CLUSTERING WITH GENETIC ALGORITHMS

THIS THESIS IS
PRESENTED TO THE
DEPARTMENT OF COMPUTER SCIENCE
FOR THE DEGREE OF
MASTER OF SCIENCE
OF THE

UNIVERSITY OF WESTERN AUSTRALIA

By
Rowena Marie Cole

January 1998

© Copyright 1998
by

Rowena Marie Cole

i

Abstract

Clustering 1s the search for those partitions that reflect the structure of an object set. Traditional
clustering algorithms search only a small sub-set of all possible clusterings (the solution space) and
consequently, there is no guarantee that the solution found will be optimal. We report here on
the application of Genetic Algorithms (GAs) — stochastic search algorithms touted as effective
search methods for large and complex spaces — to the problem of clustering. GAs which have been
made applicable to the problem of clustering (by adapting the representation, fitness function, and
developing suitable evolutionary operators) are known as Genetic Clustering Algorithms (GCAs).

There are two parts to our investigation of GCAs: first we look at clustering into a given number
of clusters. The performance of GCAs on three generated data sets, analysed using 4320 differing
combinations of adaptions, establishes their efficacy. Choice of adaptions and parameter settings
is data set dependent, but comparison between results using generated and real data sets indicate
that performance is consistent for similar data sets with the same number of objects, clusters,
attributes, and a similar distribution of objects. Generally, group-number representations are
better suited to the clustering problem, as are dynamic scaling, elite selection and high mutation
rates. Independent generalised models fitted to the correctness and timing results for each of the
generated data sets produced accurate predictions of the performance of GCAs on similar real data
sets.

While GCAs can be successfully adapted to clustering, and the method produces results as
accurate and correct as traditional methods, our findings indicate that, given a criterion based on
simple distance metrics, GCAs provide no advantages over traditional methods.

Second, we investigate the potential of genetic algorithms for the more general clustering
problem, where the number of clusters is unknown. We show that only simple modifications to the
adapted GCAs are needed. We have developed a merging operator, which with elite selection, is
employed to evolve an initial population with a large number of clusters toward better clusterings.
With regards to accuracy and correctness, these GCAs are more successful than optimisation
methods such as simulated annealing. However, such GCAs can become trapped in local minima
in the same manner as traditional hierarchical methods. Such trapping is characterised by the
situation where good (k-1)-clusterings do not result from our merge operator acting on good k-
clusterings. A marked improvement in the algorithm is observed with the addition of a local

heuristic.

11

Acknowledgements

I am grateful to the many people who have contributed to this thesis. I thank Dr. Nick Spadaccini
for his wisdom and patience. His belief in my research and pertinent advice has been a guiding
influence on the evolution of this thesis.

I was fortunate enough to participate in an exchange program with The University of British
Columbia (UBC) during 1995, and T thank the Departments of Computer Science and Statistics
at UBC, for the use of their facilities and their hospitality. 1 also thank Dr. David Lowe for his
advice and support. The time spent at UBC greatly enhanced the content of this thesis.

I thank both The University of Western Australia (UWA) and UBC for allowing me the
opportunity to study at UBC. I also acknowledge UWA’s support of this research in the form
of a HECS scholarship.

Professor Adrian Baddeley, Professor of Statistics at UWA | was kind enough to allow me the use
of statistical software on the Mathematics Department’s computers, without which the statistical
analysis presented in the thesis would not have been possible. T also thank Dr. Katia Stefanova
for her initial advice on this analysis.

I thank the members of the Computer Science Department, here at UWA, who by example (or
by direct advice) have contributed ideas to the research behind this thesis. In particular, T wish to
thank all who have extended extra effort to help in the production of this thesis.

Finally, I thank my friends and family for their continual support and encouragement.

v

Contents

Abstract
Acknowledgements

1 Introduction

1.1 Background
1.1.1 The Clustering Problem
1.1.2 Measures of Similarity
1.1.3 Traditional Clustering Algorithms

1.2 Motivation L

1.3 Genetic Algorithms oo o
1.3.1 Representation
1.3.2 Fitness Function
1.3.3 Genetic Operators
1.3.4 Parameter Values
1.3.5 Final Comments — GAs

1.4 Overview L

Adapting GAs for k-Clustering

2.1 Background
2.1.1 Representation
2.1.2 Fitness Function
2.1.3 Genetic Operators L
2.1.4 Parameter Values

2.2 Methodology
2.2.1 DataSets
2.2.2 Objective Function
2.2.3 Adaptions
2.2.4 Testing Conditions o
2.2.5 Statistical Analysiso

2.3 Results.
2.3.1 Generated Data.o
2.3.2 Adaptions

W o =~ NN = = e

e e
W W w o

2.4

2.3.3 Performance of Selected Adaptions L.

Discussion

3 Genetic versus Traditional Clustering Algorithms

3.1
3.2
3.3
3.4

Clustering Algorithms . . .
Methodology
Results.

Discussion

4 Genetic Clustering for Unknown k

4.1

4.2

4.3

4.4

Background
4.1.1 Criteria for Determining the Number of Clusters
4.1.2 Adaptions for the General Clustering Problem
Methods
4.2.1 Objective Function
4.2.2 Clustering Algorithms o
Results
4.3.1 Objective Function
4.3.2 Clustering Algorithms o
4.3.3 Local Search
Discussion L
4.4.1 Objective Function
4.4.2 Clustering Algorithms o
44.3 Local Search

5 Conclusions

Bibliography

A Models for GA adaptions

Al
A2
A3
A4
A5

Group-number and Ruspini2
Group-number and Towns2

Group-number and Iris2 . .
Order-based and Ruspini2 .
Order-based and Towns2 . .

vi

49
49
55
55
57

59
59
59
60
62
62
63
64
64
65
68
68
68
69
70

72

79

List of Tables

O oo =~ O Ot = W N

R T T N B B N N N N NG S N S S G gt
W R = O © 0 U R W N RS © - O W N = O

Some payoff values for the black box optimisation problem with six switches 10
Properties of the datasets 27
Correctness of group-number GCAs L 0oL 31
Correctness of order-based GCAs 31
Time to solution for group-number GCAs 31
Time to solution for order-based GCAs 32
Distributions of the adaptions with group-number encoding for Ruspini2 32
Distributions of adaptions for group-number encoding on Towns2 33
Distributions of adaptions for group-number encoding on Iris2 35
Distribution of adaptions with order-based encoding for Ruspini2 36
Distributions of adaptions with order-based encoding for Towns2 37
Factors included in the models for group-number GAs 40
Factors included in the models for order-based GAs 41
Top adaptions for group-number GCAs on Ruspini2 41
Top adaptions for group-number GCAs on Towns2 42
Top adaptions for group-number GCAson Iris2 42
Top adaptions for order-based GCAs on Ruspini2 42
Top adaptions for order-based GCAs on Towns2 42
Performance of group-number GCAs on generated and real data sets 43
Performance of order-based GCAs on generated and real datasets 43
Size of the representation space for generated datasets 45
Comparison of k-clustering algorithms on Ruspini. 56
Comparison of k-clustering algorithms on German Towns 56
Comparison of k-clustering algorithmson Iris 56
Clustering criteria for Ruspinidata 00 L. 64
Clustering criteria for German Towns L. 64
Clustering criteria for Iris0 oL 65
Comparison of clustering algorithms on Ruspini 65
Comparison of clustering algorithms on German Towns 66
Comparison of clustering algorithmson Iris 66
Performance of GCAs with modified merge 0oL 68
Coefficients for the correctness model for group-number GCAs on Ruspini2 81
Coefficients for the time model for group-number GCAs on Ruspini2 84

vil

34
35
36
37
38
39
40
41

Coeflicients for the correctness model for group-number GCAs on Towns2 87

Coeflicients for the time model for group-number GCAs on Towns2 91
Coeflicients for the correctness model for group-number GCAs on Iris2 92
Coeflicients for the time model for group-number GCAs on Iris2 95
Coefficients for the correctness model for order-based GCAs on Ruspini2 96
Coefficients for the time model for order-based GCAs on Ruspini2 98
Coefficients for the correctness model for order-based GCAs on Towns2 98
Coefficients for the time model for order-based GCAs on Towns2 100

viil

List of Figures

O oo =~ O Ot = W N

R T T N B B N N N N NG S N S S G gt
W R = O © 0 U R W N RS © - O W N = O

Dendogram for hierarchical clustering o0 3
Chaining in single-linkage clustering L oo 3
Reversal in centroid clustering oo oo 4
The k-means algorithm L 6
The hill-climbing algorithm oo 6
Outline of a simple GA 7
Encoding scheme for six on-off switches 8

9

1

Encoding scheme for the travelling salesman problem

Examples of single-point and uniform crossover 1

Crossover operators for permutation representations 12
Chromosomes for various encoding schemes 16
Fisher’s Algorithm 0. 0 17
Context insensitivity of single-point crossover 20
Alippi and Cucchiara’s crossover 22
Bezdek et al’s crossovero 22
Bhuyan et al.’s crossover operators L 23
Bhuyan’s crossover L 23
Bezdek et al’s mutationo 24
Plots of the selected data 26
Plots of the generated data oo oL 30
Time results for group-number GCAs on Ruspini2 33
Time results for group-number GCAs on Towns2 34
Time results for group-number GCAson Iris2 35
Time results for order-based GCAs on Ruspimi2 37
Time results for order-based GCAs on Towns2 38
Fitness distribution for a successful group-number GCA on Ruspini. 44
Fitness distribution for a unsuccessful group-number GCA on Ruspini 44
The SLINK algorithmo 0 50
Clustering with simulated annealing 54
Falkenauer’s encoding scheme oL oo oL 61
Mutation operators for the general clustering problem 62
Distribution of k values for initial parameters 67
Distribution of k values for subsequent parameters 67

1X

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Optimal 4-clustering of Iris oo oo 70

Experimental and fitted correctness values for group-number GCAs on Ruspini2 . 81
Experimental and fitted time values for group-number GCAs on Ruspini2 82
Residual time plot for group-number GCAs on Ruspini2 82
Experimental and fitted correctness for group-number GCAs on Towns2 84
Experimental and fitted time for group-number GCAs on Towns2 87
Residual time plot for group-number GCAs on Towns2 87
Experimental and fitted correctness for group-number GCAs on Irs2 91
Experimental and fitted time for group-number GCAs on Iris2 92
Residual time plot for group-number GCAson Iris2 92
Experimental and fitted correctness for order-based GCAs on Ruspini2 96
Experimental and fitted time for order-based GCAs on Ruspini2 96
Residual time plot for order-based GCAs on Ruspini2 97
Experimental and fitted correctness for order-based GCAs on Towns2 98
Experimental and fitted time for order-based GCAs on Towns2 99
Residual time plot for order-based GCAs on Towns2 99

Chapter 1

Introduction

Clustering, or grouping, is an exploratory procedure that searches for “natural” structure within
a data set. This process involves sorting the data cases, or objects, into groups, or clusters, so that
objects in the same cluster are more like one another than they are like objects in other clusters.
Sorting occurs on the basis of similarities calculated from the data; no assumptions about the
structure of the data are made. Clustering is useful for data reduction (reducing a large amount
of data to a number of characterising sub-groups), developing classification schemes (also known
as taxonomies), and suggesting or supporting hypotheses about the structure of the data.
Clustering techniques have been used in a wide range of disciplines. In psychiatry, Pilowski,
Levine and Boulton [32] used clustering to develop a classification of depression. In market research,
Green, Frank, and Robinson [27] used a clustering algorithm to identify homogeneous sets of test
markets. In archaeology, Hodson [30] applied clustering to the problem of classifying British
Hand-axes. In pattern recognition, Levrat et al. [45] used fuzzy clustering to segment an image. In
engineering, Reich and Fenves [54] used a clustering algorithm to create a hierarchy of specifications
and associated designs for existing bridges, and in medicine, Funk et al. [21] used clustering as a

method of knowledge acquisition for expert system assisted diagnosis.

1.1 Background

This section contains a review of clustering, including a more formal definition of the clustering

problem and an introduction to traditional clustering techniques.

1.1.1 The Clustering Problem

We shall define the clustering problem as follows:

The set of n objects X = {X1,Xs,..., X} is to be clustered. Each X; € R’ is an
attribute vector consisting of p real measurements describing the object. The objects
are to be clustered into non-overlapping groups C' = {C1,Ca,...,C} (C is known as
a clustering), where k is the number of clusters, ¢, UCy U ...UC, = X, C; # 0, and
CiNC; =0 for i # j. The objects within each group should be more similar to each

CHAPTER 1. INTRODUCTION 2

other than to objects in any other group, and the value of £ may be unknown. If & is

known, the problem is referred to as the k-clustering problem.

1.1.2 Measures of Similarity

To cluster objects according to their similarity, one must define a measure of how close two objects
are, or how well their values compare. A small distance between the objects should indicate a high
similarity. Thus a distance measure can be used to quantify disstmilarity.

Several distance measures are employed for clustering [35, 15]. The most commonly used is the

Euclidean distance,

d(XZ»,Xj):\/(X — X)X, =) (e — x0)?13,

the straight line distance between the two points representing the objects. An alternate measure

is the “city-block” distance which sums the difference between all the attributes,

XzaX Z|le_x]l|

This measure is problematic if the attributes are correlated. Both of these distance measures are

special cases of the more general Minkowski distance,

p
XzaX g Til _x]l E~
=1

The Mahalanobis distance 1s a standardised form of the Euclidean distance

d(X;, X;) = \/(Xi = X;)VETHX - XG),

where Y is the correlation matrix. This measure scales the data in terms of standard deviations
and adjusts for inter-correlations between the variables. However, it is not as commonly used as

the Euclidean as prior knowledge of the clusters are required to compute X.

1.1.3 Traditional Clustering Algorithms

Clustering algorithms can be catergorised as either hierarchical or optimisation.

Hierarchical Techniques

Hierarchical clustering techniques proceed by either a series of successive mergers or a series of
successive divisions. The result i1s the construction of a tree-like structure or hierarchy of clusterings
which can be displayed as a diagram known as a dendogram (Figure 1). Agglomerative hierarchical
methods begin with the each observation in a separate cluster. These clusters are then merged,
according to their similarity (the most similar clusters are merged at each stage), until only one
cluster remains.

Divisive hierarchical methods work in the opposite way. An initial cluster containing all the
objects is divided into sub-groups (based on dissimilarity) until each object has its own group.

Agglomerative methods are more popular than divisive methods.

CHAPTER 1. INTRODUCTION 3

1 |

Distance

o- [) L[]
1 3 S 2 4

Objects

Figure 1: Dendogram for hierarchical clustering (from [35]).

For both methods, the number of clusters is needed to select a clustering from the hierarchy.

However the difference between the levels of the hierarchy may be an indication of the correct

number of clusters.

The following are the the steps in an agglomerative hierarchical clustering algorithm for

grouping n objects. Methods differ in how the distance between clusters is calculated.

1.

4.

5.

Begin with n clusters, each containing one object.

. Calculate the distance between each pair of clusters. These distances are usually stored in a

symmetric distance matrix, D, x, = {d;;}.

. Merge the two clusters with the minimum distance.

Update the distance matrix.

Repeat Steps 3 and 4 until a single cluster remains.

There are four important agglomerative clustering algorithms: single-linkage, complete-linkage,

average-linkage, and Ward’s minimum variance method. For single-linkage, or nearest neighbour

clustering [20], the distance between two clusters is the distance between the two nearest objects

in those clusters. Problems occur when the clusters are poorly delineated; this method can result

in long chains with dissimilar objects at the ends (Figure 2).

Figure 2: Chaining in single-linkage clustering (from [2]).

CHAPTER 1. INTRODUCTION 4

Complete-linkage or furthest neighbour clustering [59] joins the two clusters with the minimum
distance between their two furthest objects, thus eliminating the chaining problem experienced
with single-linkage clustering.

Average-linkage or group-average clustering [58] defines the distance between two clusters to be
the average distance from all objects in one cluster to all objects in the other cluster. This approach
tends to combine clusters with small variances, and the method is biased towards producing clusters
with approximately equal variance. In a variation of this method, called centroid clustering [44],
the distance between two clusters is defined as the distance between their centroids. This method
can produce messy and confusing results, since the centroids move as clusters are combined. Thus
the distance between two clusters may be less than the distance between the centroids of clusters

merged at an earlier stage (Figure 3).

(a) (b)

Figure 3: Reversal in centroid clustering: (a) dendogram showing reversal; (b) migration of
centroids — if clusters with centroids p and ¢ are merged, the centroid of the resulting cluster, ¢,
is closer to r than either p or ¢ (from [2]).

Unlike the above clustering methods, Ward’s minimum variance method [67] optimises an
objective statistic — the sum of the squared distances between each object and its cluster centre.
At each step the algorithm merges the clusters that will minimise the increase of this statistic.
This method tends to join clusters with small numbers of objects, and is biased towards producing
clusters of approximately the same size.

Further detail on these clustering methods can be found in [2, 65, 15].

Comparison studies show that the performance of hierarchical methods vary according to the
type of data — there is no one method that is best in all circumstances [53, 15]. However, Ward’s
minimum variance method and the average-linkage method cluster relatively accurately over a wide
range of data types.

Hierarchical clustering methods suffer from several disadvantages:
(1) they are restricted to smaller data sets due to the need to store similarity matrices;

(ii) there is no provision for reallocation of objects that have been incorrectly grouped at an early

stage; and

(iii) the results reflect the degree to which the data conforms to the structural forms embedded

in the algorithm.

CHAPTER 1. INTRODUCTION 5

Optimisation Techniques

Unlike hierarchical techniques, which produce a series of related clusterings, optimisation
techniques produce a single clustering which optimises a pre-defined criterion or objective function.
The number of clusters in this clustering, is either specified a priori or 1s determined as part of the
clustering method.

Optimisation methods start with an initial partition of objects into a specified number of
groups. Objects are then reassigned to clusters according to the objective function until some
terminating criterion is met. These methods differ with respect to the starting partitions, the
objective functions, the reassignment processes, and the terminating criteria.

Optimisation methods may use a random initial partition or one generated from seed points [2].
In the latter these seed points may be random, or may be selected using a method that attempts
to ensure that they span the data. There are several methods for building partitions from seed
points.

Objective functions which are commonly used as clustering criteria [15] include:
e Minimisation of trace (W)

e Minimisation of the determinant of (1)

e Maximisation of trace (BW 1)

where:
k n;

W= (X — X)Xy — X
i=1j=1
is the pooled within-cluster covariance matrix, and
B=> ni(X; - X)(X; - X)

i=1

is the between cluster covariance matrix. Here n; is the number of objects in cluster ¢, X;; is the
jth object of the ith cluster, X; = n% 27:’1 X; is the centroid of cluster 4, and X = %Zle X is
the grand mean.

The minimisation of trace (W) is equivalent to minimising the sum of square Euclidean
distances between individuals and their cluster centroids (Ward’s minimum variance method uses
this statistic to determine which clusters to merge at each step). This clustering criterion favours
spherical clusters, since the correlation between the attributes is not considered. The second
criterion 1s scale invariant, and is suitable for clusters which do not have a spherical distribution.
The third criterion, trace (BW~1!), is a generalisation of the Mahalanobis distance to more than
two groups. For a more detailed review of these and other criterion refer to [26, 15].

Two types of reassignment are generally employed. The first loops through all the objects,
reassigning each to the cluster whose centroid is the closest. The second searches a local
netghbourhood of clusterings for one which improves the objective function value. Although the
majority of optimisation methods require the number of clusters a prior:, some reassignment

processes have been designed to allow the number of clusters to evolve during clustering [2].

CHAPTER 1. INTRODUCTION 6

1. Start with an arbitrary partition into k initial clusters.

2. Take each object in sequence and move to the cluster which reduces the numerical criterion the
most. Transfer the object, compute new centroids.

3. Repeat Step 2 until a full cycle through the objects cannot reduce the criterion value.

Figure 4: The k-means algorithm.

Optimisation algorithms terminate when there are no reassignments that will reduce the
criterion value. This occurs when all objects are in the cluster whose centroid is closest to them,
or the current clustering is a local minima.

Two popular optimisation methods are k-means and hill-climbing. Algorithms for these
methods are given in Figures 4 and 5. Further discussion of optimisation methods can be found
in [2, 29, 53, 15]. A more recent approach to the problem, using simulated annealing, is introduced
in [41].

The k-means technique performs well in comparison to hill-climbing and hierarchical methods,
although it is sensitive to its initial partition [53]. The k-means method is also less affected by
outliers, the choice of distance measure, and the presence of irrelevant attributes or dimensions.

Unlike hierarchical clustering techniques, optimisation methods do not store similarity matrices.
Thus the size of the data is not limited by storage space. However, there are a number of

disadvantages affecting optimisation methods:

(i) some methods require the number of clusters a priori, and will divide the data into this

number of clusters regardless of the data structure;

(i) certain clustering criterion are biased toward particular cluster shapes, and will impose these

shapes on the data; and

(iii) the performance of optimisation techniques is highly dependent on the initial partition.

1. Start with an arbitrary partition into k initial clusters.

2. Search the local neighbourhood for the clustering which which reduces the numerical criterion
the most.

3. Repeat Step 2 until no clusterings in the neighbourhood reduce the clustering criterion.

Figure 5: The hill-climbing algorithm.

1.2 Motivation

The number of ways of sorting n objects into k groups is given by Liu [46]:

Nk = 3 Y1) (') (k= iy

CHAPTER 1. INTRODUCTION 7

For example, there are N(25,5) = 2,436,684,974,110,751 ways of sorting 25 objects into five
groups [2]. If the number of clusters is unknown the objects can be sorted Y, N(n, k) ways.
For our 25 objects this is over 4 x 10'® clusterings. Clearly, it is impractical for an algorithm to
exhaustively search the solution space to find the optimal solution.

Furthermore, traditional clustering algorithms search a relatively small subset of the solution
space (these subsets are defined by the number of clusters, the clustering criteria, and the clustering
method). Consequently, the probability of success of these methods is small. Algorithms such as
single-linkage are deterministic and will repeatedly find the same solution for a given data set,
whereas algorithms such as k-means conduct a local search starting from an initial partition. In
each case, the solution may be a local optimum, which 1s not necessarily the global solution. This
is exacerbated when the solution space is very large.

Clearly, we need an algorithm with the potential to search large solution spaces effectively.
Recently, genetic algorithms have been widely employed for optimisation problems in several
domains. Their success lies in their ability to span a large subset of the search space. The
application of genetic algorithms to clustering is the focus of this work. Below we introduce the

fundamentals of genetic algorithms.

1.3 Genetic Algorithms

A Genetic Algorithm (GA) is a computational abstraction of biological evolution that can be used
to solve some optimisation problems [31, 24]. In its simplest form, a GA is an iterative process
applying a series of genetic operators such as selection, crossover and mutation to a population
of elements (Figure 6). These elements, called chromosomes, or individuals represent possible
solutions to the problem; the initial chromosomes are selected randomly from the solution space.
Genetic operators combine the genetic information of the elements to form new generations of
the population; this process 1s known as reproduction. Each chromosome has an associated fitness
value which quantifies its value as a solution to the problem — a chromosome representing a better
solution will have a higher fitness value. The chromosomes compete to reproduce based on their

fitness values, thus the chromosomes representing better solutions have a higher chance of survival.

Randomly generate an
initial population P(0)

]

Calculate individual fitnesses f(i)
for current population P(t)

]

Select parents for reproduction
based on individual fitness f(i)

Until stopping
criterion satisfied i
Crossover
Mutation
P(t+1)

Figure 6: Outline of a simple GA.

CHAPTER 1. INTRODUCTION 8

Selection according to fitness combined with crossover gives the GA its evolutionary power.
The underlying assumption is that the recombination of short sequences of genetic material, or
building blocks, from fit parents will lead to children of higher fitness. This is known as the building
block hypothesis, and violation of this assumption may lead to poor performance [24].

GAs have been used to solve a variety of optimisation problems. Goldberg [24] reviews the
application of GAs to problems including natural gas pipeline control, structural optimisation,
and image registration. Michalewicz [48] discusses the application of evolutionary techniques to
problems such as job scheduling, path planning, and the travelling salesman problem.

To successfully apply a GA to solve a problem one needs to determine the following:

1. how to represent possible solutions, or the chromosomal encoding;

2. what to use as the fitness function which accurately represents the value of the solution;
3. which genetic operators to employ; and

4. the parameter values (population size, probability of applying operators, etc.) which are

suitable.

1.3.1 Representation

The representation should be complete, that is one should be able to encode all possible solutions
to the problem. Clearly, if the GA cannot represent the solution, it can never find it. A secondary
consideration is wvalidity, that is all possible encodings should correspond to points inside the
solution space. Invalid representations can be used, but it may be necessary to adapt the GA
to avoid invalid encodings. The representation may also have a number of different chromosomes
that represent the same solution, this is known as redundancy. Since a GA is a search over
its representation space, not the solution space, high redundancy may present problems for
convergence [36].

As a simple example of an encoding scheme let us consider a bank of six input switches. We
can create a code by using a string of six 1’s and 0’s where each switch is represented by a 1 if the
switch is on and a 0 if the switch is off (Figure 7). This representation is complete, valid and has

no redundancy.

ON ON ON ON ON ON

SESRSNSHSHS

OFF OFF OFF OFF OFF OFF 0@0
(a) (b)

Figure 7: Encoding scheme for six on-off switches: (a) the six switches; (b) a representation of the
given switch positions.

Goldberg [24] offers two basic principles for choosing a GA coding. First, the coding should
contain meaningful building blocks (related information should be contained within a short sub-

string). In our example the position of each switch is contained in a single bit which is the smallest

CHAPTER 1. INTRODUCTION 9

sub-string possible. Secondly, the alphabet should be the smallest that permits a natural expression
of the problem. The binary encoding we have selected is a natural representation for the switching
problem.

In accordance with the above principles; the majority of traditional GAs have used the binary
alphabet. Antonisse [3] argues that larger encoding alphabets are suitable for GAs, and empirical
studies [34, 48] show that GAs with floating point representations are faster and more precise than
binary encodings on continuous domains. Davis [13, 14] and Michalewicz [48] further emphasise
the need for an encoding scheme that gives a natural representation of the problem irrespective
of the alphabet size. For example, a permutation is perhaps the most natural representation of a

tour for the travelling salesman problem (Figure 8).

o 000000
(@) (b)

Figure 8: Encoding scheme for the travelling salesman problem: (a) a tour of six cities; (b) a
representation of the given tour.

1.3.2 Fitness Function

The fitness function quantifies the suitability of each chromosome as a solution and is used as a
basis for selecting chromosomes for reproduction. Chromosomes with high fitness have more chance
of being selected, and thus, passing their genetic material (recombined via crossover) to the next
generation. The fitness function provides the pressure for the GA to evolve its population toward
chromosomes of higher fitness, and clearly, the success of the GA for the problem is dependent on
the choice of the fitness function.

The chromosome representing the optimal solution should have the maximum fitness value for
the solution space; near optimal solutions should have high fitness values. Since GAs tend to
retain genetic material found in chromosomes of high fitness, appropriate choice of fitness function
will increase the probability of retaining genetic material associated with optimal or near optimal
solutions.

Consider the six switches from Figure 7. The switches belong to a black box optimisation
problem that has an associated payoff measure. A selection of payoff values are given in Table 1.
An appropriate fitness function to find the switch settings with the highest payoff would be the
payoff values themselves. However, if we wanted to find the switch settings that would give the
payoff closest to $20, we would use a fitness function based around the difference between the
payoff and $20 (for example, f = —|20 — Payof]).

CHAPTER 1. INTRODUCTION 10

Switch Payoff
1 2 3 4 5 6 $

OFF OFF OFF OFF OFF OFF 0.9
OFF ON OFF OFF ON ON 15.1
OFF ON ON ON ON OFF 1.7
ON OFF OFF OFF OFF OFF 21.0
ON ON OFF OFF OFF ON 394
ON ON ON ON ON ON 23.3

Table 1: Some payoff values for the black box optimisation problem with six switches.

A further issue when considering the fitness function is scaling. When the population fitness
values are diverse, the fitter individuals will have high selection probabilities compared to average
individuals. However, as the fitness values converge the fitter individuals will have similar
probabilities to the average individuals. Thus the probability of selecting the fitter individuals
(the driving force behind the GA’s evolution) can be significantly reduced.

Selection pressure can be maintained by scaling the fitness values. Linear scaling calculates
the scaled fitness f’ from the raw fitness f using a linear transformation, ' = af + b [24]. The
constants a and b are chosen so that the average scaled fitness i1s equal to the average raw fitness,
and the maximum scaled fitness equals the maximum raw fitness multiplied by the number of
expected copies desired for the best population member. Linear scaling may produce negative
scaling values, although Goldberg [24] provides an algorithm to avoid this. Power law scaling
calculates the scaled fitness as some specified power of the raw fitness, f’ = f¢ [24]. The value of

¢ 18 problem dependent.

1.3.3 Genetic Operators

There are four major operators used for GAs: initialisation, selection, crossover and mutation.

The Initialisation Operator

This operator 1s used to generate the initial population for the GA. The initial population should
contain chromosomes which are scattered throughout the solution space, thus providing the
GA with a variety of genetic material. The easiest way to achieve this is to randomly select
chromosomes from the representation space. For our switches example (Section 1.3.1) we could
generate a population of random binary strings of length six. Alternatively, a population of random

permutations of the integers 1 to 6 is appropriate for our travelling salesman representation.

The Selection Operator

Selection chooses individuals for reproduction based on their fitness values. Fitness proportional
selection or roulette wheel selection [24] chooses individuals with a probability proportional to their
relative fitness. This corresponds to a spinning wheel where each chromosome has been allocated
a section of the wheel according to its relative fitness value — the higher the fitness the larger the
allocated section. An alternate selection scheme is remainder stochastic sampling [9]. Here, the

number of expected occurrences of each individual in the next population are calculated. Parents

CHAPTER 1. INTRODUCTION 11

are selected according to the integer part of this number, and the chromosomes then compete
according the the fractional parts for the remaining places in the population. Stochastic universal
sampling [4] selects all the parents at the same time. This method is analogous to a single spinning
wheel with the number of (equally spaced) pointers representing the desired number of parents.
Tournament selection [9] is a process which selects parents according to their rank. The identity of
a parent is decided by randomly selecting a predetermined number of individuals, and then finding
the fittest individual within this set.

A simple GA will select a sufficient number of parents to reproduce and form the next
generation. However, steady state GAs will select a single pair of parents to reproduce and
then add the resulting offspring back into the population (perhaps deleting the parents to make
room for them) before selecting another pair to reproduce. FElite selection strategies [37] copy the
fittest individuals straight from one generation to the next to prevent them from being lost during

reproduction. Further discussion of these and other selection mechanisms can be found in [24, 48].

The Crossover Operator

Crossover combines the genetic material of one or more parents to produce one or more offspring.
Single-point crossover exchanges the tails of two parent strings. The size of the strings exchanged
is determined by a randomly generated crossover point (Figure 9a). Uniform crossover exchanges

each bit with a random probability (Figure 9b).

crossover

parents parents

8800

offspring offspring

(9 1E@A® @ELEEo
(a) (b)

Figure 9: Examples of single-point and uniform crossover: (a) single-point crossover exchanges the
tails of two parents; (b) uniform crossover randomly swaps bits between parents.

There are two main problems to consider when deciding which crossover operator to use.
Firstly, some crossover operators give invalid solutions when applied to certain representations.
For example, if we applied single-point or uniform crossover to the permutation representation we
used for the travelling salesman problem (Section 1.3.1), we may produce a tour which visits some
cities more than once, and skips one or more cities.

There are two ways to deal with this problem: (1) we can check each offspring after crossover
and try again if the offspring is invalid; or (2) we select (or modify/design) the crossover operator

so that it always produces valid offspring for that representation.

CHAPTER 1. INTRODUCTION 12

Numerous crossovers have been designed for permutation representations. Partially mapped
crossover or PMX [23] chooses a substring of one parent and then preserves the order and position
of as many values as possible from the other parent (Figure 10a). PMX starts by swapping a
randomly selected substring between the two parents. This substring defines a series of mappings
which are applied to produce the offspring.

Order-based crossover or OX [12] builds offspring by choosing a substring from one parent and
preserving the relative order of values from the other parent (Figure 10b). OX starts by copying
a (randomly selected) substring of the second parent into the first child. Then starting at the end

of the substring, the sequence of the remaining values in the first parent is copied into the child.

parents parents

. remaining
mappings values

4
3

A2DEEE) 158 354 (@@) 5624
@EE@EZ) 351 43 (@@) 6251

3
1
BOO8H00 @aEEe
offspring offspring

3
S080000 (Bals46)2)
(a) (b)

Figure 10: Crossover operators for permutation representations: (a) PMX preserves the order and
position of values in the parents; (b) OX preserves the order of values within the parents.

Michalewicz [48] describes suitable crossover operators for a variety of encoding schemes.

The second problem to consider when selecting a crossover operator is one of context
msensitivity. This occurs when a chromosome is similar to its parent chromosomes, but the
solution it represents is not similar to the solutions represented by the parent chromosomes —
the crossover operator is insensitive to the solutions that the parents represent. We shall discuss

this further in Chapter 2.

The Mutation Operator

The mutation operator introduces new genetic material into the population. For a binary string,
a simple mutation would change a 0 to a 1 (or a 1 to a 0) somewhere along the string. For a
permutation, we might swap two integer values. For real-valued chromosomes, a mutation operator
could replace values by using a Gaussian distribution with a mean equal to the current real value.

As with the crossover operator, it is possible to create invalid chromosomes by applying
some mutation operators to certain representations (for example, applying a binary mutation
to a permutation encoding), so we need to ensure that the mutation operator is suitable for the

representation.

CHAPTER 1. INTRODUCTION 13

1.3.4 Parameter Values

GA performance 1s sensitive to certain parameter values, in particular the population size,
frequency of operator application, and the termination criterion. Small populations may converge
quickly to sub-optimal solutions, while large populations waste computational resources. Low
crossover rates slow down the convergence because of the increased time required to explore the
existing genetic material. If the mutation rate is too high, the relationship between generations
may be too low, possibly decaying into random search. If the rate is too low, unseen and novel
traits will appear infrequently.

There are two common termination criteria. The first allows the GA a set number of generations
which may not be enough to produce a satisfactory solution. The second requires the convergence
of the population. If complete convergence is necessary for termination the GA will only stop when
all members of the population are the same chromosome. This may never occur. An alternative is
to stop the GA when one chromosome occupies a certain percentage of the population.

A number of studies have been conducted to determine appropriate parameter values.
De Jong [37] calculated parameter values from theory, using a suite of five functions to test the
values. Grefenstette [28] used a GA to evolve parameter values — a meta-GA with a population
of GAs with varying parameter values. Schaffer et al. [56] ran exhaustive tests for a wide range
of values. More recently, numerous theoretical studies model GAs as Markov chains in order to
determine the optimal parameter values [25, 52, 62] However, all of these studies consider only
binary encoding schemes, and only small problems are used in the empirical studies. An alternate

approach is to allow the operator probabilities to adapt during the GA’s evolution [13, 61].

1.3.5 Final Comments — GAs

GAs have gained popularity for solving optimisation problems. However, De Jong [38] emphasises
that GAs are not function optimisers, but can be adapted to work as such. Davis [13, 14] and
Michalewicz [48] go even further, stressing that a GA must be adapted to suit the problem — in
particular, the representation and operators need to be be designed carefully. In fact Davis [13]

states:

...a great many real-world optimization problems appear ripe for solution by genetic
algorithms, yet the binary representation appears ineffective or inefficient for them.
Further, operators other than binary crossover and binary mutation appear to
contribute to good performance in those domains. ...[A further problem] then, is that
of parameterizing a genetic algorithm that differs from the type studied so thoroughly
by researchers in the field.

1.4 Overview

This thesis is an investigation of using genetic algorithms to cluster. In particular, we:
(i) determine the adaptions necessary to enable the GA to cluster successfully;

(i) find suitable parameter values for k-clustering (these may vary for different data sets);

CHAPTER 1. INTRODUCTION 14

(iii) compare the performance of genetic clustering with traditional k-clustering algorithms; and
(iv) explore the potential of GAs for the general clustering problem.

The layout of this thesis is as follows: Chapter 2 discusses the process of adapting GAs for
the clustering problem when the number of clusters is known, Chapter 3 contains a comparison
of genetic clustering with other clustering methods, and Chapter 4 examines the issue of genetic

clustering when the number of clusters is unknown. A final discussion is presented in Chapter 5.

Chapter 2

Adapting GAs for k-Clustering

A number of authors have applied GAs to the problem of k-clustering, where the required number
of clusters is known [43, 1, 8 6]. Various adaptions are used to enable the GAs to cluster and to
enhance their performance, but there is little or no comparison between the different adaptions.
Further, the clustering GAs or genetic clustering algorithms (GCAs) are tested on small data sets,
or heuristics are added to enable the GAs to cope with a larger number of objects. It is not clear
which adaptions are best suited to the clustering problem, or how any adaptions will affect GA
performance for differing data sets.

In this chapter we shall compare a number of adaptions appropriate for the k-clustering problem,
including some used for more general grouping problems. The aim is to determine which adaptions
will enable GAs to find the correct clusterings in the fastest time. We shall also ascertain whether

these adaptions should vary with the data set.

2.1 Background

Adaptions for the k-clustering problem fall into the following areas: representation, fitness function,

operators, and parameter values.

2.1.1 Representation

Genetic representations for clustering or grouping problems are based on two underlying schemes.
The first allocates each object one (or more) integers or bits, known as genes, and uses the value
of these genes to signify which cluster the object belongs to. The second scheme represents the
objects with gene values, and the position of these genes signifies how the objects are divided
amongst the clusters. Representations using these schemes differ in how the genes are assigned
and how the gene values are interpreted.

Figure 11 contains encodings of the clustering {{X;, X35, Xs}, {X2, X4, X5}} for a number of
representations that we will discuss in detail shortly. The two clusters are denoted as 1 and 2
respectively, and the six objects are denoted by the numbers 1 to 6.

Group-number encoding [36] is based on the first encoding scheme and represents a clustering

of n objects as a string of n integers where the ¢th integer signifies the group number of the ith

15

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 16

208006
000860N0000800RAN000N080800
(a) (b) () (d) ()

Figure 11: Chromosomes representing the clustering {{X1, X3, X6}, {X2, X4, X5}} for various
encoding schemes: (a) group-number; (b) matrix; (c¢) permutation with the separator character 7;
(d) greedy permutation!; (e) order-based!. ! assuming the correct clustering is the local minimum
for this chromosome.

object. When there are only two clusters this can be reduced to a binary encoding scheme by using
0 and 1 as the group identifiers [43].

Bezdek et al. [6] use an n x k matrix to represent a clustering, with each row corresponding to a
cluster and each column associated with an object. A 1 1in row ¢, column j means that object j is in
group ¢. Each column contains exactly one 1, whereas a row can have many 1’s. All other elements
are 0’s. This representation can be adapted for overlapping clusters or fuzzy clustering [5].

Encoding schemes that signify objects by gene values use permutations of the object numbers to
represent clusterings. Permutation with separators encoding [36] uses the integers n+1 ton+k—1
(or other appropriate separators) to indicate where the cluster boundaries are in the permutation.

There are also permutation representations that need a local search to determine which
clustering they correspond to — these are known as greedy representations. Greedy permutation
encoding [36] uses the first k objects in the permutation to seed k clusters. The remaining objects
are then, in the order they appear in the permutation, added to the cluster which yields the best
objective function value (typically the cluster with the closest centroid).

Bhuyan, Raghavan, and Elayavalli [§] also use a greedy encoding scheme. Here a permutation
represents all possible clusterings with the correct number of clusters and the objects in that order.
An algorithm by Fisher [19, 29] is used to find which of these clusterings gives the best objective
function value (Figure 12). This algorithm will find the optimal k-clustering for the permutation,
but the clustering is not necessarily unique. This is called order-based encoding.

As we saw in Chapter 1, when selecting a genetic representation we need to consider:
completeness, validity, and redundancy. An incomplete representation cannot encode all possible
solutions as chromosomes, and any GA using such a representation will be searching a proper
subset of the solution space. All of the above representations are complete except for the two
greedy encoding schemes. Both of these decode clusterings using local search, so only clusterings
that are local minima (or maxima) are represented. This can be a problem if the optimal clustering
is not a minima (or maxima) of the local search.

For the k-clustering problem, any chromosome that does not represent a clustering with %
groups is necessarily invalid: a group number chromosome that does not include all group numbers
as gene values is invalid; a matrix encoding with a row of 0’s is invalid; a permutation with
separators chromosome with adjacent separators, or a separator as the first or last gene, is invalid.
A matrix encoding 1s also invalid if there is more than one 1 in any column. Chromosomes with
group values that do not correspond to a group or object, and permutations with repeated or

missing object identifiers are invalid.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 17

1. Compute the diameter D(I, J) for the cluster (I, 7+1,...,J), forall I, Jsuch that 1 < T < J <
M. D(I,J)={I <L<J}X(L)-X]?and X = {7 < L < J}AEL

2. Compute the errors of the optimal partitions, 2 < T < M, by ¢[P(I,2)] = min[D(1,J — 1) +
D(J,1)] over the range 2 < J < I.

3. Foreach L(3 < L < K) compute the errors of the optimal partitions e[P (I, L)](L < I < M) by
e[P(I,L)] = min{e[P(J =1, L —)]+ D(J,I)}
over the range L < J < [.

4. The optimal partition P(M, K) is discovered from the table of errors e[P(I, L)](1 < L < K,1 <
I < M) by first finding J so that

e[P(M, K)] = min{e[P(J — 1, K — 1)] + D(J, M)}.

The last cluster is then (J, J+1,..., M). Now find J* so that e[P(J —1,K)] =¢[P(J—1,K —
)]+ D(J*,J —1). The second-to-last cluster of P(M, K)is (J*,J*+1,...,J — 1), and so on.

Figure 12: Fisher’s Algorithm for finding the optimal k-clustering for a permutation (from [29]).

All of the above encoding schemes have some level of redundancy (more than one chromosome
represents a clustering). We can swap the group numbers (or rows) k! ways, and the redundancy
of permutation encoding grows exponentially with the number of objects [17].

A final consideration when selecting a representation is the complexity of the local search for
the greedy representations. The local search for greedy permutation is O(nk), while the order of

Fisher’s algorithm for order-based encoding is O(n?k).

2.1.2 Fitness Function

Objective functions used for traditional clustering algorithms (see Section 1.1.3) can act as fitness
functions for GCAs. However, if the optimal clustering corresponds to the minimal objective
function value, we will need to transform the objective function value since GAs work to maximise
their fitness values. In addition, fitness values in a GA need to be positive if we are using fitness
proportional selection.

Krovi [43] uses the ratio of the between sum of squares and within sum of squares as his fitness
function. Since the aim i1s to maximise this value, no transformation is necessary. Bhuyan et
al. [8] and Bhuyan [7] use the sum of squared Euclidean distance of each object from the centroid
of its cluster. This value is then transformed (f' = Cpap — f, where f is the raw fitness, f’ is
the scaled fitness, and C 4, 18 the value of the poorest string in the population — this 1s known
as a local transformation) and linearly scaled (see Section 1.3.2) to get the fitness value. Alippi
and Cucchiara [1] also use the same criterion, but use a GA that has been adapted to minimise
fitness values. Bezdek et al.’s [6] clustering criterion is also based around minimising the sum
of squared distances of objects from their cluster centres, but they use three different distance
metrics (Euclidean, diagonal, and Mahalonobis) to allow for different cluster shapes. Bezdek et

al. have adapted their selection operator to avoid the need to transform the criterion values (see

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 18

Section 2.1.3).

2.1.3 Genetic Operators

The operators pass genetic information between subsequent generations of the population. As a
result, operators need to be matched with or designed for the representation, so that the offspring
are valid and inherit characteristics from their parents. Operators used for genetic clustering
or grouping include some of the selection, crossover and mutation methods we looked at in the

previous chapter, some adaptions of these, and some totally novel operators.

Initialisation

The initial population of a GCA should provide a wide variety of genetic material, necessary for a
thorough search of the problem space. Care also needs to be taken to ensure that the population
contains only valid chromosomes unless the GCA can handle invalid ones. Randomly generating
the initial population is one method of selecting a spread of genetic material. Heuristic initialisation
operators can be used to select fit chromosomes in an effort to reduce the time required for the

GCA to converge on a solution.

¢ Group-number
An initial group-number population can be created from chromosomes with each object’s
group number a random number between 1 and k inclusive (Krovi [43] uses 0 or 1).
This method may produce invalid chromosomes (with less than & groups) so Jones and

Beltramo [36] check to see that all groups are included. If not, the chromosome is rejected.

e Matrix
Bezdek, et al. [6] use a partially random initialisation process. k cluster centres are produced
by selecting feature values from random objects (the jth attribute of the ith centre is the
Jth attribute of a randomly selected object). A matrix chromosome is then created from the
cluster centres — the exact method is not explained in detail. Alippi and Cucchiara [1] do

not elaborate on their initialisation process.

e Permutation with separators
Jones and Beltramo [36] use a three step process to produce valid chromosomes for this

representation:
1. Generate a string of random group numbers and divide the objects into groups
accordingly. Reject the chromosome if there is an empty group.
2. Randomly permute the order of the objects in each group.
3. Create the chromosome by listing the objects in their permuted order and adding the

separators (in random order).

e Greedy permutation
Jones and Beltramo [36] use random permutations as the initial population for this

representation.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 19

e Order-based
Bhuyan et al. [8] compare three different initial population constructors, namely A, B, and
C. The first constructor, A, randomly places the objects into a random list. The second,
constructor B, chooses an initial object randomly, and then selects (from the remaining
objects) the object that is closest to the last selected object. This is repeated until all the
objects have been selected. The complexity of this constructor is O(n?). Constructor C is
the same as constructor B except that instead of searching all remaining objects to find the
closest one, only ¢ (a constant defined by the user) are searched. Bhuyan [7] uses the same

constructor C.

Selection

Chromosomes are selected for reproduction based on their relative fitness. Thus the representation
is not a factor when choosing an appropriate selection operator, but the fitness function is. If all
fitness values are positive, and the maximum fitness value corresponds to the optimal clustering,
then fitness proportional selection may be appropriate. Otherwise, a ranking selection method
may be used. In addition, elite selection will ensure that the fittest chromosomes are passed from
one generation to the next.

Krovi [43] uses the fitness proportional selection provided in Goldberg’s book [24]. The selection
operator used by both Bhuyan et al. [8] and Bhuyan [7] is an elite version of fitness proportional
selection. A new population is formed by picking the z (a parameter provided by the user) best
strings from the combination of the old population and the offspring. The remaining chromosomes
in the new population are selected from the offspring.

Jones and Beltramo [36] and Bezdek et al. [6] use ranking selection methods. Jones and
Beltramo use a steady-state GCA where only two parents are selected for reproduction during
each iteration. The selection probability depends linearly on rank — the best population member
is selected with probability b/ P and the worst member with probability (2 —)/ P. Here b is the
bias and P is the population size. The parents are crossed to form a single child which is inserted
into the population and the worst population member is deleted so the population size remains
constant.

The selection operator used by Bezdek et al. works as follows. First, the population is sorted
by fitness value and a set of R chromosomes with the lowest values are chosen to reproduce. The
reproduction pairs are randomly chosen from this set. After reproduction the R child matrices
are added to the population and those with the greatest fitness values are dropped. Bezdek et al.
actually state that P — R matrices are dropped but this would mean that the population size would
change unless R is half the value of P (which it is in all their examples). If instead R matrices are
dropped the population size will remain constant for all values of P and R. Since Bezdek et al.
use a ranking selection method, the fitness function values do not need to be transformed. Hence
the lower fitness values correspond to better solutions in this case, which is why the chromosomes
with low fitness values are selected for reproduction.

Alippi and Cucchiara [1] do not report their selection method.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 20

Crossover

The crossover operator is designed to transfer genetic material from one generation to the next.
The major concerns with this operator are validity and context insensitivity. It may be necessary to
check that offspring produced by a certain operator are valid, and reject any invalid chromosomes.

Context insensitivity occurs when the crossover operator used in a redundant representation
acts on the chromosomal level instead of the clustering level. In this case the child chromosome
may resemble the parent chromosomes, but the child clustering does not resemble the parent

clusterings — the operator is insensitive to the context of the chromosomes. Figure 13 shows

crossover
point

parents

LEE®

offspring
222000

Figure 13: Context insensitivity of single-point crossover.

that single-point crossover is context insensitive for the group-number representation. Here both
parents represent the same clustering, {{X1, X», X3}, {X4, X5, Xs}} although the group numbers
are different. Given that the parents represent the same solution, we would expect the children to
also represent this solution. Instead both children are the clustering {{X1, Xo, X3, X4, X5, Xs}}
which does not resemble either parents (it is also invalid, but that is a separate issue).
Falkenauer [18] demonstrates the context insensitivity of the PMX operator for permutation

encodings of grouping problems.

¢ Group-number
Single-point and uniform crossover can be used for group-number chromosomes. However

both operators may produce invalid chromosomes and are context insensitive.
Krovi [43] uses single-point crossover as implemented by Goldberg [24].

Jones and Beltramo [36] compare three types of cross-over for the group-number
representation: single-point, uniform, and edge-based. They use two versions of the former
operators: one with rejection, and one with rejection and renumbering. Rejection is
introduced to counter the problem of validity — a child is only accepted if it is valid.
Renumbering is an attempt to cope with context insensitivity — the parents are canonically
renumbered before crossover. For example the first parent in Figure 13 would be renumbered

to match the second.

For single-point crossover all possible children are generated and then one valid child is
selected from these. Uniform crossover is repeated until the child has k& groups or a limit
on the number of attempted crosses is reached (if this occurs the child is set to one of the

parents at random).

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 21

The edge-based crossover operator constructs a child chromosome by combining the edges of
the parent chromosomes (two objects are considered to be connected by an edge if they are

in the same group). This proceeds as follows:

1. Initialise the child to the set of non-empty intersections of the clusters of the two parents.

Let L denote the number of non-empty intersections.
2. f L = K, stop. Otherwise go to step 3.

3. Select the pair of groups with the minimum number of non-inherited edges (between-group
edges not present in either parent), breaking ties at random. Join this pair of groups, set

L =1L -1, and go to step 2.

Since edge-based crossover manipulates the parent clusterings rather than their chromosomes,
this operator is context sensitive for all representations. Further, if both parents are valid,
edge-based crossover will always produce a valid child. However, this crossover has O(k*)

complexity.

For example, consider the following parent chromosomes:

These parents encode the clusterings:

HX X5, Xa, X5}, { X, Xe}}
U X, Xa, Xo}, { X0, X1,

and the non-empty intersections of these clusterings are:

HAHAXGHA{ X { X6} {Xa, X6}

We initialise the child to the set of intersections and then merge clusters until the correct

number of clusters 1s reached.

One possible child is:
which inherits { X3, X4} from parent 1, {X;, X5} from parent 2, and { X5, X} from both par-

ents.

Von Laszewski [66] and Mihlenbein [50] also describe crossover operators (for the graph
partitioning problem) that work with partitionings rather than chromosomes. Both copy a
random group from one parent to the other and then rearrange the result to form a valid
partitioning (Von Laszewski and Mihlenbein have the constraint of equal group sizes). In
order to deal with the problem of context insensitivity, Miihlenbein [50] rearranges the group
numbers in the second parent so that the group number of the partition being copied is the

same as the most similar partition in the second parent.

e Matrix

Alippi and Cucchiara [1] use a single-point asexual crossover to avoid the problem of

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 22

Crossover point = 3

e

00 00O01O00 00010011

01101000 01101000

10010011 10000100
Parent Offspring

Figure 14: Alippi and Cucchiara’s asexual crossover (adapted from [1]).

redundancy (Figure 14). The tails of two rows of the matrix are swapped, starting from
a randomly selected crossover point. Clusterings with less than & groups may be produced

by this operator.

Bezdek et al. [6] use a sexual 2-point crossover (Figure 15). A crossover point and a distance
(the number of columns to be swapped) are randomly selected — these determine which
columns are swapped between the parents. This operator is context insensitive, and may

produce children with less than & groups.

Parent 1 Parent 2
1010010 0010100
0100100 1 00000O01
OOOlﬁooﬁl 0101010

Crossover point

with distance of 2

Child 1 Child 2
1010100 0010010
01 0000O00O0 1000101
0001011 0101000

Figure 15: Bezdek et al.’s 2-point matrix crossover (adapted from [6]).

e Permutation with separators
Jones and Beltramo [36] use two crossovers for permutation encodings, PMX and OX (see
Section 1.3.3). In both cases parents are repeatedly crossed until the child decodes into a

clustering with & groups.

e Greedy permutation
Jones and Beltramo [36] also use PMX and OX crossover for the greedy permutation

representation.

e Order-based
Bhuyan et al. [8] describe two operators for their order-based representation. Operator 1
(Figure 16a) randomly selects a dominating parent; the remaining parent becomes the
supporting parent. Next an object and a distance or window size are selected at random.
These define the substring which is copied from the supporting parent to the child — the
substring is the selected object plus any other objects within the window size (either side of
the selected object). The substring is copied into the child so that the selected object is in

the same position as in the dominating parent, and the order of the objects in the dominating

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 23

Selected object =2

Dominating parent EE
Select from
3

Supporting parent [6[5|1[2]4[7[8 3] parent2 [6]5]1]2]4]7]8]3] >°}
\—]—1 Window size = 2

Parent1 [5[3[8]1[2]7]6]4]

Order from dominating parent [6] [T T T]] Selectfrom
{5,1,2,7,4} {7,4,5}
Remaining objects ezl T 1T 111 Select from

(from dominating parent) | | [5]1[2]7]4]] ' {2,4,8}
{3,8,6} :

child [3]8]5[1][2]7]4]6] child [6]7]2]4[8]1]5]3]

(a) Operator 11 (b) Operator 2

Figure 16: Bhuyan et al.’s crossover operators (adapted from [8]). *placement order differs slightly
from that shown.

parent 1s maintained. The remaining objects are placed into the child in the same order they

appear in the dominating parent.

Operator 2 (Figure 16b) starts by selecting the object in the first position of one of the
parents, and placing this in the first position of the child. We then select an object from all
the objects that are next to this object in either parent. The selected object becomes the
second object in the child. This process continues until all of the objects are represented in

the child.
A third operator 1s mentioned in the results section but is never described.

Bhuyan’s [7] crossover operator is similar to Operator 1 above, in that a substring from a
supporting parent is copied to the dominating parent (Figure 17). However, in this case we

copy complete clusters (one or more) rather than random substrings. First, the “borrowed”

Disturbed

clusters
Dominating parent

\ ' s~

supporting parent (6 5 1)~ (2| (4.7) /

NN A " Undisturbed

cluster

Constructed by algorithms
Borrowed Greedy or Branch & Bound

cluster

! -
I N -
I N -
N -
I N -

v v A’(//\A\Q/
Child

Figure 17: Bhuyan’s crossover (adapted from [7]).

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 24

clusters are added to the dominating parent. Then we rearrange the remaining clusters in the
dominating parent to make it a valid clustering. This is done by removing any clusters that
contain objects also in the borrowed clusters, and using a local search to add any missing
objects to the clustering. This is essentially the same operator Von Laszewski [66] used for

group-number encoding.

Mutation

Mutation introduces new genetic material into the population. In a clustering context this
corresponds to moving an object from one cluster to another. How this is done is dependent

on the representation.

¢ Group-number
Krovi [43] uses the mutation function implemented by Goldberg [24]. Here each bit of the
chromosome is inverted with a probability equal to the mutation rate, P,:. Jones and
Beltramo [36] change each group number (provided it is not the only object left in that
group) with probability, Ppy: = % where n is the number of objects .

e Matrix
Alippi and Cucchiara [1] use a column mutation. An element is selected from the matrix at
random and set to 1. All other elements in the column are set to 0. If the selected element

is already 1 this operator has no effect.

Bezdek et al. [6] also use a column matrix, but they choose an element that is currently 0

and set it to 1 (Figure 18). The element that is 1 is set to 0.

Column before Column after
mutation mutation
0 0
1 0
0 1

Figure 18: Bezdek et al.’s mutation (adapted from [6]).

e Permutation with separators
Jones and Beltramo [36] randomly select two objects and swap them. To ensure that the

resulting chromosome is valid, group separators cannot be swapped.

e Greedy permutation

Two objects are randomly selected and swapped [36].

e Order-based
The mutation operator used by Bhuyan, et al. [8] is the same as that used for the greedy
permutation representation. Bhuyan [7] compares two mutation operators. The first moves
a randomly selected object to a randomly selected cluster; the second moves the object only

if the move results in a decrease in the objective function value.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 25

Other Operators

e Order-based
Bhuyan et al. [8] apply a local-tuning operator after a specified number of generations. Each
object 1s considered in turn, and moved to the first cluster that reduces the value of the

objective function.

2.1.4 Parameter Values

The parameter values used for the genetic clustering implementations vary considerably, and there
is little or no documented justification for the selection of these values. Some parameters values are
even omitted. Population sizes range from 40 [8, 7] to 1000 [36]; the number of generations varies
from 40 [8] to 200 [6] or to complete convergence; crossover probabilities are high (0.70, 1.0); and
mutation rates are low (0.1, 0.3) — although these values are high compared to typical mutation

rates for genetic algorithms.

2.2 Methodology

In order to determine the best adaptions for the clustering problem, and the relationship between
the data and these adaptions, we compared the performance of a range of adaptions over a number

of data sets. This was achieved as follows:

1. We selected three data sets with differing numbers of objects and clusters. For each of these
we generated a similar data set (same number of objects, attributes, and clusters; similar

cluster shape and proximity).

2. Exhaustive tests with different combinations of adaptions were performed on the generated

data sets.

3. Using the test results from Step 2, suitable adaptions were selected for each of the generated
data sets. We then compared the performance of these adaptions on the original and

generated data.

2.2.1 Data Sets

The selected data sets were Ruspini [65, 39], German Towns [60] and Iris [51] (Figure 19); the
properties of these data sets are listed in Table 2. The Ruspini data represents a relatively small
number of objects clustered into a moderate number of well separated clusters. The German
Towns data has a small number of objects, but there is no “correct” clustering for this data set.
The data can be “successfully” divided into differing numbers of clusters (although five, seven, or
nine clusters appear to best suit the data [60]). For this experiment we chose the correct number
of clusters to be seven. The Iris data set contains a larger number of objects which are divided
amongst three hyperspherical clusters. Two of these clusters overlap slightly.

The new data sets were generated with the same number of objects, attributes, and clusters as

the original data sets. Further, the shape and proximity of the clusters were based on those found

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 26

winsTeR

T5ikes S

160
‘IEI? 9 gsn 049
USSEW. MAGEN
B & 8
o e, s
369,
1201
]
oems 39
1 00 C hi:] I.Itlglﬂll L)

- = 3% sz mrrev 35
1 2 53

» il s m 46 gy Sridama 50
| e 2%

32 msaatx

6 0_ If:?s"l

] STUTIGART s.]
HGRSTANY

1 D

20

0 T 1 1 T ' i U T T T

(b) German Towns (adapted from [60])

(a) Ruspini (from [39])

X
X X
X X
X Kool X
K X X x
Petal Widghymmf X
X Xy

Petal Length (cm)

(c) Iris

Figure 19: Two dimensional plots of the selected data sets.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 27

Number of Number of Number of
objects attributes clusters
Ruspini 75 2 4
German Towns 59 2 7
Iris 150 4 3

Table 2: Properties of the experimental data sets.

in the original sets. However, the range of attribute values, the number of objects in the individual

clusters, and the relative positioning of the clusters was purposely altered for the generated data

sets. Finally, the shape and positioning of the clusters was adjusted so that the correct clustering

corresponded to the maximum value of the objective function (or that the clusters were clearly

separable).

2.2.2 Objective Function

The objective function for the experiment was trace (W) or the sum of the squared distances

between objects and their cluster centres (see section 1.1.3). This was minimised over the solution

space.

The attribute values were standardised to minimise the difference in objective function values

for different data sets.

2.2.3 Adaptions
The following adaptions were compared:

¢ Representation

Both the group-number and order-based representations were implemented. The poor
performance of the GCAs with order-based representation meant that these trials took
longer to complete, and due to time constraints the range of adaptions compared for this

representation was reduced.

Fitness Function

Four different scaling mechanisms were used for the group-number representation: local
transformation, adjusted transformation, linear scaling with Cpryie = 2.0, and linear scaling
with Cyryie = 4.0, Adjusted and linear scaling were also compared for the order-based

representation.

Selection
Fitness proportional selection was compared with three different elite levels: the top 0, 1, or
5% of population size individuals were copied straight from one generation to the next. Elite

levels of 0 and 5% were used with order-based encoding.

Crossover
For the group-number representation, single-point, uniform, and edge-based crossover were
compared. For order-based encoding the PMX crossover operator was compared with two

new operators. The first, borrow, is similar to the operator described by both Bhuyan [7] and

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 28

Von Laszewski [66], but the operator has been designed to avoid the need for local search. A
single cluster (randomly selected) is copied from the first parent and placed into the child.

The remaining objects are added to the child in the order they occur in the second parent.

The second operator 1s an edge-based operator for order-based encodings. This operator
works exactly the same as for the group-number representation, but the objects are placed

in the child in the same order they occur in the first parent.

e Mutation

The mutation implemented for the group-number representation randomly changes a group-

%. Two types of mutation were compared for order-based

Pt
n

number with probability

encoding. The first, uniform, moves an object with probability to a uniformly
distributed point along the length of the chromosome. The second, gaussian, moves the

object according to a Gaussian distribution with a mean of 0 and a standard deviation of 7.

o Parameters
The following parameters were compared for the group-number representation: population
size € {50,100,200,400}; crossover probability € {0.50,0.70,0.90}; and mutation rate
€ {0.01,0.05,0.10,0.20,0.50,0.70,0.90}. For order-based these were reduced to: population
size € {50,100,200}; crossover probability € {0.50,0.70,0.90}; and mutation rate €
{0.10,0.20,0.70,0.90}.

All of the GCAs used random initialisation, and replaced the entire population during the
reproduction phase (except in the case of elite selection). There were no checks to ensure that all
chromosomes contained & groups.

Since the operators are dependent on the representation type, the experimental tests were
divided into two groups according to the representation type. Each group involved five replications
(using different random seeds) of each possible combination of relevant adaptions. There were 3024
combinations of adaptions for the group-number representation and 1296 combinations for order-
based encoding. These combinations were tested on each of the three data sets, giving a total of
six result sets according to the representation and the data.

Each run of the GCA continued until the correct clustering was found or the execution time
exceeded five CPU minutes which was considered a reasonable amount of time to find a solution.
The number of correct runs (maximum of five) and the average time to find the solution (calculated

from those runs that found the solution) were recorded for each combination.

2.2.4 Testing Conditions

All of the tests were conducted on one of two Sparc Ultras (all runs for a particular
representation/data combination were conducted on the same machine). The load average on

both machines during testing was approximately 1.0.

2.2.5 Statistical Analysis

Each of the six representation type/data set results were analysed separately. Independent

generalised linear models were fitted to the correctness and time results. These were used to

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 29

determine the factors influencing correctness and speed, and also to predict which adaptions would
give the highest probability of a correct clustering in the fastest time. All statistical analysis was
completed using S-Plus version 3.4 release 1 for Silicon Graphics Iris, IRIX 5.3: 1996.

Generalised linear models were fitted to both the correctness and time data. The probability
of finding the correct clustering was assumed to follow the logit model

o exp(z'a)
1+ exp(z'a)’

with the design vector 2z =(1, PS, Tr, El, Cr, CP, Mu, MR, PS:Tr, PS:El, ...). The symbols
in the design vector represent population size, fitness transformation, elite constant, crossover
type, crossover probability, mutation type, and mutation rate. Terms such as PS:Tr represent the
interaction between these two factors, namely the population size and the fitness transformation.

The time to find the solution was assumed to follow the Poisson model (with 2’ as above)

p = exp(z'B).

Each model was assumed to be hierarchical, that is higher-order terms were only included if
lower-order related terms were also included. The final models were the best possible models with
no higher than third-order terms. All of the variables (including those continuous) were treated as
factors as the purpose of the analysis was to find the best of the selected factors levels. Analysis of
deviance was used to judge the significance of terms, with insignificant terms being dropped from
the models. Information on generalised linear models can be found in [64, 47, 16].

The mean time to solution on the real and generated data sets was compared with the predicted
values using two-sided z tests (or ¢ tests when there were less than 30 correct runs). Each test

used the null hypothesis that the actual mean time was equal to the predicted time.

2.3 Results

2.3.1 Generated Data

Figure 20 contains the three generated data sets: Ruspini2, Towns2, and Iris2.

2.3.2 Adaptions

Table 3 contains the correctness results for the group-number GCAs. The majority of the GCAs
found the correct clustering for both Ruspini2 and Iris2 in all five runs (79.1% and 73.2 %
respectively). However, only 4% found the solution for the Towns2 data in all five runs. 97.8% of
the group-number GCAs found the correct clustering for Ruspini2 four or five times — with all
GCAs finding the solution in at least two runs for this data set. A considerable proportion of the
GCAs did not find the solution in any run for both Towns2 (10.8%) and Tris2 (15.1%).

The correctness results for the order-based trials are presented in Table 4. For each data set,
a large proportion of the trials did not find the correct clustering in any run. In fact, for the Iris2
data set, the GCAs were unable to find the solution in any run of any trial. However, a reasonable

proportion of the GCAs found the correct clustering in all five runs for both Ruspini2 and Towns2.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING

30

= Se oS
o
. B o - ®
* »‘xxx [ﬁm—]%]@ (¢]
X XX o g @)
X o -
o [
o
@ ° + @ []
o ~ +4?+ O [|
g g s + .
s o ® +
+
oq °
® . .‘0.0 . +++++ B A * XX
o o ++H£ﬁ i X
L] L] &(
+ X
T T T T 1 T T T T T
5 10 15 20 25 20 40 60 80 100 120
Var 1 Var 1
(a) Ruspini2 (b) Towns2

Var 3

(c) Iris2

Figure 20: Two dimensional plots of the generated data sets.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 31

No. of Correct Runs
0 1 2 3 4 5
Ruspini2 No. of Trials 0 0 4 64 564 2392
% of Trials 0.0 0.0 0.1 2.1 187 79.1

Towns2 No. of Trials 327 549 849 783 394 122
% of Trials 10.8 182 281 259 13.0 4.0

Iris2 No. of Trials 456 70 61 64 157 2216
% of Trials 15.1 2.3 2.0 2.1 52 732

Table 3: Correctness of group-number GCAs.

No. of Correct Runs
0 1 2 3 4 5
Ruspini2 No. of Trials 547 63 47 78 104 457
% of Trials 422 49 36 6.0 80 353

Towns2 No. of Trials 578 56 40 48 66 508
% of Trials 446 43 3.1 3.7 51 392

Iris2 No. of Trials 1296 0 0 0 0 0
% of Trials 1000 0.0 0.0 0.0 0.0 0.0

Table 4: Correctness of order-based GCAs.

Table b contains the time results for the group-number GCAs. The GCAs were able to find
solutions to the Ruspini2 data set in the shortest time, with 95.3% of the trials finding at least one
solution in under 120 seconds. The mean time to solution for Iris2 was higher than that for the
other two data sets, and the mean time for the Towns2 data set was higher than that for Ruspini2.

The time results for the order-based GCAs can be found in Table 6. The results for the Iris2
data set were not included as no solutions were found. Notice that the recorded times for the
Towns2 data set are less than those of Ruspini2. In both cases, the times are greater than those
of the corresponding group-number trials.

We now present the results for each of the representation/data set combinations in greater
detail. Tables 7 to 10 contain the correctness distributions for the various adaptions, and Figures 21
to 25 provide the corresponding boxplots of the time data. Tables 12 and 13 contain the final models
for these results. Further detail on the models can be found in Appendix A. There are no models

for the order-based GCAs on Iris2 since no solutions were found.

Time to solution' Percentage of trials?
Minimum Mean Median < 20 sec < 60sec < 120 sec < 300 sec
Ruspini2 1.98 41.3 27.1 40.1 76.1 95.3 100.0
Towns?2 2.50 77.8 58.3 16.6 45.2 69.6 89.2
Iris2 6.41 115.0 89.5 5.2 29.5 51.4 85.0

Table 5: Time to solution for group-number GCAs. !seconds CPU. %that found one or more
solution(s).

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 32

Time to solution' Percentage of trials?
Minimum Mean Median < 20 sec < 60sec < 120 sec < 300 sec
Ruspini2 50.2 183.0 184 0.0 0.5 11.0 57.3
Towns?2 20.5 124.0 91.4 0.0 18.0 32.5 55.4

Table 6: Time to solution for order-based GCAs. !seconds CPU. %that found one or more
solution(s).

Group-number and Ruspini2

For each of the distribution tables we are looking for adaptions that give an increased probability of
finding the correct solution. In this particular case, the number of trials with less than four correct
runs is small and we should concentrate on the last two columns in each table. The adaptions that
show marked changes in proportion are population size (200 or 400 appears best), crossover (edge-
based out-performs uniform and single-point), and mutation (0.20 — 0.90 are more successful). The

final model includes these terms as well as a few higher-order interaction terms.

PS No. of Correct Runs Tr No. of Correct Runs
2 3 4 5 2 3 4 5
50 25.0 20.3 319 235 adjust 0.0 25.0 29.6 24.0
100 25.0 28.1 27.0 24.5 local 25.0 28.1 225 25.5
200 0.0 20.3 204 26.3 scale2.0 75.0 25.0 24.3 25.1
400 50.0 31.3 20.7 25.8 scale4.0 0.0 21.9 236 255
El No. of Correct Runs Cr No. of Correct Runs
2 3 4 5 2 3 4 5
0 75.0 34.4 339 33.1 edge 50.0 18.8 21.1 36.6
1 25.0 31.3 30,9 34.0 single 25.0 40.6 385 319
5%! 0.0 34.4 353 329 uniform 25.0 40.6 40.4 31.5
CP No. of Correct Runs MR No. of Correct Runs
2 3 4 5 2 3 4 5
0.50 75.0 42.2 339 329 0.01 0.0 188 179 13.3
0.70 0.0 26.6 33.7 335 0.05 25.0 20.3 16.5 136
0.90 25.0 31.3 324 336 0.10 0.0 188 17.2 13.5
0.20 0.0 15.6 13.1 14.5
0.50 0.0 9.4 11.7 15.1
0.70 0.0 109 13.5 14.6
0.90 75.0 6.3 10.1 15.4

Table 7: Empirical distributions of the adaptions with group-number encoding for Ruspini2
(relative frequencies in percents). tof population size.

All of the first-order factors are included in the time model. The larger population sizes took
more time to find the correct clustering, plus there was a greater range of times; the adjusted
fitness transform produced faster and more consistent times; increasing the elite constant decreased
the time to find the solution; single-point crossover was clearly the fastest crossover, with edge-
based being the slowest; there was not much difference in the average times between the crossover
probabilities, but the 0.50 level appears to be slightly more consistent; mutation rates of 0.50 and
0.70 appear to give the fastest results.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING

33

= 2 =
S i SN .- S : .
55 | 2s AT N
g : =N i i g i
i’ oo b rE by
A e R R !
=l === =—=]=
= T - == - 3
50 100 200 400 adjust local scale2 scale4 o 1 5%
Population Size Fitness Transform Elite Constant
2o H . = : : R .o
2 SR R R AL TP
=8 ! = q | i PR B
A IR N SR AR
e R IS R e L I=E R RN R
s g = g [s o e R =TT Tl
edge single uniform 0.50 0.70 0.90 .01 .05 0.1 0.2 0.5 0.7 0.9
Crossover Crossover Probability Mutation Rate
Figure 21: Time results for group-number GCAs on Ruspini2.
PS No. of Correct Runs Tr No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
50 11.6 26.4 274 257 299 172 adjust 11.0 26.2 287 273 254 14.8
100 16.5 226 27.1 27.2 239 336 local 27.8 228 243 252 26.1 279
200 26.0 26.8 22.0 258 246 31.1 scale2.0 29.7 259 239 23.8 251 238
400 459 242 234 21.3 21.6 180 scale4.0 31.5 251 23.1 23.8 234 336
El No. of Correct Runs Cr No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
0 64.2 452 323 245 173 13.1 edge 60.9 26.4 284 295 30.7 58.2
1 23.9 26.0 338 356 429 426 single 11.6 33.0 36.3 39.0 36.8 254
5%! 119 288 339 398 39.8 44.3 uniform 27.5 40.6 35.3 31.5 325 16.4
CP No. of Correct Runs MR No. of Correct Runs
0 1 2 3 4 5 0 2 3 4 5
0.50 26.6 38.6 327 356 29.7 287 0.01 14.7 16.8 16.7 124 119 49
0.70 355 322 329 33.8 330 336 0.05 8.9 16.6 17.8 13.9 104 9.0
090 379 29.1 344 30.5 373 37.7 0.10 10.1 173 164 124 13.5 12.3
0.20 8.6 13.7 139 16.3 14.7 20.5
0.50 13.1 12.8 13.8 153 16.2 14.8
0.70 180 12.0 10.1 16.1 18.0 19.7
090 266 109 11.3 13.5 152 18.9

Table 8: Empirical distributions of the adaptions with group-number encoding for Towns2 (relative
frequencies in percents). of population size.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 34

Group-number and Towns2

For the Towns2 data set, lower population sizes (50 — 200) seem to increase the probability of
correctness, although the proportion of trials with population size of 50 and five runs correct is
relatively small. The treatment data is difficult to interpret, with each method represented in the
same proportions in the trials with 0 and 5 correct. Elite selection clearly improved the chances
of finding the solution in all five runs, with 64.2% of the GCAs with 0 correct runs lacking elite
selection. Edge-based crossover also corresponds to a high proportion of trials with 5 correct
runs. However, 60.9% of GCAs with 0 correct runs also have edge-based crossover. The crossover
probability did not significantly influence the correctness. Finally, higher mutation rates seem to

improve the probability of correctness.

s " 2 : 8

I52) H :] T Iz} H * 52) T ! 3

[=] T | (=3 T [=3 I H
93 H =8 ! ! T =& ! i
= T B = 2 !
58 : 1 | | &g ‘ \ 38 !
N s | | N i | | | o | |
= | = =
[=f=1 S | | | [=f=1 | |
SH f | | SO * S |
O O O
D D | D |
So \ \ 245 | K | \
= \ 2= | 2= \
o l;| [o

(Yo} (Yol (Yol ‘

1
o 1 o L L 1 o 1 1 I
50 100 200 400 adjust local scale2 scale4 o 1 5%
Population Size Fitness Transform Elite Constant
=3 S - ISt 3
s X i i i ! Sy s
. ° £] - -

2 ! : i 3 i : I S N
2o | i T 2 o T 2o A R
8 I ! | o8 | ‘ | o8 g i [N
8 \ i | 4 \ \ | 3 Ly Lo
£3 E8 \ ! £8 |
sk T | ga | | ga .
R I | R ‘ | R | | |
e \ 25 e

3 T re) o |

1
edge single uniform 0.50 0.70 0.90 .01 .05 0.1 0.2 0.5 0.7 0.9
Crossover Crossover Probability Mutation Rate

Figure 22: Time results for group-number GCAs on Towns2.

The time data for the Towns2 data set follows the trends of the previous time data although the
average times are higher and the deviance of the values is greater. The fitted models are similar,

although the model for Towns2 contains more terms.

Group-number and Iris2

Once again, low population size appears to increase the probability of correctness, and this time
the population size of 50 appears the best choice. The adjusted fitness transformation clearly
increases the chances of finding the solution. Elite selection also represents a higher proportion of
the trials with higher correctness. The most successful crossover is single-point, with edge-based
crossover the least successful (75.4% of the GCAs with 0 correct runs used edge-based crossover).
Lower crossover probabilities seem to slightly increase the probability of correctness, and again the

mutation rate significantly influences correctness.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING

35

PS No. of Correct Runs Tr No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
50 3.1 5.7 8.2 7.8 22.9 31.2 adjust 3.3 7.1 14.8 23.4 24.8 30.4
100 5.5 24.3 24.6 32.8 344 28.2 local 34.0 30.0 295 26.6 268 227
200 30.7 429 426 39.1 242 224 scale2.0 31.8 386 31.1 17.2 26.1 23.1
400 60.7 27.1 246 20.3 18,5 18.2 scale4.0 309 24.3 246 32.8 223 238
El No. of Correct Runs Cr No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
0 53.9 57.1 574 453 414 26.8 edge 75.4 457 459 42.2 49.7 225
1 27.6 25.7 295 29.7 287 353 single 0.4 5.7 11.5 14.1 159 43.4
5%! 184 17.1 13.1 25.0 299 38.0 uniform 24.1 48.6 42.6 43.8 34.4 34.1
CP No. of Correct Runs MR No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
0.50 31.8 286 26.2 29.7 33.1 34.1 0.01 219 37.1 49.2 516 4738 7.6
0.70 33.1 30.0 31.1 406 350 33.2 0.05 12.1 157 11.5 14.1 10.8 15.0
0.90 35.1 41.4 426 29.7 31.8 32.7 0.10 9.9 7.1 11.5 10.9 9.6 15.9
0.20 9.6 8.6 4.9 9.4 7.6 16.3
0.50 11.4 10.0 9.8 3.1 8.3 15.9
0.70 154 14.3 8.2 7.8 7.0 14.9
0.90 19.7 7.1 4.9 3.1 8.9 14.4

Table 9: Empirical distributions of the adaptions with group-number encoding for Tris2 (relative
frequencies in percents). of population size.

Time éseconds CPU%
0 50 100 150 200 250 300

Time éseconds CPU%
0 50 100 150 200 250 300

. =3 S
. T T T & t T T T & T T T
? I I | 3 | I I | 3 I I |
\ \ | = | \ \ | = : \ |
\ ! &g | ‘ ‘ \ 58 ! |
! N 82 ‘ ‘
‘ o o
SO | SLH
Lo Lo
es es
| [P [
1 1 b Lo | T T
I L 1 L 1 1 1 1 1
(=) o
50 100 200 400 adjust local scale2 scale4 1 5%
Population Size Fitness Transform Elite Constant
S g
T : T @ T T T Lc] I R RS B j § :
\ i \ 2 \ \ \ g Lo
| E (=} | | | E o } | | ‘ | [
O Oo I | |
N L L . N I | | I |
\ Bo Eal | [N B
| 89 89 I
(<5} <5
: 28 28
(<5} [<5}
f E™ ET
‘ Fo (=
1 T o T T T o 1 1
1 1 L 1 L Lo
(== o
edge single uniform 0.50 0.70 0.90 .01 .05 0.1 0.2 0.5 0.7 0.9
Crossover Crossover Probability Mutation Rate

Figure 23: Time results for group-number GCAs on Iris2.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 36

The time results for the Iris2 data set follow the same trends as the two previous models,
although the averages and spreads of the values in this case are greater than those of both the

previous models. The time models for all three data sets are similar.

Order-based and Ruspini2

Here the GCAs with smaller population sizes (50, 100) achieved a higher level of correctness.
The scaling transformations were more likely to produce five correct runs than the adjusted
transformation, although the trials with 0 correct were divided fairly evenly between the three.
There was a slight advantage to using elite selection. Edge-based crossover clearly out-performed
the other crossovers (75% of the trials with 5 correct runs used edge-based crossover). Further,
none of the GCAs using PMX crossover found the solution more than three times in any trial, and

77.9% of the trials with 0 correct runs used PMX crossover.

PS No. of Correct Runs Tr No. of Correct Runs

0 1 2 3 4 5 0 1 2 3 4 5
50 28.2 41.3 255 385 41.3 36.5 adjust 32.4 587 383 423 404 274
100 30.3 22.2 426 385 356 36.1 scale2.0 346 159 36.2 295 24.0 36.8
200 414 36.5 319 23.1 23.1 274 scale4.0 33.1 254 255 282 356 359
El No. of Correct Runs Cr No. of Correct Runs

0 1 2 3 4 5 0 1 2 3 4 5
0 52.3 444 53.2 474 47.1 488 borrow 21.6 81.0 80.9 69.2 64.4 22.8
5%! 477 556 46.8 52.6 529 51.2 edge 0.5 12.7 17.0 295 356 77.2

PMX 77.9 6.3 2.1 1.3 0.0 0.0

CP No. of Correct Runs Mu No. of Correct Runs

0 1 2 3 4 5 0 1 2 3 4 5
0.50 39.3 36.5 46.8 346 288 25.2 gaussian 49.5 60.3 57.4 46.2 481 49.5
0.70 31.8 444 298 33.3 385 32.8 uniform 50.5 39.7 426 53.8 51.9 50.5

0.90 289 19.0 234 321 32,7 420

MR No. of Correct Runs

0 1 2 3 4 5
0.10 26.3 50.8 383 449 20.2 16.2
0.20 23.4 222 36.2 269 394 225
0.70 239 143 17.0 14.1 240 30.6
0.90 26.3 12.7 8.5 14.1 16.3 30.6

Table 10: Empirical distributions of the adaptions with order-based encoding for Ruspini2 (relative
frequencies in percents). of population size.

Only six of the GCAs with PMX crossover found the solution in one or more runs, so these
GCAs were removed before the time data was analysed. As with the group-number GCAs, larger
populations resulted in a longer time to find the solution and increasing the mutation rate tended to
decrease this time. However, the adjusted transformation was considerably slower than the scaling
transformations, elite selection did not decrease the time to solution (in fact it increased it slightly),
edge-based crossover found the solution faster than the simpler borrow operator, and increasing
the crossover probability resulted in a marked decrease in the average time to find the solution.

Finally, there was a slight time advantage to using uniform rather than gaussian mutation.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 37
g T = N g T T 8 T
g 1 g . ! 2 | | 2 | !
= = ‘ = ‘ : = ‘
oo oo O o Qo |
o o< O oK ‘ !
88 1 89 ‘ 8\ 89 1
s 25 2g | | 25
o 1 [1 1 o 1 1 o 1
< 50 100 200 < adjust scale2 scale4 < o 5% < borrow edge
Population Size Fitness Transform Elite Constant Crossover
ST T T S T T S 1 1 1 71
o \ \ \ o \ \ o \ \ \
=2 | =8 w \ =& |
S8 == S8
g g i
8 & T &
28 L | 2s ! \ eS| Lo
128 1 'FS 1 1 128 ! | | 1
< 0.50 0.70 0.90 ° gaussian uniform < 0.10 0.20 0.70 0.90
Crossover Probability Mutation Mutation Rate
Figure 24: Time results for order-based GCAs on Ruspini2.
PS No. of Correct Runs Tr No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
50 27.7 339 375 333 470 376 adjust 26.0 429 40.0 396 379 39.0
100 31.1 37.5 30.0 479 379 33.7 scale2.0 374 23.2 30.0 31.3 273 31.1
200 41.2 286 32.5 188 15.2 28.7 scale4.0 36.7 33.9 30.0 29.2 348 29.9
El No. of Correct Runs Cr No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
0 55.7 51.8 40.0 37.5 27.3 48.2 borrow 26.8 87.5 95.0 100.0 955 156
5%' 443 482 60.0 625 72.7 51.8 edge 0.0 0.0 0.0 0.0 45 84.4
PMX 73.2 12,5 5.0 0.0 0.0 0.0
CP No. of Correct Runs Mu No. of Correct Runs
0 1 2 3 4 5 0 1 2 3 4 5
0.50 36.3 46.4 425 14.6 227 30.9 gaussian 49.7 60.7 37.5 479 576 49.4
0.70 33.0 32.1 325 438 258 339 uniform 50.3 39.3 62.5 52.1 424 50.6
090 306 21.4 250 41.7 515 352
MR No. of Correct Runs
0 1 2 3 4 5
0.10 235 30.4 40.0 458 379 21.3
0.20 23.0 25.0 250 29.2 318 26.0
0.70 258 214 175 188 16.7 26.8
090 27.7 232 175 6.3 13.6 26.0

Table 11: Empirical distributions of the adaptions with order-based encoding for Towns2 (relative

frequencies in percents).

Lof population size.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 38

Order-based and Towns2

The distributions for Towns2 are similar to those for Ruspini2, but a higher proportion of
GCAs with 5 runs correct used the adjusted fitness transformation. Further, the differences in
performance due to crossover probability and mutation rate were not as great, and the dominance
of the edge-based crossover was more pronounced (all of the GCAs with edge-based crossover found

the solution in four or five runs).

T T T

|

! | !

1 L 1
50 100 200 adjust scale2 scale4 o 5% borrow edge
Population Size Fitness Transform Elite Constant Crossover

Time (seconds CPU)
50 100 150 200 250 300

Time éseconds CPU%
0 50 100 150 200 250 300

Time (seconds CPU)

50 100 150 200 250 300
Time éseconds CPU%

0 50 100 150 200 250 300

L L

0
0

T T T T T
| | | |
|
I

| | |
L 1 I
0.50 0.70 0.90 gaussian uniform 0.10 0.20 0.70 0.90
Crossover Probability Mutation Mutation Rate

T T
\ \
\ \
| |

—_

50 100 150 200 250 300
50 100 150 200 250 300

Time (seconds CPU)

Time éseconds CPU%
0 50 100 150 200 250 300

Time (seconds CPU)

1 1

0
0

Figure 25: Time results for order-based GCAs on Towns2.

The trends shown in the time results are similar to those of Ruspini2, but the averages for the
Towns2 data set are lower and the deviations higher (except for crossover, which has lower averages
and smaller deviances). The differences in times for the crossover probability and mutation rate

as also not as great. The type of mutation did not significantly influence the time.

The Final Models

The terms which significantly contributed to each model are listed in Tables 12 and 13. A complete
listing of the coefficients and discussion of the fit of each model is contained in Appendix A. The
group-number correctness models for Ruspini2 and Iris2, and the order-based correctness models
for Ruspini2 and Towns2 contain mainly first and second order terms and fit the data well. The
correctness model for the group-number GCAs on Towns2 does not fit as well, but is the best third
order model for the data. The time models contain a larger number of higher order terms, with

the group-number models for Ruspini2 and Iris3 providing a good fit. The remaining time models
do not fit as well.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING

Ruspini2 Towns2 Iris2
Factor Correctness Time | Correctness Time | Correctness Time
PS *k *k *k *k *k *k
Tr ns *¥ * *¥ *¥ *¥
El *¥ *¥ *¥ *¥ *¥
Cr *¥ *¥ *¥ *¥ *¥ *¥
CP *¥ ns *¥ *¥ *¥
MR, *¥ *¥ *¥ *¥ *¥ *¥
PS:Tr *¥ *¥ *¥ *¥ *¥
PS:Fl *¥ *¥ *¥ *¥ *¥
PS:Cr *¥ *¥ *¥ *¥ *¥ *¥
PS:CP *¥ ns *¥ *¥ *¥
PS:MR ns *¥ *¥ *¥ *¥ *¥
Tr-El *¥ *¥ *¥ *¥
Te-Cr *¥ *¥ *¥ *¥ *¥ *¥
Tr:CP ns rE rE
Te-MR *¥ *¥ *¥ *¥ *¥
EL-Cr *¥ *¥ *¥ *¥
EL-CP * *¥ *¥
EL-MR *¥ *¥ *¥ *¥ *¥
Cr-CP *¥ *¥ *¥ *¥
Cr:MR ns rE ns rE rE rE
CP:MR rE rE
PS:Tr:El rE rE rE
PS:Tr:Cr *¥ *¥ *¥ *¥
PS:Tr:CP rE rE rE
PS:Tr:MR rE * rE
PS:El:Cr rE rE rE
PS:EL:CP * rE
PS:EL:MR rE * rE rE
PS:Cr:CP rE
PS:Cr:MR * rE rE rE
PS:CP:MR rE rE
Tr:El:Cr rE rE rE
Tr:ELl:CP rE
Te-ELMR *¥ *¥ *¥ *¥
Tr:Cr:CP rE
Tr:Cr:MR rE * rE rE
Tr:CP:MR rE
El:Cr:CP rE
El:Cr:-MR rE rE rE
EL.CP:MR rE rE
Cr:CP:MR rE rE
cont.

39

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING

cont.
Ruspini2 Towns2 Iris2
Factor Correctness Time | Correctness Time | Correctness Time
Table 12: Factors included in the correctness and time models for

the group-number encoding GAs. * = significant at the 5% level; **

= significant at the 1% level; ns

not significant at the 5% level

but still included in the model to maintain hierarchical structure; no

symbol indicates the factor was not included in the model; :

interaction term.

signifies an

Ruspini2 Towns2
Factor Correctness Time | Correctness Time
PS ok ok ok ok
Tr ok ok ok ok
El * ok ok ok
Cr ok ok ok ok
CP ok ok ok ok
Mu ** ns
MR, ok ok ok ok
PS:Tr ** **
PS:El ok ok ok
PS:Cr ** * **
PS:CP ok ok ok
PS:Mu ns
PS:MR. ok ok * ok
Tr:El ns rE rE
Tr:Cr ok ok ok ok
Tr:CP rE rE
Tr:Mu ns rE
Tr:MR, ok ok ok
ELCr ok ok ok
EL:CP *
El:Mu ns
ELMR, ok ok ok
Cr:CP ok ok ok
Cr:Mu ns
Cr:-MR ok ok ok
CP:Mu ns
CP:-MR * ok ok
Mu:MR ns
PS:Tr:El * rE
PS:Tr:Cr rE rE
PS:Tr:CP rE
cont.

40

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING

cont.
Ruspini2 Towns2
Factor Correctness Time | Correctness Time

PS:Tr:MR rE rE

PS:El:Cr rE
PS:El:Mu *

PS:EL:MR rE
PS:Cr:CP rE rE
PS:Cr:MR rE rE
PS:CP:Mu *
PS:CP:MR rE
PS:Mu:MR *

Tr:ELl:CP rE

Tr:El:Mu *

Tr:EL:MR rE

Tr:Cr:CP rE

Tr:Cr:MR *
Tr:CP:Mu *

Tr:CP:MR rE rE
El:Cr:-MR rE

El:CP:Mu rE

Cr:CP:MR *
Cr:Mu:MR rE

Table 13: Factors
order-based GAs. * = significant at the 5% level; ** = significant at the
1% level; ns = not significant at the 5% level but still included in the

included in the correctness and time models for the

model to maintain hierarchical structure; no symbol indicates the factor

was not included in the model; :

missing from the table are not in either model.

signifies an interaction term. Factors

41

The top five GCAs for each representation/data set combination are presented in Tables 14

to 18. In each case the correctness model was used to predict the adaptions that would give the

highest probability of finding the correct clustering. These adaptions were then ranked according

to the predictions of the appropriate time model.

PS Tr El Cr CP MR Correctness Time
200 scaled 4.0 5% edge-based 0.50 0.50 1.000 42.954
200 scaled 4.0 5% edge-based 0.70 0.50 1.000 50.187
200 scaled 4.0 5% edge-based 0.90 0.50 1.000 57.205
200 scaled 4.0 1 edge-based 0.50 0.50 1.000 61.510
200 scaled 4.0 0 edge-based 0.50 0.50 1.000 68.034

Table 14: Top five predicted adaption combinations for group-number GCAs on Ruspini2.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING

42

PS Tr El Cr CP MR Correctness Time
100 scaled 2.0 1 edge-based 0.70 0.50 0.826 109.291
50 scaled 2.0 1 single-point 0.50 0.70 0.819 8.615
100 scaled 2.0 1 single-point 0.70 0.90 0.818 37.170
50 scaled 2.0 1 single-point 0.90 0.70 0.806 9.761
100 scaled 2.0 1 edge-based 0.70 0.70 0.804 150.931

Table 15: Top five predicted adaption combinations for group-number GCAs on Towns2.

PS Tr El Cr CP MR Correctness Time
50 adjusted 5% single-point 0.90 0.70 1.000 6.678
50 adjusted 0 single-point 0.90 0.70 1.000 7.176
50 adjusted 5% single-point 0.70 0.70 1.000 7.432
50 adjusted 1 single-point 0.70 0.70 1.000 7.635
50 adjusted 5% single-point 0.50 0.90 1.000 7.773

Table 16: Top five predicted adaption combinations for group-number GCAs on Iris2.

PS Tr El Cr CP Mu MR Correctness Time

50 scaled 2.0 0 edge-based 0.90 uniform 0.70 0.999983 57.317
50 scaled 2.0 0 edge-based 0.90 gaussian 0.70 0.999983 68.455
50 scaled 2.0 5% edge-based 0.90 uniform 0.70 0.999981 57.4119
50 scaled 2.0 5% edge-based 0.90 gaussian 0.70 0.999981 66.6432
50 scaled 2.0 0 edge-based 0.90 gaussian 0.70 0.999975 59.171

Table 17: Top five predicted adaption combinations for order-based GCAs on Ruspini2.

PS Tr El Cr CP Mu MR Correctness Time
50 scaled 4.0 0 edge-based 0.90 gaussian 0.10 1.000 23.888
50 scaled 4.0 0 edge-based 0.90 wuniform 0.10 1.000 24.814
50 scaled 4.0 5% edge-based 0.90 gaussian 0.10 1.000 27.812
50 scaled 4.0 5% edge-based 0.90 uniform 0.10 1.000 28.892
50 scaled 4.0 5% edge-based 0.90 gaussian 0.20 1.000 30.190

Table 18: Top five predicted adaption combinations for order-based GCAs on Towns2.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 43

2.3.3 Performance of Selected Adaptions

Tables 19 and 20 contain summaries of the performance of the top predictions for each model on
the generated and real data sets. For the purposes of this experiment, the correct clustering for
each of the real data sets was assumed to be the clustering with the minimum objective function
value (thus the correct clustering for the Iris data set was not its real clustering, since the real
clustering includes overlapping clusters).

The group-number results on both the real and generated Ruspini data match the predictions
well, as do the correctness results for the Iris data. However, the group-number GCA was unable to
consistently find the correct clustering for the German Towns data set despite good results in the
generated data set. Although the mean time to solution for the GCAs on the real and generated

Iris data was significantly higher than the predicted value, it was within an order of magnitude in

each case.
Predicted Generated Data Real Data
Corr. Time Corr. Time Corr. Time
Ruspini 40.000 42.954 39 42.130 (4.523) 38 43.882 (5.942)
German Towns | 33.068 109.291 37 120.593 (50.638) 11 187.283* (28.374)
Iris 40.000 6.678 40 7.827* (0.9225) 40 11.901* (2.403)

Table 19: Performance of the top group-number GCAs on generated and real data sets. Corr. is
the number of correct runs out of 40. For the real data sets the correct clustering was assumed
to correspond to the minimum objective function value. Time is the average time to solution in
seconds CPU for the correct runs, the standard deviations are included in brackets. * = significantly
different from predicted value at 1% level.

The the correctness of the order-based GCA on the real Ruspini data matched that on the
generated data and the prediction, although the time to find the solution was significantly higher
in both cases. The order-based GCA for the German Towns data set, matched the prediction on

the generated data set but was unable to find a single solution for the real data.

Predicted Generated Data Real Data
Corr. Time | Corr. Time Corr. Time
Ruspini 39.999 57.317 40 66.482* (18.770) 40 110.498* (67.870)
German Towns | 40.000 23.888 40 29.010 (27.920) 0 -

Table 20: Performance of the top order-based GCAs on generated and real data sets. Corr. is
the number of correct runs out of 40. For the real data sets the correct clustering was assumed
to correspond to the minimum objective function value. Time is the average time to solution in
seconds CPU for the correct runs, the standard deviations are included in brackets. * = significantly
different from predicted value at 1% level.

Figure 26 shows the evolution of a successful group-number GCA’s population over 200
generations for the Ruspini data set. The initial population (Generation 0) has high raw fitness (or
objective function) values, which indicate that these clusterings do not suit the Ruspini data. As
the number of generations increases, the raw fitness of clusterings within the population decreases,
as the GCA is biased towards the survival of genetic material contained within the clusterings with
low objective function values. For this data set, the minimum objective function value 1s 10.088

which corresponds to the correct clustering for the data set. This GCA found the correct clustering

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 44

Figure 26: Fitness distribution of 200 Generations! of a successful group-number GCA on Ruspini.
PS = 200, Tr = scaled 4.0, El = 5%, Cr = edge-based, CP = 0.50, MR = 0.50. 'sampled every 20

generations.

00

Figure 27: Fitness distribution of 200 Generations! of a unsuccessful group-number GCA on
Ruspini. PS = 50, Tr = local, El = 0, Cr = single-point, CP = 0.50, MR = 0.05. 'sampled every
20 generations.

in the 140th generation, and this clustering made up 39% of the final population.
Figure 27 shows the evolution of an unsuccessful GCA for the Ruspini data. Although the
fitness of the population is decreasing over the generations, the evolution is not fast enough for the

CGA to find the correct clustering within the 200 generations.

2.4 Discussion

The overall correctness results for the generated data (Tables 3 and 4) raise some interesting
questions — why did the group-number GCAs perform so well on Ruspini2 and Iris2, yet poorly
on Towns2? and why did the order-based GCAs fail to find a single solution for Iris2?7 The answer
to the first question appears to be the high value of & for the Towns2 data set; whereas the large

number of objects in the Iris2 data set may provide the answer for the second question.

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 45

A group-number representation for a data set with a large number of clusters has a high level
of redundancy (each clustering can be represented by k! different chromosomes). This means that
the representation space has many more optima than the solution space. This divides the focus of
the population, and crosses between chromosomes near differing optima tend to be unproductive
and wasteful. Overall, redundancy slows down the convergence and reduces the diversity of the
population.

Since edge-based crossover is context sensitive (and therefore not affected by redundancy) we
expect the GCAs with this crossover to out-perform the other GCAs on this data set. In fact, a
high proportion of the trials with 5 correct runs did use edge-based crossover. However, there were
also a large number of edge-based GCAs that did not find a single solution. This is due to the high
complexity of the edge-based operator, O(k*), combined with large population sizes which greatly
increases the time required to produce a new generation. Five processor minutes was simply not
enough time for these GCAs to find the solution.

The poor performance of the order-based GCAs on Iris2 can be explained by the large number
of objects in the data set, which affects the speed of the local search (due to its complexity of
O(n?k)) and the size of the representation space (see Table 21). This meant that the time limit
of 300 seconds restricted the GCA to only a few generations, limiting the GCAs’ search to a very

small portion of a very large representation space.

Size of Space
Data Set | n k| Solution Group-number Rep.! Order-based Rep.?
Ruspini2 | 75 4 | 6x10% 1x10% 7x10112
Towns?2 59 7 | 1x10%° 7x10%° 2x 1083
Iris2 150 3 | 6x107° 3x10™ 6x1075°

Table 21: Size of the representation space for generated data sets. 'Size of group-number

representation space is k™. 2Size of order-based representation space is effectively %n(n + !

(the local heuristic searches through %n(n + 1) clusterings for each chromosome, and there are n!
possible chromosomes).

When considering the results of the adaptions tests, it is important to remember that these
tests were limited to 300 seconds. Thus the correctness models that have been presented feature
adaptions that increase the probability of finding the correct clustering in under five minutes.

The adaption tests for the data sets resulted in a different model for each. This suggests that
the type of data set should be an important consideration when selecting or designing a suitable

GCA.

e Population Size
Increasing the population size increases the size of the GCA’s gene pool which is advantageous
for group-number GCAs that are searching for clusterings with high & (for Ruspini and Iris2
GCAs with the smallest population size were not as successful at finding the correct solution
as the GCAs with larger populations). The local search used for order-based encoding means
that a relatively small population can span a considerable portion of the representation space
(the results do not suggest that increasing the population size will improve performance).
However, increasing the population size means that each reproductive phase takes longer

and therefore less generations occur in the same time. This is important because it is the

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 46

reproductive phase that evolves the population. It will also take longer to converge a larger

pool of genes.

¢ Fitness Transformation
Fitness transformations can allow certain chromosomes to dominate the population by giving
them high relative fitness values. For smaller populations and larger solution spaces scaling
is important as it increases the probability that the genes of fitter solutions remain in the
population. However, too high a level of scaling can quickly converge the population to
sub-optimal solutions. The results suggest that linear scaling (with Czye of 2.0 or 4.0) is
appropriate for data sets used in the experiments. Some time advantage may be gained by

using the adjusted transformation on data sets with small k.

¢ Elite Constant
Elite selection ensures that good genes are not lost from the population. However, elite
selection also decreases the size of the population that is actively searching for new solutions.
The results suggest that elite selection is useful for decreasing the time taken to find the
solution for group-number GCAs, and it does appear to improve the correctness for the larger
data sets. However performance of the order-based GCAs was worse with elite selection,

possibly because it reduced the size of the active population.

e Crossover Type
The crossover type had a large influence on the correctness and time results for both the
group-number and order-based GCAs. Single-point crossover was clearly sufficient for the
data set with low k; this was also the fastest crossover method for the group-number GCAs.
However, group-number GCAs with the slower edge-based crossover found more correct
solutions on Ruspini2 and Towns2. Perhaps a context sensitive crossover is more important
for data sets with higher k. With the order-based GCAs, the best performing crossover was
edge-based which found the solution in less generations than borrow or PMX. Due to the
time complexity of the local search, and consequently the reduced number of generations,
it was important that the crossover operator combined genetic material effectively during

reproduction.

e Crossover Probability
The crossover probability had little effect on the performance of the group-number GCAs,
although increasing the value tended to reduce the time to find the solution. The order-based

GCAs also performed well with high crossover probabilities.

e Mutation Type
There was only a small time difference between the two mutation types used for the order-

based GCAs. There does not seem to be any reason to favour one operator over the other.

e Mutation Rate
The largest affect of changing the mutation rate is seen in the time to solution. However,
a certain level is necessary to introduce new genetic material to the population (note the

generally poor performance of all GCAs with very low mutation). Too high a mutation rate

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 47

will also degrade the performance of a GCA by reducing the GCA’s evolution to a random

search.

The models produced from the results of adaption experiments all contain interaction terms,
which means the combination of some adaptions will be more effective than others. Hence it is
necessary to select a total set of adaptions carefully.

There appears to be advantages to using both clustering representations. Group-number
encoding when combined with single-point crossover is a fast method of finding clusterings for
data sets with low k. This method also seems to be able to cope with relatively large data sets,
although size of the data sets used in these experiments was limited. The performance of the
group-number GCAs on data sets with high & values was poorer, with many CGAs returning
sub-optimal minima.

The performance of the order-based GCAs with edge-based crossover on the first two generated
data sets was excellent. The time to find the solution for Ruspini2 was comparable with the group-
number GCAs, whereas the time to find the solution for Towns2 was considerably less. However,
this method was unable to find a single solution for the data set with the most objects. As a result
of the complexity of the local search, this method cannot cope with large data sets, but is suitable
for small data sets with large values of &.

The comparison of GCA performance on the generated and real data sets raises some important
points. For both the group-number and order-based GCAs, the results on the Ruspini data
sets matched the predictions very well (the fit of the time model for the order-based GCA was
questionable, so we do not expect the time results to match too well). The correctness results for
the other GCAs on the generated data sets were close to the predicted values (the group-number
correctness model for Towns2 also had questionable fit), and the group-number correctness for the
Iris data was equal to the predicted value. However, both the group-number and the order-based
GCAs performed poorly on the German Towns data set.

The fact that the best adaptions for each data set were clearly different suggests that GAs
should be modified in order to attain optimal performance for a particular data set. However, the
results for the generated and real data sets were similar for Ruspini and Iris, indicating that it
may be possible to adapt GAs to suit a class of data sets (with approximately the same number
of objects, clusters, and distribution). The contrasting performance of the GCAs on the German
Towns data set may be a result of the low similarity between the distribution of the generated and
real objects. The generated data set is clearly separable into seven clusters, whereas the towns in
the real data set do not fall into distinct clusters. For the real data this means there will be a large
number of clusterings with objective function values close to the optimum value. Clearly, such a
data set is harder for a GCA to cluster, and the chances of finding a local minima rather than the
optimal solution are greatly increased. Increasing the rate of mutation in the early generations (to
increase the available genetic material during the initial stages), may improve performance in this
case.

Although the results presented in this chapter suggest that differing data sets require different
adaptions for optimal performance (correctness and speed), this does not mean that a particular
set of adaptions will not find the correct solution to a large number of data sets if given enough

time. Indeed, it would seem that a number of adaptions (elite constant, fitness transformation,

CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 48

crossover probability, and mutation rate) have a large effect on the time taken to find the optimal
solution, and that for simpler data sets these adaptions can be used to speed up the evolution of
the GCA without sacrificing correctness. So although it seems important to invest some time in
adapting the GA to suit the data set, it may not be necessary to find the optimal adaptions to
find correct clusterings within a reasonable time.

Finally, the adaptions implemented in this experiment are only a sample of the numerous
possible adaptions. Thus the performance of GCAs on these and other data sets may be improved

by the investigation of further adaptions.

Chapter 3

(Genetic versus Traditional

Clustering Algorithms

In the last chapter we described how GAs can be adapted for the problem of clustering, and
compared the effectiveness of some selected adaptions. In this chapter we compare these adapted
GAs with three hierarchical clustering methods (SLINK, average-linkage, and Ward’s method) and
four optimisation clustering methods (k-means, iterated nearest neighbour, iterated hillclimber,

and simulated annealing) in terms of correctness, consistency, and speed.

3.1 Clustering Algorithms

Traditional clustering methods were broadly described in Chapter 1. In this section we describe

those algorithms selected for this experiment in further detail.

SLINK

Hierarchical clustering techniques use a series of successive fusions or divisions to construct a
hierarchy of clusterings. The single-linkage method [20] starts with each object in its own cluster.
Clusters are then merged according to the distance between their nearest members until only one
cluster remains.

A simple implementation of the single-linkage algorithm involves calculating and storing the
n x n distance matrix, D = {d;;} where d;; is the Euclidean distance between the closest objects
in Cluster ¢ and Cluster j. At each stage the clusters with the minimum distance are merged,
and the distance matrix is updated by: (i) deleting the rows and columns corresponding to the
merged clusters; and (ii) adding a row and column giving distances between the new cluster and
the remaining clusters.

SLINK is an optimally efficient algorithm for the single-linkage clustering method developed
by Sibson [57] (Figure 28). Instead of storing a matrix of distances that is referred to and updated
numerous times during the clustering process, the SLINK algorithm only reads (or calculates) each

row of the 1nitial distance matrix once.

49

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 50

1. SetTI(n+ 1) ton+ 1, A(n+1) to
2. Set M(é) tod(i,n+1)fori=1,..,n
3. For ¢ increasing from 1 to n
if A(Z) > M(7)
set M (T1(¢)) to min {M(TI(7)), A(¢)}
set A(i) to M(i)
set TI(¢) ton+ 1
if A(d) < M(7)
set M(T1(¢)) to min { M (TI(¢)), M (¢)}
4. For 7 increasing from 1 to n
it A() > A(TI(7)
set TI(¢) ton+ 1

Figure 28: The SLINK algorithm (from [57]).

The SLINK algorithm manipulates three arrays of size n. The first, A, is used to store the
levels at which the clusters are merged — A(4) is the lowest level at which ¢ is no longer the last
object in its cluster. The second array, II, stores the merging sequence — () is the last object in
the cluster which object ¢ then joins. The final array, M, is used for the distance values (d(¢, j) is
the Euclidean distance between objects ¢ and j). The implemented algorithm starts by calculating
a row of the lower triangular distance matrix and placing the values in M. These values are
compared against those in A, and the values in A and II are adjusted accordingly. The values of
A are then compared against each other and any necessary adjustments made. This is repeated
for each row of the distance matrix. A final step involves decoding the resulting clustering from A
and II.

Average-linkage

The average-linkage method [58] merges the clusters with the minimum average distance between
all pairs of objects where one member of a pair belongs to each cluster. Hence the distance between

two clusters, A and B, was calculated as

1 na nNg
d(Xa:, XpBs),
T ;; (Xai, XBj)

where n4, np are the number of objects in clusters A and B, respectively; and d(Xa4;, Xg;) is
the Euclidean distance between the ith object in A and the jth object in B. If there were more
than one pair of clusters with the minimum distance between them, the pair to be merged was
randomly selected from those with the minimum distance.

Since the distance measure was based on the Euclidean distance between pairs of objects, two
distance matrices were stored. The first contained the Euclidean distances between all pairs of
objects, and was used to calculate the distances between clusters. The second matrix stored the
distance between the existing clusters (initially this is the same as the first matrix), and was
updated during the clustering process. Only the lower triangular portion of the matrices were
stored since they were both symmetric.

The clustering was stored as an array of n clusters, where each cluster was represented by a

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 51

list of object numbers and the number of objects stored in this list. An array of cluster numbers
was used as an index for the cluster array — the number of values stored in this array varied from
n to 1 during the clustering process. When two clusters, say A and B were selected for merging,

the data structure was updated as follows:

1. The objects in B were added to A’s object list. The number of objects in A was incremented

by the number of objects in B.
2. B was removed from the list of cluster numbers.

3. The distance matrix was updated by removing the rows and columns for B and recalculating

those for A (now AB).

Ward’s Method

The implementation of Ward’s method was similar to that of average-linkage, but in this case the

distance between two clusters was calculated as

2nang — =
w0

where n4, np are the number of objects in clusters A and B, respectively; and X 4 and X g are the
centroids of the two clusters. This distance is a simplification of Ward’s sum of squared distances
statistic [39].

Since the distance between two clusters was based on the Euclidean distance between their
centroids, a single distance matrix was sufficient. As with the average-linkage implementation, the
clustering was stored as an array of clusters. However, each cluster was represented by its centroid
(stored as a p-dimensional vector) and its number of objects.

A final difference was the method of updating the clustering structure during merging (Step 1,
from above). For Ward’s method, the centroid of Cluster A was replaced by the centroid of Cluster
AB

bl

naXa+npXp
na+ng .

The number of objects in A was then incremented by the number of objects in B. The remaining

yAB =

updating steps were the same as those for average-linkage.

k-means

Optimisation clustering techniques use a search method to find a clustering that optimises a
pre-defined objective function. These techniques start with an initial clustering (containing the
correct number of groups), and then reassign objects according to the objective function until some
terminating criterion is met.

The objective function used for the optimisation clustering methods in this experiment was the
sum of the squared Euclidean distance between objects and their cluster centroids. This criterion is
equivalent to Trace (W), and is minimised over the representation space (Section 1.1.3). Using the

same objective function for the optimisation algorithms means we are comparing the effectiveness

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 52

of the search methods when we compare these algorithms. Further, this criterion is similar to the
distance measures used in the above hierarchical methods.

The k-means algorithm was implemented as described by Hartigan [29]. The algorithm starts
by generating a random clustering, which is the starting point for a local search that takes each
object in sequence and moves it to the cluster that reduces the objective function value the most. If
the objective function value is not reduced, the object remains in 1ts current cluster; the algorithm
terminates when the objective function value cannot be reduced by any move.

The current clustering for this algorithm was stored in an array using the group-number
representation described in Section 2.1.1. The change in objective function value associated with
transferring Object ¢ from its cluster, A, to Cluster B, was calculated as

ng dz(Xi,yB) n dz(Xi,yA)
ng+1 na—1

bl

where ny4, np are the number of objects in clusters A and B, and dz(Xi,yj) is the squared
Euclidean distance between Object i and the centroid of Cluster j [29]. Here, a negative value
indicates a reduction in the objective function value. An array of clusters was used to store the
centroid of, and the number of objects in, each cluster — the same structure as used in the
implementation of Ward’s method. However, since the current clustering always has & clusters,
there were only k clusters in the data structure, and there was no need to keep track of cluster
numbers.

Moving an object simply required changing the object’s group-number in the current clustering,
and updating the two relevant clusters — the cluster the object was moving from, and the cluster

it was moving to.

Iterated Nearest Neighbour

The iterated nearest neighbour algorithm is adapted from the greedy permutation representation
discussed in Section 2.1.1. GAs with this representation tend to find their optimal solution in the
initial generation [36], which suggests that an iterated version of this local search would make an
appropriate clustering algorithm.

The algorithm starts by generating a random permutation of the objects. The first k& objects
become seed points and each is assigned to a separate cluster. The remaining objects are, in the
order they occur in the permutation, added to the cluster with the closest centroid (measured as the
squared Euclidean distance between the object and the cluster centroid). These steps are repeated
a number of times (determined by the user) and the clustering with the minimum objective function
value is returned as the solution.

In general, if the seed points correspond to the clusters in the data set (that is, there is a seed
point in each cluster), and the clusters are well separated, this algorithm will find the clustering
that corresponds to the minimum sum of squared Euclidean distance between objects and their
cluster centres. For more complicated data sets, only seed points close to the cluster centroids will
lead to the optimal clustering. In either case, the probability of finding the solution is increased
by increasing the number of iterations, as this improves the chances of finding good seed points.

The data structure for this implementation was the same as that for k-means. However, a

second array was necessary to store the best clustering found during the iterations. Adding an

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 53

object to a cluster involved setting the object’s group-number in the clustering, updating the

cluster’s centroid, and incrementing the number of objects in the cluster.

Iterated Hillclimber

The hill-climbing or steepest descent algorithm starts from a random clustering and searches a
local neighbourhood for the clustering which reduces the objective function value the most. If
such a clustering is found, it becomes the current clustering and the algorithm then searches the
neighbourhood of this clustering; otherwise the algorithm terminates. The success or failure of
this algorithm is determined by the starting string, and the chances of finding the global optimum
for a problem with many local optima are slim. An iterated version of the hill-climbing algorithm
can be found in [48]. This simply repeats the normal hill-climbing algorithm a set number of times
and saves the clustering with the minimum objective function value.

For this experiment, the local neighbourhood of a given clustering was considered to include
the clusterings in which all the objects were in the same groups, except for a single object whose
group-number differed by 1. For example, given a clustering with Object 1 in Cluster 4, we can
create two neighbours by moving Object 1 to Cluster 3 and Cluster b respectively. This definition
means that a clustering in a data set with n objects has 2" neighbours.

The current clustering for the hillclimbing algorithm was stored using group-number
representation, and the best clustering for the iterations was saved in a similar manner. The

cluster centroids were re-calculated during each evaluation of a clustering.

Simulated Annealing

Simulated annealing [40] is a method of function optimisation that is modelled on the annealing
process used in glass blowing and metallurgy. The annealing process involves heating the glass or
metal to a temperature just below its melting point, and then allowing it to cool slowly. During
the cooling stage the molecules in the material re-align themselves and crystalise, which reduces
the internal stresses resulting from working the material.

In simulated annealing, the search is controlled by a parameter called “temperature”, which
occasionally allows the search to move uphill (and thus escape local optima). Moves that decrease
the objective function value are always accepted; while moves that increase this value are accepted
with a probability based on the temperature, and the change in objective function value. The
temperature value — initially high — is lowered in stages to mimic the annealing process, and the
probability of accepting an uphill move decreases with decreasing temperature.

Figure 29 contains an outline of the implemented simulated annealing algorithm. This is similar
to the algorithm described in [48]; a more complex implementation for the clustering problem can
be found in [41].

The algorithm contains two loops. The outer loop controls the temperature, which starts at
Ty and is successively decreased by a (cooling) factor of Ts. The algorithm terminates when the
temperature falls below the final temperature, Tr.

The inner loop, which is repeated Tyseps times for this implementation, randomly generates a

new clusterings by selecting a new group for an object. The new clustering is accepted as the

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 54

Initialise the temperature 1" to Ty
Select a current clustering C. at random and calculate its objective function value f(C.)
repeat
for Titeps do
Select a new clustering C,, by randomly selecting a new group for an object
If f(Cpn) < f(C¢) then
C), becomes the current clustering C',
else
C), becomes the current clustering C. with probability exp(ﬂ&%&l)
T=T5xT
until T' < T

Figure 29: Clustering with simulated annealing.

current clustering: (1) if its objective function value is lower than that of the current clustering;
or (2) with a probability based on the temperature, and the difference in the objective function
values between the new and current clusterings.

The current and new clusterings were stored using group-number representation, and the cluster

centroids were re-calculated for each clustering.

Genetic Clustering

The GCAs used for this experiment have two important differences to those developed in the
previous chapter. Firstly, exponential mutation has been added to the GCAs for the Ruspini and
German Towns data sets. The mutation rate is high for the initial generations and then decays
exponentially with increasing generations. This increases the amount of new genetic material
introduced in the early generations and reduces the chances of mutation destroying good solutions
in later generations.

Exponential mutation is described by two mutation rates — the initial and final rate. Each
mutation rate 1s expressed as the probability of mutating a chromosome, that is mutating a single

gene on that chromosome. The mutation rate for a given generation, gen, is calculated as

M
MRy, = MRF X exp [ln (RO) (1 @)]

MRp MG

where MRy and MRFp are the initial and final mutation rates, respectively; and MG is the maximum
number of generations.

Secondly, the GCAs here are run for a set number of generations rather than for a set time
interval as in the previous chapter. The number of generations to use in each case was calculated
from the performance of the GCAs on the real data sets in the last chapter (the generation that
the correct solution was found was recorded, and the average and standard deviation of these
values were used to calculate a 95% confidence interval that was used as a guide for selecting an
appropriate number of generations).

As in the previous chapter, each GCA is described by a list of parameters: PS (population
size), MG (maximum number of generations), Tr (scaling transformation), El (elite constant), Cr

(crossover type), CP (crossover probability), and MR (mutation rate(s)).

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 55

3.2 Methodology

All of the described algorithms were implemented by the author. The algorithms were coded in C
and compiled using gcee with the optimisation flag set to level 3. The clustering algorithms were
compared on the three data sets introduced in the previous chapter — Ruspini, German Towns,
and Tris (see Section 2.2.1). Each data set was clustered 40 times by each algorithm. The following
information was collected: (i) the number of runs that found the correct solution, (ii) the average
and standard deviation of the correctness over the 40 runs, (iii) the consistency of the 40 solutions,
and (iv) the average and standard deviation of the time taken by the algorithm.

The correctness was measured as the maximum percentage of objects that were clustered in
the same groups as the correct clustering (there are k! ways that the groups can be matched
since the group-numbers do not necessarily correspond). For example, if the correct clustering
was {{X1, X3, X6}, {X2, X4, X5}}, the clustering {{X2, X3, X4, X5},{X, Xs}} has a correctness
of 83.3% (five out of six objects). This matches the first group in the correct clustering with
the second group in the other clustering — the alternate matching has only one object correctly
clustered.

A run was considered to be correct only if there was a perfect match between the clustering
found by the algorithm and the correct clustering (that is, a correctness of 100.0%). For this
experiment the correct clustering for each of the data sets was assumed to be the clustering that
corresponded to the minimum sum of squared distances between the objects and their cluster
centres. Consistency was calculated as the maximum percentage of objects that were clustered
in the same clusters for all 40 runs (groups were matched in a similar manner to the correctness
calculations). The time taken by the algorithm was measured in seconds CPU (resolution of the
clock was 16.667 milliseconds), and did not include the time taken to store the objects’ attribute
values. In order to remain consistent with the previous chapter, the objects’ attribute values were
standardised so that each attribute had a mean of 0 and a standard deviation of 1. The tests were
conducted on a single Sparc Ultra; the load average during testing was approximately 0.9.

The number of iterations for both the iterated nearest neighbour and iterated hillclimber
algorithm were varied until the performance of these algorithms exceeded that of the GCA (either in
terms of correctness, or time). The temperature parameters for the simulated annealing algorithm
were adapted in a similar manner.

The mean correctness and time of the algorithms was compared against that of the GCA using
one-sided z tests (null hypothesis of equal mean values), which were appropriate due to the large

number of runs.

3.3 Results

Tables 22 to 24 contain the clustering results for the three data sets. All of the clustering algorithms,
except for k-means, found the correct solution for the Ruspini data set in every run. SLINK was
the fastest of the algorithms that found the correct clustering in all runs. The time for the iterated
hillclimber was closest to that of the GCA, but all of the comparison algorithms were significantly
faster than the GCA.

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 56

Algorithm Correctness Consistency Time
Runs % std dev. % sec. CPU std dev.

SLINK 40 100.0 0.0 100.0 0.0047 0.007
average linkage 40 100.0 0.0 100.0 0.0167 0.006
Ward’s method 40 100.0 0.0 100.0 0.0221 0.008
k-means 35 95.8 11.2 66.7 0.0021 0.005
iterated nearest neighbour! 40 100.0 0.0 100.0 0.0547 0.007
iterated hillclimber! 40 100.0 0.0 100.0 46.8081 1.098
simulated annealing? 40 100.0 0.0 100.0 3.0097 0.022
GCA3 40 100.0 0.0 100.0 51.707 1.996

Table 22: Comparison of k-clustering algorithms on Ruspini. '100 iterations. 7 = 10.0, Tsteps =
200,75 = 0.9, and Tr = 0.000001. 3PS = 200, MG = 200, Tr = scaled 4.0, El = 10, Cr =
edge-based, CP = 0.50, MR = 0.90 — 0.10. Tsignificantly faster than the GCA at 1% level.

Algorithm Correctness Consistency Time

Runs % std dev. % sec. CPU std dev.
SLINK 0 57.6 0.0 100.0 0.0017 0.004
average linkage 0 79.7 0.0 100.0 0.0087 0.008
Ward’s method 0 94.9* 0.0 100.0 0.0107 0.008
k-means 9 85.5 9.9 44.1 0.004" 0.007
iterated nearest neighbour! 31 98.6* 4.0 79.7 4.8701 0.025
iterated hillclimber? 0 59.4 6.5 5.1 271.9101 4.767
simulated annealing® 15 90.1 7.8 76.3 249.2291 2.505
GCA* 14 86.4 12.2 45.8 284.695 10.269

Table 23: Comparison of k-clustering algorithms on German Towns. 110000 iterations. 21000
iterations. 37y = 10.0, Tsteps = 200,75 = 0.999, and Tr = 0.00001. 3PS = 100, MG = 1500, Tr
= scaled 2.0, El = 1, Cr = edge-based, CP = 0.70, MR = 0.90 — 0.10. *significantly more correct
than the GCA at 1% level. Tsignificantly faster than the GCA at 1% level.

Algorithm Correctness Consistency Time
Runs % std dev. % sec. CPU std dev.

SLINK 0 68.0 0.0 100.0 0.0147 0.006
average linkage 0 68.0 0.0 100.0 0.1087 0.008
Ward’s method 0 80.0 0.0 100.0 0.1657 0.010
k-means 40 100.0 0.0 100.0 0.0041 0.007
iterated nearest neighbour! 40 100.0 0.0 100.0 1.4151 0.022
iterated hillclimber? 40 100.0 0.0 100.0 71.600 2.824
simulated annealing® 40 100.0 0.0 100.0 2.7357 0.015
GCA* 40 100.0 0.0 100.0 38.633 2.515

Table 24: Comparison of k-clustering algorithms on Iris. 11000 iterations. 210 iterations.
3Ty = 1.0, Typeps = 100,75 = 0.9, and T = 0.00001. *PS = 50, MG = 1000, Tr = adjusted,
El = 3, Cr = single-point, CP = 0.90, MR = 0.70. Tsignificantly faster than the GCA at 1% level.

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 57

None of the hierarchical methods found the correct clustering for German Towns. However, the
mean correctness of Ward’s method was significantly higher than that of the GCA, and all of the
hierarchical methods were significantly faster. Only two algorithms, iterated nearest neighbour and
simulated annealing, found the solution for the German Towns data set more times than the GCA.
Both of these algorithms were significantly faster than the GCA, and iterated nearest neighbour
was also significantly more correct.

None of the hierarchical methods found correct solution for the Iris data set, but all of the
optimisation methods, including the GCA, found the clustering with the minimum objective
function value on every run. All of the algorithms, except for the iterated hillclimber, were

significantly faster than the GCA.

3.4 Discussion

All clustering methods search a restricted subset of the solution space. Hierarchical methods tend
to search a smaller subset than the optimisation methods. Thus the search is faster and the results
are more consistent, though the constraints of the hierarchical techniques sometimes prevent the
algorithms from finding the optimal solution (for example, the hierarchical methods were unable
to find the correct clustering for either the German Towns or Tris data sets).

The performance of optimisation methods is limited by two factors: the suitability of the
objective function, and the effectiveness of the search method. Optimisation clustering methods
search for the clustering that corresponds to the minimum (or maximum) objective function value,
which may or may not be the correct clustering. For example, all of the optimisation methods found
the clustering with the minimum objective function value for the Iris data set, but this is not the
real clustering of this data set (the clustering defined as the correct clustering for this experiment
has a correctness of 83.3% when compared to the real clustering). For data sets such as Iris,
with over-lapping clusters, it may be impossible to define an objective function that can identify
the correct solution. However, the selected objective function was sufficient for the optimisation
methods to find a more correct solution than the hierarchical algorithms.

Even if the objective function can identify the correct solution, there is no guarantee that the
search method will find it. Consider the performance of the optimisation algorithms on the German
Towns data. By definition, the correct clustering was the clustering with the minimum objective
function value, yet the iterated nearest neighbour algorithm did not find this clustering on nine
runs, and the iterated hillclimber was unable to find it on any run. Clearly, some of the search
methods are more effective than others for certain data sets.

Optimisation methods such as k-means and iterated nearest neighbour search a relatively small
subset of the solution space. These methods (in particular the iterated nearest neighbour method)
are well suited to the objective function used for these experiments, and the subset they search
contains solutions with high correctness. Hence these algorithms produce fast results with relatively
high correctness.

The three remaining optimisation methods search a larger subset of the solution space, thus
these algorithms are the slowest. For the iterated hillclimber and simulated annealing, this subset

is determined by the definition of the neighbourhood, and the parameter values. The iterated

CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 58

hillclimber did not perform well on the German Towns data set, perhaps due to the large number
of local optima for this data set. However, altering the neighbourhood definition may improve this
algorithm’s performance.

Overall, we are looking for a method that consistently produces correct clusterings in a relatively
short amount of time for a wide range of data sets, where correctness is most important. Hence the
GCA was clearly out-performed by two other clustering methods: iterated nearest neighbour and
simulated annealing. This suggests that there is no advantage to using genetic clustering for the
k-clustering problem for data sets with similar characteristics to those used in our experiment. The
addition of further adaptions to the GCA may enhance its performance, but it is improbable that
such improvements would allow the algorithm to match the performance of the iterated nearest
neighbour algorithm.

We also expect that the iterated nearest neighbour clustering algorithm would continue to
outperform the GCA on data sets with more objects and a larger number of clusters. However,
the described iterated nearest neighbour algorithm is based around the given objective function.
It may not be possible to use a similar method for other objective functions. Thus a GCA with a
different objective function may outperform this method for certain data sets.

The trend across the three data sets indicates that the GCA may outperform simulated
annealing on data sets with large numbers of clusters.

Thus, although the GCA can match or better the correctness results for all of the algorithms
(except for iterated nearest neighbour) on the given data sets, it is also significantly slower than

these clustering algorithms.

Chapter 4

Genetic Clustering for Unknown k

Thus far we have concentrated on the k-clustering problem, where the number of clusters is known.
Here we extend our GCA to deal with the more general clustering problem, where the optimal

number of clusters is determined as part of the clustering process.

4.1 Background

Determining the optimal number of clusters for a data set 1s one of the more difficult aspects to the
clustering process. Most optimisation clustering methods require the user to specify the number
of clusters, and hierarchical methods typically produce a series of clusterings from 1 to n clusters
without specifying the most appropriate number of clusters.

Numerous procedures have been suggested for determining the optimal number of clusters [10,
11, 49, 15], including some criteria appropriate for use as the objective function for optimisation
clustering methods. For these criteria, the clustering that results in the minimum (or maximum)
value of the objective function should be the best possible clustering (with the optimal number of

clusters) for the data set.

4.1.1 Criteria for Determining the Number of Clusters

Milligan and Cooper [49] compare 30 criteria for determining the number of clusters. The criteria
were used in conjunction with four hierarchical clustering methods to determine the best number
of clusters for artificial data sets with distinct non-overlapping clusters. The method suggested by

Calinski and Harabasz [10],
(n— k) x trace(B)
(k—1) x trace(W)’

produced the best results for the experiment (B and W are defined in Section 1.1.3). The optimal
clustering 1s indicated by the maximum value of this measure.
The cluster separation method suggested by Davies and Bouldin [11, 33] also performed

reasonably well. This criterion is based on the minimum ratio of within-cluster dispersions, S;,

59

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 60

and between-cluster separation, T; ;:

where

o=

1 & _
SZ' = —Z |l‘ij — l‘i|s
n:

¢ j=1

P
Tij= (> |= — %l
=1

and the values of s and ¢ are user-defined (although Davies and Bouldin offer some guidance for

P

selecting appropriate values). The criterion value should be minimised over the solution space.
Further discussion of criteria for determining the number of clusters can be found in [63, 15].

Criteria for use with fuzzy clustering methods is described in [5, 22, 42].

4.1.2 Adaptions for the General Clustering Problem

It is possible to adapt the group-number GCAs we developed in Chapter 2 by simply exchanging
the fitness function for a criterion appropriate for the general clustering problem. The & parameter
now becomes an upper limit on the number of clusters, maxk (which might even be n), rather than
the required number of clusters. The group-number representation allows clusters to have anywhere
between 1 and maxzk groups (missing group numbers indicate less than maxk groups). The uniform
mutation operator will randomly move objects between groups (perhaps even introducing a new
group), while single-point and uniform crossover recombine group-numbers during crossover (edge-
based crossover is not appropriate because it always produces offspring with & clusters). However,

this 1s not necessarily the best or the only approach.

Representation

While the number of clusters i1s implicit in the group-number representation, this is not the
case for all representations. The matrix representation can be extended in a similar manner
to group-number, by increasing the number of rows to maxzk. Adjacent separators in the
permutation with separators encoding scheme could be used to indicate empty groups if mazk — 1
separators were included in each chromosome. However, both the greedy permutation and order-
based representations require some independent means of storing the number of clusters for each
chromosome. Adding an extra gene to store this value is one possible method.

Falkenauer [17, 18] describes an encoding scheme specifically designed for grouping GAs. Under
this scheme each chromosome consists of two parts: an object part and a group part. The group
part is exactly the same as a standard group-number encoding, and the object part is simply a
list of the group-numbers that occur in the object part. Figure 30 contains Falkenauer’s encoding
of the clustering {{X1, X35, X6}, {X2, X4, X5}}. Since the number of groups in the object part can
vary, so can the length of the chromosome. The genetic operators work with the group part of the

representation, thus the operators are manipulating groups rather than objects.

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 61

object 1 group
part ! part

Figure 30: Chromosome representing the clustering {{X1, X3, X5}, { X2, X4, X5} } for Falkenauer’s
encoding scheme.

Initialisation

For the k-clustering problem we initialised the group-number population by generating strings of
random numbers between 1 and k. For the general clustering problem we could use the same
method but increase the upper limit of the group-numbers to maxzk. However, when n is much
larger than maxzk most of the population would contain mazk groups.

The initial population should provide a random selection of strings from the representation
space, thus there should be approximately the same number of chromosomes with each possible

value of k. Such a population could be generated by creating chromosomes as follows:
1. Randomly select the number of clusters, k, from [1,maxzk].
2. Randomly select a k group-numbers from [1,k].
3. Randomly select a group-number (from the group-numbers selected in Step 2) for each object.

The second step is included to ensure that the group-numbers in the chromosomes are randomly

distributed, rather than between 1 to k inclusive in each case.

Crossover

The context insensitive crossover operators, single-point and uniform, can be used for a group-
number approach to the general clustering problem. However, again there is no definite relationship
between the clusterings of the parents and the offspring. We saw in Chapter 2 that these crossovers
were less effective for data sets with higher k values, so we consider these operators inappropriate for
the general clustering problem (effectively we are looking for a maxk-clustering, where maxk > k).

As mentioned previously, the edge-based crossover will always produce an offspring with &
clusters. This i1s appropriate if both the parents have k clusters, but unsatisfactory otherwise. One
solution to this problem is to modify the operator so that it produces two offspring and the & values
of both parents are inherited by the children (the first child has the same number of clusters as the
first parent, the second child has the same number of clusters as the second parent). Alternatively,
the edge-based operator could be modified to produce a single child with its number of clusters
randomly selected from the range of the parents’ values. For example, if the parents have 3 and 6
clusters, the number of clusters in the child is selected from the interval [3,6]. Thus the number
of clusters in the child is influenced by the number of clusters in both parents.

Falkenauer’s [18] crossover operator is similar to that of Bhuyan [7] and von Laszewski [66]
in that it copies a number of groups from one parent to another and then uses a local search to

produce the final child. Such an operator is easier to apply to Falkenauer’s representation.

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 62

Mutation

The mutation operator for the k-clustering problem can be used for the general clustering problem.
It is capable of both introducing new groups and removing existing groups in its current form.
However, the mutation of a single gene is unlikely to result in any great increase in fitness, and
mutations of this form will be quickly lost from the population [18]. Thus we need some method
of introducing a new clusters that contain a number of objects.

The simplest approach may be to introduce a split operator that selects a group from a
particular clustering and moves objects from that group into a new group with a set probability.
Other mutation operators appropriate for this problem include a merge operator that moves all
the objects in one cluster to another pre-existing cluster, and a move operator which shifts objects
between groups already existing on a chromosome. Figure 31 illustrates the effects of these three

operators. All three operators may be applied, with differing rates, to the population.

(a) Split (b) Merge (c) Move

Figure 31: Mutation operators for the general clustering problem: (a) Split randomly moves objects
from group 2 into the new group 3; Merge moves all of the objects from group 1 into group 3; and
Move randomly shuffles objects between pre-existing groups.

Falkenauer [17, 18] outlines similar strategies for his mutation operators — creating a new
group, eliminating existing groups, and shuffling objects among their respective groups. However,
once again, local search is used to place objects in groups during the mutation process. For example,
a group 1s eliminated by moving all of the objects in that group to other groups according to a

local search.

4.2 Methods

4.2.1 Objective Function

Our first step in adapting a GA for the general clustering problem involved finding an appropriate
objective function. Thus the first part of our experiment was the evaluation of a number of
clustering criterion. Each of our three data sets (Ruspini, German Towns, and Iris see Section 2.2.1)
was clustered into 1 to 10 clusters using the iterated nearest neighbour algorithm from the previous
chapter. Then the values of the criteria described in Section 4.1.1 were calculated for each clustering
of each data set (the data was not standardised for this experiment). The objective function was
selected on the basis of these values. The values of s = 2.0 and ¢ = 2.0 were used for the Davies

and Bouldin criterion during this experiment.

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 63

4.2.2 Clustering Algorithms

Genetic clustering was compared with three traditional clustering algorithms — Ward’s method,
iterated nearest neighbour, and simulated annealing — that were modified for the general clustering
problem. For the first two methods, this involved finding the best clusterings into 2 to mazk groups
and then using the objective function value to select the optimal clustering from these (this required
one run of Ward’s method, and maxk — 1 runs of the iterated nearest neighbour algorithm). The
neighbourhood definition used in the implementation of the simulated annealing algorithm allows
the number of clusters to vary (moving the last object in one group into a pre-existing group will
decrease the number of clusters by one, introducing a new group number will increase the number
of clusters by one), so this was not changed. However, the initial clustering was created using the
initialisation process described in Section 4.1.2, and the objective function was replaced.

To adapt the GCA for the general clustering problem, changes were made to the representation,
fitness function, and the initialisation, crossover, and mutation operators. A group-number
representation was used, but each chromosome also stored its number of clusters. Since the GCA
was to search for the maximum objective function value, the objective function could be used as
the fitness function without transformation. However, the local and scaled transformations were
updated to suit this objective function. The initialisation operator described in Section 4.1.2,
choosek, was added as an alternative to random initialisation. Two edge-based crossover operators
were implemented: the first, edgel, producing two children with the same number of clusters as
the first and second parent, respectively; and the second, edge?, producing a single child with its
number of clusters randomly selected from [k1, k2] where k; is the number of clusters in the ith
parent. The split, move, and merge mutation operators described previously were also implemented.

Each data set was clustered 40 times with each algorithm, and the clusterings found were
ranked in order of frequency. The objective function value and the correctness (percentage of
objects correctly clustered, defined in the previous chapter) of the most frequent clustering were
also recorded. For this experiment the correctness of the clusterings was calculated from the real
clusterings of the data sets. The correctness for the German Towns data set was not recorded since
the real clustering for this data set is unknown. The average clustering time of the algorithms was
measured in seconds of CPU time. A maxk value of 10 was used throughout this experiment.

All of the tests were conducted on a Sparc Ultra, with load average around 0.9. The algorithms
were written in C and compiled using gcc with the optimisation flag set to level 3.

The number of iterations for the iterated nearest neighbour algorithm were the same as those
used in the previous experiment (Section 3.3). The parameters for the simulated annealing
algorithms and GCAs were varied until a reasonable level of performance was achieved, or until
the clustering time became excessive.

The mean time of the algorithms was compared against that of the GCAs using one-sided z

tests (null hypothesis of equal mean values).

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 64

4.3 Results

4.3.1 Objective Function

Tables 25 to 27 list the values of the selected criteria for the clusterings of the three data sets. The
correct clustering for the Ruspini data set gives the minimum Calinski and Harabasz value, and

the maximum Davies and Bouldin criterion value, for the given clusterings.

k Calinski and Harabasz Davies and Bouldin
1 undefined undefined
2 126.68 0.7582
3 136.28 0.5377
41 425.331 0.4003*
5 404.80 0.4835
6 379.46 0.6785
7 376.09 0.8189
8 370.29 0.7819
9 380.24 0.7798
10 389.72 0.7480

Table 25: Clustering criteria values for ten clusterings of the Ruspini data set. ‘correct clustering.
*minimum criterion value. "Tmaximum criterion value.

For the German Towns data set, the clustering with seven clusters has the maximum Calinski
and Harabasz criterion value; whereas the clustering with ten clusters has the minimum Davies
and Bouldin criterion value. In fact, the Davies and Bouldin values indicate that none of these
clusterings represent the natural structure of the data (Davies and Bouldin [11] suggest that values

above 0.6 (s =t = 2.0) for two-dimensional data indicate a particularly inappropriate clustering).

k Calinski and Harabasz Davies and Bouldin
1 undefined undefined
2 76.34 0.8641
3 75.28 0.7955
4 86.66 0.8471
5 85.55 0.7545
6 88.00 0.7984
7 92.097 0.8081
8 89.05 0.7809
9 87.56 0.8096
10 87.216 0.7014*

Table 26: Clustering criteria values for ten clusterings of the German Towns data set. *minimum
criterion value. Tmaximum criterion value.

For the Iris data set, the maximum Calinski and Harabasz criterion value is given by the
clustering with three clusters; whereas the Davies and Bouldin criterion indicates that the clustering
with two clusters is the best. The 3-clustering evaluated in Table 27 is not the correct clustering for
the Iris data set. The criteria values for the correct clustering — 486.32 and 0.8446, respectively
— are not the maximum (or minimum) value for either criterion. Consequently, neither of the

criterion are suitable for finding the real clustering for this data set.

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 65

k Calinski and Harabasz Davies and Bouldin
1 undefined undefined
2 513.30 0.4747*
32 560.407 0.7259
4 529.40 0.8438
5 494.09 0.8573
6 474.52 0.9913
7 450.77 1.0349
8 436.61 0.9990
9 409.70 1.0005
10 385.52 1.1162

Table 27: Clustering criteria values for ten clusterings of the Iris data set. “not the correct clustering
(the criteria values for the correct clustering are 486.32 and 0.8446, respectively). *minimum
criterion value. Tmaximum criterion value.

Since the Calinski and Harabasz criterion correctly indicated the number of clusters in the
Ruspini and Tris data sets (the correct clustering for the German Towns data set is not defined) it
was selected as the objective function for the clustering algorithms. However, since this measure
is undefined when there is only one cluster, the implemented clustering algorithms were restricted

to clusterings with more than one cluster.

4.3.2 Clustering Algorithms

The results of the comparison between the selected clustering algorithms can be found in Tables 28
to 30. Both Ward’s method and the iterated nearest neighbour algorithm found the correct
clustering of the Ruspini data on every run. However, the simulated annealing algorithm was
unable to find the correct clustering. In fact, this algorithm always clustered the Ruspini data set
into maxk clusters. The GCA performed reasonably well, finding the correct clustering on 35 of
the 40 runs. Ward’s method and the iterated nearest neighbour algorithm were significantly faster
than the GCA.

Ward’s method found the same clustering of the German Towns data set on each run; this
clustering divided the objects between ten groups, and had the lowest objective function value
of the clusterings found by the algorithms. The simulated annealing algorithm also clustered the
data set into ten groups, but this clustering still had a relatively high objective function value.

The most frequent clustering for both the iterated nearest neighbour and GCAs had seven groups,

Algorithm Frequency k Obj. Function Correctness Time

Value % sec. CPU std dev.
Ward’s method 40 4 425.33 100.0 0.0227 0.008
iterated nearest neighbour! 40 4 425.33 100.0 0.5497 0.012
simulated annealing? 7 10 356.80 54.7 712.151 6.284
GCA3 35 4 425.33 100.0 602.182 51.245

Table 28: Comparison of clustering algorithms on Ruspini. '100 iterations. 27T, = 10.0, Titeps =
300,75 = 0.999, and Tr = 0.000001. 3PS = 200, MG = 200, In = random, Tr = none, El = 5, Cr
= edge2, CP = 1.00, MR = move 0.70, merge 0.10 — 0.50. Tsignificantly faster than the GCA at
1% level.

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 66

Algorithm Frequency k Obj. Function Time

Value sec. CPU std dev.
Ward’s method 40 10 78.87 0.0117 0.008
iterated nearest neighbour! 35 7 92.09 42.9731 0.686
simulated annealing? 7 10 86.88 564.614 9.416
GCA3 17 7 92.09 546.022 18.288

Table 29: Comparison of clustering algorithms on German Towns. 10000 iterations. 27, =
100.0, Tsteps = 300, T5 = 0.999, and Tp = 0.000001. *PS = 100, MG = 2000, In = random, Tr =
none, El = 5, Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 — 0.40. Tsignificantly faster
than the GCA at 1% level.

and was the clustering with the highest objective function value for this data set. However, the
iterated nearest neighbour algorithm was twice as successful at finding this clusters as the GCA.
In addition, the iterated nearest neighbour algorithm was significantly faster than the GCA.

The iterated nearest neighbour algorithm was the only method that divided the Iris data into
the correct number of clusters. Ward’s method, and the GCA, found two clusters on every run,

while the simulated annealing algorithm always found a clustering with ten groups.

Algorithm Frequency k Obj. Function Correctness Time

Value % sec. CPU std dev.
Ward’s method 40 2 501.93 66.7 0.1617 0.008
iterated nearest neighbour! 40 3 560.40 89.3 14.8631 0.120
simulated annealing? 21 10 380.59 41.3 947.744 15.657
GCA3 40 2 513.30 66.7 668.516 74.050

Table 30: Comparison of clustering algorithms on Iris. 11000 iterations. Ty = 10.0, Titeps =
200,75 = 0.999, and Tr = 0.000001. 3PS = 50, MG = 1000, In = random, Tr = none , El = 5,
Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 — 0.30. Tsignificantly faster than the GCA
at 1% level.

Numerous parameter combinations were tested for the simulated annealing algorithm on all of
the data sets. However, the algorithm always found clusterings with nine or ten clusters, with the
most frequent clusterings having ten clusters.

Initial attempts at finding good parameter values for the GCA involved using the choosek
initialisation operator, the edgel crossover operator, and various rates of the three mutation
operators. The resulting performance was poor, with the population converging rapidly to a
sub-optimal number of clusters (Figure 32). Subsequent attempts used the random initialisation
operator to seed the population with clusterings containing maxk clusters. The probability of
the merge operator was exponentially increased over the generations to force the GCA to explore
clusterings with less groups. The edge?2 crossover operator was used since it can create a child with
a different number of groups than either parent, and the move mutation operator used to move
objects between pre-existing groups. These parameter values forced the GCA’s population to move
through different k& values over the generations (Figure 33). The results presented in Tables 28 to

30 use these parameter values.

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 67

100 : : 100 : : 100
k=10 k=9 k=8
50 - 50 - 50 + -
o] L o] L o} L
o} 100 200 o} 100 200 o} 100 200
100 : : 100 : : 100
5
S k=7 k=6 k=5
<
=
S 50 - 50 - 50 + -
o
—
S L
X
S
0 L | L 0 L | L 0 k/\‘ " | L
o} 100 200 o} 100 200 0 100 200
100 : : 100
k=4
50 — - 50
0 MWWWAu s s e 0

L | L L L
0 100 200 0O 100 200 O 100 200
Generation

Figure 32: Distribution of k values during genetic clustering of the Ruspini data set with initial
parameter values: PS = 200, MG = 200, In = choosek, Tr = none, El = 5, Cr = edgel, CP =
1.00, MR = split 0.30 — 0.10, merge 0.30 — 0.10, move 0.70.

100 T T 100 T T 100
k=9 k=8
50 50 — -1 50 —
0 0 L | L 0
[0} 100 200 0 100 200
100 T T 100 T T 100
5
S k=7 k=6 k=5
<
2
2 50 - -4 50 |- - 50 |- .
o
—
S]
X
0 L | L 0 L | L 0 L |
[0} 100 200 [0} 100 200 [0} 100 200
100 T T 100 T T 100
k=4 k=3 k=2
50 — 50 — - 50 -
o | o . M 0 . |

L L | L
0 100 200 0O 100 200 O 100 200
Generation

Figure 33: Distribution of k values during genetic clustering of the Ruspini data set with subsequent
parameter values: PS = 200, MG = 200, In = random, Tr = none, El = 5, Cr = edge2, CP =
1.00, MR = merge 0.10 — 0.50, move 0.70.

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 68

4.3.3 Local Search

A final attempt at improving the GCA’s performance involved modifying the merge mutation
operator. Instead of joining two random groups, the operator was modified to place objects from
a randomly selected group into the clusters (not including the selected group) with the closest
centroid — each object was placed in the cluster with the closest centroid to it. The overall
strategy was similar to the one described previously, with the population seeded with maxk-
clusterings which were then merged to form clusterings with less groups. The modified merge
should enhance the fitness of these clusterings. In order to prevent the population from converging
to too few groups, split mutation was used.

The resulting performance of the GCA on our three data sets is contained in Table 31. This
algorithm performed better on both Ruspini and Iris, finding the correct clustering in every run
for the Ruspini data, and every run except one for the Iris data (this is comparable with the
performance of the iterated nearest neighbour algorithm). In addition, on these data sets, the
algorithm was significantly faster (at 1% level) with these parameter values.

Modifying the merge operator also improved the performance of the GCA on the German Towns
data set, but the algorithm still only found the correct solution on 60% of the runs. Further, the
modified algorithm was significantly slower (at 1% level) than the previous version of the algorithm.

Clearly, the iterated nearest neighbour algorithm still produced the best results for this data set.

Data Frequency k Obj. Function Correctness Time

Value % sec. CPU std dev.
Ruspini’ 40 4 425.33 100.0 307.556 18.671
German Towns? 24 7 92.09 - 643.814 42.077
Iris3 39 3 560.40 89.33 522.471 56.755

Table 31: Performance of GCAs with modified merge mutation. 'PS = 200, MG = 200, In =
random, Tr = none |, El = 5, Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 — 0.30, split
0.05 - 0.25. ?PS = 100, MG = 2000, In = random, Tr = none , El = 5, Cr = edge2, CP = 1.00,
MR = move 0.70, merge 0.10 — 0.40, split = 0.05 — 0.20. 3PS = 50, MG = 1000, In = random, Tr
= none , El = 5, Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 — 0.30, split 0.05 - 0.15.

4.4 Discussion

4.4.1 Objective Function

The objective function for a clustering algorithm should: (i) be defined for every clustering the
algorithm can produce; and (ii) provide a relative measure of each clustering’s worth — the
minimum (or maximum) value should correspond to the optimal clustering for the data set. None
of the clustering criteria tested in this chapter satisfied these requirements for all three data sets.
The Calinski and Harabasz, and Davies and Bouldin measures are undefined when all objects are
placed in a single cluster, and neither could identify the real clustering of the Iris data set. However,
the Calinski and Harabasz criterion can be used to determine the correct number of clusters in all
of the given data sets, whereas the Davies and Bouldin measure only identified the correct number

of clusters for the Ruspini data set. Further, the values of this measure for the German Towns

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 69

data set suggest that none of the clusterings for this data set are appropriate. These results agree
with those of Milligan and Cooper [49] in which the Calinski and Harabasz criterion outperformed

the Davies and Bouldin measure.

4.4.2 Clustering Algorithms

The fact that the objective function was an external criterion for Ward’s method (it was used
to select from clusterings that had been produced by the hierarchical algorithm) meant that this
algorithm could not always find the clustering with the maximum objective function value. In fact,
this algorithm found clusterings with the wrong number of clusters for both German Towns and
Iris, since these clusterings had higher objective function values than any of the other clusterings
produced by the algorithm. However, a different external criterion may produce better results with
this method.

The iterated nearest neighbour algorithm clearly out-performed the other clustering algorithms
on all three data sets. This is a result of the high correspondence between the method used to create
the clusterings and the external objective function. The algorithm creates clusterings by placing
objects into clusters with the closest centroid; this minimises the sum of the Euclidean distance
between objects and their cluster centres, which i1s the denominator of the Calinski and Harabasz
criterion. However, since these clusters are built around random seed points, the algorithm must
be iterated; and complex data sets (high &, close clusters) will require a large number of iterations
to produce good results (for complex data sets, there are fewer seed points that will lead to good
clusterings). Despite this, this method is still a relatively fast method of clustering data sets.

The simulated annealing algorithm always clustered the data sets into maxzk groups. This is
most probably due to the interaction between the neighbourhood definition, which allows a single
object to be moved into a random group, and the objective function. Moving a single object will
not often increase the objective function value, unless the object is being moved to a new group.
Hence the algorithm will tend to divide the objects into as many clusters as possible.

The performance of the GCA on the first two data sets is promising, although this requires a
particular set of adaptions: random initialisation, exponentially increasing merge mutation, and
edge? crossover. This combination of adaptions uses the same concept as the hierarchical clustering
algorithms, that is merging two clusters in a good k-clustering will most likely result in a good
(k-1)-clustering. Thus the random initialisation operator is used to create a population of maxk-
clusterings, and the merge mutation operator is applied exponentially to allow the population to
develop some good clusterings for each number of clusters, before the population evolves to a new
number of clusters. Elite selection ensures that the best clusterings found so far remain in the
population, and ensures that the final population is based around clusterings with the correct
number of clusters (assuming that these are also the fittest clusterings).

The edgeZ crossover operator enables a child chromosome to have a different number of clusters
to its parents. But the number of clusters is restricted to the range of the number of clusters in
the parents. Given that edge-based crossover creates a child by finding groups in both parents,
this operator will often have the same effect as the merge operator.

The emphasis on merging explains the poor performance of the GCA on the Iris data set. The

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 70

Petal Length (cm)

Sepal Length (ci

Figure 34: Optimal 4-clustering for the Iris data set.

best clustering of the Iris data set into four clusters divides two of the correct groups between
three different clusters, one of which has equal numbers of the objects that belong in different
groups (Figure 34). Thus the optimal clustering cannot be reached by merging any two of the
existing clusters, and such a merging would result in a clustering with a relatively low fitness
value. However, if the three closest clusters are merged, a good 2-cluster results, which is why the
GCA finds this clustering rather than the optimal one. A similar effect can be observed in the
results for Ward’s method since the hierarchical algorithms also work by merging clusters.

Since the GCA works by exchanging information (in this case cluster membership) between
members of its population, it appears that the GCA (as described in this Chapter) is not suitable for
the k-clustering problem — the clusters contained in a good k-clustering will not necessarily lead to
a good (k-1)-clustering. Thus, allowing the clusterings in the population to have differing numbers
of clusters, and exchanging clusters between them using an edge-based crossover, is perhaps not

the best approach to this problem.

4.4.3 Local Search

The modified merge operator used a local search to place objects from a randomly selected group
into the clusters with the closest centroids. Thus the GCA could form better (k-1)-clusterings
from the k-clusterings in its population (hence the GCA was more likely to find the optimal
solution). Due to the increased fitness of the clusterings with less groups, the GCA converged
to clusterings with fewer clusters in a shorter space of time (except for the German Towns data,
where the relatively high fitness of clusterings with seven clusters, kept the number of clusters in
the population high). Given that the majority of time per generation is spent on crossover, and
that the complexity of the edge-based crossover is proportional to the number of clusters, this
meant that this modification actually decreased the time taken for the GCA on the Ruspini and
Iris data sets. This was despite the fact that the modification to the merge operator increased the

time taken for this operator. However, since the number of clusters in the population of the GCA

CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 71

for the German Towns data set remained high, there was a noticeable increase in the time taken
for this data set.

The success of the modified GCA was comparable to the iterated nearest neighbour algorithm
for the Ruspini and Iris data sets. However, the iterated nearest neighbour algorithm was more
successful on the German Towns data set, and was significantly faster than the GCA on every
data set. Thus there is no advantage to choosing the GCA over the iterated nearest neighbour

algorithm, even with the addition of a local search.

Chapter 5

Conclusions

This research has been an investigation into the use of GAs for clustering data. We reviewed the
various adaptions that enable GAs to cluster into a pre-defined number of groups, and compared
the performance of 4320 combinations of adaptions on three generated data sets. Each adaption
combination was ranked according to: (1) the number of times (out of five replications) that it
found the clustering with the minimum objective function value in less than five processor minutes;
and (2) the average time taken to find this clustering. Independent generalised linear models were
fitted to the correctness and time results for each of the generated data sets, and the models were
used to predict the performance of the GCAs on three real data sets with similar structure. The
linear models quantified the effects of the various adaptions on the performance of the GCAs;
and accurate predictions were produced, by models with good fit, when there was high similarity
between the real and generated data.

A number of adaptions are essential for GCAs, namely an appropriate representation, fitness
function, and suitable operators — the GCA needs to be able to encode potential solutions; the
fitness function is necessary to drive the evolution of the population toward the optimal clustering;
and the operators must be able to produce valid offspring by manipulating the representation.
Other adaptions such as context sensitive operators, elite selection, and parameter values such as
the population size and the mutation rate can have a large effect on the time taken to find the
optimal clustering for a given data set. Further, the effects of these adaptions and parameters varies
for different data sets, although comparison between the real and generated data sets suggests that
the variation is not significant for data sets with the same number of objects, clusters, attributes,
and a similar distribution of objects. However, the group-number representation is better suited
for the k-clustering problem than the order-based representation, and high dynamic scaling of the
fitness function values, elite selection, and high mutation rates increase the probability of finding
the correct clustering within a reasonable time. Larger population sizes and context sensitive
crossover appear more important for data sets with a high number of clusters.

Comparison of GCAs with traditional k-clustering algorithms for the three data sets shows,
that although the GCAs cluster the data successfully, the method provides no advantages over
traditional methods. This 1s due to the high complexity of the GCAs when compared to the

traditional algorithms, which are based around simple distance measures. Further, these same

72

CHAPTER 5. CONCLUSIONS 73

distance measures are used in several clustering criteria, which limits the correctness of both
GCAs using these clustering criteria, and the traditional algorithms based around these measures.

Only simple modifications to the developed GCAs were needed for the general clustering
problem, where the value of &k is unknown. The best performance resulted from exploiting the
merging concept behind hierarchical clustering, by seeding the population with clusterings with
high numbers of clusters and then forcing the GCA to evolve clusterings with fewer clusters. If the
optimal solution is found during this evolution process, the elite selection strategy will ensure that
it remains in the population. However, such a GCA can become trapped in a local minimum in
a similar manner to various hierarchical algorithms, since merging clusters in a good k-clustering
does not always lead to a good (k-1)-clustering. In fact, the population structure of the GCA (as
described in this thesis) is not appropriate for the general clustering problem, as given free reign it
evolves the population by swapping genetic information between randomly selected members of the
population (effectively, the GCA is trying to build good k-clusterings using subsets of groupings
found in good 2-clusterings to maxk-clusterings).

The addition of local search to the merge operator markedly improved the performance of the
GCAs on both the German Towns, and the Iris data sets. For the Iris data the GCA found the
clustering with the maximum objective function value in 39 out of 40 trials (this clustering correctly
allocates 89.3% of the objects according to the real clustering of the data, and is comparable to
the performance of other clustering GAs [6]).

There are two factors limiting the performance of GCAs: the choice of objective function, and
the high complexity of the GCA. The objective function drives the evolution of the GCA, and as
such if the objective function does not suit the structure of the data, the GCA will be unable to find
good clusterings for the data set. Further, traditional clustering algorithms are based on concepts
similar to the majority of clustering criteria. Thus the solutions given by these methods match,
or better any that can be found by using these clustering criteria. Plus the complexity of these
traditional algorithms is low. There is no advantage to conducting a more thorough search of the
solution space, as the objective function is not sufficient to find a better solution. Incorporating
heuristics into the GCA will improve its performance, but for the same reasons will not match the
performance of the heuristic on its own.

There are four possible areas of improvement for the genetic clustering algorithms. Firstly,
the GCAs could be adapted to control their own operator probabilities [13, 61]. This may even
involve different rates according to the fitness of each chromosome, so that, for example, less fit
chromosomes are more likely to undergo mutation. This would remove the need to determine good
parameter values; and should enhance the performance of the GCAs.

Secondly, better clustering criteria may give the GCA an advantage over other clustering
methods. Certainly, work in the area of fuzzy clustering suggests that genetic clustering may
benefit from the clustering criteria in this field (the matrix representation is suitable for fuzzy
clustering) [22, 42]. GCAs may perform better when there are large numbers of sub-optimal
minima that trap other search techniques.

Thirdly, parallel implementations of GAs [66, 50] divide the algorithm between a number of
computers by creating a number of small populations rather than a single larger population. Such

a method may offer both time and correctness advantages. Further, individual sub-populations

CHAPTER 5. CONCLUSIONS 74

could be devoted to a certain number of clusters; thus this method may give worthwhile results

for the general clustering problem.
Finally, the addition of further adaptions, such as modifications to the population structure

and better reproductive operators, may enhance the effectiveness of the GCAs’ search.

Bibliography

(1]

Cesare Alippi and Rita Cucchiara. Cluster partitioning in image analysis classification : A
genetic algorithm approach. In CompFEuro 1992 Proceedings. Computer Systems and Software
Engineering, pages 139-44. IEEE Computer Society Press, 1992.

Michael R. Anderberg. Cluster Analysis for Applications. Academic Press, New York, 1973.

Jim Antonisse. A new interpretation of schema notation that overturns the binary encoding
constraint. In R. K. Belew and L. B. Booker, editors, Proceedings of the Third International
Conference on Genetic Algorithms, pages 86-91. Morgan Kaufman Publishers, 1989.

James Edward Baker. Reducing bias and inefficiency in the selection algorithm. In
J J Grefenstette, editor, Proceedings of the Second International Conference on (Genetic

Algorithms, pages 14-21. Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York, 1981.

James C. Bezdek, Srinivas Boggavarapu, Lawrence O. Hall, and Amine Bensaid. Genetic
algorithm guided clustering. In Conference Proceedings of the First IEEE Conference on
Euvolutionary Computation. IEEE World Congress on Computational Intelligence, pages 34—
9. IEEE, 1994.

Jay Bhuyan. A combination of genetic algorithm and simulated evolution techniques for
clustering. In C. Jinshong Hwang and Betty W. Hwang, editors, Proceedings of 1995 ACM
Computer Science Conference, pages 127-34. The Association for Computing Machinery, Inc.,
1995.

Jay N. Bhuyan, Vijay V. Raghavan, and Venkatesh K. Elayavalli. Genetic algorithms for
clustering with an ordered representation. In R. K. Belew and L. B. Booker, editors,
Proceedings of the Fourth International Conference on Genetic Algorithms, pages 408-15.
Morgan Kaufman Publishers, 1991.

A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis, University of Alberta,
Edmonton, 1981. Cited in [24].

T. Calinski and J. Harabasz. A dendrite method for cluster analysis. Communications in

statistics, 3(1):1-27, 1974.

75

BIBLIOGRAPHY 76

[11]

[12]

[13]

[26]

David L. Davies and Donald W. Bouldin. A cluster separation measure. IEEE transactions

on pattern analysis and machine intelligence, PAMI-1(2):224-7, 1979.

L. Davis. Applying adaptive algorithms to epistatic domains. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 162—164, 1985. Cited in [48].

Lawrence Davis. Adapting operator probabilities in genetic algorithms. In J. David Schaffer,
editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 61-69.
Morgan Kaufman Publishers, 1989.

Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.
Brian S. Everitt. Cluster Analysis. Halsted Press; third edition, 1993.

Ludwig Fahrmeir and Gerhard Tutz. Multiwariate Statistical Modelling Based on Generalized
Linear Models. Springer-Verlag, 1994.

E. Falkenauer. The grouping genetic algorithms: widening the scope of the gas. Belgian
Journal of Operations Research, Statistics and Computer Science, 33(1,2):79-102, 1993.

Emanuel Falkenauer. A new representation and operators for genetic algorithms applied to

grouping problems. Evolutionary Computation, 2(2):123-44, 1994.

W. D. Fisher. On grouping for maximum homogeneity. Journal of the American Statistical

Association, 53:789-798, 1958. Cited in [8].

K. Florek, J. Lukaszewiez, J. Perkal, H. Steinhaus, and S. Zubrzchi. Sur la liason et la division
des points d’un ensemble fini. Colloquium Mathematicum, 2:282-285, 1951. Cited in [15].

M. Funk, R. D. Appel, Ch. Roch, D. Hochstrasser, Ch. Pellegrini, and A.F. Miuller. Knowledge
acquisition in expert system assisted diagnosis: a machine learning approach. In Proc. AIME-

87, pages 99-103. Springer Verlag, 1987.

I. Gath and A. B. Geva. Unsupervised optimal fuzzy clustering. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 11(7):773-81, 1989.

D. E. Goldberg and R. Lingle. Alleles; loci, and the tsp. In J. J. Grefenstette, editor,
Proceedings of the First International Conference on Genetic Algorithms, pages 154-159.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1985. Cited in [48].

David E. Goldberg. Genetic Algorithms - in Search, Optimization and Machine Learning.
Addison-Wesley Publishing Company, Inc, 1989.

David E. Goldberg and Philip Segrest. Finite markov chain analysis of genetic algorithms.
In John J. Grefenstette, editor, Genetic Algorithms and Thewr Applications: Proceedings of
the Second International Conference on Genetic Algorithms, pages 1-8. Lawrence Erlbaum

Associates, New Jersey, 1987.

A. D. Gordon. Classification : Methods for the Exploratory Analysis of Multivariate Data.
Chapman and Hall Ltd, London, 1981.

BIBLIOGRAPHY 77

[27]

[37]

Paul E. Green, Ronald E. Frank, and Patrick J. Robinson. Cluster analysis in test market
selection. Management Science, 13(8):387-400, 1967. Series B.

John J. Grefenstette. Optimization of control parameters for genetic algorithms. [EEFE
Transactions on Systems, Man, and Cybernetics, SMC-16(1):122-8, 1986.

John A. Hartigan. Clustering Algorithms. John Wiley and Sons, 1975.

F. Roy Hodson. Numerical typology and prehistoric archaeology. In F. R. Hodson, D. G.
Kendall, and P. A. Taitu, editors, Mathematics in the Archaeological and Historical Sciences.
University Press, Edinburgh, 1971.

John Holland. Adaption in Natural and Artificial Systems. University of Michigan Press, 1975.

S. Levine I. Pilowski and D. M. Boulton. The classification of depression by numerical
taxonomy. The British Journal of Psychiatry, 115:937-945, 1969.

A. K. Jain and J. V. Moreau. Bootstrap technique in cluster analysis. Pattern Recognition,

20(5):547-68, 1987.

Cezary 7. Janikow. An experimental comparison of binary and floating point representations
in genetic algorithms. In Richard K. Belew and Lashon B. Booker, editors, Proceedings of
the Fourth International Conference on Genetic Algorithms, pages 31-36. Morgan Kaufmann
Publishers, San Mateo, California, 1991.

Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis. Prentice
Hall, New Jersey, third edition, 1992.

Donald R. Jones and Mark A. Beltramo. Solving partitioning problems with genetic
algorithms. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 442-9. Morgan Kaufman Publishers, 1991.

K. A. De Jong. An analysis of the behaviour of a class of genetic adaptive systems. PhD
thesis, University of Michigan, 1975. Dissertation Abstracts International, 36(10), 5140B,
(University Microfilms No. 76-9381).

Kenneth A. De Jong. Genetic algorithms are not function optimizers. In L. Darrell Whitley,
editor, Foundations of Genetic Algorithms 2, pages 5-17. Morgan Kaufmann, San Mateo,
California, 1993.

Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley and Sons, Inc., 1990.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671-680, 1983.

Raymond W. Klein and Richard C. Dubes. Experiments in projection and clustering by
simulated annealing. Pattern Recognition, 22(2):213-20, 1989.

BIBLIOGRAPHY 78

[42]

[51]

[52]

[53]

[54]

[55]

Raghu Krishnapuram and Chih-Pin Freg. Fuzzy algorithms to find linear and planar clusters
and their applications. In Proceedings 1991 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 426-31. IEEE Comput. Soc. Press, 1991.

Ravindra Krovi. Genetic algorithms for clustering : A preliminary investigation. In
V. Milutinovic, B. D. Shriver, J. F. Jr. Numaker, and R. H. Jr. Sprague, editors, Proceedings
of the Twenty-Fifth Hawau International Conference on System Sciences, pages 540-4. IEEE
Computer Society Press, 1991.

G. N. Lance and W. T. Williams. A general theory of classificatory sorting strategies. 1.
hierarchical systems. The Computer Journal, 9:373-380, 1966. Cited in [65].

E. Levrat, V. Bombardier, M. Lamotte, and J. Bremont. Multi-level image segmentation using
fuzzy clustering and local membership variations detection. In IEEFE International Conference
on Fuzzy Systems, pages 221-8. IEEE, New York, 1992.

G. L. Liu. Introduction to combinatorial mathematics. McGraw Hill, 1968.

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman and Hall, London, 2nd
edition, 1989.

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, third, revised and extended edition, 1996.

Glenn W. Milligan and Martha C. Cooper. An examination of procedures for determining the
number of clusters in a data set. Psychometrika, 50(2):159-79, 1985.

Heinz Muhlenbein. Asynchronous parallel search by the parallel genetic algorithm. In
Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing, pages 526—
33. IEEE Computer Society Press, 1991.

P. M. Murphy and D. W. Aha. UCI Repository of machine learning databases. [Machine-
readable data repository]. Irvine, CA: University of California, Department of Information

and Computer Science, 1994.

Allen E. Nix and Michael D. Vose. Modeling genetic algorithms with markov chains. Annals
of Mathematics and Artificial Intelligence, 5:79-88, 1992.

Girish Punj and David W. Stewart. Cluster analysis in marketing research: Review and

suggestions for application. Journal of Marketing Research, XX:134-48, 1983.

Y. Reich and S. Fenves. The formation and use of abstract concepts in design. In D. Fisher,
M. Pazzani, and P. Langley, editors, Concept Formation: Knowledge and Ezperience in

Unsupervised Learning, pages 323-54. Morgan Kaufmann, San Mateo, Calif.; 1991.

E. H. Ruspini. Numerical methods for fuzzy clustering. Inform. Sci., 2:319-150, 1970.

BIBLIOGRAPHY 79

[56]

[61]

[62]

[67]

J. David Schaffer, Richard A. Caruana, Larry J. Eshelman, and Rajarshi Das. A
study of control parameters affecting online performance of genetic algorithms for function
optimization. In J. David Schaffer, editor, Proceedings of the Third International Conference

on Genetic Algorithms, pages 51-60. Morgan Kaufman Publishers, 1989.

R. Sibson. Slink: An optimally efficient algorithm for the single-link cluster method. Computer
J., 16:30-4, 1973.

Robert R. Sokal and Peter H. A. Sneath. Principles of numerical tazonomy. W. H. Freeman,
San Francisco, 1963. Cited in [65].

T. Sgrensen. A method of establishing groups of equal amplitude in plant sociology based
on similarity of species content and its application to analyses of the vegetation on Danish

commons. Biol Skr, 5:1-34, 1948. Cited in [65].

Helmuth Spath. Cluster analysis algorithms: For data reduction and classification of objects.
Ellis Horwood Limited, 1980.

M. Srinivas and L. M. Patnaik. Adaptive probabilities of crossover and mutation in genetic

algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 24(4):656-667, 1994.

Joe Suzuki. A markov chain analysis on simple genetic algorithms. IEEE Transactions on

Systems, Man, and Cybernetics, 25(4):655-659, 1995.

M. J. Symons. Clustering criteria and multivariate normal mixtures. Biometrics, 37:35-43,

1981.

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S-Plus. Springer-Verlag,
1994.

Wolfgang Vogt and Dorothea Nagel. Cluster analysis in diagnosis. Clinical Chemistry,
38(2):192-98, 1992.

Gregor von Laszewski. Intelligent structural operators for the k-way graph partitioning
problem. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 45-52. Morgan Kaufman Publishers, 1991.

J. H. Ward. Hierarchical grouping to optimize an objective function. Journal of the American

Statistical Association, 58:236-244, 1963. Cited in [15].

Appendix A

Models for GA adaptions

This appendix contains the coefficients for all of the models used in Chapter 2. There are two
models for each representation/data set combination, one that gives a probability of finding the
solution within 300 seconds, the other giving a time to find the solution. These models were used
to determine the best set of adaptions for each data set (Tables 14 to 18). Since the order-based
GCAs were unable to find the correct clustering for the Iris2 data set there are no models for this
representation/data set combination.

In each case the correctness models were derived from the complete set of correctness data.
The time models were based only on the GCAs which found one or more solutions, since there was
no time data for the GCAs that didn’t find a solution. The data for GCAs with PMX crossover
was removed from the time models for the order-based GCAs since the number with correct runs
was extremely low (6 for Ruspini2 and 9 for Towns2). Some of the models have coefficients that
are not defined due to singularity (the data was insufficient to determine the effect of the factor).
This is an indication of a low probability of a GCA with this particular factor finding the correct
solution in under 300 seconds.

The fit of each model is also assessed, using the residual deviance, comparison of the
experimental and fitted values, and plots of the residuals for the time models. The final model in
each case was the model that gave the best fit with no higher than third-order terms (the time
taken to fit higher order models was prohibitive).

For both the correctness and time models a good fit is indicated by a low residual deviance,
preferably lower than the corresponding degrees of freedom. The residual plots should be randomly
distributed around a mean of zero, and the range of the residuals should be approximately uniform
along the fitted scale (the fitted values have been transformed to the constant-information scale of

the error distribution, 2,/p for Poisson errors [47]).

A.1 Group-number and Ruspini2

We will start with the correctness model for the group-number GCAs on the Ruspini2 data set.
The coeflicients are listed in Table 32, with Figures 35 containing the comparative histograms. The

residual deviance of 2084.3 on 2904 degrees of freedom indicates that this model fits well, although

80

APPENDIX A. MODELS FOR GA ADAPTIONS

8

25

= 8o
=S b

= o

u“—

S 2o

=8 o3

o3 €<
a8 =
e =z
S °
= i)

o o

0 1 2

—

3 4 5 0.0
Number of Correct Runs

0.2 0.4 0. 0.
Probability of Correctness

1.0

81

Figure 35: Comparison of experimental and fitted correctness values for group-number GCAs on

Ruspini2.

the comparative histograms show that the model over-predicts the number of trials with five runs

correct.
Covariate Effect Covariate Effect Covariate Effect
(Intercept) 2.6618 PS100 0.0071 PS200 1.2169
PS400 0.7550 Trlocal 0.5587 Trscale2 0.0502
Trscaled 0.1576 Crsingle -0.4156 | Cruniform 0.4430
MRO0.05 -0.1014 MRO0.10 -0.5742 MRO0.20 -0.0000
MRO0.50 0.3748 MRO0.70 -0.1014 MR0.90 0.1114
Crsingle:MRO0.05 0.3431 Cruniform:MR0.05 0.4974 Crsingle:MRO0.10 1.0104
Cruniform:MR0.10 0.6614 Crsingle:MRO0.20 0.5475 Cruniform:MR0.20 0.6612
Crsingle:MRO0.50 1.0133 Cruniform:MR0.50 0.2864 Crsingle:MRO0.70 0.3431
Cruniform:MR0.70 0.3850 Crsingle:MRO0.90 1.2767 Cruniform:MR0.90 0.1722
PS5100:Crsingle 0.7751 PS5200:Crsingle -1.4620 | PS400:Crsingle 0.2854
PS100:Cruniform -0.6665 PS200:Cruniform -2.0313 | PS400:Cruniform -1.0767
PS$100:MR0.05 0.1014 P$200:MR0.05 -1.0358 PS$400:MR0.05 -0.6167
PS$100:MR0.10 0.3090 P$200:MR0.10 -0.5630 PS$400:MR0.10 1.2797
PS$100:MR0.20 -0.1405 P$200:MR0.20 4.9454 PS$400:MR0.20 -0.4179
PS$100:MR0.50 0.5000 P$200:MR0.50 4.5706 PS$400:MR0.50 -0.3748
PS$100:MR0.70 1.3885 P$200:MR0.70 -1.0358 PS400:MR0.70 -0.8524
PS$100:MR0.90 7.0244 P$200:MR0.90 -0.1114 PS$400:MR0.90 -1.8224
Trlocal:Crsingle -0.4395 | Trscale2:Crsingle 0.0079 Trscale4:Crsingle 0.3295
Trlocal:Cruniform -0.6575 | Trscale2:Cruniform -0.7235 | Trscale4:Cruniform -1.2511
Crsingle:MR0.05:PS100 -0.7734 | Cruniform:MR0.05:PS$100 -0.3309 | Crsingle:MR0.10:PS100 -1.4177
Cruniform:MR0.10:P5100 -0.5422 | Crsingle:MR0.20:P5100 -0.2674 | Cruniform:MR0.20:P5100 -0.3542
Crsingle:MR0.50:PS100 -2.4048 | Cruniform:MR0.50:PS$100 -0.9015 | Crsingle:MR0.70:PS100 -2.2273
Cruniform:MR0.70:P5100 -0.9362 | Crsingle:MR0.90:P5100 -8.4125 | Cruniform:MR0.90:P5100 -6.4120
Crsingle:MR0.05:PS200 1.4132 Cruniform:MR0.05:P5200 1.0473 Crsingle:MR0.10:PS200 0.5329
Cruniform:MR0.10:P5200 1.5213 Crsingle:MR0.20:PS200 -4.9854 | Cruniform:MR0.20:P5200 -5.0974
Crsingle:MRO0.50:PS200 -5.3397 | Cruniform:MR0.50:PS$200 -4.4867 | Crsingle:MRO0.70:PS200 1.8369
Cruniform:MR0.70:P5200 1.4973 Crsingle:MR0.90:PS200 -0.3941 | Cruniform:MR0.90:P5200 1.5851
Crsingle:MR0.05:PS400 -0.0172 | Cruniform:MR0.05:P5400 -0.1165 | Crsingle:MR0.10:PS400 -1.9287
Cruniform:MR0.10:P5400 -1.0057 | Crsingle:MR0.20:P5400 -0.2411 | Cruniform:MR0.20:P5400 0.3532
Crsingle:MRO0.50:PS400 -0.5899 | Cruniform:MR0.50:PS$400 0.3101 Crsingle:MR0.70:PS400 1.0341
Cruniform:MR0.70:P5400 1.4650 Crsingle:MR0.90:PS400 0.8577 Cruniform:MR0.90:P5400 1.9000
PS100:Trlocal:Credge 0.8135 PS200:Trlocal:Credge 1.7935 PS400:Trlocal:Credge 1.3700
PS100:Trscale2:Credge 0.6108 PS200:Trscale2:Credge 6.8054 PS400:Trscale2:Credge 1.6857
PS100:Trscale4:Credge 0.3810 PS200:Trscale4:Credge 6.6980 PS400:Trscale4:Credge 2.8800
PS5100:Trlocal:Crsingle -0.1716 PS5200:Trlocal:Crsingle 0.4107 PS5400:Trlocal:Crsingle -0.6371
PS5100:Trscale2:Crsingle -0.2551 PS5200:Trscale2:Crsingle 0.3992 PS5400:Trscale2:Crsingle -0.5152
PS5100:Trscale4:Crsingle 0.0527 PS5200:Trscale4:Crsingle -0.0981 PS400:Trscale4:Crsingle -0.8117
PS100:Trlocal:Cruniform -0.1431 PS200:Trlocal:Cruniform -0.1405 | PS400:Trlocal:Cruniform -0.2260
PS100:Trscale2:Cruniform 0.9113 PS200:Trscale2:Cruniform 0.5475 PS400:Trscale2:Cruniform 0.4065
PS100:Trscale4:Cruniform 1.2672 PS200:Trscale4:Cruniform 1.8184 PS400:Trscale4:Cruniform 0.5155

Table 32: Coeflicients for the correctness model for group-number

GCAs on Ruspini2.

APPENDIX A. MODELS FOR GA ADAPTIONS 82

The coefficients for the corresponding time model are listed in Table 33. The residual deviance
for this model is 2405.7 on 2694 degrees of freedom, indicating a good fit which is supported by
the similarities between the experimental and predicted values shown in Figure 36. The plot of the
residual values (Figure 37) shows perhaps a little skewness, but no indications of serious violations

of the model assumptions.

400 800 1200
400 800 1200

Number of Trials
Number of Trials

0
0

0 50 _ 100 150 200 250 300 0 50 100 150 200 250 300
Average Time per Correct Run (seconds CPU) Fitted Time per Correct Run (seconds CPU)

Figure 36: Comparison of experimental and fitted time values for group-number GCAs on Ruspini2.

Deviance Residuals
-4-202 46 810

5 10 15 20 25 30
Transformed Fitted Values

Figure 37: Residual plot for time model for group-number GCAs on Ruspini2.

Covariate Effect Covariate Effect Covariate Effect
(Intercept) 3.8172 PS100 0.0833 PS200 0.4025
PS400 0.5480 Trlocal 0.2539 Trscale2 0.2394
Trscaled 0.0869 Ell 0.0889 EI5% 0.2455
Crsingle 0.1355 Cruniform 0.4006 CPo0.70 0.1554
CP0.90 0.3129 MRO0.05 -1.1686 MRO0.10 -1.3989
MRO0.20 -1.5000 MRO0.50 -1.6459 MRO0.70 -1.5176
MRO0.90 -1.3481 PS5100:Crsingle -0.0183 PS5200:Crsingle -0.3530
PS5400:Crsingle -0.3351 PS5100:Cruniform 0.0365 PS5200:Cruniform -0.1112
PS5400:Cruniform -0.1556 PS$100:MR0.05 0.3162 P$200:MR0.05 0.3653
PS$400:MR0.05 0.8118 PS$100:MR0.10 0.3002 P$200:MR0.10 0.5214
PS$400:MR0.10 0.9020 PS$100:MR0.20 0.3726 P$200:MR0.20 0.5291
PS$400:MR0.20 0.9506 PS$100:MR0.50 0.6151 P$200:MR0.50 0.6688
PS$400:MR0.50 1.0893 PS$100:MR0.70 0.4308 P$200:MR0.70 0.6207
PS400:MR0.70 1.0514 PS$100:MR0.90 0.2880 P$200:MR0.90 0.5423
PS$400:MR0.90 0.9445 Crsingle:MRO0.05 -0.0348 Cruniform:MR0.05 -0.0993
Crsingle:MRO0.10 -0.4892 | Cruniform:MR0.10 -0.2756 | Crsingle:MR0.20 -0.7342
Cruniform:MR0.20 -0.5717 | Crsingle:MR0.50 -0.9949 | Cruniform:MR0.50 -0.5581
Crsingle:MRO0.70 -1.4153 | Cruniform:MR0.70 -0.6337 | Crsingle:MR0.90 -1.4267
Cruniform:MR0.90 -0.7264 PS100:Trlocal 0.1157 PS200:Trlocal 0.0801
PS400:Trlocal 0.2156 PS100:Trscale2 0.0059 PS200:Trscale2 0.0740
PS400:Trscale2 0.2542 PS100:Trscale4 0.0385 PS200:Trscale4 0.0830
PS400:Trscale4 0.3267 PS100:El1 -0.0013 PS200:El1 -0.0176
PS400:El1 0.0363 PS100:E15% -0.0584 PS200:E15% -0.1452
PS400:E15% -0.1421 | Trlocal:Crsingle -0.0248 | Trscale2:Crsingle -0.1396
Trscale4:Crsingle -0.0302 | Trlocal:Cruniform -0.0116 | Trscale2:Cruniform 0.0181
cont.

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

cont.

Covariate Effect Covariate Effect Covariate Effect
Trscale4:Cruniform 0.0399 El1:Crsingle -0.0516 | EI5%:Crsingle -0.0069
El1:Cruniform -0.1070 EI5%:Cruniform -0.0852 | Trlocal:MR0.05 0.2710
Trscale2:MR0.05 0.2853 Trscale4:MR0.05 0.2666 Trlocal:MRO0.10 0.4613
Trscale2:MR0.10 0.3633 Trscale4:MR0.10 0.4504 Trlocal:MRO0.20 0.7203
Trscale2:MR0.20 0.6231 Trscale4:MR0.20 0.7330 Trlocal:MRO0.50 0.9926
Trscale2:MR0.50 0.8689 Trscale4:MR0.50 0.9441 Trlocal:MR0.70 1.1261
Trscale2:MR0.70 1.0173 Trscale4:MR0.70 1.1368 Trlocal:MR0.90 1.2712
Trscale2:MR0.90 1.2053 Trscale4:MR0.90 1.2705 El1:MR0.05 -0.1258
EI5%:MRO0.05 -0.0862 El1:MR0.10 -0.1865 EI5%:MR0.10 -0.2508
El1:MR0.20 -0.2771 EI5%:MR0.20 -0.4409 El1:MR0.50 -0.3001
EI5%:MR0.50 -0.5506 El1:MR0.70 -0.4742 EI5%:MR0.70 -0.6912
El1:MR0.90 -0.6190 EI5%:MR0.90 -0.8497 Trlocal:El1 -0.2397
Trscale2:El1 -0.1863 Trscale4:El1 -0.1799 Trlocal:EI5% -0.4311
Trscale2:EI5% -0.4016 | Trscale4:EI5% -0.3522 | PS100:CP0.70 -0.0183
PS$200:CP0.70 0.0002 PS400:CP0.70 0.0080 PS$100:CP0.90 -0.0129
PS$200:CP0.90 -0.0264 PS400:CP0.90 0.0248 Crsingle:CP0.70 -0.2394
Cruniform:CP0.70 -0.1990 | Crsingle:CP0.90 -0.4469 | Cruniform:CP0.90 -0.4137
P5100:Crsingle:MRO0.05 -0.1735 PS5200:Crsingle:MRO0.05 -0.1910 PS5400:Crsingle:MRO0.05 -0.2218
PS5100:Cruniform:MR0.05 -0.2362 P5200:Cruniform:MR0.05 -0.1668 PS5400:Cruniform:MR0.05 -0.1826
PS5100:Crsingle:MRO0.10 -0.1872 PS5200:Crsingle:MRO0.10 -0.0768 PS5400:Crsingle:MRO0.10 -0.1443
PS5100:Cruniform:MR0.10 -0.1475 P5200:Cruniform:MR0.10 -0.1054 PS5400:Cruniform:MR0.10 -0.1215
P5100:Crsingle:MR0.20 -0.2512 P5200:Crsingle:MR0.20 -0.0478 PS5400:Crsingle:MR0.20 -0.0864
PS5100:Cruniform:MR0.20 -0.1295 P5200:Cruniform:MR0.20 -0.0176 PS5400:Cruniform:MR0.20 0.0054
P5100:Crsingle:MRO0.50 -0.0996 P5200:Crsingle:MRO0.50 0.0002 PS5400:Crsingle:MR0.50 0.1964
PS5100:Cruniform:MR0.50 -0.2583 P5200:Cruniform:MR0.50 -0.1921 PS5400:Cruniform:MR0.50 -0.1946
PS5100:Crsingle:MRO0.70 -0.0686 P5200:Crsingle:MRO0.70 0.2049 PS5400:Crsingle:MRO0.70 0.1723
PS5100:Cruniform:MR0.70 -0.2231 P5200:Cruniform:MR0.70 -0.1413 PS5400:Cruniform:MR0.70 -0.1666
PS5100:Crsingle:MRO0.90 -0.0459 PS5200:Crsingle:MR0.90 0.2150 PS5400:Crsingle:MRO0.90 0.2797
PS5100:Cruniform:MR0.90 0.0141 P5200:Cruniform:MR0.90 0.0889 PS5400:Cruniform:MR0.90 0.0318
PS5100:Crsingle: Trlocal -0.0891 PS5200:Crsingle: Trlocal 0.0738 PS5400:Crsingle: Trlocal -0.0636
PS5100:Cruniform:Trlocal 0.0053 P5200:Cruniform:Trlocal 0.0635 PS5400:Cruniform:Trlocal 0.0783
PS5100:Crsingle: Trscale2 0.0122 PS5200:Crsingle: Trscale2 0.0851 PS5400:Crsingle: Trscale2 -0.1260
PS5100:Cruniform:Trscale2 0.0414 PS5200:Cruniform:Trscale2 -0.0479 PS400:Cruniform:Trscale2 -0.0621
PS5100:Crsingle: Trscale4 0.0085 PS5200:Crsingle: Trscaled 0.0320 PS5400:Crsingle: Trscale4 -0.1337
PS5100:Cruniform:Trscale4 0.0358 PS5200:Cruniform:Trscale4 0.0300 PS400:Cruniform:Trscale4 0.0502
Crsingle:MRO0.05: Trlocal -0.3072 | Cruniform:MR0.05:Trlocal -0.0300 | Crsingle:MR0.10:Trlocal -0.1748
Cruniform:MR0.10: Trlocal -0.0980 | Crsingle:MR0.20:Trlocal -0.1357 | Cruniform:MR0.20:Trlocal -0.1029
Crsingle:MRO0.50: Trlocal -0.2732 | Cruniform:MR0.50: Trlocal -0.0217 | Crsingle:MR0.70:Trlocal -0.1557
Cruniform:MR0.70:Trlocal 0.1746 Crsingle:MRO0.90: Trlocal -0.2301 Cruniform:MR0.90: Trlocal 0.5176
Crsingle:MRO0.05: Trscale2 -0.3513 | Cruniform:MR0.05:Trscale2 -0.0449 | Crsingle:MR0.10:Trscale2 -0.0937
Cruniform:MR0.10: Trscale2 -0.1241 Crsingle:MRO0.20: Trscale2 -0.1335 Cruniform:MR0.20: Trscale2 -0.1913
Crsingle:MRO0.50: Trscale2 -0.1873 | Cruniform:MR0.50: Trscale2 -0.0619 | Crsingle:MR0.70:Trscale2 -0.0771
Cruniform:MR0.70: Trscale2 0.0884 Crsingle:MRO0.90: Trscale2 -0.1754 Cruniform:MR0.90: Trscale2 0.4398
Crsingle:MRO0.05: Trscale4 -0.3559 | Cruniform:MR0.05:Trscale4 -0.0728 | Crsingle:MR0.10:Trscale4 -0.0822
Cruniform:MR0.10: Trscaled -0.1476 Crsingle:MRO0.20: Trscale4 -0.0013 Cruniform:MR0.20: Trscaled -0.1287
Crsingle:MRO0.50: Trscale4 -0.3236 | Cruniform:MR0.50: Trscale4 -0.0099 | Crsingle:MR0.70:Trscale4 -0.1825
Cruniform:MR0.70: Trscale4 0.1298 Crsingle:MRO0.90: Trscale4 -0.2488 Cruniform:MR0.90: Trscale4 0.4637
Crsingle:MRO0.05:El1 0.0440 Cruniform:MR0.05:El1 -0.0037 | Crsingle:MR0.10:El1 0.0122
Cruniform:MR0.10:El1 -0.0475 | Crsingle:MR0.20:El1 -0.0588 | Cruniform:MR0.20:El1 -0.0099
Crsingle:MRO0.50:El1 -0.0849 | Cruniform:MR0.50:El1 -0.2352 | Crsingle:MR0.70:El1 0.1683
Cruniform:MR0.70:El1 -0.4336 | Crsingle:MR0.90:El1 0.0282 Cruniform:MR0.90:El1 -0.9027
Crsingle:MRO0.05:E15% -0.0271 | Cruniform:MR0.05:EI5% -0.0446 | Crsingle:MRO0.10:EI5% -0.0341
Cruniform:MR0.10:E15% -0.0483 | Crsingle:MR0.20:EI5% -0.0015 | Cruniform:MR0.20:EI5% 0.0380
Crsingle:MR0.50:E15% -0.0278 | Cruniform:MR0.50:EI5% -0.2005 | Crsingle:MR0.70:EI5% 0.1161
Cruniform:MR0.70:E15% -0.4089 | Crsingle:MR0.90:EI5% 0.0956 Cruniform:MR0.90:E15% -0.9237
PS100:MR0.05: Trlocal 0.0822 PS$200:MR0.05: Trlocal 0.2034 PS400:MR0.05: Trlocal -0.0479
PS100:MR0.10:Trlocal 0.0412 PS$200:MR0.10:Trlocal 0.0364 PS400:MR0.10:Trlocal -0.0523
PS100:MR0.20: Trlocal -0.1589 PS$200:MR0.20: Trlocal -0.1265 PS400:MR0.20:Trlocal -0.2460
PS100:MR0.50: Trlocal -0.2276 PS$200:MR0.50: Trlocal -0.2271 PS400:MR0.50: Trlocal -0.3493
PS100:MR0.70:Trlocal -0.2277 PS$200:MR0.70: Trlocal -0.3095 PS400:MR0.70:Trlocal -0.4269

83

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
PS100:MR0.90: Trlocal -0.1573 PS200:MR0.90: Trlocal -0.2880 PS400:MR0.90: Trlocal -0.4557
PS100:MRO0.05: Trscale2 0.0896 PS200:MR0.05: Trscale2 0.2031 PS400:MR0.05: Trscale2 -0.0160
PS100:MR0.10:Trscale2 0.1346 PS200:MR0.10:Trscale2 0.1788 PS400:MR0.10:Trscale2 0.0691
PS100:MR0.20:Trscale2 -0.0456 PS200:MR0.20:Trscale2 0.0593 PS400:MR0.20:Trscale2 -0.1186
PS100:MR0.50:Trscale2 -0.1927 PS200:MR0.50: Trscale2 -0.0943 PS400:MR0.50: Trscale2 -0.1999
PS100:MRO0.70:Trscale2 -0.1313 PS200:MR0.70:Trscale2 -0.1117 PS400:MR0.70:Trscale2 -0.2947
PS100:MR0.90: Trscale2 -0.0845 PS200:MR0.90: Trscale2 -0.2116 PS400:MR0.90:Trscale2 -0.3642
PS100:MRO0.05: Trscale4 0.1817 PS200:MR0.05: Trscale4 0.2702 PS400:MR0.05: Trscale4 -0.0490
PS100:MRO0.10:Trscale4 0.0982 PS200:MR0.10:Trscale4 0.1248 PS400:MR0.10:Trscale4 -0.0829
PS100:MR0.20:Trscale4 -0.1450 PS200:MR0.20:Trscale4 -0.0601 PS400:MR0.20:Trscale4 -0.3241
PS100:MRO0.50: Trscale4 -0.1354 PS200:MR0.50: Trscale4 -0.1367 PS400:MR0.50: Trscale4 -0.3680
PS100:MRO0.70:Trscale4 -0.1359 PS200:MR0.70:Trscale4 -0.2443 PS400:MR0.70:Trscale4 -0.4919
PS100:MR0.90: Trscale4 -0.0686 PS200:MR0.90: Trscale4 -0.2152 PS400:MR0.90:Trscale4 -0.5424
PS100:MRO0.05:EI1 -0.0294 PS200:MRO0.05:EI1 0.0791 PS400:MRO0.05:EI1 0.1035
PS100:MRO0.10:El1 0.0792 PS200:MR0.10:EI1 0.1435 PS400:MRO0.10:EI1 0.1338
PS100:MR0.20:EI1 0.1488 PS200:MR0.20:EI1 0.2371 PS400:MR0.20:EI1 0.2480
PS100:MR0.50:EI1 0.0350 PS200:MR0.50:EI1 0.3079 PS400:MR0.50:EI1 0.2706
PS100:MRO0.70:EI1 0.2255 PS200:MR0.70:EI1 0.4302 PS400:MRO0.70:El1 0.3955
PS100:MR0.90:EI1 0.3383 PS200:MR0.90:EI1 0.4833 PS400:MR0.90:EI1 0.5515
PS100:MR0.05:EI5% -0.1229 PS200:MR0.05:EI5% -0.0526 PS400:MR0.05:EI5% -0.0509
PS100:MR0.10:EI5% 0.0301 PS200:MR0.10:EI5% 0.0941 PS400:MR0.10:EI5% 0.0959
PS100:MR0.20:EI5% 0.1688 PS200:MR0.20:EI5% 0.2601 PS400:MR0.20:EI5% 0.2687
PS100:MR0.50:EI5% 0.1268 PS200:MR0.50:EI5% 0.3426 PS400:MR0.50:EI5% 0.3645
PS100:MR0.70:EI5% 0.2596 PS200:MR0.70:EI5% 0.3916 PS400:MR0.70:EI5% 0.4028
PS100:MR0.90:EI5% 0.2654 PS200:MR0.90:EI5% 0.3992 PS400:MR0.90:EI5% 0.4825

Table 33: Coeflicients

Ruspini2.

A.2 Group-number

Table 34 lists the coefficients for the correctness model for the Towns2 data set.

for the time model for group-number GCAs on

and Towns2

84

The residual

deviance of this model (3493.9 on 2634 degrees of freedom) is large, suggesting that the model
does not fit the data well. The histograms in Figure 38 confirm this. The addition of higher order

terms may improve the fit of the model, although initial attempts at this failed to do so. Smoothing

techniques may be more appropriate for the analysis of this data.

%)
o 0
03 .‘28
0 =N
.8 tH
= °g

—
08 go;;
9] [S
ay 33
£ z3
2 °
o]
o o
0 1 2 3 4 5

Number of Correct Runs

[

0.0

0.2 0.4 0. .8
Probability of Correctness

1.0

Figure 38: Comparison of experimental and fitted correctness for group-number GCAs on Towns2.

cont.

Covariate Effect Covariate Effect Covariate Effect
(|ntercept) 0.0163 PS100 0.0592 PS200 -0.4136
PS400 -1.2579 Trlocal -0.4924 Trscale2 -0.0251
Trscaled 0.0649 El1 -0.6090 EI5% -0.2441
Crsingle -0.6793 | Cruniform -0.7935 | CP0.70 -0.1819

APPENDIX A.

MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
CP0.90 0.0790 MRO0.05 0.4244 MRO0.10 -0.0872
MRO0.20 0.2146 MRO0.50 -0.0274 MRO0.70 0.2263
MR0.90 -0.3584 PS100:Trlocal -0.0570 PS200:Trlocal -0.3305
PS400:Trlocal -0.2988 PS100:Trscale2 -0.7732 PS200:Trscale2 -0.2080
PS400:Trscale2 -1.5268 PS100:Trscale4 -0.3497 PS200:Trscale4 -0.2279
PS400:Trscale4 -1.1307 PS100:El1 -0.0702 PS200:El1 0.4306
PS400:El1 0.8390 PS100:E15% -0.3911 PS200:E15% 0.6444
PS400:E15% 0.9410 PS100:Crsingle 0.2175 PS5200:Crsingle 0.5694
PS5400:Crsingle 1.4896 PS5100:Cruniform -0.1638 PS5200:Cruniform -0.2041
PS400:Cruniform 0.6541 PS100:CP0.70 0.0754 PS200:CP0.70 0.2575
PS400:CP0.70 -0.0134 PS100:CP0.90 -0.0679 PS200:CP0.90 -0.3923
PS400:CP0.90 0.0371 PS100:MR0.05 -0.1367 PS200:MR0.05 -0.2002
PS400:MR0.05 0.0418 PS100:MR0.10 0.3696 PS200:MR0.10 0.0084
PS400:MR0.10 0.6928 PS100:MR0.20 -0.2155 PS200:MR0.20 -0.1927
PS400:MR0.20 0.8380 PS100:MR0.50 -0.0929 PS200:MR0.50 0.1983
PS400:MR0.50 0.9534 PS100:MR0.70 -0.0410 PS200:MR0.70 -0.0272
PS400:MR0.70 0.2401 PS100:MR0.90 0.3261 PS200:MR0.90 0.5527
PS400:MR0.90 0.2470 Trlocal:Ell 1.2626 Trscale2:Ell 1.3048
Trscale4:El1 0.8623 Trlocal:EI5% 0.5797 Trscale2:EI5% 0.2377
Trscale4:EI5% 0.4699 Trlocal:Crsingle 0.5308 Trscale2:Crsingle 1.1076
Trscale4:Crsingle 0.2667 Trlocal:Cruniform 0.3639 Trscale2:Cruniform 0.3767
Trscale4:Cruniform 0.7979 Trlocal:CP0.70 0.0101 Trscale2:CP0.70 -0.3035
Trscale4:CP0.70 0.2550 Trlocal:CP0.90 0.0152 Trscale2:CP0.90 -0.3099
Trscale4:CP0.90 0.1515 Trlocal:MR0.05 -0.2313 Trscale2:MR0.05 -0.6699
Trscale4:MR0.05 -1.4110 Trlocal:MR0.10 0.1214 Trscale2:MR0.10 -0.4448
Trscale4:MR0.10 -0.9189 Trlocal:MR0.20 0.1059 Trscale2:MR0.20 -0.3195
Trscale4:MR0.20 -0.8365 Trlocal:MR0.50 -0.1956 Trscale2:MR0.50 -0.4191
Trscale4:MR0.50 -1.0612 Trlocal:MR0.70 -1.3977 Trscale2:MR0.70 -1.3987
Trscale4:MR0.70 -1.9714 Trlocal:MR0.90 -1.6628 Trscale2:MR0.90 -2.8230
Trscale4:MR0.90 -2.9995 | El1:Crsingle 0.7620 EI5%:Crsingle 1.1177
El1:Cruniform 0.7530 EI5%:Cruniform 1.2061 El1:CP0.70 0.2190
EI5%:CP0.70 0.3604 El1:CP0.90 0.1442 EI5%:CP0.90 0.2142
El1:MR0.05 -0.1687 EI5%:MR0.05 -0.0381 ElI1:MR0.10 0.2568
EI5%:MR0.10 -0.5664 ElI1:MR0.20 0.0016 EI5%:MR0.20 -0.1489
El1:MR0.50 0.0738 EI5%:MR0.50 -0.0242 ElI1:MR0.70 0.8053
EI5%:MR0.70 0.0929 EI1:MR0.90 1.1449 EI5%:MR0.90 0.9163
Crsingle:MRO0.05 -0.6166 | Cruniform:MR0.05 0.1206 Crsingle:MRO0.10 -0.2023
Cruniform:MR0.10 0.5849 Crsingle:MRO0.20 -0.0357 | Cruniform:MR0.20 0.4234
Crsingle:MRO0.50 -0.5131 Cruniform:MR0.50 0.5680 Crsingle:MRO0.70 0.5162
Cruniform:MR0.70 1.0597 Crsingle:MRO0.90 1.0559 Cruniform:MR0.90 1.5341
PS100:Trlocal:El1 0.0916 PS200:Trlocal:El1 -0.1509 PS400:Trlocal:El1 -0.0330
PS100:Trscale2:El1 -0.0257 PS200:Trscale2:El1 -0.1329 PS400:Trscale2:El1 -0.0945
PS100:Trscale4:El1 -0.0774 PS200:Trscale4:El1 -0.1183 PS400:Trscale4:El1 0.2117
PS100:Trlocal:EI5% -0.1157 PS200:Trlocal:EI5% -0.0203 PS400:Trlocal:EI5% 1.1924
PS100:Trscale2:EI5% 0.0316 PS200:Trscale2:EI5% 0.3178 PS400: Trscale2:EI5% 1.3507
PS100:Trscale4:EI5% 0.1628 PS200:Trscale4:EI5% -0.3612 PS400: Trscale4:EI5% 1.3883
PS100:Trlocal:CP0.70 -0.1877 PS200:Trlocal:CP0.70 0.1399 PS400:Trlocal:CP0.70 -0.2312
PS100:Trscale2:CP0.70 0.3627 PS200:Trscale2:CP0.70 0.5063 PS400:Trscale2:CP0.70 0.3807
PS100:Trscale4:CP0.70 -0.6548 PS200:Trscale4:CP0.70 -0.1328 PS400:Trscale4:CP0.70 0.0151
PS100:Trlocal:CP0.90 -0.3893 PS200:Trlocal:CP0.90 0.4392 PS400:Trlocal:CP0.90 -0.4901
PS100:Trscale2:CP0.90 0.5204 PS200:Trscale2:CP0.90 0.6193 PS400:Trscale2:CP0.90 0.0362
PS100:Trscale4:CP0.90 -0.5900 PS200:Trscale4:CP0.90 0.3665 PS400:Trscale4:CP0.90 -0.6317
PS100:Trlocal:MR0.05 -0.0692 PS200:Trlocal:MR0.05 0.4122 PS400:Trlocal:MR0.05 0.6231
PS100:Trscale2:MR0.05 -0.1647 PS200:Trscale2:MR0.05 -0.2042 PS400:Trscale2:MR0.05 0.9546
PS100:Trscale4:MR0.05 0.6849 PS200:Trscale4:MR0.05 0.4664 PS400:Trscale4:MR0.05 0.7748
PS100:Trlocal:MR0.10 0.0807 PS200:Trlocal:MR0.10 0.4725 PS400:Trlocal:MR0.10 0.2655
PS100:Trscale2:MR0.10 0.2638 PS200:Trscale2:MR0.10 -0.2469 PS400:Trscale2:MR0.10 0.7317
PS100:Trscale4:MR0.10 0.7133 PS200:Trscale4:MR0.10 0.9757 PS400:Trscale4:MR0.10 0.7997
PS100:Trlocal:MR0.20 0.3592 PS200:Trlocal:MR0.20 0.2528 PS400:Trlocal:MR0.20 -0.5889
PS100:Trscale2:MR0.20 0.5722 PS200:Trscale2:MR0.20 -0.4241 PS400:Trscale2:MR0.20 0.3746

cont.

85

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
PS100:Trscale4:MR0.20 0.8317 PS200:Trscale4:MR0.20 0.4785 PS400:Trscale4:MR0.20 0.2606
PS100:Trlocal:MR0.50 -0.0943 PS200:Trlocal:MR0.50 0.0868 PS400:Trlocal:MR0.50 -1.1640
PS100:Trscale2:MR0.50 0.6654 PS200:Trscale2:MR0.50 -0.3871 PS400:Trscale2:MR0.50 0.0265
PS100:Trscale4:MR0.50 1.1694 PS200:Trscale4:MR0.50 -0.0237 PS400:Trscale4:MR0.50 -0.2410
PS100:Trlocal:MR0.70 0.0625 PS200:Trlocal:MR0.70 -0.0883 PS400:Trlocal:MR0.70 -0.7016
PS100:Trscale2:MR0.70 0.0708 PS200:Trscale2:MR0.70 -1.2915 PS400:Trscale2:MR0.70 -0.6538
PS100:Trscale4:MR0.70 0.5010 PS200:Trscale4:MR0.70 -0.1179 PS400:Trscale4:MR0.70 -0.5025
PS100:Trlocal:MR0.90 0.2524 PS200:Trlocal:MR0.90 -0.4611 PS400:Trlocal:MR0.90 -1.0660
PS100:Trscale2:MR0.90 0.5682 PS200:Trscale2:MR0.90 -0.8716 PS400:Trscale2:MR0.90 -0.6303
PS100:Trscale4:MR0.90 0.7817 PS200:Trscale4:MR0.90 -0.5102 PS400:Trscale4:MR0.90 -1.1989
PS5100:El1:Crsingle -0.4868 PS5200:El1:Crsingle -0.0064 PS400:El1:Crsingle -0.0652
PS100:E15%:Crsingle -0.0271 | PS200:EI5%:Crsingle -0.5608 | PS400:EI5%:Crsingle -1.5655
PS100:EI1:Cruniform -0.3206 PS200:El1:Cruniform 0.4398 PS400:EI1:Cruniform 0.4516
PS100:E15%:Cruniform -0.1253 | PS200:EI5%:Cruniform 0.0455 PS400:E15%:Cruniform -1.0153
PS100:EI1:CP0.70 0.3798 PS200:EI1:CP0.70 -0.7366 PS400:EI1:CP0.70 -0.2884
PS100:E15%:CP0.70 0.1269 PS200:E15%:CP0.70 -0.6140 PS400:E15%:CP0.70 0.0315
PS100:EI1:CP0.90 -0.0230 PS200:EI1:CP0.90 -0.3499 PS400:E11:CP0.90 -0.2389
PS100:E15%:CP0.90 0.2772 PS200:E15%:CP0.90 -0.0042 PS400:E15%:CP0.90 -0.0613
PS100:EI1:MR0.05 0.6082 PS200:EI1:MR0.05 0.4234 PS400:EI1:MR0.05 -0.3330
PS100:E15%:MR0.05 0.9577 PS200:E15%:MR0.05 0.2178 PS400:E15%:MR0.05 -0.1702
PS100:EI1:MR0.10 -0.0485 PS200:EI1:MR0.10 0.2921 PS400:EI1:MR0.10 -0.6182
PS100:E15%:MR0.10 0.0624 PS200:E15%:MR0.10 -0.0795 PS400:E15%:MR0.10 -0.7380
PS100:EI1:MR0.20 0.1810 PS200:EI1:MR0.20 0.8461 PS400:EI1:MR0.20 -0.5836
PS100:E15%:MR0.20 0.1940 PS200:E15%:MR0.20 0.5061 PS400:E15%:MR0.20 -0.3672
PS100:EI1:MR0.50 0.9379 PS200:EI1:MR0.50 0.6032 PS400:EI1:MR0.50 -0.1090
PS100:E15%:MR0.50 0.7728 PS200:E15%:MR0.50 0.2042 PS400:E15%:MR0.50 -0.0158
PS100:EI1:MR0.70 0.3750 PS200:EI1:MR0.70 -0.1725 PS400:EI1:MR0.70 -0.2501
PS100:E15%:MR0.70 0.0527 PS200:E15%:MR0.70 0.5216 PS400:E15%:MR0.70 0.2961
PS100:EI1:MR0.90 0.0293 PS200:EI1:MR0.90 -0.56382 PS400:EI1:MR0.90 0.2145
PS100:E15%:MR0.90 -0.0658 PS200:E15%:MR0.90 -0.1129 PS400:E15%:MR0.90 0.1263
Trlocal:El1:Crsingle -1.2683 | Trscale2:El1:Crsingle -1.2155 | Trscale4:El1:Crsingle -0.8199
Trlocal:EI5%:Crsingle -1.4448 | Trscale2:EI5%:Crsingle -1.4345 | Trscale4:EI5%:Crsingle -1.1153
Trlocal:EI1:Cruniform -0.6899 Trscale2:EI1:Cruniform -0.8144 Trscale4:El1:Cruniform -0.9308
Trlocal:EI15%:Cruniform -0.7348 Trscale2:EI5%:Cruniform -0.7863 Trscale4:EI5%:Cruniform -1.1547
Trlocal:EI1:MR0.05 -0.2528 Trscale2:EI1:MR0.05 -0.1546 Trscale4:EI1:MR0.05 0.4280
Trlocal:EI5%:MR0.05 -0.7807 | Trscale2:EI5%:MR0.05 0.0085 Trscale4:EI5%:MR0.05 0.1764
Trlocal:EI1:MR0.10 0.0730 Trscale2:EI1:MR0.10 -0.2196 Trscale4:EI1:MR0.10 0.1891
Trlocal:EI5%:MR0.10 0.4752 Trscale2:EI5%:MR0.10 1.0540 Trscale4:EI5%:MR0.10 0.4916
Trlocal:EI1:MR0.20 0.1910 Trscale2:EI1:MR0.20 -0.2181 Trscale4:EI1:MR0.20 -0.0078
Trlocal:EI5%:MR0.20 0.2562 Trscale2:EI5%:MR0.20 0.3671 Trscale4:EI5%:MR0.20 0.3862
Trlocal:EI1:MR0.50 0.0733 Trscale2:EI1:MR0.50 -0.0055 Trscale4:EI1:MR0.50 0.2469
Trlocal:EI5%:MR0.50 0.5409 Trscale2:EI5%:MR0.50 0.5119 Trscale4:EI5%:MR0.50 0.3165
Trlocal:EI1:MR0.70 0.5823 Trscale2:EI1:MR0.70 0.9482 Trscale4:EI1:MR0.70 0.9889
Trlocal:EI5%:MR0.70 1.5940 Trscale2:EI5%:MR0.70 1.8066 Trscale4:EI5%:MR0.70 1.6550
Trlocal:EI1:MR0.90 0.7059 Trscale2:EI1:MR0.90 1.5149 Trscale4:EI1:MR0.90 1.4046
Trlocal:EI5%:MR0.90 1.8066 Trscale2:EI5%:MR0.90 2.4345 Trscale4:EI5%:MR0.90 2.5292
Trlocal:Crsingle:MRO0.05 1.0303 Trscale2:Crsingle:MR0.05 0.6468 Trscale4:Crsingle:MR0.05 1.1297
Trlocal:Cruniform:MR0.05 0.1603 Trscale2:Cruniform:MRO0.05 0.6945 Trscale4:Cruniform:MRO0.05 0.4819
Trlocal:Crsingle:MRO0.10 -0.0174 | Trscale2:Crsingle:MR0.10 -0.2466 | Trscale4:Crsingle:MR0.10 0.2421
Trlocal:Cruniform:MR0.10 -0.4287 Trscale2:Cruniform:MRO0.10 0.0975 Trscale4:Cruniform:MR0.10 -0.1205
Trlocal:Crsingle:MRO0.20 0.3442 Trscale2:Crsingle:MR0.20 -0.1343 | Trscale4:Crsingle:MR0.20 0.5397
Trlocal:Cruniform:MR0.20 0.0809 Trscale2:Cruniform:MRO0.20 0.3830 Trscale4:Cruniform:MRO0.20 0.3837
Trlocal:Crsingle:MR0.50 1.2783 Trscale2:Crsingle:MR0.50 0.5028 Trscale4:Crsingle:MR0.50 1.1198
Trlocal:Cruniform:MR0.50 0.4900 Trscale2:Cruniform:MRO0.50 0.1254 Trscale4:Cruniform:MRO0.50 0.4454
Trlocal:Crsingle:MRO0.70 1.6183 Trscale2:Crsingle:MR0.70 0.8683 Trscale4:Crsingle:MR0.70 1.0846
Trlocal:Cruniform:MR0.70 0.4110 Trscale2:Cruniform:MRO0.70 0.4336 Trscale4:Cruniform:MRO0.70 0.2885
Trlocal:Crsingle:MR0.90 1.3624 Trscale2:Crsingle:MR0.90 1.6787 Trscale4:Crsingle:MR0.90 2.1103
Trlocal:Cruniform:MR0.90 0.6762 Trscale2:Cruniform:MR0.90 1.0238 Trscale4:Cruniform:MR0.90 0.6941
El1:Crsingle:MR0.05 0.1553 EI5%:Crsingle:MR0.05 -0.0662 | EI1:Cruniform:MR0.05 -0.2909
EI5%:Cruniform:MR0.05 -0.4194 | El1:Crsingle:MRO0.10 0.2435 EI5%:Crsingle:MR0.10 0.4049

cont.

86

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
El1:Cruniform:MRO0.10 -0.6569 | EI5%:Cruniform:MR0.10 -0.2549 | EI1:Crsingle:MR0.20 -0.0942
EI5%:Crsingle:MRO0.20 -0.3240 | El1:Cruniform:MR0.20 -0.3865 | EI5%:Cruniform:MR0.20 -0.9746
El1:Crsingle:MR0.50 -0.3585 | EI5%:Crsingle:MR0.50 -0.2245 | EI1:Cruniform:MR0.50 -0.6551
EI5%:Cruniform:MR0.50 -1.1894 | El1:Crsingle:MRO0.70 -1.1167 | EI5%:Crsingle:MR0.70 -1.7169
El1:Cruniform:MRO0.70 -1.1085 | EI5%:Cruniform:MR0.70 -1.6653 | EIl1:Crsingle:MR0.90 -1.7653
EI5%:Crsingle:MR0.90 -2.6483 | El1:Cruniform:MR0.90 -1.8884 | EI5%:Cruniform:MR0.90 -2.4812

Table 34: Coeflicients for the correctness

GCAs on Towns?2.

model for group-number

87

The fit of time model for the Town2 data is also questionable due to a high residual deviance

(22985 on 2073 degrees of freedom). The range of time values predicted by this model to not match

the experimental values (as can be seen in Figure 39). The residual plot shows a definite change in

the variance of the residuals over the fitted scale (Figure 40). This model includes all first, second

and third order terms which suggests the addition of higher order terms may improve the fit. The

coefficients for this model are given in Table 35.

Number of Trials
200 400

0

Figure 39

400

Number of Trials
200

0

50 100 150

200 250 300

0
Average Time per Correct Run (seconds CPU)

0 100 200 300
Fitted Time per Correct Run (seconds CPU)

Deviance Residuals
-10-5 0 5 10 15

10 20

15 25 30
Transformed Fitted Values

35

: Comparison of experimental and fitted time for group-number GCAs on Towns2.

Figure 40: Residual plot for time model for group-number GCAs on Towns2.

cont.

Covariate Effect Covariate Effect Covariate Effect
(lntercept) 4.8261 PS100 0.0704 PS200 -0.0492
PS400 0.3912 Trlocal 0.0637 Trscale2 0.1773
Trscaled -0.1928 El1 -0.1370 EI5% -0.1151
Crsingle -0.8216 | Cruniform -0.3055 | CP0.70 -0.1627
CP0.90 -0.1516 MRO0.05 -1.2388 MRO0.10 -1.3392
MRO0.20 -1.6200 MRO0.50 -1.5342 MRO0.70 -1.5299
MR0.90 -1.4749 PS100:Trlocal 0.2025 PS200:Trlocal 0.2561
PS400:Trlocal 0.3257 PS100:Trscale2 -0.1432 PS200:Trscale2 0.2271
PS400:Trscale2 0.4857 PS100:Trscale4 0.0536 PS200:Trscale4 0.4134
PS400:Trscale4 0.4241 PS100:El1 -0.2079 PS200:EI1 -0.2430

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
PS400:El1 -0.3495 PS100:E15% -0.1150 PS200:E15% -0.0382
PS400:E15% -0.2306 | PS100:Crsingle 0.2071 PS5200:Crsingle 0.2455
PS5400:Crsingle 0.3135 PS5100:Cruniform -0.0511 PS5200:Cruniform 0.2417
PS400:Cruniform 0.2144 PS100:CP0.70 0.0163 PS200:CP0.70 0.4829
PS400:CP0.70 0.2968 PS100:CP0.90 0.1011 PS200:CP0.90 0.5309
PS400:CP0.90 0.3478 PS100:MR0.05 0.2609 PS200:MR0.05 0.2836
PS400:MR0.05 0.2483 PS100:MR0.10 0.2560 PS200:MR0.10 0.6391
PS400:MR0.10 0.5631 PS100:MR0.20 0.5402 PS200:MR0.20 0.3580
PS400:MR0.20 0.7901 PS100:MR0.50 0.2455 PS200:MR0.50 0.2847
PS400:MR0.50 0.9076 PS100:MR0.70 0.0337 PS200:MR0.70 0.5842
PS400:MR0.70 0.5966 PS100:MR0.90 0.5928 PS200:MR0.90 0.8055
PS400:MR0.90 0.4494 Trlocal:Ell -0.1407 Trscale2:Ell -0.1339
Trscale4:El1 0.1309 Trlocal:EI5% -0.2194 | Trscale2:EI5% -0.0854
Trscale4:EI5% -0.0649 | Trlocal:Crsingle 0.5365 Trscale2:Crsingle 0.3135
Trscale4:Crsingle 0.5245 Trlocal:Cruniform 0.1651 Trscale2:Cruniform 0.1060
Trscale4:Cruniform 0.0900 Trlocal:CP0.70 0.1251 Trscale2:CP0.70 0.1645
Trscale4:CP0.70 0.0772 Trlocal:CP0.90 0.1797 Trscale2:CP0.90 0.0701
Trscale4:CP0.90 0.2878 Trlocal:MR0.05 0.6037 Trscale2:MR0.05 0.4086
Trscale4:MR0.05 0.5882 Trlocal:MR0.10 0.9162 Trscale2:MR0.10 0.4879
Trscale4:MR0.10 1.1464 Trlocal:MR0.20 1.2002 Trscale2:MR0.20 0.7018
Trscale4:MR0.20 1.1365 Trlocal:MR0.50 1.6268 Trscale2:MR0.50 1.4779
Trscale4:MR0.50 1.6248 Trlocal:MR0.70 2.1103 Trscale2:MR0.70 2.0117
Trscale4:MR0.70 2.1821 Trlocal:MR0.90 1.7292 Trscale2:MR0.90 1.6623
Trscale4:MR0.90 2.3046 El1:Crsingle -0.1959 | EI5%:Crsingle 0.0475
El1:Cruniform 0.1395 EI5%:Cruniform 0.1241 El1:CP0.70 0.0474
EI5%:CP0.70 0.0181 El1:CP0.90 0.1311 EI5%:CP0.90 0.1433
El1:MR0.05 0.1543 EI5%:MR0.05 -0.2669 ElI1:MR0.10 -0.6172
EI5%:MR0.10 -1.0622 ElI1:MR0.20 -0.0080 EI5%:MR0.20 -0.0402
El1:MR0.50 -0.5907 EI5%:MR0.50 -0.8498 ElI1:MR0.70 -0.3675
EI5%:MR0.70 -0.7265 EI1:MR0.90 0.1303 EI5%:MR0.90 -0.5188
Crsingle:CP0.70 0.2818 Cruniform:CP0.70 -0.1676 | Crsingle:CP0.90 0.1745
Cruniform:CP0.90 0.0553 Crsingle:MRO0.05 0.2987 Cruniform:MR0.05 0.7027
Crsingle:MRO0.10 0.5318 Cruniform:MR0.10 0.1743 Crsingle:MRO0.20 0.2612
Cruniform:MR0.20 0.7599 Crsingle:MRO0.50 -0.1652 | Cruniform:MR0.50 0.2857
Crsingle:MRO0.70 -0.1862 | Cruniform:MR0.70 -0.1506 | Crsingle:MR0.90 -0.0824
Cruniform:MRO0.90 0.5263 CP0.70:MRO0.05 0.0800 CP0.90:MR0.05 0.4124
CP0.70:MR0.10 0.2621 CP0.90:MR0.10 0.4495 CP0.70:MR0.20 0.3725
CP0.90:MR0.20 0.0539 CP0.70:MR0.50 0.1964 CP0.90:MR0.50 0.0915
CP0.70:MR0.70 0.1091 CP0.90:MR0.70 0.4189 CP0.70:MR0.90 0.4626
CP0.90:MR0.90 -0.0091 PS100:Trlocal:El1 -0.0462 PS200:Trlocal:El1 0.1628
PS400:Trlocal:El1 0.3141 PS100:Trscale2:El1 0.0024 PS200:Trscale2:El1 0.1332
PS400:Trscale2:El1 0.1038 PS100:Trscale4:El1 -0.1150 PS200:Trscale4:El1 0.0394
PS400:Trscale4:El1 0.2659 PS100:Trlocal:EI5% -0.1411 PS200:Trlocal:EI5% 0.0076
PS400:Trlocal:EI5% 0.0846 PS100:Trscale2:EI5% -0.2512 | PS200:Trscale2:EI5% -0.1666
PS400: Trscale2:EI5% -0.2326 | PS100:Trscale4:EI5% 0.0314 PS200:Trscale4:EI5% -0.0891
PS400:Trscale4:EI5% -0.0575 PS100:Trlocal:Crsingle -0.0482 PS5200:Trlocal:Crsingle -0.3027
PS5400:Trlocal:Crsingle -0.2827 | PS100:Trscale2:Crsingle -0.0033 PS5200:Trscale2:Crsingle -0.1604
PS5400:Trscale2:Crsingle -0.3755 | PS100:Trscale4:Crsingle -0.2041 PS5200:Trscale4:Crsingle -0.3237
PS400:Trscale4:Crsingle -0.5469 | PS100:Trlocal:Cruniform 0.2483 P5200:Trlocal:Cruniform 0.1478
PS400:Trlocal:Cruniform 0.1003 PS100:Trscale2:Cruniform 0.3226 PS200:Trscale2:Cruniform 0.0738
PS400:Trscale2:Cruniform -0.1592 PS100:Trscale4:Cruniform 0.3954 PS200:Trscale4:Cruniform 0.1607
PS400:Trscale4:Cruniform -0.0047 PS100:Trlocal:CP0.70 -0.1353 PS200:Trlocal:CP0.70 -0.3525
PS400:Trlocal:CP0.70 -0.1790 PS100:Trscale2:CP0.70 -0.0008 PS200:Trscale2:CP0.70 -0.3062
PS400:Trscale2:CP0.70 -0.0963 PS100:Trscale4:CP0.70 -0.0285 PS200:Trscale4:CP0.70 -0.3139
PS400:Trscale4:CP0.70 -0.0248 PS100:Trlocal:CP0.90 -0.1069 PS200:Trlocal:CP0.90 -0.1037
PS400:Trlocal:CP0.90 -0.0441 PS100:Trscale2:CP0.90 0.1084 PS200:Trscale2:CP0.90 -0.0397
PS400:Trscale2:CP0.90 0.0432 PS100:Trscale4:CP0.90 -0.0842 PS200:Trscale4:CP0.90 -0.1475
PS400:Trscale4:CP0.90 0.0429 PS100:Trlocal:MR0.05 0.0642 PS200:Trlocal:MR0.05 0.3815
PS400:Trlocal:MR0.05 0.1514 PS100:Trscale2:MR0.05 0.3857 PS200:Trscale2:MR0.05 0.3887
PS400:Trscale2:MR0.05 0.1590 PS100:Trscale4:MR0.05 0.2851 PS200:Trscale4:MR0.05 0.3632

cont.

88

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

cont.

Covariate Effect Covariate Effect Covariate Effect
PS400:Trscale4:MR0.05 0.2886 PS100:Trlocal:MR0.10 -0.0577 PS$200:Trlocal:MRO0.10 -0.1557
PS400:Trlocal:MR0.10 -0.1870 PS100:Trscale2:MRO0.10 0.3891 PS200:Trscale2:MRO0.10 0.1103
PS400:Trscale2:MRO0.10 0.1904 PS100:Trscale4:MRO0.10 -0.2982 PS200:Trscale4:MRO0.10 -0.4066
PS400:Trscale4:MRO0.10 -0.4717 PS100:Trlocal:MR0.20 -0.3867 PS$200:Trlocal:MR0.20 -0.0497
PS400:Trlocal:MR0.20 -0.5962 PS100:Trscale2:MR0.20 0.1031 PS200:Trscale2:MR0.20 0.3800
PS400:Trscale2:MR0.20 -0.1839 PS100:Trscale4:MR0.20 -0.1883 PS200:Trscale4:MR0.20 0.2214
PS400:Trscale4:MR0.20 -0.2213 PS100:Trlocal:MR0.50 0.0973 PS$200:Trlocal:MR0.50 0.0907
PS400:Trlocal:MR0.50 -0.5383 PS100:Trscale2:MR0.50 0.3241 PS200:Trscale2:MR0.50 0.2542
PS400:Trscale2:MR0.50 -0.3400 PS100:Trscale4:MR0.50 0.3362 PS200:Trscale4:MR0.50 -0.0035
PS400:Trscale4:MR0.50 -0.4269 PS100:Trlocal:MR0.70 -0.1460 PS$200:Trlocal:MR0.70 -0.2299
PS400:Trlocal:MR0.70 -0.7035 PS100:Trscale2:MR0.70 0.2924 PS200:Trscale2:MR0.70 0.1463
PS400:Trscale2:MR0.70 -0.5560 PS100:Trscale4:MR0.70 0.1254 PS200:Trscale4:MR0.70 -0.1765
PS400:Trscale4:MRO0.70 -0.6106 PS100:Trlocal:MR0.90 0.0431 PS$200:Trlocal:MR0.90 -0.3133
PS400:Trlocal:MR0.90 -0.2514 PS100:Trscale2:MR0.90 0.2298 PS200:Trscale2:MR0.90 -0.2393
PS400:Trscale2:MR0.90 0.0737 PS100:Trscale4:MR0.90 -0.0386 PS200:Trscale4:MR0.90 -0.5498
PS400:Trscale4:MR0.90 0.0773 PS5100:El1:Crsingle 0.3495 PS5200:El1:Crsingle 0.2748
PS400:El1:Crsingle 0.3952 PS100:E15%:Crsingle 0.1770 PS200:E15%:Crsingle 0.0932
PS400:E15%:Crsingle -0.0059 | PS100:El1:Cruniform 0.0682 PS5200:El1:Cruniform -0.1105
PS400:El1:Cruniform 0.1382 PS100:E15%:Cruniform 0.1144 PS200:E15%:Cruniform -0.0035
PS400:E15%:Cruniform 0.0217 PS100:EI11:CP0.70 0.1619 PS$200:EI11:CP0.70 -0.0583
PS400:E11:CP0.70 -0.0476 PS100:E15%:CP0.70 0.0145 PS200:E15%:CP0.70 -0.2614
PS400:E15%:CP0.70 -0.1765 PS100:EI11:CP0.90 0.0641 PS$200:E11:CP0.90 -0.0488
PS400:E11:CP0.90 -0.1906 PS100:E15%:CP0.90 -0.1679 PS200:E15%:CP0.90 -0.3572
PS400:E15%:CP0.90 -0.2069 PS100:EI1:MR0.05 -0.2520 PS$200:E11:MR0.05 -0.1123
PS400:E11:MR0.05 0.1063 PS100:E15%:MR0.05 -0.0057 PS200:E15%:MR0.05 0.1329
PS400:E15%:MR0.05 0.3863 PS100:EI1:MR0.10 0.5227 PS$200:E11:MR0.10 1.0112
PS400:E11:MR0.10 0.9922 PS100:E15%:MR0.10 0.7703 PS200:E15%:MR0.10 1.0136
PS400:E15%:MR0.10 0.9113 PS100:EI1:MR0.20 0.4139 PS$200:E11:MR0.20 0.6507
PS400:E11:MR0.20 0.7819 PS100:E15%:MR0.20 0.2971 PS200:E15%:MR0.20 0.6330
PS400:E15%:MR0.20 0.7636 PS100:EI1:MR0.50 0.4170 PS$200:E11:MR0.50 0.9139
PS400:E11:MR0.50 0.8368 PS100:E15%:MR0.50 0.4564 PS200:E15%:MR0.50 0.8843
PS400:E15%:MR0.50 0.9183 PS100:EI1:MR0.70 0.5567 PS$200:E11:MR0.70 0.5661
PS400:E11:MR0.70 1.1095 PS100:E15%:MR0.70 0.6051 PS200:E15%:MR0.70 0.6518
PS400:E15%:MR0.70 1.1223 PS100:E11:MR0.90 0.2449 PS$200:E11:MR0.90 0.3150
PS400:E11:MR0.90 0.5996 PS100:E15%:MR0.90 -0.0188 PS200:E15%:MR0.90 0.2850
PS400:E15%:MR0.90 0.6141 PS100:Crsingle:CP0.70 -0.0904 P5200:Crsingle:CP0.70 -0.0921
PS5400:Crsingle:CP0.70 -0.1444 | PS100:Cruniform:CP0.70 0.0941 P5200:Cruniform:CP0.70 -0.0982
PS5400:Cruniform:CP0.70 -0.2333 | PS100:Crsingle:CP0.90 -0.2016 P5200:Crsingle:CP0.90 -0.3046
PS5400:Crsingle:CP0.90 -0.3501 P5100:Cruniform:CP0.90 -0.0389 P5200:Cruniform:CP0.90 -0.3279
PS5400:Cruniform:CP0.90 -0.3874 | PS100:Crsingle:MR0.05 -0.2860 PS5200:Crsingle:MRO0.05 -0.2127
PS5400:Crsingle:MRO0.05 -0.2852 | PS100:Cruniform:MR0.05 -0.4600 P5200:Cruniform:MR0.05 -0.3675
PS5400:Cruniform:MR0.05 -0.2699 | PS100:Crsingle:MR0.10 -0.5361 PS5200:Crsingle:MRO0.10 -0.8165
PS5400:Crsingle:MRO0.10 -0.6451 PS5100:Cruniform:MR0.10 -0.5231 P5200:Cruniform:MR0.10 -0.6083
PS5400:Cruniform:MR0.10 -0.4318 | PS100:Crsingle:MR0.20 -1.0316 P5200:Crsingle:MR0.20 -1.0198
PS5400:Crsingle:MR0.20 -0.9058 | PS100:Cruniform:MR0.20 -0.9619 P5200:Cruniform:MR0.20 -0.8419
PS5400:Cruniform:MR0.20 -0.7767 | PS100:Crsingle:MR0.50 -0.1961 P5200:Crsingle:MRO0.50 0.0504
PS5400:Crsingle:MR0.50 -0.1088 | PS100:Cruniform:MR0.50 -0.4037 P5200:Cruniform:MR0.50 -0.3580
PS5400:Cruniform:MR0.50 -0.6042 | PS100:Crsingle:MR0.70 -0.2065 P5200:Crsingle:MRO0.70 0.1391
PS5400:Crsingle:MRO0.70 0.0995 PS5100:Cruniform:MR0.70 -0.0610 P5200:Cruniform:MR0.70 -0.2957
PS5400:Cruniform:MR0.70 -0.2202 | PS100:Crsingle:MR0.90 -0.3472 PS5200:Crsingle:MR0.90 0.2949
PS5400:Crsingle:MRO0.90 -0.1836 | PS100:Cruniform:MR0.90 -0.5127 P5200:Cruniform:MR0.90 -0.1243
PS5400:Cruniform:MR0.90 -0.6526 P$100:CP0.70:MR0.05 0.2870 P$200:CP0.70:MR0.05 0.2941
P$400:CP0.70:MR0.05 0.3385 P$100:CP0.90:MR0.05 -0.0652 P$200:CP0.90:MR0.05 -0.1683
P$400:CP0.90:MR0.05 0.0129 P$100:CP0.70:MR0.10 0.1491 P$200:CP0.70:MR0.10 0.0559
P$400:CP0.70:MR0.10 0.0832 P$100:CP0.90:MR0.10 0.1031 P$200:CP0.90:MR0.10 -0.3014
P$400:CP0.90:MR0.10 -0.1866 P$100:CP0.70:MR0.20 -0.0667 P$200:CP0.70:MR0.20 -0.0736
PS$400:CP0.70:MR0.20 -0.2124 P$100:CP0.90:MR0.20 0.2008 P$200:CP0.90:MR0.20 -0.0419
PS$400:CP0.90:MR0.20 0.0217 P$100:CP0.70:MR0.50 -0.2009 P$200:CP0.70:MR0.50 -0.2819
P$400:CP0.70:MR0.50 -0.2514 P$100:CP0.90:MR0.50 -0.2991 P$200:CP0.90:MR0.50 -0.2069
P$400:CP0.90:MR0.50 -0.2186 P$100:CP0.70:MR0.70 0.1942 P$200:CP0.70:MR0.70 -0.0597

89

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

cont.

Covariate Effect Covariate Effect Covariate Effect
P$400:CP0.70:MR0.70 -0.0373 P$100:CP0.90:MR0.70 -0.1299 P$200:CP0.90:MR0.70 -0.3095
P$400:CP0.90:MR0.70 -0.1242 P$100:CP0.70:MR0.90 -0.1667 P$200:CP0.70:MR0.90 -0.1296
P$400:CP0.70:MR0.90 0.0476 P$100:CP0.90:MR0.90 -0.0224 P$200:CP0.90:MR0.90 -0.0855
P$400:CP0.90:MR0.90 0.5474 Trlocal:El1:Crsingle -0.2649 Trscale2:El1:Crsingle -0.1724
Trscale4:El1:Crsingle -0.1065 | Trlocal:EI5%:Crsingle -0.3236 | Trscale2:EI5%:Crsingle -0.0789
Trscale4:EI5%:Crsingle -0.2180 | Trlocal:El1:Cruniform -0.5018 | Trscale2:El1:Cruniform -0.1962
Trscale4:El1:Cruniform -0.3689 Trlocal:EI5%:Cruniform -0.5550 Trscale2:EI5%:Cruniform -0.3825
Trscale4:EI5%:Cruniform -0.2486 Trlocal:EI1:CP0.70 0.0522 Trscale2:EI1:CP0.70 0.0119
Trscale4:EI1:CP0.70 -0.0100 Trlocal:EI5%:CP0.70 0.1609 Trscale2:EI5%:CP0.70 0.1215
Trscale4:EI5%:CP0.70 0.1555 Trlocal:EI1:CP0.90 -0.0431 Trscale2:EI1:CP0.90 -0.1101
Trscale4:EI1:CP0.90 -0.2044 Trlocal:EI5%:CP0.90 0.1615 Trscale2:EI5%:CP0.90 0.0076
Trscale4:EI5%:CP0.90 -0.0667 Trlocal:EI1:MRO0.05 -0.0086 Trscale2:EI1:MRO0.05 0.1346
Trscale4:EI1:MRO0.05 -0.1495 Trlocal:EI5%:MR0.05 -0.1620 Trscale2:EI5%:MR0.05 0.0891
Trscale4:EI5%:MR0.05 -0.2351 Trlocal:EI1:MR0.10 -0.1551 Trscale2:EI1:MRO0.10 -0.0769
Trscale4:EI1:MRO0.10 -0.2154 Trlocal:EI5%:MR0.10 0.1766 Trscale2:EI5%:MRO0.10 0.1791
Trscale4:EI5%:MRO0.10 0.0670 Trlocal:EI1:MR0.20 -0.3971 Trscale2:EI1:MR0.20 -0.3011
Trscale4:EI1:MRO0.20 -0.6303 Trlocal:EI5%:MR0.20 -0.5180 Trscale2:EI5%:MR0.20 -0.5984
Trscale4:EI5%:MR0.20 -0.6966 Trlocal:EI1:MR0.50 -0.3277 Trscale2:EI1:MRO0.50 -0.4076
Trscale4:EI1:MRO0.50 -0.3712 Trlocal:EI5%:MR0.50 -0.6607 Trscale2:EI5%:MR0.50 -0.7748
Trscale4:EI5%:MR0.50 -0.7497 Trlocal:EI1:MRO0.70 -0.4596 Trscale2:EI1:MRO0.70 -0.6811
Trscale4:EI1:MRO0.70 -0.6682 Trlocal:EI5%:MR0.70 -0.8603 Trscale2:EI5%:MR0.70 -0.8512
Trscale4:EI5%:MR0.70 -0.9105 Trlocal:EI1:MR0.90 -0.4336 Trscale2:EI1:MR0.90 -0.6385
Trscale4:EI1:MR0.90 -0.8994 Trlocal:EI5%:MR0.90 -0.4841 Trscale2:EI5%:MR0.90 -0.7810
Trscale4:EI5%:MR0.90 -0.9093 | Trlocal:Crsingle:CP0.70 -0.1683 Trscale2:Crsingle:CP0.70 -0.2114
Trscale4:Crsingle:CP0.70 -0.0579 | Trlocal:Cruniform:CP0.70 0.1913 Trscale2:Cruniform:CP0.70 0.0816
Trscale4:Cruniform:CP0.70 0.0857 Trlocal:Crsingle:CP0.90 -0.2665 | Trscale2:Crsingle:CP0.90 -0.1988
Trscale4:Crsingle:CP0.90 -0.1383 | Trlocal:Cruniform:CP0.90 0.0175 Trscale2:Cruniform:CP0.90 -0.1619
Trscale4:Cruniform:CP0.90 -0.1452 | Trlocal:Crsingle:MR0.05 -0.3103 | Trscale2:Crsingle:MR0.05 -0.2001
Trscale4:Crsingle:MR0.05 -0.3887 | Trlocal:Cruniform:MR0.05 -0.6278 | Trscale2:Cruniform:MR0.05 -0.4601
Trscale4:Cruniform:MR0.05 -0.5563 | Trlocal:Crsingle:MRO0.10 -0.6691 | Trscale2:Crsingle:MR0.10 -0.3436
Trscale4:Crsingle:MR0.10 -0.2394 | Trlocal:Cruniform:MR0.10 -0.1465 | Trscale2:Cruniform:MR0.10 -0.0907
Trscale4:Cruniform:MR0.10 -0.1533 | Trlocal:Crsingle:MR0.20 -0.0692 | Trscale2:Crsingle:MR0.20 0.0904
Trscale4:Crsingle:MR0.20 0.0040 Trlocal:Cruniform:MR0.20 -0.6063 | Trscale2:Cruniform:MR0.20 -0.3280
Trscale4:Cruniform:MR0.20 -0.3921 | Trlocal:Crsingle:MRO0.50 -0.5743 | Trscale2:Crsingle:MR0.50 -0.4848
Trscale4:Crsingle:MR0.50 -0.5752 | Trlocal:Cruniform:MR0.50 -0.3034 | Trscale2:Cruniform:MR0.50 -0.3257
Trscale4:Cruniform:MR0.50 -0.3244 | Trlocal:Crsingle:MR0.70 -0.6056 | Trscale2:Crsingle:MR0.70 -0.7781
Trscale4:Crsingle:MR0.70 -0.8550 | Trlocal:Cruniform:MR0.70 -0.1862 | Trscale2:Cruniform:MR0.70 -0.3171
Trscale4:Cruniform:MR0.70 -0.0360 | Trlocal:Crsingle:MRO0.90 -0.4616 | Trscale2:Crsingle:MR0.90 -0.4520
Trscale4:Crsingle:MR0.90 -0.9147 | Trlocal:Cruniform:MR0.90 -0.5368 | Trscale2:Cruniform:MR0.90 -0.4225
Trscale4:Cruniform:MR0.90 -0.7563 Trlocal:CP0.70:MRO0.05 -0.0357 Trscale2:CP0.70:MR0.05 -0.2862
Trscale4:CP0.70:MR0.05 0.0126 Trlocal:CP0.90:MRO0.05 -0.3605 Trscale2:CP0.90:MR0.05 -0.2423
Trscale4:CP0.90:MR0.05 -0.2805 Trlocal:CP0.70:MRO0.10 -0.2147 Trscale2:CP0.70:MR0.10 -0.2185
Trscale4:CP0.70:MR0.10 -0.2268 Trlocal:CP0.90:MR0.10 -0.2510 Trscale2:CP0.90:MR0.10 -0.0960
Trscale4:CP0.90:MR0.10 -0.1342 Trlocal:CP0.70:MR0.20 0.0513 Trscale2:CP0.70:MR0.20 -0.0786
Trscale4:CP0.70:MR0.20 -0.0723 Trlocal:CP0.90:MR0.20 0.0408 Trscale2:CP0.90:MR0.20 0.2989
Trscale4:CP0.90:MR0.20 0.2408 Trlocal:CP0.70:MR0.50 -0.1200 Trscale2:CP0.70:MR0.50 -0.1771
Trscale4:CP0.70:MR0.50 0.0890 Trlocal:CP0.90:MR0.50 -0.1083 Trscale2:CP0.90:MR0.50 0.2023
Trscale4:CP0.90:MR0.50 0.0943 Trlocal:CP0.70:MR0.70 -0.0434 Trscale2:CP0.70:MR0.70 -0.2032
Trscale4:CP0.70:MR0.70 0.0961 Trlocal:CP0.90:MR0.70 -0.2772 Trscale2:CP0.90:MR0.70 -0.1666
Trscale4:CP0.90:MR0.70 -0.3207 Trlocal:CP0.70:MR0.90 -0.2297 Trscale2:CP0.70:MR0.90 -0.1601
Trscale4:CP0.70:MR0.90 -0.1549 Trlocal:CP0.90:MR0.90 0.1401 Trscale2:CP0.90:MR0.90 0.3014
Trscale4:CP0.90:MR0.90 0.1538 El1:Crsingle:CP0.70 -0.0547 | EI5%:Crsingle:CP0.70 -0.0737
El1:Cruniform:CP0.70 0.0953 EI5%:Cruniform:CP0.70 0.1447 El1:Crsingle:CP0.90 -0.0189
EI5%:Crsingle:CP0.90 -0.1839 | EI1:Cruniform:CP0.90 0.0369 EI5%:Cruniform:CP0.90 0.1275
El1:Crsingle:MR0.05 0.1108 EI5%:Crsingle:MR0.05 0.1352 El1:Cruniform:MR0.05 -0.1705
EI5%:Cruniform:MR0.05 -0.0980 | El1:Crsingle:MR0.10 0.2119 EI5%:Crsingle:MR0.10 -0.0314
El1:Cruniform:MRO0.10 -0.0338 | EI5%:Cruniform:MR0.10 0.0188 El1:Crsingle:MR0.20 -0.2689
EI5%:Crsingle:MRO0.20 -0.0070 | EI1:Cruniform:MRO0.20 -0.0052 | EI5%:Cruniform:MR0.20 0.0321
El1:Crsingle:MR0.50 -0.2978 | EI5%:Crsingle:MR0.50 -0.0026 | EI1:Cruniform:MR0.50 -0.3947
EI5%:Cruniform:MR0.50 -0.2799 | El1:Crsingle:MR0.70 -0.1714 | EI5%:Crsingle:MR0.70 0.0132

90

APPENDIX A. MODELS FOR GA ADAPTIONS

91

cont.

Covariate Effect Covariate Effect Covariate Effect
El1:Cruniform:MRO0.70 -0.56565 | EI5%:Cruniform:MR0.70 -0.2815 | EIl1:Crsingle:MR0.90 -0.1281
EI5%:Crsingle:MR0.90 -0.1658 | EI1:Cruniform:MRO0.90 -0.5794 | EI5%:Cruniform:MR0.90 -0.5479
El1:CP0.70:MR0.05 -0.1813 EI5%:CP0.70:MR0.05 -0.1406 El1:CP0.90:MR0.05 0.0387
EI5%:CP0.90:MR0.05 -0.0742 El1:CP0.70:MR0.10 -0.0611 EI5%:CP0.70:MR0.10 -0.0372
El1:CP0.90:MR0.10 -0.0082 EI5%:CP0.90:MR0.10 -0.2141 El1:CP0.70:MR0.20 -0.0757
EI5%:CP0.70:MR0.20 -0.2779 El1:CP0.90:MR0.20 -0.0502 EI5%:CP0.90:MR0.20 -0.2838
El1:CP0.70:MR0.50 0.2511 EI5%:CP0.70:MR0.50 0.3670 El1:CP0.90:MR0.50 0.5270
EI5%:CP0.90:MR0.50 0.3791 El1:CP0.70:MR0.70 -0.0918 EI5%:CP0.70:MR0.70 0.0335
El1:CP0.90:MR0.70 0.1304 EI5%:CP0.90:MR0.70 0.1236 El1:CP0.70:MR0.90 -0.2758
EI5%:CP0.70:MR0.90 0.0054 El1:CP0.90:MR0.90 -0.1352 EI5%:CP0.90:MR0.90 0.1876
Crsingle:CP0.70:MR0.05 -0.4013 | Cruniform:CP0.70:MR0.05 -0.1519 | Crsingle:CP0.90:MR0.05 -0.3403
Cruniform:CP0.90:MR0.05 -0.1417 | Crsingle:CP0.70:MR0.10 -0.3668 | Cruniform:CP0.70:MR0.10 -0.2228
Crsingle:CP0.90:MR0.10 -0.1181 | Cruniform:CP0.90:MR0.10 -0.1989 | Crsingle:CP0.70:MR0.20 -0.1177
Cruniform:CP0.70:MR0.20 -0.1851 | Crsingle:CP0.90:MR0.20 0.1825 Cruniform:CP0.90:MR0.20 -0.2783
Crsingle:CP0.70:MR0.50 -0.1358 | Cruniform:CP0.70:MR0.50 -0.0720 | Crsingle:CP0.90:MR0.50 -0.2277
Cruniform:CP0.90:MR0.50 -0.1527 | Crsingle:CP0.70:MR0.70 -0.1476 | Cruniform:CP0.70:MR0.70 -0.1562
Crsingle:CP0.90:MR0.70 -0.1542 | Cruniform:CP0.90:MR0.70 -0.1776 | Crsingle:CP0.70:MR0.90 -0.2764
Cruniform:CP0.70:MR0.90 -0.2750 | Crsingle:CP0.90:MR0.90 -0.3850 | Cruniform:CP0.90:MR0.90 -0.4017

Table 35: Coefficients for the time model for group-number GCAs on

Towns2.

A.3 Group-number and Iris2

Coeflicients for correctness model for the Iris2 data set can be found in Table 36. This model fits

the data well (residual deviance of 925.7 on 2908 degrees of freedom, Figure 41).

Number of Trials
1000 2000

0

|

Fitted Number of Trials

0

2000

1000

0 1

2

3

4 5

Number of Correct Runs

[

—

0.0

0.2 0.4 0. .8
Probability of Correctness

1.0

Figure 41: Comparison of experimental and fitted correctness for group-number GCAs on Iris2.

Covariate Effect Covariate Effect Covariate Effect
(Intercept) 3.6483 PS100 0.0303 PS200 -3.8453
PS400 -9.8023 Trlocal -0.9514 Trscale2 -0.9241
Trscaled 0.7082 Ell 1.7657 EI5% 1.5270
Crsingle -1.9064 Cruniform -3.3407 CPo0.70 -2.2171
CP0.90 -2.6410 MRO0.05 16.7435 MRO0.10 16.5498
MRO0.20 15.5493 MRO0.50 15.5942 MRO0.70 9.6481
MRO0.90 11.0793 PS5100:Crsingle 0.3943 PS5200:Crsingle 3.5026
PS5400:Crsingle 9.4241 PS5100:Cruniform -0.1440 PS5200:Cruniform 2.0207
PS5400:Cruniform 6.0565 Crsingle:MRO0.05 5.1168 Cruniform:MR0.05 3.5895
Crsingle:MRO0.10 10.2388 Cruniform:MR0.10 4.2681 Crsingle:MRO0.20 13.0922
Cruniform:MR0.20 7.9403 Crsingle:MRO0.50 15.2249 Cruniform:MR0.50 9.7813
Crsingle:MRO0.70 15.0433 Cruniform:MR0.70 7.2473 Crsingle:MRO0.90 12.4543
Cruniform:MR0.90 8.1281 Trlocal:Crsingle 2.5753 Trscale2:Crsingle 2.0225
Trscale4:Crsingle 0.8130 Trlocal:Cruniform 1.0837 Trscale2:Cruniform 0.7759
Trscale4:Cruniform 0.1122 PS100:MR0.05 -8.7878 PS200:MR0.05 -9.8168
PS$400:MR0.05 -10.6095 PS$100:MR0.10 -7.9343 P$200:MR0.10 -8.2787
cont.

APPENDIX A. MODELS FOR GA ADAPTIONS 92

cont.

Covariate Effect Covariate Effect Covariate Effect

PS400:MR0.10 -8.5357 PS$100:MR0.20 -2.5203 P$200:MR0.20 -4.7470
PS400:MR0.20 -5.4922 PS$100:MR0.50 -2.8162 P$200:MR0.50 -5.3126
PS400:MR0.50 -5.5382 PS100:MR0.70 -1.8084 P$200:MR0.70 -1.8033
PS400:MR0.70 -0.1238 PS$100:MR0.90 -4.4764 P$200:MR0.90 -3.9219
PS400:MR0.90 -1.9889 PS100:Trlocal -1.3073 PS200:Trlocal -2.7165
PS400:Trlocal -4.0142 PS100:Trscale2 -1.0285 PS200:Trscale2 -2.2246
PS400:Trscale2 -3.7362 PS100:Trscale4 -1.0908 PS200:Trscale4 -2.3681
PS400:Trscale4 -3.7813 PS100EI1 -0.0011 PS200EI1 0.2187

PS400EI1 -0.4128 PS100EI5% 0.4390 PS200EI5% 1.1998

PS400EI15% 0.9041 Trlocal:MR0.05 -7.5766 Trscale2:MR0.05 -7.0973
Trscale4:MR0.05 -8.3979 Trlocal:MR0.10 -7.4056 Trscale2:MR0.10 -7.2346
Trscale4:MR0.10 -8.3486 Trlocal:MR0.20 -12.6637 Trscale2:MR0.20 -12.4918
Trscale4:MR0.20 -13.5055 Trlocal:MR0.50 -14.9067 Trscale2:MR0.50 -14.2789
Trscale4:MR0.50 -15.4905 Trlocal:MR0.70 -13.1867 Trscale2:MR0.70 -13.1047
Trscale4:MR0.70 -13.8578 Trlocal:MR0.90 -16.1629 Trscale2:MR0.90 -16.4954
Trscale4:MR0.90 -17.1303 El1:MR0.05 1.9172 EI5%:MR0.05 4.1203

El1:MRO0.10 1.1792 EI5%:MR0.10 4.3200 El1:MR0.20 3.5082

EI5%:MR0.20 6.7296 El1:MR0.50 3.7658 EI5%:MR0.50 7.9447

El1:MR0.70 4.7965 EI5%:MR0.70 8.2603 El1:MR0.90 7.8553

EI5%:MR0.90 11.0439 Crsingle:CP0.70 1.9581 Cruniform:CP0.70 2.0465

Crsingle:CP0.90 3.9334 Cruniform:CP0.90 3.6640 PS$100:CP0.70 0.5873

PS200:CP0.70 0.8287 PS400:CP0.70 0.6567 PS100:CP0.90 -0.1047

Table 36: Coeflicients for the correctness model for group-number

GCAs on Iris2.

The corresponding time model also provides a good fit (residual deviance of 1635.6 on 2057
degrees of freedom). The suitability of this model is also supported by the comparative histograms
(Figure 42) and the residual plot (Figure 43). Model coefficients are listed in Table 37.

Number of Trials
200 400

Number of Trials
200 400

0
0

0 50 _ 100 150 200 250 300 0 100 300
Average Time per Correct Run (seconds CPU) Fitted Time per Correct Run (seconds CPU)

Figure 42: Comparison of experimental and fitted time for group-number GCAs on Iris2.

2

Deviance Residuals
-2 0

-4

10 2 30
Transformed Fitted Values

Figure 43: Residuals plot for time model for group-number GCAs on Iris2.

APPENDIX A. MODELS FOR GA ADAPTIONS

Covariate Effect Covariate Effect Covariate Effect
(Intercept) 5.2076 PS100 0.1574 PS200 0.4526
PS400 0.5529 Trlocal 0.1546 Trscale2 0.2322
Trscaled 0.1606 Ell 0.0395 EI5% -0.0927
Crsingle -0.0784 | Cruniform 0.1244 CPo0.70 0.0472
CP0.90 0.0765 MRO0.05 -1.2663 MRO0.10 -1.4853
MRO0.20 -1.6929 MRO0.50 -1.7090 MRO0.70 -1.7038
MR0.90 -1.6420 PS100:Trlocal -0.0224 PS200:Trlocal -0.1268
PS400:Trlocal -0.0645 PS100:Trscale2 -0.0675 PS200:Trscale2 -0.1731
PS400:Trscale2 -0.1537 PS100:Trscale4 -0.0815 PS200:Trscale4 -0.1246
PS400:Trscale4 -0.4615 PS100:El1 -0.0292 PS200:El1 -0.2091
PS400:El1 -0.2827 PS100:E15% 0.0353 PS200:E15% -0.0691
PS400:E15% -0.1440 | PS100:Crsingle -0.0591 PS5200:Crsingle -0.1955
PS5400:Crsingle -0.1744 | PS100:Cruniform -0.0966 PS5200:Cruniform -0.2925
PS400:Cruniform -0.3538 PS100:CP0.70 0.0008 PS200:CP0.70 -0.0051
PS400:CP0.70 0.0422 PS100:CP0.90 0.0176 PS200:CP0.90 -0.0091
PS400:CP0.90 0.0079 PS100:MR0.05 0.3763 PS200:MR0.05 0.5901
PS400:MR0.05 1.0665 PS100:MR0.10 0.3276 PS200:MR0.10 0.6658
PS400:MR0.10 1.1672 PS100:MR0.20 0.3548 PS200:MR0.20 0.7175
PS400:MR0.20 1.2180 PS100:MR0.50 0.3285 PS200:MR0.50 0.6613
PS400:MR0.50 1.1837 PS100:MR0.70 0.2041 PS200:MR0.70 0.5807
PS400:MR0.70 1.1156 PS100:MR0.90 0.3904 PS200:MR0.90 0.6313
PS400:MR0.90 1.1073 Trlocal:Ell -0.1402 Trscale2:Ell -0.2324
Trscale4:El1 -0.1728 | Trlocal:EI5% 0.0463 Trscale2:EI5% -0.0725
Trscale4:EI5% -0.0349 | Trlocal:Crsingle -0.0206 Trscale2:Crsingle 0.0047
Trscale4:Crsingle -0.0306 | Trlocal:Cruniform -0.0146 | Trscale2:Cruniform -0.0280
Trscale4:Cruniform -0.0188 Trlocal:CP0.70 -0.0347 Trscale2:CP0.70 -0.0079
Trscale4:CP0.70 -0.0259 Trlocal:CP0.90 -0.0748 Trscale2:CP0.90 -0.0304
Trscale4:CP0.90 -0.0497 Trlocal:MR0.05 0.6607 Trscale2:MR0.05 0.5679
Trscale4:MR0.05 0.5389 Trlocal:MR0.10 1.0267 Trscale2:MR0.10 0.8042
Trscale4:MR0.10 0.9062 Trlocal:MR0.20 1.2434 Trscale2:MR0.20 1.1186
Trscale4:MR0.20 1.2328 Trlocal:MR0.50 1.5981 Trscale2:MR0.50 1.4927
Trscale4:MR0.50 1.5385 Trlocal:MR0.70 1.8863 Trscale2:MR0.70 1.7570
Trscale4:MR0.70 1.8583 Trlocal:MR0.90 2.0437 Trscale2:MR0.90 2.0585
Trscale4:MR0.90 2.1694 El1:Crsingle 0.0824 EI5%:Crsingle 0.1441
El1:Cruniform 0.1453 EI5%:Cruniform 0.1854 El1:CP0.70 -0.0429
EI5%:CP0.70 0.0110 El1:CP0.90 -0.0153 EI5%:CP0.90 -0.0015
El1:MR0.05 0.0421 EI5%:MR0.05 0.0382 ElI1:MR0.10 -0.0622
EI5%:MR0.10 -0.0363 ElI1:MR0.20 -0.0775 EI5%:MR0.20 -0.0597
El1:MR0.50 -0.2031 EI5%:MR0.50 -0.2258 ElI1:MR0.70 -0.2036
EI5%:MR0.70 -0.2251 EI1:MR0.90 -0.3295 EI5%:MR0.90 -0.3388
Crsingle:CP0.70 -0.0628 | Cruniform:CP0.70 -0.0118 | Crsingle:CP0.90 -0.0903
Cruniform:CP0.90 -0.0355 | Crsingle:MRO0.05 -0.1107 | Cruniform:MR0.05 0.0224
Crsingle:MRO0.10 -0.4067 | Cruniform:MR0.10 -0.1920 | Crsingle:MR0.20 -0.6807
Cruniform:MR0.20 -0.4149 | Crsingle:MRO0.50 -1.0613 | Cruniform:MR0.50 -0.6421
Crsingle:MRO0.70 -1.1962 | Cruniform:MR0.70 -0.5692 | Crsingle:MR0.90 -1.1734
Cruniform:MRO0.90 -0.6549 CP0.70:MRO0.05 0.0782 CP0.90:MR0.05 0.1519
CP0.70:MR0.10 0.0691 CP0.90:MR0.10 0.2310 CP0.70:MR0.20 0.1716
CP0.90:MR0.20 0.2923 CP0.70:MR0.50 0.1056 CP0.90:MR0.50 0.2560
CP0.70:MR0.70 0.1141 CP0.90:MR0.70 0.2523 CP0.70:MR0.90 0.1155
CP0.90:MR0.90 0.1545 PS100:Trlocal:El1 0.1534 PS200:Trlocal:El1 0.2273
PS400:Trlocal:El1 0.3952 PS100:Trscale2:El1 0.1169 PS200:Trscale2:El1 0.1934
PS400:Trscale2:El1 0.3633 PS100:Trscale4:El1 0.1708 PS200:Trscale4:El1 0.2134
PS400:Trscale4:El1 0.3561 PS100:Trlocal:EI5% 0.0044 PS200:Trlocal:EI5% 0.0583
PS400:Trlocal:EI5% 0.2398 PS100:Trscale2:EI5% -0.0131 PS200:Trscale2:EI5% 0.0414
PS400: Trscale2:EI5% 0.1792 PS100:Trscale4:EI5% -0.0157 | PS200:Trscale4:EI5% 0.0438
PS400:Trscale4:EI5% 0.1364 PS100:Trlocal:Crsingle 0.0167 PS5200:Trlocal:Crsingle 0.1238
PS5400:Trlocal:Crsingle 0.0247 PS5100:Trscale2:Crsingle 0.0382 PS5200:Trscale2:Crsingle 0.0945
PS5400:Trscale2:Crsingle -0.0001 PS5100:Trscale4:Crsingle 0.0323 PS5200:Trscale4:Crsingle 0.0535
PS400:Trscale4:Crsingle 0.3706 P5100:Trlocal:Cruniform 0.0637 P5200:Trlocal:Cruniform 0.1841
PS400:Trlocal:Cruniform 0.0000 PS100:Trscale2:Cruniform 0.0629 PS200:Trscale2:Cruniform 0.2088

cont.

93

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

cont.

Covariate Effect Covariate Effect Covariate Effect
PS400:Trscale2:Cruniform 0.0000 PS100:Trscale4:Cruniform 0.0808 PS200:Trscale4:Cruniform 0.1639
PS400:Trscale4:Cruniform 0.4030 PS100:Trlocal:MR0.05 0.1563 PS200:Trlocal:MR0.05 0.2068
PS400:Trlocal:MR0.05 0.1146 PS100:Trscale2:MR0.05 0.2212 PS200:Trscale2:MR0.05 0.2722
PS400:Trscale2:MR0.05 0.3034 PS100:Trscale4:MR0.05 0.2933 PS200:Trscale4:MR0.05 0.3370
PS400:Trscale4:MR0.05 0.3464 PS100:Trlocal:MR0.10 0.0587 PS200:Trlocal:MR0.10 0.0490
PS400:Trlocal:MR0.10 -0.0171 PS100:Trscale2:MR0.10 0.1946 PS200:Trscale2:MR0.10 0.1628
PS400:Trscale2:MR0.10 0.1629 PS100:Trscale4:MR0.10 0.1719 PS200:Trscale4:MR0.10 0.0979
PS400:Trscale4:MR0.10 0.0468 PS100:Trlocal:MR0.20 0.0091 PS200:Trlocal:MR0.20 -0.0268
PS400:Trlocal:MR0.20 -0.0537 PS100:Trscale2:MR0.20 0.0595 PS200:Trscale2:MR0.20 0.0304
PS400:Trscale2:MR0.20 0.0820 PS100:Trscale4:MR0.20 0.0666 PS200:Trscale4:MR0.20 0.0194
PS400:Trscale4:MR0.20 0.0148 PS100:Trlocal:MR0.50 -0.1330 PS200:Trlocal:MR0.50 -0.2032
PS400:Trlocal:MR0.50 -0.3277 PS100:Trscale2:MR0.50 -0.1105 PS200:Trscale2:MR0.50 -0.1509
PS400:Trscale2:MR0.50 -0.1330 PS100:Trscale4:MR0.50 -0.0673 PS200:Trscale4:MR0.50 -0.1363
PS400:Trscale4:MR0.50 -0.1906 PS100:Trlocal:MR0.70 -0.1420 PS200:Trlocal:MR0.70 -0.2776
PS400:Trlocal:MR0.70 -0.3148 PS100:Trscale2:MR0.70 -0.0488 PS200:Trscale2:MR0.70 -0.2272
PS400:Trscale2:MR0.70 -0.1876 PS100:Trscale4:MR0.70 -0.1185 PS200:Trscale4:MR0.70 -0.2936
PS400:Trscale4:MR0.70 -0.2930 PS100:Trlocal:MR0.90 -0.0523 PS200:Trlocal:MR0.90 -0.3351
PS400:Trlocal:MR0.90 -0.3855 PS100:Trscale2:MR0.90 -0.1285 PS200:Trscale2:MR0.90 -0.3288
PS400:Trscale2:MR0.90 -0.3026 PS100:Trscale4:MR0.90 -0.1616 PS200:Trscale4:MR0.90 -0.3795
PS400:Trscale4:MR0.90 -0.4527 PS5100:El1:Crsingle -0.1029 PS5200:El1:Crsingle 0.0011
PS400:El1:Crsingle 0.0165 PS100:E15%:Crsingle -0.0753 | PS200:EI5%:Crsingle -0.0708
PS400:E15%:Crsingle -0.0885 | PS100:El1:Cruniform -0.0974 PS5200:El1:Cruniform 0.0750
PS400:El1:Cruniform 0.2119 PS100:E15%:Cruniform -0.1027 | PS200:EI5%:Cruniform -0.0458
PS400:E15%:Cruniform 0.1164 PS100:EI1:MR0.05 -0.0527 PS200:EI1:MR0.05 0.0782
PS400:EI1:MR0.05 0.0778 PS100:E15%:MR0.05 -0.0723 PS200:E15%:MR0.05 0.0180
PS400:E15%:MR0.05 0.0123 PS100:EI1:MR0.10 0.0611 PS200:EI1:MR0.10 0.1508
PS400:EI1:MR0.10 0.2055 PS100:E15%:MR0.10 0.0111 PS200:E15%:MR0.10 0.0978
PS400:E15%:MR0.10 0.1658 PS100:EI1:MR0.20 0.0963 PS200:EI1:MR0.20 0.1642
PS400:EI1:MR0.20 0.2823 PS100:E15%:MR0.20 0.1131 PS200:E15%:MR0.20 0.1393
PS400:E15%:MR0.20 0.2286 PS100:EI1:MR0.50 0.2357 PS200:EI1:MR0.50 0.3528
PS400:EI1:MR0.50 0.4360 PS100:E15%:MR0.50 0.2253 PS200:E15%:MR0.50 0.2954
PS400:E15%:MR0.50 0.3724 PS100:EI1:MR0.70 0.2759 PS200:EI1:MR0.70 0.4810
PS400:EI1:MR0.70 0.5153 PS100:E15%:MR0.70 0.2900 PS200:E15%:MR0.70 0.4642
PS400:E15%:MR0.70 0.4577 PS100:EI1:MR0.90 0.1835 PS200:EI1:MR0.90 0.5762
PS400:EI1:MR0.90 0.6153 PS100:E15%:MR0.90 0.2297 PS200:E15%:MR0.90 0.4972
PS400:E15%:MR0.90 0.56123 PS100:Crsingle:MR0.05 -0.2360 PS5200:Crsingle:MRO0.05 -0.3412
PS5400:Crsingle:MRO0.05 -0.5218 | PS100:Cruniform:MR0.05 -0.1074 P5200:Cruniform:MR0.05 -0.1420
PS5400:Cruniform:MR0.05 -0.2453 | PS100:Crsingle:MR0.10 -0.1781 PS5200:Crsingle:MRO0.10 -0.2837
PS5400:Crsingle:MRO0.10 -0.4303 | PS100:Cruniform:MR0.10 -0.0355 P5200:Cruniform:MR0.10 -0.0631
PS5400:Cruniform:MR0.10 -0.1380 | PS100:Crsingle:MR0.20 -0.1136 P5200:Crsingle:MR0.20 -0.1649
PS5400:Crsingle:MR0.20 -0.3676 | PS100:Cruniform:MR0.20 0.0290 P5200:Cruniform:MR0.20 0.0554
PS5400:Cruniform:MR0.20 -0.0793 | PS100:Crsingle:MR0.50 -0.0421 P5200:Crsingle:MRO0.50 -0.0626
PS5400:Crsingle:MR0.50 -0.1285 | PS100:Cruniform:MR0.50 0.0725 P5200:Cruniform:MR0.50 0.1151
PS5400:Cruniform:MR0.50 0.0238 PS5100:Crsingle:MRO0.70 -0.0290 P5200:Crsingle:MRO0.70 0.0131
PS5400:Crsingle:MRO0.70 -0.1068 | PS100:Cruniform:MR0.70 0.1015 P5200:Cruniform:MR0.70 0.0597
PS5400:Cruniform:MR0.70 0.0167 PS5100:Crsingle:MRO0.90 -0.1447 PS5200:Crsingle:MR0.90 -0.0813
PS5400:Crsingle:MRO0.90 -0.1561 PS5100:Cruniform:MR0.90 -0.0478 P5200:Cruniform:MR0.90 0.0178
PS400:Cruniform:MRO0.90 0.0000 PS100:CP0.70:MR0.05 -0.0016 PS200:CP0.70:MR0.05 -0.0141
PS400:CP0.70:MR0.05 -0.0548 PS100:CP0.90:MR0.05 -0.0378 PS200:CP0.90:MR0.05 -0.0276
PS400:CP0.90:MR0.05 -0.0737 PS100:CP0.70:MR0.10 0.0443 PS200:CP0.70:MR0.10 0.0095
PS400:CP0.70:MR0.10 -0.0717 PS100:CP0.90:MR0.10 -0.0698 PS200:CP0.90:MR0.10 -0.0461
PS400:CP0.90:MR0.10 -0.1321 PS100:CP0.70:MR0.20 -0.0668 PS200:CP0.70:MR0.20 -0.0194
PS400:CP0.70:MR0.20 -0.0672 PS100:CP0.90:MR0.20 -0.0588 PS200:CP0.90:MR0.20 -0.0267
PS400:CP0.90:MR0.20 -0.0469 PS100:CP0.70:MR0.50 0.0166 PS200:CP0.70:MR0.50 -0.0008
PS400:CP0.70:MR0.50 -0.0640 PS100:CP0.90:MR0.50 -0.0694 PS200:CP0.90:MR0.50 -0.0400
PS400:CP0.90:MR0.50 -0.0371 PS100:CP0.70:MR0.70 0.0990 PS200:CP0.70:MR0.70 0.0310
PS400:CP0.70:MR0.70 -0.0227 PS100:CP0.90:MR0.70 0.1044 PS200:CP0.90:MR0.70 0.0139
PS400:CP0.90:MR0.70 0.0388 PS100:CP0.70:MR0.90 -0.0206 PS200:CP0.70:MR0.90 -0.0647
PS400:CP0.70:MR0.90 -0.0770 PS100:CP0.90:MR0.90 -0.0518 PS200:CP0.90:MR0.90 -0.0303
P$400:CP0.90:MR0.90 0.0079 Trlocal:El1:Crsingle -0.1540 Trscale2:El1:Crsingle -0.0836

94

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
Trscale4:El1:Crsingle -0.0801 | Trlocal:EI5%:Crsingle -0.2333 | Trscale2:EI5%:Crsingle -0.1511
Trscale4:EI5%:Crsingle -0.1262 | Trlocal:El1:Cruniform -0.1551 | Trscale2:El1:Cruniform -0.0721
Trscale4:El1:Cruniform -0.1023 | Trlocal:EI5%:Cruniform -0.1779 Trscale2:EI5%:Cruniform -0.1122
Trscale4:EI5%:Cruniform -0.1058 | Trlocal:EI1:MR0.05 -0.2334 Trscale2:EI1:MR0.05 -0.2032
Trscale4:EI1:MR0.05 -0.2802 | Trlocal:EI5%:MR0.05 -0.4556 Trscale2:EI5%:MR0.05 -0.3656
Trscale4:EI5%:MR0.05 -0.3617 | Trlocal:EI1:MR0.10 -0.3352 Trscale2:EI1:MR0.10 -0.2028
Trscale4:EI1:MR0.10 -0.3162 | Trlocal:EI5%:MR0.10 -0.5448 Trscale2:EI5%:MRO0.10 -0.4105
Trscale4:EI5%:MRO0.10 -0.4455 | Trlocal:EI1:MR0.20 -0.3420 Trscale2:EI1:MR0.20 -0.2695
Trscale4:EI1:MR0.20 -0.3686 | Trlocal:EI5%:MR0.20 -0.5926 Trscale2:EI5%:MR0.20 -0.4923
Trscale4:EI5%:MR0.20 -0.5659 | Trlocal:EI1:MR0.50 -0.4032 Trscale2:EI1:MR0.50 -0.3383
Trscale4:EI1:MR0.50 -0.3906 | Trlocal:EI5%:MR0.50 -0.6868 Trscale2:EI5%:MR0.50 -0.5758
Trscale4:EI5%:MR0.50 -0.6243 | Trlocal:EI1:MR0.70 -0.5864 Trscale2:EI1:MR0.70 -0.4930
Trscale4:EI1:MR0.70 -0.5725 | Trlocal:EI5%:MR0.70 -0.9127 Trscale2:EI5%:MR0.70 -0.8143
Trscale4:EI5%:MR0.70 -0.8504 | Trlocal:EI1:MR0.90 -0.6271 Trscale2:EI1:MR0.90 -0.5880
Trscale4:EI1:MR0.90 -0.6417 | Trlocal:EI5%:MR0.90 -1.0298 Trscale2:EI5%:MR0.90 -0.9412
Trscale4:EI5%:MR0.90 -0.9838 | Trlocal:Crsingle:MR0.05 -0.2053 Trscale2:Crsingle:MR0.05 -0.3123
Trscale4:Crsingle:MR0.05 -0.2761 | Trlocal:Cruniform:MR0.05 -0.0778 | Trscale2:Cruniform:MR0.05 -0.1864
Trscale4:Cruniform:MR0.05 -0.1855 | Trlocal:Crsingle:MRO0.10 -0.2590 | Trscale2:Crsingle:MR0.10 -0.3202
Trscale4:Crsingle:MR0.10 -0.2447 | Trlocal:Cruniform:MR0.10 -0.1393 | Trscale2:Cruniform:MR0.10 -0.1639
Trscale4:Cruniform:MR0.10 -0.1634 | Trlocal:Crsingle:MR0.20 -0.3715 | Trscale2:Crsingle:MR0.20 -0.4120
Trscale4:Crsingle:MR0.20 -0.3958 | Trlocal:Cruniform:MR0.20 -0.1268 | Trscale2:Cruniform:MR0.20 -0.1820
Trscale4:Cruniform:MR0.20 -0.1992 | Trlocal:Crsingle:MRO0.50 -0.2681 | Trscale2:Crsingle:MR0.50 -0.4002
Trscale4:Crsingle:MR0.50 -0.3521 | Trlocal:Cruniform:MR0.50 0.0246 Trscale2:Cruniform:MR0.50 -0.0810
Trscale4:Cruniform:MR0.50 -0.0617 | Trlocal:Crsingle:MRO0.70 -0.2603 | Trscale2:Crsingle:MR0.70 -0.3328
Trscale4:Crsingle:MR0.70 -0.3101 | Trlocal:Cruniform:MR0.70 0.1024 Trscale2:Cruniform:MR0.70 0.0523
Trscale4:Cruniform:MR0.70 0.0663 Trlocal:Crsingle:MRO0.90 -0.1631 | Trscale2:Crsingle:MR0.90 -0.3274
Trscale4:Crsingle:MR0.90 -0.3398 | Trlocal:Cruniform:MR0.90 0.1604 Trscale2:Cruniform:MR0.90 0.0203
Trscale4:Cruniform:MR0.90 0.0290 El1:Crsingle:MR0.05 -0.0831 EI5%:Crsingle:MR0.05 -0.0534
El1:Cruniform:MRO0.05 -0.1887 | EI5%:Cruniform:MRO0.05 -0.1364 | EI1:Crsingle:MR0.10 -0.1143
EI5%:Crsingle:MRO0.10 -0.0802 | El1:Cruniform:MRO0.10 -0.1984 | EI5%:Cruniform:MR0.10 -0.1862
El1:Crsingle:MR0.20 0.0050 EI5%:Crsingle:MR0.20 0.0556 El1:Cruniform:MR0.20 -0.2223
EI5%:Cruniform:MR0.20 -0.1981 | El1:Crsingle:MR0.50 -0.0384 | EI5%:Crsingle:MR0.50 0.0685
El1:Cruniform:MRO0.50 -0.4491 | EI5%:Cruniform:MR0.50 -0.3743 | El1:Crsingle:MR0.70 0.0088
EI5%:Crsingle:MRO0.70 0.0652 El1:Cruniform:MRO0.70 -0.6753 | EI5%:Cruniform:MR0.70 -0.6388
El1:Crsingle:MR0.90 -0.0280 | EI5%:Crsingle:MR0.90 0.0242 El1:Cruniform:MR0.90 -0.6452
EI5%:Cruniform:MRO0.90 -0.6228 El1:CP0.70:MR0.05 0.0165 EI5%:CP0.70:MR0.05 0.0143
El1:CP0.90:MR0.05 0.0292 EI5%:CP0.90:MR0.05 0.0473 El1:CP0.70:MR0.10 0.0802
EI5%:CP0.70:MR0.10 0.0289 El1:CP0.90:MR0.10 0.0749 EI5%:CP0.90:MR0.10 0.0452
El1:CP0.70:MR0.20 0.0481 EI5%:CP0.70:MR0.20 -0.0095 El1:CP0.90:MR0.20 0.0287
EI5%:CP0.90:MR0.20 -0.0009 El1:CP0.70:MR0.50 0.0829 EI5%:CP0.70:MR0.50 0.0641
El1:CP0.90:MR0.50 0.1313 EI5%:CP0.90:MR0.50 0.0874 El1:CP0.70:MR0.70 0.0774
EI5%:CP0.70:MR0.70 0.0323 El1:CP0.90:MR0.70 0.0408 EI5%:CP0.90:MR0.70 0.0381
El1:CP0.70:MR0.90 0.0863 EI5%:CP0.70:MR0.90 0.0609 El1:CP0.90:MR0.90 0.1339
EI5%:CP0.90:MR0.90 0.1608 Crsingle:CP0.70:MR0.05 -0.1256 Cruniform:CP0.70:MR0.05 -0.1131
Crsingle:CP0.90:MR0.05 -0.2432 | Cruniform:CP0.90:MR0.05 -0.1800 | Crsingle:CP0.70:MR0.10 -0.1476
Cruniform:CP0.70:MR0.10 -0.1198 | Crsingle:CP0.90:MR0.10 -0.2511 Cruniform:CP0.90:MR0.10 -0.2606
Crsingle:CP0.70:MR0.20 -0.2024 | Cruniform:CP0.70:MR0.20 -0.1900 | Crsingle:CP0.90:MR0.20 -0.3663
Cruniform:CP0.90:MR0.20 -0.3097 | Crsingle:CP0.70:MR0.50 -0.1998 | Cruniform:CP0.70:MR0.50 -0.1905
Crsingle:CP0.90:MR0.50 -0.4305 | Cruniform:CP0.90:MR0.50 -0.3369 | Crsingle:CP0.70:MR0.70 -0.2567
Cruniform:CP0.70:MR0.70 -0.2276 | Crsingle:CP0.90:MR0.70 -0.4971 Cruniform:CP0.90:MR0.70 -0.3439
Crsingle:CP0.70:MR0.90 -0.2350 | Cruniform:CP0.70:MR0.90 -0.1893 | Crsingle:CP0.90:MR0.90 -0.4278

Table 37: Coefficients for the time model for group-number GCAs on

Iris2. NA = coefficient not defined because of singularity.

95

APPENDIX A. MODELS FOR GA ADAPTIONS 96

A.4 Order-based and Ruspini2

Table 38 provides the coefficients for the order-based correctness model for Ruspini2. The residual
deviance of 926.8 on 1239 degrees of freedom indicates a good fit, and this is supported by the
histograms in Figure 44).

0
v =
So .,':8
S Al
S 8
. 2o
&8 e
e i e e
(=} o
0 1 2 3 4 5 0.0 0.2 0.4 0.6 .8 1.0
Number of Correct Runs Probability of Correctness

Figure 44: Comparison of experimental and fitted correctness for order-based GCAs on Ruspini2.

Covariate Effect Covariate Effect Covariate Effect
(Intercept) -2.4715 PS100 -5.6902 PS200 -3.6438
Trscale2 -0.1199 Trscaled 0.1205 EI5% 0.5463
Credge 0.1860 CrPMX -11.0055 CP0.70 1.6155
CP0.90 2.3811 MRO0.20 2.0589 MRO0.70 3.4281
MR0.90 2.8056 Credge:CP0.70 -0.4342 CrPMX:CP0.70 0.6507
Credge:CP0.90 -0.4922 CrPMX:CP0.90 -1.9798 Credge:MR0.20 0.8726
CrPMX:MR0.20 -1.9710 Credge:MR0.70 3.8386 CrPMX:MR0.70 3.9004
Credge:MR0.90 4.6169 CrPMX:MR0.90 5.7564 CP0.70:MR0.20 -0.4930
CP0.90:MR0.20 0.3465 CP0.70:MR0.70 0.0653 CP0.90:MR0.70 0.7733
CP0.70:MR0.90 -0.3047 CP0.90:MR0.90 0.1536 PS$100:MR0.20 -1.3884
P$200:MR0.20 -2.1380 PS$100:MR0.70 -2.6810 P$200:MR0.70 -4.6449
PS$100:MR0.90 -2.3393 P$200:MR0.90 -4.2227 Trscale2:Credge 3.4483
Trscale4:Credge 2.8195 Trscale2:CrPMX -8.56958 Trscale4:CrPMX -8.8362
EI5%:Credge -0.6386 | EI5%:CrPMX 1.7717 PS100:Crborrow:CP0.50 6.7534
PS$200:Crborrow:CP0.50 2.4441 PS100:Credge:CP0.50 7.5695 PS$200:Credge:CP0.50 5.7067
PS100:CrPMX:CP0.50 0.6626 P$200:CrPMX:CP0.50 0.6532 PS100:Crborrow:CP0.70 6.6132
PS$200:Crborrow:CP0.70 3.0023 PS100:Credge:CP0.70 7.7948 PS$200:Credge:CP0.70 6.2593
PS100:CrPMX:CP0.70 -1.3722 P$200:CrPMX:CP0.70 -1.3368 PS100:Crborrow:CP0.90 6.3623
PS$200:Crborrow:CP0.90 3.5917 PS100:Credge:CP0.90 7.0082 PS$200:Credge:CP0.90 6.3237
Table 38: Coefficients for the correctness model for order-based GCAs

on Ruspini2. NA = coefficient not defined because of singularity.

The coefficients for the corresponding time model are listed in Table 39. This model fits the
data poorly with a residual deviance of 1619.7 on 566 degrees of freedom (see Figure 45). The

residual plot (Figure 46) does not indicate any violation of model assumptions.

Number of Trials
o 0 20 40 60 80 100

o

Number of Trials
0 20 40 60 80 100

50 100 150 200 250 300 00 150 200 250 300 350
Average Time per Correct Run (seconds CPU) Fitted Time per Correct Run (seconds CPU)

Figure 45: Comparison of experimental and fitted time for order-based GCAs on Ruspini2

Figure 46: Residual plot for time model for order-based GCAs on Ruspini2

Deviance Residuals
6-4-202 46 8

APPENDIX A. MODELS FOR GA ADAPTIONS

15

20 25

30

Transformed Fitted Values

35

Covariate Effect Covariate Effect Covariate Effect
(Intercept) 5.3846 PS100 0.2882 PS200 0.4571
Trscale2 0.1877 Trscaled 0.0924 EI5% -0.1339
Credge 0.0826 CP0.70 0.1013 CP0.90 -0.0281
Muuniform 0.0168 MRO0.20 0.2572 MRO0.70 0.0624
MR0.90 -0.0536 PS100:Trscale2 -0.3220 PS200:Trscale2 -0.2186
PS100:Trscale4 -0.3344 PS200:Trscale4 -0.2708 PS100:E15% 0.0942
PS200:E15% 0.0045 PS100:Credge -0.3362 PS200:Credge -0.4728
PS100:CP0.70 -0.1876 PS200:CP0.70 -0.2354 PS100:CP0.90 -0.1895
PS200:CP0.90 -0.2032 PS100:Muuniform 0.0075 PS200:Muuniform -0.0410
PS100:MR0.20 -0.3119 PS200:MR0.20 -0.2307 PS100:MR0.70 -0.1807
PS200:MR0.70 -0.0497 PS100:MR0.90 -0.1035 PS200:MR0.90 0.1065
Trscale2:EI5% 0.1018 | Trscale4:EI5% 0.1668 | Trscale2:Credge -0.3942
Trscale4:Credge -0.2931 Trscale2:CP0.70 -0.2292 Trscale4:CP0.70 -0.1947
Trscale2:CP0.90 -0.2880 Trscale4:CP0.90 -0.1943 Trscale2:Muuniform -0.0330
Trscale4:Muuniform 0.0427 Trscale2:MR0.20 -0.1623 Trscale4:MR0.20 -0.1482
Trscale2:MR0.70 0.0041 Trscale4:MR0.70 0.0248 Trscale2:MR0.90 0.0639
Trscale4:MR0.90 0.0617 EI5%:Credge 0.0520 | EI5%:CP0.70 0.0515
EI5%:CP0.90 0.1585 EI5%:Muuniform 0.0528 EI5%:MR0.20 0.0285
EI5%:MR0.70 0.0346 EI5%:MR0.90 0.0797 Credge:CP0.70 -0.0555
Credge:CP0.90 -0.1625 Credge:Muuniform -0.0572 Credge:MR0.20 -0.1397
Credge:MR0.70 -0.4932 Credge:MR0.90 -0.4841 CP0.70:Muuniform 0.0956
CP0.90:Muuniform 0.0734 CP0.70:MR0.20 -0.2513 CP0.90:MR0.20 -0.2465
CP0.70:MR0.70 -0.2840 CP0.90:MR0.70 -0.2626 CP0.70:MR0.90 -0.1746
CP0.90:MR0.90 -0.1901 Muuniform:MR0.20 -0.1154 Muuniform:MRO0.70 -0.1259
Muuniform:MR0.90 -0.0956 PS100:Trscale2:EI5% -0.0511 PS200: Trscale2:EI5% -0.0807
PS100:Trscale4:EI5% -0.0471 PS200:Trscale4:EI5% -0.0626 PS100:Trscale2:Credge 0.0520
PS200:Trscale2:Credge 0.3437 PS100:Trscale4:Credge 0.0170 PS200:Trscale4:Credge 0.2910
PS100:Trscale2:CP0.70 0.1132 PS200:Trscale2:CP0.70 0.2367 PS100:Trscale4:CP0.70 0.1327
PS200:Trscale4:CP0.70 0.3292 PS100:Trscale2:CP0.90 0.1242 PS200:Trscale2:CP0.90 0.3311
PS100:Trscale4:CP0.90 0.1917 PS200:Trscale4:CP0.90 0.3831 PS100:Trscale2:MR0.20 0.1882
PS200:Trscale2:MR0.20 0.0687 PS100:Trscale4:MR0.20 0.2037 PS200:Trscale4:MR0.20 0.0869
PS100:Trscale2:MR0.70 0.3373 PS200:Trscale2:MR0.70 0.1034 PS100:Trscale4:MR0.70 0.2725
PS200:Trscale4:MR0.70 0.0771 PS100:Trscale2:MR0.90 0.2269 PS200:Trscale2:MR0.90 0.0966
PS100:Trscale4:MR0.90 0.2699 PS200:Trscale4:MR0.90 0.0913 PS100:E15%:Muuniform -0.0492
PS200:E15%:Muuniform 0.0120 PS100:Credge:MR0.20 0.1531 PS$200:Credge:MR0.20 0.1941
PS100:Credge:MR0.70 0.2827 PS$200:Credge:MRO0.70 0.4298 PS100:Credge:MR0.90 0.2949
PS$200:Credge:MR0.90 0.3912 P5100:CP0.70:Muuniform -0.0778 P5200:CP0.70:Muuniform -0.0547
PS$100:CP0.90:Muuniform -0.0178 PS$200:CP0.90:Muuniform 0.0201 PS100:CP0.70:MR0.20 0.2132
PS200:CP0.70:MR0.20 0.2018 PS100:CP0.90:MR0.20 0.1823 PS200:CP0.90:MR0.20 0.1884
PS100:CP0.70:MR0.70 0.2592 PS200:CP0.70:MR0.70 0.2385 PS100:CP0.90:MR0.70 0.1729
PS200:CP0.90:MR0.70 0.1799 PS100:CP0.70:MR0.90 0.2064 PS200:CP0.70:MR0.90 0.1266
PS100:CP0.90:MR0.90 0.1059 PS200:CP0.90:MR0.90 0.0810 PS100:Muuniform:MRO0.20 0.1312
PS$200:Muuniform:MRO0.20 0.0813 PS100:Muuniform:MRO0.70 0.0738 PS$200:Muuniform:MRO0.70 0.0868
PS100:Muuniform:MR0.90 0.0451 PS$200:Muuniform:MR0.90 0.0405 Trscale2:E15%:CP0.70 -0.0796
Trscale4:E15%:CP0.70 -0.0180 | Trscale2:EI5%:CP0.90 -0.0651 | Trscale4:EI5%:CP0.90 -0.1316
Trscale2:EI5%:Muuniform 0.0574 Trscale4:EI5%:Muuniform -0.0060 | Trscale2:EI5%:MR0.20 -0.0415

cont.

97

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
Trscale4:EI5%:MR0.20 -0.0848 | Trscale2:EI5%:MR0.70 -0.1590 | Trscale4:EI5%:MR0.70 -0.1707
Trscale2:EI5%:MR0.90 -0.1368 Trscale4:EI5%:MR0.90 -0.1728 Trscale2:Credge:CP0.70 -0.0744
Trscale4:Credge:CP0.70 -0.2073 Trscale2:Credge:CP0.90 -0.0770 Trscale4:Credge:CP0.90 -0.1549
Trscale2:CP0.70:Muuniform 0.0261 Trscale4:CP0.70:Muuniform -0.0445 Trscale2:CP0.90:Muuniform -0.0517
Trscale4:CP0.90:Muuniform -0.0841 Trscale2:CP0.70:MR0.20 0.1006 Trscale4:CP0.70:MR0.20 0.1194
Trscale2:CP0.90:MR0.20 0.1208 Trscale4:CP0.90:MR0.20 0.1123 Trscale2:CP0.70:MR0.70 0.1324
Trscale4:CP0.70:MR0.70 0.1347 Trscale2:CP0.90:MR0.70 0.2104 Trscale4:CP0.90:MR0.70 0.1566
Trscale2:CP0.70:MR0.90 0.1377 Trscale4:CP0.70:MR0.90 0.1783 Trscale2:CP0.90:MR0.90 0.2534
Trscale4:CP0.90:MR0.90 0.2239 EI5%:Credge:MR0.20 -0.0304 | EI5%:Credge:MRO0.70 0.0265
EI5%:Credge:MR0.90 0.0622 EI5%:CP0.70:Muuniform -0.0856 | EI5%:CP0.90:Muuniform -0.0816
EI5%:CP0.70:MR0.20 0.0162 EI5%:CP0.90:MR0.20 -0.0118 EI5%:CP0.70:MR0.70 0.0216
EI5%:CP0.90:MR0.70 -0.0422 EI5%:CP0.70:MR0.90 -0.0697 EI5%:CP0.90:MR0.90 -0.1225
Credge:Muuniform:MR0.20 0.0258 Credge:Muuniform:MR0.70 0.1021 Credge:Muuniform:MR0.90 0.0921

Table 39: Coefficients for the time model for order-based GCAs on

Ruspini2.

A.5 Order-based and Towns2

98

The correctness model coefficients for the order-based GCAs on Towns2 are listed in Table 40.

This model has a residual deviance of 386.1 on 1252 degrees of freedom and matches the data well

(Figure 47).

 — \

8 29
) So
%) =
Sq =
o 538
P o
S
° a
oo Eo
Qo S0
EN ZQ
3 ko]
= [e R 2
£
o To
0 1 2 4 5 0.0

Number of Correct Runs

0.2 0.4 0.6 .8
Probability of Correctness

1.0

Figure 47: Comparison of experimental and fitted correctness for order-based GCAs on Towns2.

Covariate Effect Covariate Effect Covariate Effect
(Intercept) -0.4956 PS100 -0.7545 PS200 -3.4836
Trscale2 -0.7708 Trscaled -0.6270 EI5% 0.0095
Credge 3.4044 CrPMX -8.9210 CP0.70 0.9022
CP0.90 1.3245 MRO0.20 1.6766 MRO0.70 4.0323
MR0.90 4.1953 PS100:E15% -0.6381 PS200:E15% 0.2762
PS100:Credge 8.6976 PS200:Credge 4.5275 PS$100:CrPMX -0.7258
PS200:CrPMX -4.6320 PS100:CP0.70 0.9303 PS200:CP0.70 0.5591
PS100:CP0.90 1.2453 PS200:CP0.90 2.1117 PS100:MR0.20 -0.5950
PS200:MR0.20 -1.6084 PS100:MR0.70 -1.3705 PS200:MR0.70 -3.3595
PS100:MR0.90 -1.8685 PS200:MR0.90 -3.7982 Trscale2:EI5% 1.2432
Trscale4:EI5% 1.3430 Trscale2:Credge 13.1436 Trscale4:Credge 13.3841
Trscale2:CrPMX -5.2360 Trscale4:CrPMX -5.0491 Trscale2:MR0.20 -1.0720
Trscale4:MR0.20 -1.5813 Trscale2:MR0.70 -6.2452 Trscale4:MR0.70 -6.7731
Trscale2:MR0.90 -6.4426 Trscale4:MR0.90 -6.7489 EI5%:MR0.20 1.1547

Table 40: Coeflicients for the correctness model for order-based GCAs

on Towns2.

APPENDIX A. MODELS FOR GA ADAPTIONS

The coefficients for the final time model can be found in Table 41. This model has a residual
deviance of 1182.3 on 591 degrees of freedom which indicates a relatively poor fit (notice the

variations in the histograms in Figure 48). There are no obvious violations of model assumptions

in the residual plot (Figure 49).

& &
8 8
'_C) ’_O
B® B®
e 2
3 3
o o
ES ES
=} >
= —’—L =
o o

50 100

150

200

250 300

Average Time per Correct Run (seconds CPU)

100

150 200

50 250 300
Fitted Time per Correct Run (seconds CPU)

350

Figure 48: Comparison of experimental and fitted time for order-based GCAs on Towns2.

2 0 2 4

Deviance Residuals
-4

oe o @ ° . °
o o . ° . °° 0.’ o oo
. o %o o DL G T PP
& M‘. ""m- '-:.'; RE :ﬁ'}: ive
o’ oo % oo S. .,
e, “2?.'.' '] te % ?%ﬁ?}?' & .
10 15 30 35

20 25
Transformed Fitted Values

Figure 49: Residual plot for time model for order-based GCAs on Towns2.

Covariate Effect Covariate Effect Covariate Effect
(Intercept) 5.5563 PS100 0.0562 PS200 0.1898
Trscale2 -0.1378 Trscaled -0.0759 El% -0.0553
Credge -0.8701 CP0.70 -0.1992 | CP0.90 -0.2204
Muuniform -0.0148 MRO0.20 -0.2486 MRO0.70 -0.3531
MR0.90 -0.3615 PS100:Trscale2 0.0240 PS200:Trscale2 0.0399
PS100:Trscale4 -0.0308 PS200:Trscale4 0.0796 PS100:E1% 0.1720
PS200:E1% -0.0074 PS100:Credge -0.4012 PS200:Credge -0.2251
PS100:MR0.20 0.1265 PS200:MR0.20 0.2036 PS100:MR0.70 0.1251
PS200:MR0.70 0.2733 PS100:MR0.90 0.1634 PS200:MR0.90 0.3477
Trscale2:EI% -0.0035 | Trscale4:EI% 0.0419 | Trscale2:Credge -0.6168
Trscale4:Credge -0.8433 Trscale2:CP0.70 0.1317 Trscale4:CP0.70 0.2019
Trscale2:CP0.90 0.0594 Trscale4:CP0.90 0.0210 Trscale2:Muuniform -0.0137
Trscale4:Muuniform 0.0529 Trscale2:MR0.20 0.1850 Trscale4:MR0.20 0.0371
Trscale2:MR0.70 0.4430 Trscale4:MR0.70 0.4368 Trscale2:MR0.90 0.6313
Trscale4:MR0.90 0.5074 El%::Credge 0.1655 El%:MR0.20 0.0461
El%:MR0.70 -0.1289 | EI%:MRO0.90 -0.1345 | Credge:CP0.70 -0.3522
Credge:CP0.90 -0.3942 Credge:MR0.20 0.0622 Credge:MR0.70 -0.2034
Credge:MR0.90 -0.2928 | CP0.70:MR0.20 0.0830 CP0.90:MR0.20 0.0413
CP0.70:MR0.70 0.0729 CP0.90:MR0.70 0.0965 CP0.70:MR0.90 0.0689
CP0.90:MR0.90 0.0101 PS100:CP0.70 0.0115 PS200:CP0.70 0.0026
PS$100:CP0.90 -0.0142 PS$200:CP0.90 -0.0024 PS100:Trscale2:Credge 0.4354
PS200:Trscale2:Credge 0.7443 PS100:Trscale4:Credge 0.5537 PS200:Trscale4:Credge 0.7586
Trscale2:Credge:MR0.20 -0.0593 Trscale4:Credge:MR0.20 0.1046 Trscale2:Credge:MR0.70 -0.0405
Trscale4:Credge:MR0.70 0.0963 Trscale2:Credge:MR0.90 -0.0029 Trscale4:Credge:MR0.90 0.0879
PS100:Credge:MR0.20 -0.0484 PS$200:Credge:MR0.20 -0.0461 PS100:Credge:MR0.70 0.2357
PS$200:Credge:MRO0.70 0.2744 PS100:Credge:MR0.90 0.3594 PS$200:Credge:MR0.90 0.4159
PS100:Credge:CP0.70 0.1437 PS$200:Credge:CP0.70 0.2552 PS100:Credge:CP0.90 0.1759
cont.

APPENDIX A. MODELS FOR GA ADAPTIONS

cont.

Covariate Effect Covariate Effect Covariate Effect
PS$200:Credge:CP0.90 0.2745 PS100:Trscale2:El% -0.0562 PS200:Trscale2:EI% 0.0823
PS100:Trscale4:El% -0.1320 PS200: Trscale4:El% 0.0462 PS100:Trscale2:MR0.20 0.0466
PS200:Trscale2:MR0.20 -0.0761 PS100:Trscale4:MR0.20 0.1184 PS200:Trscale4:MR0.20 -0.0847
PS100:Trscale2:MR0.70 -0.0321 PS200:Trscale2:MR0.70 -0.2954 PS100:Trscale4:MR0.70 -0.0818
PS200:Trscale4:MR0.70 -0.3769 PS100:Trscale2:MR0.90 -0.2367 PS200:Trscale2:MR0.90 -0.5109
PS100:Trscale4:MR0.90 -0.1274 PS200:Trscale4:MR0.90 -0.5116 PS100:E1%:Credge -0.1347
PS200:E1%:Credge -0.2354 PS100:E1%:MR0.20 -0.1244 PS200:E1%:MR0.20 -0.0280
PS100:E1%:MR0.70 -0.0025 PS200:E1%:MR0.70 0.1395 PS100:E1%:MR0.90 -0.0079
PS200:E1%:MR0.90 0.1117 Trscale2:CP0.70:MR0.20 -0.1119 Trscale4:CP0.70:MR0.20 -0.2020
Trscale2:CP0.90:MR0.20 -0.1278 Trscale4:CP0.90:MR0.20 0.0395 Trscale2:CP0.70:MR0.70 -0.0482
Trscale4:CP0.70:MR0.70 -0.0953 Trscale2:CP0.90:MR0.70 0.0207 Trscale4:CP0.90:MR0.70 -0.0181
Trscale2:CP0.70:MR0.90 -0.0919 Trscale4:CP0.70:MR0.90 -0.0754 Trscale2:CP0.90:MR0.90 -0.0206

Table 41: Coeflicients for the time model for order-based GCAs on

Towns2.

100

