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1 IntroductionThis paper represents an e�ort to establish a satisfactory term assignment system forGirard's Intuitionistic Linear Logic [10]. Previous approaches have simply annotated thesequent calculus formulation with terms and have given little or no justi�cation for theirchoice. A poor choice can have serious consequences. An example discovered by PhilWadler [29] is that the substitution lemma does not hold for the term assignment systemcorresponding to an intuitive natural deduction formulation of Intuitionistic Linear Logic:a consequence is that such a system is too weak to provide a proof theory for linear logic.We have approached the formulation of a term calculus in two ways.1. By considering the sequent calculus formulation of the logic and using the underlyingcategorical constructions to suggest a term assignment system.2. By considering a linear natural deduction system. Using this system we can con-struct the rules for the linear logic connectives. We can then apply the so-calledCurry-Howard Correspondence [15] to derive a term assignment system.These two approaches produce equivalent term assignment systems. However, when wecome to consider equality (reduction) of terms, matters are more subtle. As ever thenatural equalities for category theory are stronger than those suggested by proof theoreticor computational considerations; but also there are signi�cant di�erences between natu-ral deduction and sequent calculus at the computational level. Even when commutativeconversions (for natural deduction) are taken into account the equalities (reductions) sug-gested by cut elimination for the sequent calculus extend those suggested by normalizationfor natural deduction. Also permutation theorems for the sequent calculus suggest furtherequalities, but we do not consider these in detail.This paper is organised as follows. In Section 2 we give a brief introduction to Girard'sIntuitionistic Linear Logic. In Section 3 we show how to use the form of a simple categoricalmodel of Intuitionistic Linear Logic to derive a term assignment system (for the sequentcalculus version). In Section 4 we consider a linear system of natural deduction anduse this (via the Curry-Howard Correspondence) to derive a term assignment system.Readers who are less used to category theory may �nd it easier to read this section beforeSection 3. In Section 5 we show how our two systems of Intuitionistic Linear Logic arerelated, and give procedures for mapping proofs from one to the other. We show that thesemappings respect our term assignment systems. In Section 7 we consider the process ofproof normalisation within the linear natural deduction system. In Section 8 we considerin detail our model for Intuitionistic Linear Logic. Again, the less categorically motivatedreader may wish to skim or skip this section. In Section 9 we consider the process ofcut-elimination in the sequent calculus formulation of Intuitionistic Linear Logic. Weconclude and outline future work in Section 10. In Appendix A we recall the de�nition ofa monoidal comonad.2 Introduction to Intuitionistic Linear LogicThroughout this paper we shall consider only the multiplicative fragment of IntuitionisticLinear Logic, i.e. the (
;��; !){fragment. Intuitionistic Linear Logic is a re�nementof intuitionistic logic, where formulae must be used exactly once. In other words, thefamilar Weakening and Contraction rules are removed. To regain the expresive power of3



intuitionistic logic, these rules are returned, but in a controlled manner. A logical operator!, is introduced which allows a formula to be used as many times as required (includingzero). This operator is, in some ways, similar to the modal necessity operator 2 fromModal Logic [16].We shall follow Girard's original presentation [11], and give the rules for IntuitionisticLinear Logic in a sequent calculus system. The logic is given in Figure 1.IdentityA ` A�; A;B;� ` C Exchange�; B;A;� ` C� ` B B;� ` C Cut�;� ` C� ` A (IL)�; I ` A (IR)` I�; A;B ` C (
L)�; A
B ` C � ` A � ` B (
R)�;� ` A
B� ` A �; B ` C (��L)�;�; A��B ` C �; A ` B (��R)� ` A��B� ` B !L�1�; !A ` B �; !A; !A ` B !L�2�; !A ` B�; A ` B !L�3�; !A ` B!� ` A (!R)!� `!AFigure 1: (Multiplicative) Intuitionistic Linear LogicWe use capital Greek letters �;� for sequences of formulae andA;B for single formulae.The system has multiplicative conjunction or tensor, 
, linear implication, ��, and alogical operator, !. The Exchange rule simply allows the permutation of assumptions. Inwhat follows we shall consider this rule to be implicit, whence the convention that �;�denote multisets (and not sequences).The `! rules' have been given names by other authors. !L�1 is called Weakening , !L�2Contraction, !L�3 Dereliction and (!R) Promotion1. We shall use these terms throughoutthis paper.1Girard, Scedrov and Scott [13] prefer to call this rule Storage.4



In the Promotion rule, !� means that every formula in the set � is modal, in otherwords, if � is the set fA1; A2; : : : Ang, then !� denotes the set f!A1; !A2; : : :!Ang.3 Categorical considerations and term assignmentThe sequent calculus is best thought of as providing not proofs themselves, but a meta-theory concerning proofs. Hence a formulation in these terms does not always provideclear clues as to how it should be enriched to a term assignment system. Fortunately wecan use the general form of a categorical model (of the proof theory) of the logic to derivean appropriate term assignment system for the sequent calculus formulation of this logic.The fundamental idea of the categorical treatment of proof theory is that propositionsshould be interpreted as the objects of a category (or multicategory, or polycategory) andproofs should be interpreted as maps; operations transforming proofs into proofs thencorrespond (if possible) to natural transformations (between appropriate hom-functors)in the categorical sense. The maps modelling proofs are built up using these categoricaloperations and so the problem of a term assignment is essentially the problem of providinga syntax expressing these operations. (Of course the language of category theory itself givesone possible syntax. We however are concerned to give a traditional functional languagewith variables.) Here we carry out this programme for Intuitionistic Linear Logic. Thereader may wish to compare our discussion with the treatment of the �-calculus in Lambekand Scott [19].Since we are dealing with sequents � ` A, in principle we should deal with multicate-gories. However it simpli�es things to assume at once that the multicategorical structureis represented by a tensor product �, so that we are dealing with a monoidal category.We shall write hi for the unit of this tensor product. To simplify the presentation we usethe same symbols both for propositions of linear logic and for their denotations in ourmonoidal category. The idea then is that a sequent of formC1; C2; : : : ; Cn ` Awill be interpreted as a map C1 � C2 � : : : � Cn ! Afrom the tensor product of the Ci to A. (Thus a coherence result is assumed.) When � isthe sequence C1; C2; : : : ; Cn, we write �! Afor this map. We seek to enrich the sequent judgement to a term assignment judgementof the form x1 : C1; x2 : C2; : : : ; xn : Cn ` e : Awhere the xi are (distinct) variables and e is a term; usually we suppress (irrelevent)variables and write � ` e : Afor this term assignment.The whole process is based upon some simple assumptions about the interpretation ofthe basic structural rules, and a simple procedure for dealing with the logical rules. Thesequent representing the Identity rule is interpreted as the (canonical) identity arrowA 1A�! A5



from A to A. The corresponding rule of term formation isx : A ` x : AThe rule of Exchange we interpret by assuming that we have a symmetry for the tensorproduct � (making our model a symmetric monoidal category). We henceforth suppressExchange and the corresponding symmetry; thus we really consider multisets of formulae,and as a result no term forming operations result from this rule. The Cut rule� ` A A;� ` B Cut�;� ` Bis then interpreted as a generalized form of composition: if the maps � f�! A andA �� g�! B are the interpretations of hypotheses of the rule, then the composite� �� ���f � 1���������!A �� ���g������!Bis the interpretation of the conclusion. We take as the corresponding rule of term formationa textual substitution: � ` f : A x : A;� ` g : B Cut�;� ` g[f=x] : BWe shall make the assumption that any logical rule corresponds to an operation on mapsof the category which is natural in (the interpretations of) the components of the sequentswhich remain unchanged during the application of a rule. We make this assumptionexplicit in a simple case. Suppose that � is an operation which takes a map of formf : �1 ��! C to �(f) : �2 ��! C. Then naturality in � and C amounts to the followingassumption: Given maps h : � ! � and g : C � � ! B, the operation � applied to thecomposite�1 � � �� ���1�1 � h � 1�������������!�1 � � �� ���f � 1���������! C �� ���g������!Bis the composite�2 � � �� ���1�2 � h � 1�������������!�2 � � �� ����(f) � 1�����������! C �� ���g������!BComposition corresponds to Cut so clearly the logical signi�cance is that we are assumingthat our operations commute (where appropriate) with Cut. Since composition is inter-preted by textual substitution, this assumption provides a strong guide to the syntacticform of the rules; the free variables have to re
ect the possibility for substitution. Fur-thermore in a number of cases we �nd that our naturality assumption gives rise (in viewof a Yoneda Lemma argument) to a considerable simpli�cation of the syntax. (Where thisis not the case naturality also gives rise to some equalities on terms, which highlight aproblem with our traditional linear syntax; our syntax involves pattern matching which wewould like to commute with substitution. The equations with this force will be consideredin more detail later.)The (IL) rule � ` A (IL)�; I ` A6



gives an operation taking maps �! A to maps � � I ! A. An appropriate syntax is� ` e : A (IL)�; x : I ` let x be � in e : Aso that in e�ect we simply introduce a dummy free variable for the assumption I. Natu-rality in � is clear since we may substitute for the corresponding (free) variables. Howevernaturality in A gives rise to an equationf [let x be � in e=y] = let x be � in f [e=y] (1)which will be of concern to us later.The (IR) rule (IR)` Igives simply a map hi ! I. An appropriate syntax is(IR)` � : Iand there are no issues of naturality.The (
L) rule �; A;B ` C (
L)�; A
B ` Cgives an operation taking maps � �A �B ! C to maps � � (A
B)! C. An appropriatesyntax is �; x : A; y : B ` f : C (
L)�; z : A
B ` let z be x
y in f : Cwhere we understand that the variables x and y are bound in the term let z be x
y in f .Again naturality in � is clear since we may substitute for the corresponding variables,whilst naturality in C gives rise to an equationf [let z be x
y in g=w] = let z be x
y in f [g=w] (2)The (
R) rule � ` A � ` B (
R)�;� ` A
Bgives an operation taking arrows � ! A and � ! B to an arrow � � � ! A
B. Thiswould suggest a quite complex syntax, but fortunately our naturality assumptions implythat this operation is completely determined by a map A �B ! A
B. It follows that anappropriate syntax is � ` e : A � ` f : B (
R)�;� ` e
f : A
Band there are no outstanding issues of naturality.7



Our treatment of the (��L) rule� ` A �; B ` C (��L)�; A��B;� ` Cfollows traditional treatments of the left implication rule in sequent systems (which allinvolve a Yoneda Lemma argument). If we stuck to the general pattern, we wouldexpect to have an operation taking a pair of arrows � ! A, � � B ! C to an ar-row � � (A��B) ��! C. (The reader may wish to compare this possibility with theSchroeder-Heister form of implication elimination in natural deduction [26].) Howeverit follows from our naturality assumptions by a straightforward application of a YonedaLemma that such an operation is determined by its action on a pair of identity arrows.Thus it is enough to give an operation of application:app:A � (A��B) ���������!BThen given arrows e: �! A, f :B ��! C the required arrow � � (A��B) ��! C is thecomposite� � (A��B) �� ���e � 1 � 1����������!A � (A��B) �� ���app � 1��������!B �� ���f������! Cand an appropriate syntax is� ` e : A �; x : B ` f : C (��L)�; g : A��B;� ` f [(ge)=x] : CAll the naturality assumptions are now dealt with by substitution.The (��R) rule �; A ` B (��R)� ` A��Bgives an operation taking an arrow � � A! B to an arrow �! A��B. This is a form ofabstraction and an appropriate syntax is�; x : A ` e : B (��R)� ` �x:e : A��BThere are no problematic naturality issues.Next we consider the `!' connective. The left rules are reasonably straightforward.First we consider the Dereliction rule�; A ` B Dereliction�; !A ` BSince it gives an operation taking an arrow � � A ! B to an arrow ��!A ! B, anappropriate syntax is �; x : A ` e : B Dereliction�; z :!A ` let z be !x in e : B8



and indeed this is the syntax given by Abramsky [1]. With this formulation naturality inB gives rise to an equationf [let z be !x in e=y] = let z be !x in f [e=y]However it is a consequence of naturality that our operation is determined by its e�ect onidentity arrows: thus it is enough to give a map:" :!A! AThen given an arrow e : � �A! B, the required arrow ��!A! B is the composite��!A ���1 � "������! � � A ��� e������!Bso an appropriate syntax is �; x : A ` e : B Dereliction�; z :!A ` e[derelict(z)=x] : BWe shall use this syntax in what follows. (There are no further naturality issues).The Weakening rule � ` B Weakening�; !A ` Bgives an operation taking an arrow �! B to an arrow ��!A! B. An appropriate syntaxis � ` e : B Weakening�; z :!A ` discard z in e : Bwhere we have simply introduced a fresh dummy variable of type !A. Naturality in � isas before clear since we may substitute for the corresponding variables. Naturality in Bgives rise to an equationf [discard z in e=y] = discard z in f [e=y] (3)which we shall consider later.The Contraction rule �; !A; !A ` B Contraction�; !A ` Bgives an operation taking an arrow ��!A�!A ! B to an arrow ��!A! B. An appropriatesyntax is �; x :!A; y :!A ` e : B Contraction�; z :!A ` copy z as x; y in e : Bwhere we understand that the variables x and y are bound in the term copy z as x; y in e.Naturality in � is clear since we may substitute for the corresponding variables, whilenaturality in B gives rise to an equation 9



f [copy z as x; y in e=w] = copy z as x; y in f [e=w] (4)which we shall consider later.Finally we consider the problematic Promotion rule!� ` A Promotion!� `!AThis gives an operation (of Promotion) taking an arrow !� ! A to an arrow !� !!A.Now it is not a priori clear what form of naturality should be assumed for this rule. If weassume that the operation should be natural in !�, then Abramsky's rule [1, Section 3],x :!� ` e : �x :!� `!e :!�would give an appropriate syntax2. However nothing in the idea of a categorical model sug-gests this assumption, and as we shall see later proof-theoretic considerations tell againstit. (Note in passing that the categorically appealing assumption would be that ! is afunctor and that we have naturality in �; we return to this idea in Section 8.) The im-portant point to realize is that if the operation is not natural in !�, then the operationshould not preserve substitution for the free variables implicitly declared in !�. Hence weare restricted to giving an operation on `higher-order' terms, where the variables whichappear initially must be bound and fresh variables introduced. These considerations leadto the term assignment rule x :!� ` e : A Promotiony :!� ` promote y for x in e :!ABy analogy with earlier considerations one might expect to �nd an equation expressing thenaturality in A of the operation of Promotion ; but again we would need the assumptionthat ! is functorial, so we leave this also until Section 8.We do not claim that there is a clear reason in terms of the category theory givenso far to prefer one rule to the other, but we choose our rule simply so as to avoid anypremature assumptions. Later we shall give a clear reason in favour of our syntax in termsof a natural deduction formulation.This concludes our derivation of a term assignment system for Intuitionistic LinearLogic from general considerations of the form of a categorical model. We display thissystem of term assignment in Figure 2. We stress that rather elementary assumptionsand unsophisticated categorical observations have been used in this analysis. However,our analysis has not only led us to a term assignment system, but has also uncovered aseries of naturality equations, which are listed in Figure 3. We shall �nd that our prooftheoretic work suggests certain equalities. All these turn out (as one might expect) to bespecial cases of the naturality equations. More interestingly we �nd that certain forms ofthe naturality equations have some signi�cant computational content. One might considerre�ning the naturality equations into those special cases which a programmer might useto reason about a program (but which a compiler makes little or no use of) and thoseother cases which are used extensively in the compilation process. Further discussions ofthis point will appear in [4]. 10



x : A ` x : A� ` e : A �; x : A ` f : B Cut�;� ` f [e=x] : B� ` e : A �; x : B ` f : C (��L)�; g : A��B;� ` f [(ge)=x] : C �; x : A ` e : B (��R)� ` �x:e : A��B� ` e : A (IL)�; x : I ` let x be � in e : A (IR)` � : I�; x : A; y : B ` f : C (
L)�; z : A
B ` let z be x
y in f : C � ` e : A � ` f : B (
R)�;� ` e
f : A
B� ` e : B Weakening�; z :!A ` discard z in e : B �; x :!A; y :!A ` e : B Contraction�; z :!A ` copy z as x; y in e : B�; x : A ` e : B Dereliction�; z :!A ` e[derelict(z)=x] : Bx :!� ` e : A Promotiony :!� ` promote y for x in e :!AFigure 2: Term Assignment System for sequent calculusWe close this section by brie
y indicating:� What we mean by a term logic (for Intuitionistic Linear Logic) and� How such a logic is to be interpreted in a category C (with the structure discussedabove).We assume that we have a signature � given by a collection of ground types and of typedfunction symbols. From this data, types and terms in context are de�ned inductively,giving rise to what we call a term logic for Intuitionistic Linear Logic.Now suppose thatC is a (multi)category equipped with the operations described above.Then for any interpretation of a signature � in C there is a standard inductive de�nitionof the interpretation of types and of terms in context of the term logic given by � in C.The steps in the inductive de�nition have each been outlined is this section and for theconvenience of the reader we present an indication of the steps in Figure 4.Note that strictly speaking the induction is on the derivation (in the sequent calculus)of � ` e:A. Hence one has to show that the interpretation in C is independent of thederivation. It is laborious but not essentially di�cult to prove this directly; however the2This assumption has the e�ect that in the categorical model, which we shall consider later, the comonadis idempotent : a point noted by Wadler [29]. 11



f [let x be � in e=y] = let x be � in f [e=y]f [let z be x
y in g=w] = let z be x
y in f [g=w]f [discard z in e=y] = discard z in f [e=y]f [copy z as x; y in e=w] = copy z as x; y in f [e=w]Figure 3: Naturality Equationsresult also follows easily from a consideration of the natural deduction formulation ofIntuitionistic Linear Logic, see Section 4.A! A�! A A ��! B Cut� ��! B�! A (IL)� � I ! A (IL)hi ! I� � A � B ! C (
L)� � (A
B)! C �! A �! B (
R)� ��! A
B�! A � � B ! C (��L)� � (A��B) ��! C � �A! B (��R)�! A��B�! B Weakening��!A! B � � !A � !A! B Contraction��!A! B� � A! B Dereliction� � !A! B !�! A Promotion!�! !AFigure 4: (Outline of the) interpretation of Term LogicIn Section 8 we shall consider in more detail the categorically attractive assumptionsabout the nature of our categorical model for Intuitionistic Linear Logic.4 Linear Natural DeductionIn the natural deduction system, originally due to Gentzen [28], but expounded by Prawitz [25],a deduction is a derivation of a proposition from a �nite set of assumption packets, usingsome prede�ned set of inference rules. More speci�cally, these packets consist of a multisetof propositions, which may be empty. This 
exibility is the equivalent of the Weakening12



and Contraction rules in the sequent calculus. Within a deduction, we may \discharge"any number of assumption packets. Assumption packets can be given natural numberlabels and applications of inference rules can be annotated with the labels of those packetswhich it discharges.We might then ask what restrictions need we make to natural deduction to make itlinear? Clearly, we need to withdraw the concept of packets of assumptions. A packetmust contain exactly one proposition, i.e. a packet is now equivalent to a proposition.A rule which used to be able to discharge many packets of the same proposition, cannow only discharge the one. Thus we can label every proposition with a unique naturalnumber.We derive the inference rules given in Figure 5.[Ax]���B (��I)xA��B ���A��B ���A (��E)B(II)I ���A ���I (IE )A���A ���B (
I)A
B ���A
B [Ax][By]���C (
E)x;yC���!B ���C WeakeningC ���!B [!Bx][!By]���C Contractionx;yC���!B DerelictionB ���!A1 : : : ���!An [!Ax11 � � �!Axnn ]���B Promotionx1;:::;xn!BFigure 5: Inference Rules in linear natural deductionThe (��I) rule says that we can discharge exactly one assumption from a deductionto form a linear implication.The (��E) rule looks similar to the (�E) rule of Intuitionistic Logic. However it isimplicit that the assumptions of the two upper deductions are disjoint, i.e. their set oflabels are disjoint. This upholds the fundamental feature of linear natural deduction; thatall assumptions must have unique labels.The (
I) rule is similar to the (^I) rule of Intuitionistic Logic. It has the same13



restriction of disjointness of upper deduction assumptions as (��E). In Linear Logic thismakes 
 a multiplicative connective.The (
E) rule is slightly surprising. Traditionally in Intuitionistic Logic we providetwo projection rules for (^E), namelyA ^BA A ^BBBut Intuitionistic Linear Logic decrees that a multiplicative conjunction can not be pro-jected over; but rather both components must be used3. In the (
E ) rule, both componentsof the pair A
B are used in the deduction of C.Rules that are of a similar form to (
E) have been considered in detail by Schroeder-Heister [26]. The astute reader will have noticed the similarity between our (
E) rule andthe (_E ) rule of Intuitionistic Logic. This is interesting as we know that (_E) is not verywell behaved as a logical rule [12, Chapter 10].Since we have de�ned a linear system, non-linear inference must be given explicitly.Weakening allows a deduction to play no part in the derivation of another deduction.Contraction allows the result of a deduction to be used twice as an assumption. Thisrule is realized in Intuitionistic Logic by the implicit ability to give two assumptionsthe same label. We can then substitute a deduction for this duplicated assumption byduplicating the deduction. Duplicating a deduction is illegal in our linear system becausewe can't have duplicated labels. We must formulate the rule so that the deduction appearsonce and its conclusion appears twice with di�erent labels.Dereliction appears to o�er two alternatives for formulation. We have given one inFigure 5, but following the style advocated by Schroeder-Heister, we could give the alter-native ���!B [Bx]���C Dereliction'xCMost presentations we are aware of use this alternative rule (e.g. [29, 22, 21]); onlyO'Hearn [23] gives the same rule as ours (although for a variant of linear logic).Promotion insists that all of the undischarged assumptions at the time of applicationare modal, i.e. they are all of the form !Ai. However, an additional fundamental featureof natural deduction is that it is closed under substitution4If we had implemented Promotion as!A1 � � �!An���B Promotion!B(as in all other formulations we know of), then clearly this rule is not closed under sub-stitution. For example, substituting for !A1, the deduction3Projections are only de�ned for the additive connectives.4The fundamental importance of closure under substitution for a given logical system is well known;see Avron [2] and Gabbay [9] for example. 14



C��!A1 C (��E)!A1we get the following deductionC��!A1 C (��E)!A1 � � �!An���B Promotion!Bwhich is no longer a valid deduction (the assumptions are not all modal.) We concludethat Promotion must be formulated as in Figure 5, where the substitutions are givenexplicitly.It is possible to present natural deduction rules in a `sequent-style', where given asequent � ` A, � represents all the undischarged propositions so far in the deduction, andA represents conclusion of the deduction. We can still label the undischarged assumptionswith a unique natural number, but we refrain from doing so. This formulation shouldnot be confused with the sequent calculus formulation, which di�ers by having operationswhich act on the left and right of the turnstile, rather than rules for the introduction andelimination of logical constants. The `sequent-style' formulation of natural deduction isgiven in Figure 6. A ` A�; A ` B (��I)� ` A��B � ` A��B � ` A (��E)�;� ` B` I � ` A � ` I (IE)�;� ` A� ` A � ` B (
I)�;� ` A
B � ` A
B �; A;B ` C (
E)�;� ` C�1 `!A1 � � � �n `!An !A1; : : : ; !An ` B Promotion�1; : : : ;�n `!B� `!A � ` B Weakening�;� ` B � `!A �; !A; !A ` B Contraction�;� ` B� `!A Dereliction� ` AFigure 6: Sequent formulation of linear natural deduction15



We now apply the Curry-Howard Correspondence to derive a term assignment systemfor this natural deduction formulation of Intuitionistic Linear Logic. The Curry-HowardCorrespondence essentially annotates each stage of the deduction with a \term", which isan encoding of the construction of the deduction so far. This means that a logic can beviewed as a type system for a term assignment system. The Correspondence also linksproof normalisation to term reduction. We shall use this feature in Section 6.The term assignment system obtained is given in Figure 7. We should point out thatthe unique natural number labels used above, are replaced by (the more familiar) uniquevariable names. x : A ` x : A�; x : A ` e : B (��I)� ` �x:e : A��B � ` e : A��B � ` f : A (��E)�;� ` ef : B` � : I � ` e : A � ` f : I (IE)�;� ` let f be � in e : A� ` e : A � ` f : B (
I)�;� ` e
f : A
B � ` e : A
B �; x : A; y : B ` f : C (
E)�;� ` let e be x
y in f : C�1 ` e1 :!A1 � � � �n ` en :!An x1 :!A1; : : : ; xn :!An ` f : B Promotion�1; : : : ;�n ` promote e1; : : : ; en for x1; : : : ; xn in f :!B� ` e :!A � ` f : B Weakening�;� ` discard e in f : B � ` e :!A �; x :!A; y :!A ` f : B Contraction�;� ` copy e as x; y in f : B� ` e :!A Dereliction� ` derelict(e) : AFigure 7: Term Assignment System for linear natural deductionWe note at once a signi�cant property of the term assignment system for linear nat-ural deduction. Essentially the terms code the derivation trees so that any valid termassignment has a unique derivation.Theorem 1 (Unique Derivation) For any term t and proposition A, if there is a validderivation of the form � ` t : A, then (� is uniquely determined by t and A) and there isa unique derivation of � ` t : A.Proof. By induction on the structure of t. 2We are now in a position to consider the question of substitution. In previous work [29],it was shown that substitution does not hold for the term assignment systems consideredhitherto. Some thought that this represented a mismatch between the semantics andsyntax of linear logic. We can now see that this is not the case. Rather we shall see16



that the term assignment system we derived in Section 3 from semantical considerationsis equivalent to the term assignment system based on our analysis of natural deduction.For our system, the substitution property holds.Theorem 2 (Substitution) If � ` a : A and �; x : A ` b : B then �;� ` b[a=x] : BProof. By induction on the derivation �; x : A ` b : B 2Before we continue, a quick word concerning the Promotion rule. At �rst sight thisseems to imply an ordering of the ei and xi subterms. However, the Exchange rule (whichdoes not introduce any additional syntax) tells us that any such order is really just thee�ect of writing terms in a sequential manner on the page. (As we shall see, the naturalityequations derived from the categorical model have similar consequences.) This paper isnot really the place to discuss such syntactical questions. Perhaps proof nets (or a variantof them) are the answer.Type ReconstructionMackie has already given a type reconstruction algorithm in the spirit of Milner's W fora linear term calculus [22]. However, his language has the same term construction for thePromotion rule as Abramsky. It is a simple exercise to extend Mackie's algorithm andproofs of soundness and completeness to our term assignment system.An interesting problem (which will be addressed in [4]) is that of adding a polymorphiclet construct to our calculus. Some discussion of this can be found in Mackie's thesis [22,pages 34{35].5 Relating the Term Assignment SystemsWe would expect there to be a close relationship between the linear natural deductionsystem and the sequent calculus formulation of Intuitionistic Linear Logic. Indeed we cande�ne procedures to map proofs in the sequent calculus to deductions in natural deductionand vice-versa. Our work can thus be seen as an analogue to that of Zucker [31]. We shallde�ne each procedure in turn. First we shall introduce some notation. A proof tree � inthe sequent calculus whose root node is � ` A is denoted by�� ` Aand similarly a deduction D in the natural deduction system whose root node is � ` A isgiven by D� ` A5.1 From Sequent Calculus to Natural DeductionWe shall de�ne a procedure N by induction on the sequent proof tree, which we shalldenote by �.� The axiom A ` A is mapped to the deduction A ` A17



� A proof � of the form �1� ` A �2�; A ` B Cut�;� ` Bis mapped to the deductionN (�1)� ` A N (�2)�; A ` B Subs�;� ` BOne should note that the rule Subs denotes substitution, which is a derived rule innatural deduction by Theorem 1 of Section 4.� A proof � of the form �1� ` A �2�; B ` C (��L)�; A��B;� ` Cis mapped to the deductionA��B ` A��B N (�1)� ` A (��E)A��B;� ` B N (�2)�; B ` C Subs�; A��B;� ` C� A proof � of the form �1�; A ` B (��R)� ` A��Bis mapped to the deduction N (�1)�; A ` B (��I)� ` A��B� A proof � of the form �1� ` A (IL)�; I ` Ais mapped to the deduction N (�1)� ` A I ` I (IE )�; I ` A18



� A sequent ` Iis mapped to the deduction (IL)` I� A proof � of the form �1�; A;B ` C (
L)�; A
B ` Cis mapped to the deductionA
B ` A
B N (�1)�; A;B ` C (
E)A
B;� ` C� A proof � of the form �1� ` A �2� ` B (
R)�;� ` A
Bis mapped to the deduction N (�1)� ` A N (�2)� ` B (
I)�;� ` A
B� A proof � of the form �1� ` B Weakening�; !A ` Bis mapped to the deduction!A `!A N (�1)� ` B Weakening�; !A ` B
19



� A proof � of the form �1�; !A; !A ` B Contraction�; !A ` Bis mapped to the deduction!A `!A N (�1)�; !A; !A ` B Contraction�; !A ` B� A proof � of the form �1�; A ` B Dereliction�; !A ` Bis mapped to the deduction!A `!A Dereliction!A ` A N (�1)�; A ` B Subs�; !A ` B� Finally, a proof � of the form �1!A1; : : : ; !An ` B Promotion!A1; : : : ; !An `!Bis mapped to the deduction!A1 `!A1 � � � !An `!An N (�1)!A1; : : : ; !An ` B Promotion!A1; : : : ; !An `!B5.2 From Natural Deduction to Sequent CalculusWe shall de�ne a procedure S by induction on the deduction tree, which we shall denoteby D.� The deduction A ` A is mapped to the sequent A ` A� The deduction D of the form D1�; A ` B (��I)� ` A��B20



is mapped to the proof S(D1)�; A ` B (��R)� ` A��B� A deduction D of the form D1� ` A��B D2� ` A (��E)�;� ` Bis mapped to the proofS(D1)� ` A��B S(D2)� ` A B ` B (��L)A��B;� ` B Cut�;� ` B� A deduction D of the form ` Iis mapped to the sequent ` I� A deduction D of the form D1� ` A D2� ` I (IE )�;� ` Ais mapped to the proof S(D2)� ` I S(D1)� ` A (IL)�; I ` A Cut�;� ` A� A deduction D of the form D1� ` A D2� ` B (
I)�;� ` A
Bis mapped to the proof S(D1)� ` A S(D2)� ` B (
R)�;� ` A
B21



� A deduction D of the form D1� ` A
B D2�; A;B ` C (
E)�;� ` Cis mapped to the proof S(D1)� ` A
B S(D2)�; A;B ` C (
L)�; A
B ` C Cut�;� ` C� A deduction D of the form D1� `!A D2� ` B Weakening�;� ` Bis mapped to the proof S(D1)� `!A S(D2)� ` B Weakening�; !A ` B Cut�;� ` B� A deduction D of the formD1� `!A D2�; !A; !A ` B Contraction�;� ` Bis mapped to the proofS(D1)� `!A S(D2)�; !A; !A ` B Contraction�; !A ` B Cut�;� ` B� A deduction D of the form D1� `!A Dereliction� ` Ais mapped to the proof S(D1)� `!A A ` A Dereliction!A ` A Cut� ` A22



� A deduction D of the formD1�1 `!A1 � � � Dn�n `!An Dn+1!A1; : : : ; !An ` B Promotion�1; : : : ;�n `!Bis mapped to the proofS(D1)�1 `!A1 � � � S(Dn)�n `!An S(Dn+1)!A1; : : : ; !An ` B Promotion!A1; : : : ; !An `!B Cut��1; : : : ;�n `!BNote in this last mapping we use a multi-cut rule, Cut�, although this could bereplaced by multiple applications of the Cut rule.5.3 Properties of the translationsIn traditional treatments of proof theory we expect translations as above to give an equiva-lence between sequent calculus and natural deduction formulations of a logic. We certainlyhave that in the following theorems (where we suppress for the moment the term assign-ments).Theorem 3 (Logic Equivalence)� If � is a derivation of � ` A in the sequent calculus then N (�) is a derivation of� ` A in natural deduction.� If D is a derivation of � ` A in the natural deduction then S(D) is a derivation of� ` A in sequent calculus.Hence in particular, � ` A is provable in the sequent calculus i� the deduction � ` A isprovable in the linear natural deduction system.Proof. By straightforward induction. 2We stress, however, that with the system of term assignment (in particular the rule forPromotion) which we have given, this equivalence extends to the term assignment ystem.Theorem 4 (Term Equivalence)� If � is a derivation of � ` t : A in the sequent calculus then N (�) is a derivation of� ` t : A in natural deduction.� If D is a derivation of � ` t : A in the natural deduction then S(D) is a derivationof � ` t : A in sequent calculus.Hence in particular, � ` t : A is provable in the sequent calculus i� the deduction � ` t : Ais provable in the linear natural deduction system.23



Proof. Again by straightforward induction. 2To get a result of this kind for the other presentations of term assignment systems, onewould have to add a rule of explicit substitution to natural deduction (see, for example,the translation given by Lincoln and Mitchell [21]).Next we recall that the natural deduction formulation is highly non redundant. So thenext proposition is unsurprising.Proposition 1 For any derivation D in natural deduction, NS(D) is identical to D (mod-ulo some �-conversions).Proof. By straightforward induction. 2Note that this result can also be seen as a corollary to Theorem 1 of Section 4 in viewof Theorem 4. The same thought also provides us with a simple approach to the proofof the fact that the interpretation of � ` t:A in a multicategory C (as in Section 3) isindependent of the derivation in the sequent calculus. It is straightforward to provide aninterpretation of � ` t:A by induction on proofs in natural deduction; this is unproblematicas the proofs are essentially unique (Theorem 1 of Section 4). Then one simply provesinductively that if � is a derivation of � ` t:A in sequent calculus then the interpretationof � ` t:A associated with � coincides with that associated with N (�). (As usual oneneeds a substitution lemma!!)6 Reduction RulesWithin the context of this work we have three approaches available to us for investigatingreduction.� In natural deduction we have the standard reduction rules resulting from \detours"in the proof, namely an introduction followed by a corresponding elimination. Thisis the normalization procedure for natural deduction.� The analogue of normalisation for natural deduction is Cut Elimination in the se-quent calculus. We have di�erent kinds of cuts: principal cuts, where the cut formulais the subject of both the left and the right rule immediately proceeding the cut;and other cuts where this is not the case. Principal cuts give rise to essentialy thesame system of reductions as does the normalization procedure. Other cuts addreductions of interest.� Our categorical semantics gives rise both to � and � equalities, as well as to someother miscellaneous equalities. We can not of course read o� from the categoricalsemantics a direction for the equations so as to turn them into reductions; and if wegive them a plausible computational orientation, we obtain a system which is notChurch-Rosser (as it stands). Typically we do not intend to implement the full setof equations coming from a categorical model, so we do not consider completions ofthis system here.In the following sections we shall consider the three approaches in the following order.First we shall describe the proof normalisation in the natural deduction system. This willimply via the Curry-Howard Correspondence, the basic �-reduction rules for the linear24



terms; we also consider reductions corresponding to commuting conversions. We thenexplain in some detail our notion of a categorical model, which we derive by makingplausible simpli�cations to the structure suggested by the �-reduction rules. We give thecomplete set of equalities corresponding to our categorical semantics; in other words weprovide a soundness and completeness theorem for our notion. Finally we shall considerthe reduction steps suggested by the cut elimination process for the sequent calculus, andfurther reductions corresponding to commutative and (brie
y) permutative cuts.7 Proof NormalisationWith natural deduction we can produce so-called \detours" in a deduction, which arisewhere we introduce a logical constant and then eliminate it immediately afterwards. Wecan de�ne a procedure called normalisation which can systematically eliminate such de-tours from a deduction. A deduction which has no such detours is said to be in normalform.7.1 The Normalisation ProcedureWe can de�ne the normalisation procedure by considering each pair of introduction andelimination rules in turn.� (��I) followed by (��E) [A]���B (��I)A��B ���A (��E)Bnormalises to ���[A]���B� (II) followed by (IE ) ���A (II)I (IE)Anormalises to ���A25



� (
I) followed by (
E) ���A ���B (
I)A
B [A][B]���C (
E)Cnormalises to ���[A] ���[B]���C� Promotion followed by Dereliction���!A1 : : : ���!An [!A1] : : : [!An]���B Promotion!B DerelictionBnormalises to ���[!A1] : : : ���[!An]���B� Promotion with Weakening���!A1 : : : ���!An [!A1] : : : [!An]���B Promotion!B ���C WeakeningCnormalises to ���!A1 : : : ���!An ���C Weakening�C� Promotion with Contraction���!A1 : : : ���!An [!A1] : : : [!An]���B Prom.!B [!B][!B]���C Cont.C26



normalises to[!A1] : : : [!An] [!A1] : : : [!An]���B Prom.!B [!A1] : : : [!An] [!A1] : : : [!An]���B Prom.!B���C ���!A1 : : : ���!An Cont.*CAs mentioned earlier, the Curry-Howard Correspondence tells us that we can relate proofnormalisation to term reduction. Rather than display the proof trees annotated withterms, we give the (one-step) term reduction rules in Figure 8. The astute reader will(�x:t)e ! t[e=x]let � be � in e ! elet e
t be x
y in u ! u[e=x; t=y]derelict(promote ei for xi in t) ! t[ei=xi]discard (promote ei for xi in t) in u ! discard ei in ucopy (promote ei for xi in t) as y; z in u ! copy ei as x0i; x00i inu[promote x0i for xi in t=y; promote x00i for xi in t=z]Figure 8: One-step �-reduction ruleshave noticed our use of shorthand in the last two rules. Hopefully, our notation is clear;for example, the term discard ei in urepresents the term discard e1 in : : : discard en in uGiven the one-step reduction rules in Figure 8, we can de�ne �-reduction5 using theinference rules given in Figure 9.Now we have a notion of normality of proofs, we can state a further property of theN procedure from Section 5.1, which maps proofs in the sequent calculus to deductionsin natural deduction.Theorem 5 (Normality) For all cut-free proofs, �, in the sequent calulus, N (�) is adeduction in the natural deduction which is in normal form.Proof. By induction on the structure of the proof �. 25Note our slightly non-standard use of the phrase �-reduction.27



M !� NMP !� NP M !� NPM !� PNM !� N�x:M !� �x:NM !� Nderelict(M)!� derelict(N)M !� NletM be x
y in P !� letN be x
y in P M !� Nlet P be x
y inM !� let P be x
y inNM !� NcopyM as x; y in P !� copy N as x; y in P M !� Ncopy P as x; y inM !� copy P as x; y inNM !� NpromoteM; : : : for z; : : : in P !� promote N; : : : for z; : : : in PM !� Npromote P; : : : for z; : : : inM !� promote P; : : : for z; : : : inNFigure 9: Reduction inference rules7.2 Commuting ConversionsWe follow a similar presentation to that of Girard [12, Chapter 10]. We use the shorthandnotation C ... rDto denote an elimination of the premise C, where the conclusion is D and the ellipsesrepresent possible other premises. This notation covers the �ve elimination rules: (��E),(IE ), (
E), Contraction, and Weakening. We shall follow Girard and commute the rrule upwards, although it should be noted that it would be perfectly admissable (whereapplicable) to direct these commutations in the other direction.� Commutation of (
E) ���A
B [A][B]���C (
E)C ... rDwhich commutes to 28



���A
B [A][B]���C ... rD (
E)D� Commutation of (IE ) ���A ���I (IE )A ... rDwhich commutes to ���A ... rD ���I (IE)D� Commutation of Weakening ���!B ���C WeakeningC ... rDwhich commutes to ���!B ���C ... rD WeakeningD� Commutation of Contraction ���!B [!B][!B]���C ContractionC ... rDwhich commutes to 29



���!B [!B][!B]���C ... rD ContractionDAgain, rather than presenting the above deductions with terms attached, we give (all) theterm conversions in Figure 10. We use the symbol !c to denote a commuting conversion.We should note that these commuting conversions are simply special cases of thenaturality equations given in Figure 3. However, they do seem to have more computationalsigni�cance than the others. They appear to reveal further �-redexes which exist in a term.Let us consider an example; the term(copy e as x; y in �z:discard z in x
y)gis in normal form. We can apply a commuting conversion to get the termcopy e as x; y in (�z:discard z in x
y)gwhich has an (inner) �-redex. From an implementation perspective, such conversionswould ideally be performed at compile-time (although almost certainly not at run-time).Again, as mentioned earlier, a better (i.e. less sequential) syntax might make such con-versions unnecessary.We can now prove subject reduction; namely that (� and commuting) reduction (!�;c)is well-typed. Again this property was thought not to hold [21, 23].Theorem 6 (Subject Reduction) If � ` e : A and e!�;c f then � ` f : A.Proof. By induction on the derivation of e!�;c f . 2It is evident that the above theorem also holds for !��;c the re
exive and transitiveclosure of !�;c.8 The Categorical ModelWe now de�ne a precise notion of a categorical model for the proof theory of Intuition-istic Linear Logic. Much work has been done on providing such (categorical) models ofIntuitionistic Linear Logic. Here we shall just mention the work of Seely [27] and dePaiva [5, 6]. This section is self-contained and the reader need not be familiar with theabove.With a view to understanding what is involved here, let us consider the traditionalanalysis of the proof theory of some basic intuitionistic logic via the notion of a cartesianclosed category. (Lambek and Scott [19] is a good source for this material.) In thatcase, the basic normalization process gives rise to �-equality on the terms of the typed�-calculus. The �-equality rule is valid in a cartesian closed category, but the attractivecategorical assumption of being cartesian closed amounts to requiring ��-equality, that is,to a further `extensionality' assumption. (A justi�cation for this is that we think of our30



(let e be x
y in f)g !c let e be x
y in (fg)let (let e be x
y in f) be p
q in g !c let e be x
y in (let f be p
q in g)discard (let e be x
y in f) in g !c let e be x
y in (discard f in g)copy (let e be x
y in f) as p; q in g !c let e be x
y in (copy f as p; q in g)let (let e be x
y in f) be � in g !c let e be x
y in (let f be � in g)(let e be � in f)g !c let e be � in (fg)let (let e be � in f) be p
q in g !c let e be � in (let f be p
q in g)discard (let e be � in f) in g !c let e be � in (discard f in g)copy (let e be � in f) as p; q in g !c let e be � in (copy f as p; q in g)let (let e be � in f) be � in g !c let e be � in (let f be � in g)(discard e in f)g !c discard e in (fg)let (discard e in f) be p
q in g !c discard e in (let f be p
q in g)discard (discard e in f) in g !c discard e in (discard f in g)copy (discard e in f) as p; q in g !c discard e in (copy f as p; q in g)let (discard e in f be � in g !c discard e in (let f be � in g)(copy e as x; y in f)g !c copy e as x; y in (fg)let (copy e as x; y in f) be p
q in g !c copy e as x; y in (let f be p
q in g)discard (copy e as x; y in f) in g !c copy e as x; y in (discard f in g)copy (copy e as x; y in f) as p; q in g !c copy e as x; y in (copy f as p; q in g)let (copy e as x; y in f) be � in g !c copy e as x; y in (let f be � in g)Figure 10: Commuting Conversionsfunctions `extensionally' and so may wish to use the � rule in arguing about them even ifwe never implement this rule.) Thus one way to understand what we do is that we make aminimal number of attractive simplifying assumptions about the basic categorical set upintroduced in Section 3 which at least entail the (desired) equalities between proofs whichhave been obtained (say) from the natural deduction formulation of the proof theory. (Ofcourse we would like the equalities to make some kind of sense!) In this section we simplydiscuss the categorical assumptions we make and give the resulting equations. In a latersection we consider the import of the equations more closely.8.1 Categorical interpretation of the multiplicativesWe start by considering the connective 
. The categorical signi�cance of the �-rule for 
is that any map of the form � �A �B ! C factors canonically (in the generalised sense ofSection 3) through the map A � B 
�! A
B which results from the instance of the (
R)rule A ` A B ` B (
R)A;B ` A
BHence any map � � A � B ���f������! C31



is a composite � � A � B ���1� � 
��������! � � (A
B) ���f������! CThe simplifying `extensionality' assumption is then that this factorization is unique. Thiscan be expressed by saying that (generalized) composition with A � B ! A
B induces anatural isomorphism between maps � � (A
B)! C=============� �A �B ! CIn other words that the operation of composing with A � B ! A
B provides an inverseto the (
L)-operation taking maps � � A � B ! C to maps � � (A
B) ! C. Thus wemay as well assume that the logical 
 coincides with �. (Henceforth we shall assume thisproperty of the category and use 
 both as a logical operator and to interpret the commaon the left hand side of a sequent.) We get two equations expressing that composing thetwo operations on maps just mentioned in either order gives the identity. One of theseequations is, of course, the �-rule for tensor:let u
v be x
y in f = f [u=x; v=y] (5)The other can be regarded as an �-equality:let u be x
y in f [x
y=z] = f [u=z] (6)Note that a consequence of our assumption is that 
 is functorial. Hence in particularthe naturality equationg[let z be x
y in f=w] = let z be x
y in g[f=w]of Section 3 follows. We see how this works out computationally later.The case of I is like that for 
. The categorical import of the �-rule for I is that anymap of the form hi ! C factors canonically through the map hi I�! I which results fromthe (IR) rule (IR)` IAgain this should be taken in the generalised sense of Section 3, thus every map� � hi f�! Cfactors as a composite � � hi 1��I�! � � I f�! CThe simplifying `extensionality' assumption is then that this factorization is unique. Thiscan be expressed by saying that (generalized) composition with hi ! I induces a naturalisomorphism between maps � � I ! C========� � hi ! Cand this has a similar interpretation to that just given in the case of 
. We thus identifyhi and I, and use I both as a logical operator and to interpret the empty sequence on32



the left hand side of a sequent. As before we get two equations expressing the naturalisomorphism. One is the �-rule let � be � in f = f (7)and the other can again be regarded as an �-equality:let u be � in f [�=z] = f [u=z] (8)The naturality equation of Section 3f [let z be � in e=w] = let z be � in f [g=w]is, as before, a consequence of our assumption.The �-rule for �� has a slightly more complicated interpretation, though now that wehave identi�ed � with 
, we do not need to carry assumptions � around. In e�ect the rulemeans that any map f :A
B ! C factors asA
B ���1
cur(f)����������!A
(A��C) ���app������! Cwhere app:A
(A��C)! C is the map that results from an instance of the (��L) ruleA ` A C ` C (��L)A;A��C ` CIn these circumstances again, the natural simplifying assumption is that the factoriza-tion is unique. This means that (generalized) composition with app induces a naturalisomorphism between maps A
B ���������! C==============A ���������!B��CIn other words composing with app provides an inverse to the (��R)-operation which ine�ect takes maps A
B ! C to maps A ! B��C. Thus �� provides us with a closedstructure on our category corresponding to the tensor 
. Again we have two equations toexpress our natural isomorphism. One is the �-rule(�x:f)e = f [e=x] (9)and the other is the (linear form of the) traditional �-rule�x:fx = f (10)(It is a consequence of our assumption that �� is functorial in the usual way, contravari-antly in the �rst argument and covariantly in the second.)8.2 Categorical interpretation of Dereliction and PromotionNow we consider the meaning of the �-rule for ! involving Dereliction. The categoricalimport of this rule is that any map !�! A factors in a canonical way as a composite!� ���������! !A ���"A������!A33



where !A "A�! A is the canonical map obtained by Dereliction from the identity as describedin Section 3. By analogy with what we have done so far we should like to ask that thisfactorization be unique; but it is not clear how to do this. After all we do not expect allmaps !� !!A to arise as instances of Promotion. (Otherwise we would be in danger ofcollapsing the logic.) Hence we need to exhibit some familiar looking structure to motivateour simplifying assumptions.Given any proof � ` B there is obviously a canonical two-step process that transforms itinto a proof !� `!B by applying the Dereliction rule (several times) followed by Promotion.� ` B Dereliction*!� ` B Promotion!� `!BIf � f�! B interprets the original proof, we write the resulting arrow as!� ���!f������! !BAs a preliminary simpli�cation, we assume that this de�nition gives the extension of !to a multicategorical functor. In the light of the assumptions above, this amounts tothe assumption that ! is a monoidal functor; that is, ! comes equipped with a naturaltransformation mA;B: !A
!B !!(A
B)(natural in A and B) and a morphism mI : I !!I(note that this morphism is the nullary form of the natural transformation) and mak-ing a standard collection of diagrams commute. (The de�nition is given in Eilenbergand Kelly [7]. For the convenience of the reader we display the relevent diagrams inAppendix A.) We have appropriate candidates for the maps mA;B and mI in the inter-pretations of the proofs:A ` A Dereliction!A ` A B ` B Dereliction!B ` B (
R)!A; !B ` A
B Promotion!A; !B `!(A
B) (
L)!A
!B `!(A
B)and ` I Promotion`!I (IL)I `!I
34



Note that the �-rule for Dereliction certainly implies that for any f : � ! A, thediagram !� ���!f������! !A"� jjj# jjj# "A� �������f��! Acommutes. Either composite gives the e�ect of Dereliction on f . This shows that ": ! ! 1will be a multicategorical natural transformation and so a monoidal natural transforma-tion.We need one further piece of structure. We apply the Promotion rule to the axiom!A ` !A to obtain the derivation !A `!A Promotion!A `!!AIn other words, from an identity arrow !A �!!A we can get a canonical arrow �A: !A !!!A.With the equations to hand we know rather little about �. One can easily check that thecomposite !A ����A������! !!A ���"!A������! !Ais the identity on !A, and that is one of the triangle identities for a comonad, but that isabout it. However it is tempting to add to our preliminary assumption that ! is a monoidalfunctor, the assumption that � (as well as ") is a monoidal natural transformation andthat (!; "; �) forms a comonad on our category. These assumptions are quite natural in thecontext of the 2-category of monoidal categories, monoidal functors and monoidal naturaltransformations. (The basic notions are again due to Eilenberg and Kelly [7], and are speltout in detail at the end of the paper. The reader may wish to consult Kelly [20] for furtherinformation on category theory in the enriched setting.) The equations corresponding tothe standard presentation of the notion of a monoidal comonad are quite messy to writedown in terms of the syntax we have given and it is best to reformulate things. Firstnote for completeness that given a monoidal comonad (!; "; �), the Promotion rule can beinterpreted as follows: given a map!C1 
 : : :
!Cn ���f������!Awe obtain the `promoted' map as the composite!C1 
 : : :
!Cn ��� �������! !!C1 
 : : :
!!Cn ���m������! !(!C1 
 : : :
!Cn) ���!f������! !AConversely, it is well-known at least in the dual case of monads that there is an alternativeformulation of the notion of a comonad in terms of a functor !, a natural transformation35



" and a natural operation 
 (sometimes called the Kleisli operation) which takes mapsf : !A ! B to maps 
(f): !A !!B. The de�nition of Promotion just given is the (mul-ticategorical or) monoidal form of this Kleisli operation 
. Thus we can formulate theconditions that (!; "; �) be a monoidal comonad directly in terms of the basic operationsgiven by linear logic. In addition to the �-equalityderelict(promote ei for xi in f) = f [ei=xi]; (11)we obtain the equations promote z for x in (derelict(x)) = z (12)and promote (promote zi for xi in f); wj for y; yj in g =promote zi; wj for z0i; yj in (g[promote z0i for xi in f=y]): (13)Equation (12) can be thought of as an �-rule, as it provides a kind of uniqueness of thefactorization mentioned above; equation (13) expresses an appropriate form of naturalityof the operation of Promotion. Note that while the categorical appealing assumption that(!; "; �) is a monoidal comonad may seem unmotivated from the computational point ofview, it results in equations which seem to have some proof-theoretical/computationalcontent.We discuss further below, the categorical signi�cance of the assumption that (!; "; �) isa monoidal comonad. Essentially it has the consequence that 
 gives rise to a (symmetric)monoidal structure on the (Eilenberg-Moore) category of coalgebras for (!; "; �), see The-orem 8. For the moment simply note that maps of the form 
(f) (that is, maps obtainedby Promotion on maps of the form f : !A ! B) correspond exactly to maps between freecoalgebras.8.3 Categorical interpretation of Weakening and ContractionWe �nally consider the categorical signi�cance of the �-rules involving Weakening andContraction. To do so let us �rst introduce a further canonical pair of maps. UsingWeakening (and the right rule for I) we have a deduction` I Weakening!A ` Iwhich gives a canonical map !A eA�! I(where e is used to remind the reader that this map corresponds to `erasing' the assump-tion). From the rules (
R) and Contraction we obtain!A `!A !A `!A (
R)!A; !A `!A
!A Contraction!A `!A
!A36



which gives a canonical map (again d is used to hint at `duplication' of assumptions)!A dA�!!A
!AIt follows from the � and � rules for 
 and I as well as from the naturality assumptions onContraction and Weakening described in Section 3 that the e�ect of the rule of Weakeningis that any map arising from it �
!A ���f������!Bis the composite �
!A ���1
eA��������! �
I �= � ���f������!BSimilarly the e�ect of the rule of Contraction is that any map arising from the use of it!A
� ���f������!Bis the composite !A
� ���dA
1���������! !A
!A
� ���f������!BUnder the assumptions already made, the categorical import of the �-rules correspondingto Weakening and Contraction can be understood purely in terms of the operations givenby the maps eA and dA. Since Promotion is interpreted by the Kleisli operation 
, the�-rules have the force that maps of the form 
(f) preserve the structure (on objects ofthe form !A) given by e and d. Diagramatically!A ���
(f)������! !B !A �����
(f)��������! !BeA jjj# jjj# eB dA jjj# jjj# dBI ============ I !A
!A �������������
(f)

(f)��! !B
!BOf course the � equations for Contraction and Weakening namely,discard (promote ei for xi in t) in u = discard ei in u (14)and copy (promote ei for xi in t) as y; z in u =copy ei as x0i; x00i in u[promote x0i for xi in t=y; promote x00i for xi in t=z] (15)correspond exactly to the commuting of diagrams more complex than the ones above;but by naturality considerations the simple diagrams do give the full force of the equa-tions. It follows at once from the commutativity of the diagrams above that the canonical
37



morphisms (e and d) are natural transformations as this means that the diagrams!A ���!f������! !B !A ����!f�������! !BeA jjj# jjj# eB dA jjj# jjj# dBI ========== I !A
!A ���������!f
!f��! !B
!Bcommute for any given map A f! B in C.One might also expect that e and d give structure on the coalgebras, or (what amountsto the same thing) that they are themselves maps of coalgebras. If the morphisms e andd are maps of coalgebras we have commutativity of the diagrams!A ����A������! !!A !A ��������������A����������������! !!AeA jjj# jjj# !eA dA jjj# jjj# !dAI �������mI��! !I !A
!A ����������A
�A��! !!A
!!A ���������m!A;!A��! !(!A
!A)This leads to the equationspromote e; ei for x; xi in discard x in t = discard e in promote ei for xi in t (16)and promote e; ei for z; zi in copy z as x; y in t =copy e as x0; y0 in promote x0; y0; ei for x; y; zi in t (17)where, as before, the equations correspond exactly to more complex diagrams but theappropriate naturality considerations imply the full force of the equations.We believe that there is some computational sense to this interplay between Promotionon the one hand, and Weakening and Contraction on the other. Furthermore our intu-itions about the processes of discarding and copying suggest strongly that the naturaltransformations e and d give rise to the structure of a (commutative) comonoid on thefree !-coalgebras. (As a consequence all coalgebras have (and all maps of coalgebras pre-serve) the structure of a (commutative) comonoid.) These assumptions induce furtherobvious equalities on termscopy e as x; y in discard x in t = t[e=y]; (18)copy e as x; y in discard y in t = t[e=x] (19)copy e as x; y in t = copy e as y; x in t (20)copy e as x;w in copy w as y; z in t = copy e asw; z in copy w as x; y in t (21)Again these equations seem to have proof-theoretic/computational content.38



8.4 The categorical model of Intuitionistic Linear LogicMuch of the categorical analysis that we have just given is quite familiar, though thecorresponding equational calculus seems new (if only because our syntax is new). Wenote however that (following Seely [27]) it has become standard to analyze the categoricalmeaning of Weakening and Contraction in terms of the relationship between the additivesand the multiplicatives. Our analysis dispenses with additives and hence gives a moregeneral account of the force of the exponentials. Even in the presence of the additives ourformulation is not equivalent to Seely's and it certainly covers cases of interest not coveredby his. We try to make the relation between the two approaches clear in the next section.To sum up the analysis in this section we give the following de�nition.De�nition 1 A categorical model for multiplicative Intuitionistic Linear Logic consistsof:1. a symmetric monoidal closed (multi)category (modelling tensor and linear implica-tion);2. together with a comonad (!; "; �) with the following properties:(a) the functor part `!' of the comonad is a monoidal functor and " and � aremonoidal natural transformations,(b) every (free) !-coalgebra carries naturally the structure of a commutative comonoid6in such a way that coalgebra maps are comonoid maps.This de�nition makes no attempt to model the additives. To do so we would add a clauseto the e�ect that the symmetric monoidal closed (multi)category was equipped with �niteproducts and coproducts 7.Note that we have indicated in the text above what are the equations in our termassignment system corresponding to this notion of categorical model. We display theseequations (as well as the naturality equations of Section 3) in Figure 11. These rules aresound and complete for our notion of a model, in a sense which we make precise as follows.In Section 3 we explained what is the general form of an interpretation of the typesand terms (in context) of our term logic system with given signature in a (multi)categoryequipped with the appropriate structure. (The structure amounts to the operations givenin Figure 4.)Suppose now we are given a categorical model for (multiplicative) Intuitionistic LinearLogic as just de�ned; we show that the corresponding (multi)category has the requiredstructure. As explained in Section 8.1 we now use the same tensor to represent the mul-ticategorical structure and to model the logical tensor. Hence the operations for I andtensor are given by standard operations in a (symmetric) monoidal closed category. Fur-thermore the closed structure takes care of the operation for ��. We considered Derelictionand Promotion in 8.2. The map ": !A ! A introduced in Section 3 is of course just theco-unit "A: !A! A of the comonad. As we mentioned in 8.2 the operation corresponding6This means not only that each !-coalgebra (A; hA:A!!A) comes equipped with morphisms e:A! Iand d:A ! A
A but also that e and d are coalgebra maps. Moreover, since the coalgebra maps arecomonoid morphisms we have four commutative diagrams that we have seen (instances of) before.7These might be weak products and coproducts.39



let � be � in e = elet u be � in f [�=z] = f [u=z]let e
t be x
y in u = u[e=x; t=y]let u be x
y in f [x
y=z] = f(�x:t)e = t[e=x]�x:tx = tderelict(promote ei for xi in t) = t[ei=xi]promote z for x in derelict(x) = zpromote (promote zi for xi in f); wj for y; yj in g = promote zi; wj for z0i; yj in(g[promote z0i for xi in f=y])discard (promote ei for xi in t) in u = discard ei in upromote e; ei for x; xi in discard x in t = discard e in promote ei for xi in tcopy (promote ei for xi in t) as y; z in u = copy ei as x0i; x00i inu[promote x0i for xi in t=y; promote x00i for xi in t=z]promote e; ei for z; zi in copy z as x; y in t = copy e as x0; y0 inpromote x0; y0; ei for x; y; zi in tcopy e as x; y in discard x in t = t[e=y]copy e as x; y in discard y in t = t[e=x]copy e as x; y in t = copy e as y; x in tcopy e as x;w in copy w as y; z in t = copy e asw; z in copy w as x; y in tf [let z be � in e=w] = let z be � in f [e=w]f [let z be x
y in e=w] = let z be x
y in f [e=w]f [discard z in e=w] = discard z in f [e=w]f [copy z as x; y in e=w] = copy z as x; y in f [e=w]Figure 11: Categorical equalities40



to Promotion takes a map !C1 
 : : :
!Cn ���f������!Ato the composite!C1 
 : : :
!Cn ��� �������! !!C1 
 : : :
!!Cn ���m������! !(!C1 
 : : :
!Cn) ���!f������! !AFinally we considered Weakening and Contraction in 8.3. The operation corresponding toWeakening take a map � ���f������!Bto the composite �
!A ���1
 eA��������! �
 I �= � ���f������!AThe operation corresponding to Contraction takes a map�
!A
!A ���f������!Bto the composite �
!A ���1
 dA��������! �
!A
!A ���f������!BThus we can interpret our system in any categorical model.Theorem 71. (Soundness) For any signature and interpretation of the corresponding system in acategorical model for Intuitionistic Linear Logic (all the equational consequences of)the equations in Figure 11 hold in the sense that the interpretations of either termgives the same map in the category.2. (Completeness) For any signature there is a categorical model for Intuitionistic Lin-ear Logic and an interpretation of the system in it with the following property:� If � ` t:A and � ` s:A are derivable in the system then t and s are interpretedas the same map � ! A just when t = s:A is provable from the equations inFigure 11 (in typed equational logic).41



Proof. The proof of soundness involves labouriously checking for each rule that arelevant diagram commutes in the category. We give a selection of cases.� To justify the categorical equationderelict(promote zi for xi in f) = f [zi=xi]suppose that � = fC1; : : : ; Cng and that f : !�! B is the interpretation of !� ` f : B.Then the left hand side of the above equation is interpreted by the upper path from!� = 
i!Ci to !B in the diagram
i!Ci ���
i�������!
i!!Ci ���m������! !(
i!Ci) ���!f������! !B1@@@&
i" jjj# " jjj# jjj# "
iCi �������1��! 
iCi �������f��! Bwhile the right hand side is interpreted by the lower path. But the diagram clearlycommutes. (The triangle commutes by a standard triangle identity, the left handsquare as " is a monoidal transformation, and the right hand square as " is natural.)� To justify the equationpromote (promote zi for xi in f); wj for y; yj in g =promote zi; wj for z0i; yj in (g[promote z0i for xi in f=y]):we need a very simple categorical proposition. The left-hand side corresponds toa morphism (�C ; !f); (�A; !g) and the right-hand side corresponds to a morphism�; !(�; !f ; g); thus saying that they are equal corresponds to the commutativity of thefollowing diagram: !C ����C������! !!C ���!f������! !A�C jjj# �!C jjj# jjj# �A!!C �������!���! !!!C �������!!f��! !!A �������!g��! !BThe right square commutes because � is a natural transformation and the left squarecommutes because (!; �; ") is a comonad.� The categorical property required for the equationpromote e; ei for x; xi in discard x in t = discard e in promote ei for xi in t42



is that the following diagram !C 
D ���h������! !A
DeC 
D jjj# jjj# eA 
DI 
D �������1��! I 
Dcommutes irrespective of the function h.� For the equation promote e; ei for z; zi in copy z as x; y in t =copy e as x0; y0 in promote x0; y0; ei for x; y; zi in tthe property used is the naturality of the natural transformation d, which means thecommutativity of the diagram!C ������
(!f)�����������! !AdC jjj# jjj# dA!C
!C ���������������
(!f)
 
(!f)��! !A
!A ���g������!BIn detail: !C ��� �������! !!C ���!f������! !AdC jjj# jjj# dA!C
!C !A
!A ���g������!B� jjj# "jjj !f!!C
!C �������!f��! !A
!C ����������! !A
!!CThe proof of completeness is by the usual categorical term model construction and isomitted. 2
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8.5 Generalizing the Girard translationNow we try to make clear the force of our de�nition in terms of a discussion of (the back-ground to) Girard's translation of intuitionistic propositional logic into linear logic. Westart by recalling some folklore results about the Eilenberg-Moore category of coalgebras.Theorem 81. If a symmetric monoidal category C is equipped with a monoidal comonad (!; "; �),then the tensor product of C induces a symmetric monoidal structure on the categoryof coalgebras C!.2. � If, furthermore, C is symmetric monoidal closed, then all free coalgebras are`exponentiable' in C! (in the sense appropriate to the monoidal structure); whatis more any power of a free coalgebra is a free coalgebra. So the full subcategoryof �nite tensor products of free coalgebras forms a symmetric monoidal closedcategory containing the category of free coalgebras.� If, in addition, the (Kleisli) category of free coalgebras is closed under the tensorproduct in C!, then the category of free coalgebras is symmetric monoidal closed.3. If on the other hand C is symmetric monoidal closed and C! has equalizers of core-
exive pairs of arrows then C! is symmetric monoidal closed.We make clear what is the force of our stipulation in De�nition 1 part 2(b) that every(free) !-coalgebra carries naturally the structure of a commutative comonoid in such a waythat coalgebra maps are comonoid maps.Theorem 91. If a symmetric monoidal category C is equipped with a comonad (!; "; �) satisfyingpart 2(b) of De�nition 1, then the tensor product induced on the category C! ofcoalgebras is a categorical product.2. If, furthermore, C is symmetric monoidal closed, then all free coalgebras are expo-nentiable in C! (in the standard sense); and so the full subcategory of exponentiableobjects forms a cartesian closed category (containing the category of free coalgebras).3. If, in addition, the (Kleisli) category of free coalgebras is closed under the product inC!, then the category of free coalgebras is cartesian closed. In particular this followswhen C has �nite products (1;&) and we have the natural isomorphismsI �= !I!A
!B �= !(A&B)4. If, on the other hand, C! has equalizers of core
exive pairs of arrows then C! iscartesian closed.This theorem, which in essence goes back to Fox [8], is the basis for the Girard trans-lation of intuitionistic logic into Intuitionistic Linear Logic. In the usual formulation thistranslation is based on 3, that is on the natural isomorphisms introduced by Seely [27], andso essentially takes place in the category of free coalgebras. (This option is still availablein cases where the relevent natural isomorphisms do not hold.) However, the general theo-rem demonstrates that at the proof theoretic (computational) level a more subtle analysis(which involves the full category of coalgebras) is possible.44



9 Cut Elimination for Sequent CalculusIn this section we consider cut elimination for the sequent calculus formulation of In-tuitionistic Linear Logic. Suppose that a derivation in the term assignment system ofFigure 2 contains a cut: D1� ` e : A D2�; x : A ` f : B Cut�;� ` f [e=x] : BIf � ` e : A is the direct result of a rule D1 and �; x : A ` f : B the result of a rule D2,we say that the cut is a (D1;D2)-cut. A step in the process of eliminating cuts in thederivation tree will replace the subtree with root �;� ` f [e=x] : B with a tree with rootof the form �;� ` t : BThe terms in the remainder of the tree may be a�ected as a result.Thus to ensure that the cut elimination process extends to derivations in the termassignment system, we must insist on an equality f [e=x] = t, which we can read from leftto right as a term reduction. In fact we must insist on arbitrary substitution instancesof the equality, as the formulae in � and � may be subject to cuts in the derivation treebelow the cut in question. In the presence of the rules of Figure 9 of Section 7, this su�cesto ensure that corresponding terms in the trees before and after the cut is eliminated areequal.In this section we are mainly concerned to describe the equalities/reductions whichresult from the considerations just described. Note however that we cannot be entirelyblithe about the process of eliminating cuts at the level of the propositional logic. As weshall see, not every apparent possibility for eliminating cuts should be realized in practice.This is already implicit in our discussion of natural deduction, and of the categoricalsemantics.As things stand there are 11 rules of the sequent calculus aside from Cut (and Ex-change) and hence 121 a priori possibilities for (D1;D2)-cuts. Fortunately most of thesepossibilities are not computationally meaningful in the sense that they have no e�ect onthe terms. We say that a cut is insigni�cant if the equality f [e=x] = t we derive from it asabove is actually an identity (up to �-equivalence) on terms (so in executing the cut theterm at the root of the tree does not change). Let us begin by considering the insigni�cantcuts.First note that any cut involving an axiom ruleIdentityx : A ` x : Ais insigni�cant; and the cut just disappears (hence instead of 121 we must now accountfor 100 cases). These 100 cases of cuts we will consider as follows: 40 cases of cuts theform (R;D) as we have 4 right rules and 10 others; 24 cases of cuts of the form (L;R) aswe have 6 left-rules and 4 right ones and �nally 36 cases of cuts of the form (L;L). Letus consider these three groups in turn.Firstly we observe that there is a large class of insigni�cant cuts of the form (R;D)where R is a right rule: (
R), (IR), (��R), Promotion. Indeed all such cuts are insigni�-cant with the following exceptions: 45



� Principal cuts. These are the cuts of the form ((
R); (
L)), ((IR); (IL)), ((��R); (��L)),(Promotion, Dereliction), (Promotion,Weakening), (Promotion, Contraction) wherethe cut formula is introduced on the right and left of the two rules.� Cases of the form (R;Promotion) where R is a right rule. Here we note that cutsof the form ((
R));Promotion), ((IR));Promotion ) and ((��R);Promotion) cannotoccur; so the only possibility is (Promotion ;Promotion).Next any cut of the form (L;R) where L is one of the left rules (
L), (IL), (��L), Weak-ening , Contraction, Dereliction and R is one of the simple right rules (
R), (IR), (��R) isinsigni�cant (18 cases). Also cuts of the form ((��L);Promotion) and (Dereliction ;Promotion)are insigni�cant(2 cases). This is one of the things we gain by having actual substitutionsin the (��L) and Dereliction rules. Thus there remains four further cases of cuts of theform (L;Promotion) where L is a left rule.Lastly the 36 cuts of the form (L1; L2), where the Li are both left rules. Again wederive some bene�t from our rules for (��L) and Dereliction: cuts of the form ((��L); L)and (Dereliction ; L) are insigni�cant. There are hence 24 remaining cuts of interest.We now summarize the cuts of which we need to take some note. They are:� Principal cuts. There are six of these.� Secondary Cuts. The single (strange) form of cut: (Promotion ;Promotion) and thefour remaining cuts of form (L;Promotion) where L is a left rule other than (��L)or (Dereliction).� Commutative Cuts. The twenty-four remaining cuts of the form (L1; L2) just de-scribed.We consider the equalities that result from these in turn and comment on their cate-gorical signi�cance and their relation with natural deduction.9.1 Principal CutsWe start by looking at the cases of cut involving tensor, the constant I and linear impli-cation, as they are standard.� ((
R); (
L))-cut�1 ` A �2 ` B (
R)�1;�2 ` A
B A;B;� ` C (
L)A
B;� ` C Cut�1;�2;� ` CThis derivation reduces to either�1 ` A �2 ` B A;B;� ` C Cut�2; A;� ` C Cut�1;�2;� ` Cor to the symmetric one where we cut against A �rst. We might like to have a `simulta-neous' cut rule, which would allows us to reduce the derivation above to�1 ` A �2 ` B A;B;� ` C Cut*�1;�2;� ` C46



As far as terms are concerned these reductions give us the following �-rule for tensor:let f 
 g be x
 y in h > h[f=x; g=y] (22)� ((IR); (IL))-cut (IR)` I � ` C (IL)I;� ` C Cut� ` CThis derivation reduces to � ` CAs far as terms are concerned this reduction gives us the following �-rule for I:let � be � in h > h (23)� ((��R),(��L))-cut.�; A ` B (��R)� ` A��B �1 ` A �2; B ` C (��L)A��B;�1;�2 ` C Cut�;�1;�2 ` CThis derivation reduces to either�1 ` A �; A ` B �2; B ` C Cut�; A;�2 ` C Cut�1;�;�2 ` Cor to the symmetric one where we cut A �rst. Again we might like to have a `simultaneous'cut rule, which would allows us to reduce the derivation above to�; A ` B �1 ` A B;�2 ` C Cut*�;�1;�2 ` CAs far as terms are concerned this reduction gives us the �-rule:h[(�x:f)g=y] > h[f [g=x]=y] (24)Now we turn to the principal cuts involving Promotion.� (Promotion;Dereliction)-cut. The derivation!� ` B Promotion!� `!B B;� ` C Dereliction!B;� ` C Cut!�;� ` CIn this case we can eliminate the use of both rules and replace them with a single (simpler)cut. 47



!� ` B B;� ` C Cut!�;� ` CThis reduction yields the following term reduction.(f [derelict(q)=p])[promote yi for xi in e=q] > f [e=p] (25)� (Promotion;Weakening)-cut. The derivation!� ` B Promotion!� `!B � ` C Weakening!B;� ` C Cut!�;� ` Cis reduced to � ` C Weakening*!�;� ` Cwhere Weakening* corresponds to many applications of the Weakening rule.This gives the term reductiondiscard (promote ei for xi in f) in g > discard ei in g (26)� (Promotion;Contraction)-cut. The derivation!� ` B Promotion!� `!B !B; !B;� ` C Contraction!B;� ` C Cut!�;� ` Cis reduced to!� ` B Promotion!� `!B !� ` B Promotion!� `!B !B; !B;� ` C Cut!�; !B;� ` C Cut!�; !�;� ` C Contraction*!�;� ` Cor to the symmetric one where we cut against the other B �rst. Again we would like tohave a `simultaneous' cut rule, which would allows us to reduce the derivation above to!� ` B Promotion!� `!B !� ` B Promotion!� `!B !B; !B;� ` C Cut*!�; !�;� ` C Contraction*!�;� ` CThis gives the term reduction copy (promote ei for xi in f) as y; y0 in g >copy ei as zi; z0i in g[promote zi for xi in f=y; promote z0i for xi in f=y0] (27)48



Note that the three cases of cut elimination above involving Promotion are only consideredby Girard, Scedrov and Scott [14] when the context (!�) is empty. If the context is non-empty these are called irreducible cuts.The principal cuts correspond to the �-reductions in natural deduction. Hence thereductions that we have just given are almost the same as those given in Figure 8. Thedi�erences arise because in the sequent calculus some `reductions in context' (handled innatural deduction by the reduction inference rules) are e�ected directly by the process ofmoving cuts upwards. Hence some of the rules just given appear more general.9.2 Secondary CutsWe now consider the cases where the Promotion rule is on the right of a cut rule. The�rst case is the strange case of cutting Promotion against Promotion, then we have thefour cases (
L), (IL), Weakening and Contraction against the rule Promotion.� (Promotion;Promotion)-cut. The derivation!� ` B Promotion!� `!B !B; !� ` C Promotion!B; !� `!C Cut!�; !� `!Creduces to !� ` B Promotion!� `!B !B; !� ` C Cut!�; !� ` C Promotion!�; !� `!CNote that it is always possible to permute the cut upwards, as all the formulae in theantecedent are modal.This gives the term reductionpromote (promote z for x in f) for y in g >promote w for z in (g[promote z for x in f=y]) (28)� ((
L);Promotion)-cut. The derivationA;E;� `!B (
L)A
E;� `!B !�; !B ` C Promotion!B; !� `!C CutA
E;�; !� `!Creduces to A;E;� `!B !B; !� ` C Promotion!B; !� `!C CutA;E;�; !� `!C (
L)A
E;�; !� `!CThis gives the term reduction 49



promote (let z be x; y in f) for w in g > let z be x; y in (promote f for w in g) (29)� ((IL);Promotion)-cut. The derivation� `!B (IL)I;� `!B !�; !B ` C Promotion!B; !� `!C CutI;�; !� `!Creduces to � `!B !B; !� ` C Promotion!B; !� `!C Cut�; !� `!C (IL)I;�; !� `!CThis gives the term reductionpromote (let z be � in f) for w in g > let z be � in (promote f for w in g) (30)� (Weakening;Promotion)-cut. The derivation� `!B Weakening!A;� `!B !�; !B ` C Promotion!B; !� `!C Cut!A;�; !� `!Creduces to � `!B !B; !� ` C Promotion!B; !� `!C Cut�; !� `!C Weakening!A;�; !� `!CThis gives the term reductionpromote (discard x in f) for y in g > discard x in (promote f for y in g) (31)� (Contraction;Promotion)-cut. The derivation!A; !A;� `!B Contraction!A;� `!B !�; !B ` C Promotion!B; !� `!C Cut!A;�; !� `!Creduces to !A; !A;� `!B !B; !� ` C Promotion!B; !� `!C Cut!A; !A;�; !� `!C Contraction!A;�; !� `!C50



This gives the term reductionpromote (discard x in f) for y in g > discard x in (promote f for y in g) (32)One is tempted to suggest that perhaps the reason why the rule Promotion gives usreductions with some sort of computational meaning is because this rule is not clearlyeither a left or a right rule. It introduces the connective on the right (so it is mainlya right rule), but it imposes conditions on the context on the left. Indeed there doesnot appear to be any analogous reductions in natural deduction. We repeat the termreductions given by the secondary cuts in Figure 12. For the (less categorically-inclined)reader we observe that the last four equations are particular instances of the naturalityequations described in Section 3, while the �rst encapsulates the naturality of the Kleislioperation of Promotion as discussed in Section 8.promote (promote z for x in f) for y in g > promote w for z in (g[promote z for x in f=y])promote (discard x in f) for y in g > discard x in (promote f for y in g)promote (copy x as y; z in f) for y in g > copy x as y; z in (promote f for y in g)promote (let z be x
y in f) for w in g > let z be x
y in (promote f for w in g)promote (let z be � in f) for w in g > let z be � in (promote f for w in g)Figure 12: Secondary reduction rules9.3 Commutative cutsNext we consider brie
y the 24 signi�cant cuts of the form (L1; L2) where the Li areboth left rules. These correspond case by case to the commutative conversions for naturaldeduction considered in Section 7.2. For the most part the reduction rules we obtain fromcut elimination are identical with those in Figure 10. The exceptions are the cases where(��L) is the (second) rule above the cut. In these cases we obtain in place of the �rst rulesin the four groups of six in Figure 10, the following stronger rules:v[(let z be x
y in t)u=w] ! let z be x
y in v[tu=w]v[(let z be � in t)u=w] ! let z be � in v[tu=w]v[(discard z in t)u=w] ! discard z in v[tu=z]v[(copy z as x; y in t)u=w] ! copy z as x; y in v[tu=w]9.4 An `insigni�cant' cutLet us consider the case of a (Dereliction;Promotion)-cut. The derivation51



A;� `!B Dereliction!A;� `!B !�; !B ` C Promotion!B; !� `!C Cut!A;�; !� `!Ccan be reduced to A;� `!B !B; !� ` C Promotion!B; !� `!C CutA;�; !� `!C Dereliction!A;�; !� `!CIn our simpli�ed version of term assignment this transformation on the level of terms givesthe following term transformation.(promote q for p in f)[(e[derelict(z)=x])=q] > (promote q for p in f)[e=q][derelict(z)=x]But both these terms are equivalent to promote e[derelict(z)=x] for p in f , so the transfor-mation is actually an identity (and the cut is insigni�cant). However, if we had used thesyntax for Dereliction discussed earlier, namely:x : A;� ` e : B Derelictionz :!A;� ` let z be !x in e : Bthe transformation on proofs given above would give the term reductionpromote (let z be !x in f) for y in g > let z be !x in (promote f for y in g)which would appear to be a secondary cut.Let us consider (categorically) this reduction where the contexts contain exactly oneformula. The derivationA `!B Dereliction!A `!B !B ` C Promotion!B `!C Cut!A ` Creduces to A `!B !B ` C!B `!C CutA `!C Dereliction!A `!CThere is nothing to prove categorically as the map in the �rst derivation ("; f); �; !g is thesame as the map in the second derivation "; (f ; �; !g).This case is important because given the derivation!A `!A Dereliction!!A `!A !A `!A Promotion!A `!!A Cut!!A `!!A52



one could be misled into thinking that there were two ways of eliminating the cut, eitherpushing it upwards to do Promotion �rst or to do Dereliction �rst. But clearly only thelatter works in general and is a correct cut-elimination.This example shows the problem with the term assignment which does not change thefree variable in the Promotion rule, hinted at by Wadler [29]. Given that term assignmentthe derivation above and the derivation (given by the incorrect cut-elimination)!A `!A Dereliction!!A `!A Promotion!!A `!!Awhich are unrelated (and distinct maps from the categorical viewpoint), end up beingencoded by the same term !(let w be !x in x)a situation which is clearly unacceptable.9.5 Permutative conversionsAs is well known, a sequent calculus formulation of logic makes it very clear that the orderof application of certain pairs of rules in a proof is irrelevant. (The same phenomenon canbe considered in the context of natural deduction.) Permuting pairs of rules of this kindgives rise to permutative conversions in sequent calculus derivations: these conversions playan important role in approaches to proof search [30] (On the other hand, proof nets [10]provide a notation for proofs in which the order of application of such rules has beenfactored out.) Here we simply note that permutative conversions give rise to yet furtherequalities between the terms of our term assignment system.9.6 SummaryIn this section we reviewed the process of cut elimination in the sequent calculus, classifyingcuts as principal cuts, secondary cuts and insigni�cant cuts, according to the way theya�ected the term assignment system as well as their categorical signi�cance.Summing up the results we can state the following:Theorem 10 The equations which appear in the process of cut elimination in the sequentcalculus formulation of Intuitionistic Linear Logic are satis�ed in any categorical model ofIntuitionistic Linear Logic, as described in Section 8.Corollary 1 The equations derived from this process are all consequences of the categor-ical equations of Figure 11 of Section 8.10 Future WorkWe can identify a number of areas which need to be covered in the future.� Clearly we need to consider the additive connectives. We should also like to considerquanti�ers within this framework. 53
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y indicate their signi�cance. If C is a symmetric monoidal categoryand (!; �; ") a comonad in C, that the functor part of the comonad ! is a monoidal functormeans that we have a (canonical) natural transformationmA;B: !A
!B !!(A
B)for any A and B in C, and a morphismmI : I !!I(the morphism is the natural transformation in its nullary form) satisfying the followingcollection of commutative diagrams:!I
!A ���mI;A��������! !(I 
A)mI 
 id "jjj jjj# !lI
!A ��������l ���! !Awhere l is the natural isomorphim I
A l! A. Similarly for the natural isomoprhism rgiven by A
I r! A the diagram!A
!I ���mA;I��������! !(A
I)id
mI "jjj jjj# !r!A
I ��������r���! !A
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commutes and for a the associativity isomorphism (A
B)
C �! A
(B
C) the diagram(!A
!B)
!C ���m
id��������! !(A
B)
!C ���m������! !((A
B)
 C)� jjj# jjj# !�!A
 (!B
!C) ���������id
m��! !A
!(B 
 C) �������m��! !(A
 (B 
 C))commutes. Also, since m is a natural transformation (between the functors ! and !
!), forany pairs of maps A f! C and B g! D the following squares commute:!A
!B ���mA;B��������! !(A
B)!f
!g jjj# jjj# !(f 
 g)!C
!D ���������mC;D��! !(C 
D)That " and � are monoidal natural transformations, involves a further collection ofcommuting diagrams. For the natural transformation " we have that the following extradiagrams !A
!B ���m������! !(A
B) I ���mI������! !I"A 
 "B jjj# jjj# "A
B kkkk jjj# "IA
B ========== A
B I ========== Icommute.For the natural transformation � we have that the following extra diagrams!A
!B ����������m�������������! !(A
B) I ���mI������! !I�A 
 �B jjj# jjj# �A
B mI jjj# jjj# �I!!A
!!B �������m��! !(!A
!B) �������!m��! !!(A
B) !I �������!mI��! !!I
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