(1 � Wi)

�
Di�1

(1 � Wi) � �
Di�0

(1 � Wi)
(1)

here Di � 1 represents the voxels labeled as brainstem and Di �

0 patients’ magnetic resonance images made during the
patients.
et of 2
the other voxels. Classical formulas with numbers of true/false
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ositive/negative points can be retrieved with binary probabilities
i.e., Wi � {0,1}). After the “ground truth” was computed from all
xperts’ segmentations, this method enabled the assessment of our
D method by computing the same measure of quality and direct

omparison with the expert’s performance.

RESULTS

tlas deformation
The validation study of atlas-based segmentation in clin-

cal context was conducted on 6 patients’ MRIs of 20
atients’ MRIs, fully labeled by the AD, to compare seg-
entation of the brainstem between experts and AD. Re-

ults of patient MRI fully labeled by the AD are shown
Figs. 4 and 5). In the vicinity of the tumor and, because
here was no volume for tumor in the atlas, there was a
ormal structure with an intensity similar to the tumor that
eformed and took the place of the tumor in the AD-labeled
RI (Fig. 5, Patient 5). The total duration of the AD to

btain a fully labeled MRI was 20 min on a 1-GHz dual
rocessor computer.

ig. 4. Result of the automatic delineation (AD) segmentation on
patients; axial slice of a three-dimensional view. Segmented

tructures are the same as those of the atlas (Fig. 1). AD param-
ters have been optimized on a set of 20 patients with brain lesions.

ig. 5. Result of the automatic delineation segmentation on 6
atients, sagittal view. In Patient 1, the skull is deformed by an
dge effect. The (wrong) deformation of the skull made by the
umor (arrow) can be seen in Patient 5. Tumor deforms the skull
snd the cerebellum in Patients 1 and 4 (arrows).
olume of the brainstem
For each patient, the maximal, minimal, and median

olumes of the expert segmented brainstem were computed.
he interobserver variability was important: brainstem vol-
me varied between 16.70 cm3 and 41.26 cm3 across our
atients. For the same patient, interobserver volume ranged
rom 48% to 70%. Median volume varied from 19.47 cm3 to
7.66 cm3 (Table 3). Volume of the brainstem calculated by
D using the matching methods varied from 17.75 cm3 to
4.54 cm3 (Fig. 6).

osition of the brainstem
To characterize the performance of image segmentation

as a persistent challenge, and the position of the brainstem
as as important a descriptor as its volume. To investigate
osition variation, we computed a probability image of the
rainstem outline from expert segmentations. In this image,
he voxel intensity of each brainstem voxel represents the
robability for this voxel to belong to the brainstem. The
owest probability is in regions in which the expert segmen-
ation was most difficult. From this image, we computed the
aximal and minimal volume. The structure of maximal

olume drawn by the experts was defined by the set of all
oxels belonging to the structure for one or more experts: it
epresents the set of voxels that at least one expert consid-
red belonging to the brainstem. The structure of minimal
olume drawn by experts was defined by the set of all
oxels belonging to the structure for all experts; it repre-
ents voxels for which all experts consider that they belong
o the brainstem.

These volumes can be used to reflect the position of the
D segmentation of the brainstem (see Fig. 7 for a sagittal
iew and Fig. 8 for a rear view). Quantitative measures of
uality (i.e., sensitivity and specificity as described previ-
usly) can also be calculated and compared with those of
xperts. Warfield proposed an expectation-maximization
18) algorithm to compute a probabilistic estimate of the
ground truth” segmentation from a group of expert seg-
entations and a simultaneous measure of the quality of

ach expert. It provided a direct comparison of expert and
lgorithm performances by estimating the sensitivity and
pecificity of the AD segmentation with respect to the
ground truth” derived from experts’ segmentations.

ensitivity and specificity
The sensitivity and specificity of experts and AD com-

uted with respect to the “ground truth” derived from the
xperts’ segmentation were computed. For sensitivity and
pecificity, respectively, the medians of the experts range
rom 0.75 to 0.98 and from 0.85 to 0.99. Medians of AD are,
espectively, 0.77 and 0.97 (Tables 4 and 5). Mean of the
xperts range, respectively, from 0.78 to 0.97 and from 0.86
o 0.99. Mean of AD are, respectively, 0.76 and 0.97. To be
ore comprehensive, these performances have been repre-

ented for each patient; we plot the sensitivity and specific-
ty of each expert and AD (Fig. 9). Because the relevant

tatistical concept is similar to receiver operating character-
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stic, we calculate best-fit Az curves for our experts and for
he AD (Fig. 10).

DISCUSSION

A variety of automatic techniques for the segmentation of
he OAR has been proposed in the literature (19–28). Some
pproaches require an observer to guide the segmentation of
tructures.

It should be emphasized that all the image processing
teps of the AD are fully automatic to ensure reproducibility
f the results. This useful property yields an operator-
ndependent, and thus perfectly reproducible, structure (as
AR) segmentation system. Rigid and nonrigid matching
se an iconic method (29) that does not require fiducial
arkers. Furthermore, the user is not required to identify

ommon structures on the two image sets. The final model

Table 3. Volume of brainstem in square centimeters by seven

PAT_1 PAT_2 P

xp_1 19.47 20.03 25
xp_2 19.36 20.83 23
xp_3 20.15 28.27 26
xp_4 26.76 34.66 33
xp_5 24.89 25.58 29
xp_6 16.72 19.02 27
xp_7 16.70 19.52 24
D 17.75 22.40 23
ean 20.58 23.99 27
edian 19.47 20.83 26
inimum 16.70 19.02 23
aximum 26.76 34.66 33

tandard
deviation

1.8610 3.6776 2

ig. 6. Brainstem segmentation: results of experts and automatic
elineation (AD). For the 6 patients, the maximum, minimum, and
edian volumes of the brainstem according to experts segmenta-

ion are plotted. The volume of the brainstem given by the AD is
lso shown. In all cases but one, the volume of the AD is within the

ange of experts’ segmentations. p
arries out a segmentation of different brain structures that
re clearly identified by different gray levels.

xpert and AD brainstem volume
Delineation of the OAR is a critical step during the CRT

rocedure. In addition, the OAR must be interpreted cau-
iously in light of the observed topologic differences, be-
ause delineation of structures of interest (gross tumor vol-
me and high-risk organs) varies considerably from one
hysician to another (30–32). In this study, standard devi-
tion of brainstem volume varies from 1.86 to 5.26. The
nterobserver variability is important, which illustrates that
mall surface variation may produce high volume variation.
nother source of volume variation is the limits of a struc-

ure in the image—for example, the superior limit for the
rainstem is difficult to clearly identify in the MRI. The
roblems of limits cannot even be solved with anatomical

s (exp_n) of 6 patients and results with automatic delineation

PAT_4 PAT_5 PAT_6

25.65 21.99 28.92
22.25 22.25 22.09
22.47 22.56 22.77
41.26 38.93 39.94
29.22 27.92 27.66
19.97 18.91 27.97
22.57 22.79 24.35
22.69 24.54 19.28
26.20 25.05 27.67
22.57 22.56 27.66
19.97 18.91 22.09
41.26 38.93 39.94
5.2654 4.7786 4.3217

ig. 7. Surface-rendered sagittal view of brainstem for the 6
atients in the study. The maximal volume segmented by experts
s wireframe, automatic delineation (AD) segmentation is in light
ray, and minimal volume segmented by experts is in dark gray. In
ost of the cases, the volume of the AD is between the minimal

nd the maximal volume segmented by experts. White color is
expert

AT_3

.29

.59

.47

.64

.05

.30

.54

.74

.13

.47

.59

.64

.3222
roduced by lighting effects in surface rendering.
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efinition of a structure, because the posterior limits of the
rainstem in front of the fourth ventricle are made with the
nferior, middle, and superior cerebellum peduncle. Ana-
omically, the middle cerebellum peduncle forms part of the
rainstem and part of the cerebellum, so the boundary
etween brainstem and cerebellum is in the middle cerebel-
um peduncle. Because the middle cerebral peduncle is a
ontinuous structure that goes from the brainstem to the
erebellum, the limit can be very difficult to define, even for
xperts. This is illustrated in Figs. 6 and 7, in which the
iddle cerebellum peduncle appears in wireframe reflecting

he variations of expert segmentations.
The comparison between experts and AD results shows

hat the brainstem volume lies in five cases between the
ariations of the experts. In one case (Patient 6) the AD
esults are less important than the minimal volume of ex-
erts. In this case, the AD stops the reconstruction in the
yramid, which is the lower part of the brainstem (Fig. 6:
rrow, Patient 6), whereas minimal volume drawn by the

ig. 8. Surface-rendered right rear-superior view of brainstem for
he 6 patients. The maximal volume segmented by experts is
ireframe, automatic delineation (AD) segmentation is in light
ray, and minimal volume segmented by experts is in dark gray.
he brainstem segmented by AD is inside the maximal volume
egmented by experts. White color is produced by lighting effects
n surface rendering.

Table 4. Sensitivity of experts and autom

Expert 1 Expert 2 Expert 3 Exp

at_1 0.85 0.83 0.86 0.
at_2 0.82 0.84 0.95 0.
at_3 0.84 0.86 0.84 0.
at_4 0.92 0.83 0.76 0.
at_5 0.87 0.54 0.81 1.
at_6 0.91 0.75 0.77 0.
ean 0.87 0.78 0.83 0.

edian 0.86 0.83 0.82 0.98
xpert includes the entire pyramid. The vicinity of the tumor
ear the brainstem can explain this problem. The AD seg-
entation is reproducible (no intraexpert variability) and it

epends on image resolution (33).

rainstem position
This technique was useful in the brain representation

ecause the data processing reconstruction of brain al-
ows an accurate localization of the structures. This was
articularly important in CRT in so far as one tries to
educe the distal safety margins to protect healthy brain
tructures. This reduction of margin is very important for
ediatric oncology (34, 35). The fully automatic segmen-
ation and labeling of patient brains is useful to save time
or drawing a more accurate gross tumor volume. It
llows automatic dose–volume histograms distribution.
igure 7 shows that the brainstem segmented with the AD
ost often remains within the maximal volume seg-
ented by experts. The main variation between the two

olumes was in front of the middle cerebellum peduncle,
hich can be explained by the expert variation as, in the

tlas, the segmentation was a straight line across this
tructure (Fig. 1, right axial view). In Fig. 6, the AD
olume appears closer to the minimal volume, and re-
pects the deformation in regard to the pons.

The sensitivity, which is defined as the true positive
TP) divided by the sum of TP and false negative (FN),
s maximal if FN is zero. This is the case if a delineation
arger than the “ground truth” is made. The AD sensitiv-
ty, which represents the probability for a voxel seg-
ented as belonging to the brainstem by the AD to be a
P, is not very high, showing delineation very close to

he “ground truth.” The AD specificity, which represents
he probability for a voxel to belong to the brainstem, is
igh. The specificity, which is defined as the true nega-
ive (TN) divided by the sum of TN and false positive
FP), is maximal if FP is zero. FP is the number of voxels
egmented as belonging to the brainstem by the AD and
ot classified as brainstem by the experts. A mask was
sed to minimize the high number of TN in the image; the
ask was made by a dilation of the maximal brainstem

egmentation issued from all expert segmentations.
Figure 5, Patient 5, illustrates the wrong estimation of the

rain structure near the lesion in respect of the size and the

lineation segmentation of the brainstem

Expert 5 Expert 6 Expert 7 Automatic

0.92 0.73 0.74 0.75
0.91 0.76 0.80 0.81
0.97 0.91 0.86 0.76
0.98 0.73 0.85 0.78
0.98 0.73 0.86 0.83
0.87 0.89 0.82 0.64
0.94 0.79 0.82 0.76
atic de

ert 4

99
98
98
96
00
93
97
0.94 0.75 0.83 0.77
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Table 5. Specificity of experts and automatic delineation of the brainstem

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Automatic

at_1 0.99 0.98 0.98 0.91 0.92 0.99 0.99 0.98
at_2 1.00 0.99 0.93 0.85 0.95 0.99 1.00 0.96
at_3 0.96 1.00 0.94 0.89 0.96 0.96 0.98 0.95
at_4 0.98 0.99 0.97 0.81 0.96 0.99 1.00 0.97
at_5 1.00 0.90 0.97 0.83 0.96 0.99 0.99 0.95
at_6 0.97 1.00 0.99 0.84 0.97 0.97 0.99 0.99
ean 0.98 0.98 0.96 0.86 0.95 0.98 0.99 0.97

edian 0.98 0.99 0.97 0.85 0.96 0.99 0.99 0.97
Fig. 9. Results of expert and automatic delineation (AD). Sensitivity and specificity have been plotted for each patient
and for each expert: crosses represent experts’ sensitivity and specificity; circles represent AD sensitivity and specificity.
In only two cases, AD has a lower sensitivity than expert segmentation; in the other four cases, AD sensitivity is within

expert variation. In all cases, AD specificity is between expert variation.
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osition of the tumor. The problem was that the AD tried to
eform normal tissues, which had the same intensities as the
umor to fill this volume. A rough segmentation or a manual
egmentation of the tumor could be automatically included
n the atlas to avoid this deformation of normal tissues (36).
nother way to improve the AD could be to use different

aws of deformation for the different brain structures.

ig. 10. Receiver operating characteristic–like curves of experts
nd automatic delineation for all experts and all patients.
The results for the sensitivity and the specificity for AD n
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