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AbstractClustering is the search for those partitions that reect the structure of an object set. Traditionalclustering algorithms search only a small sub-set of all possible clusterings (the solution space) andconsequently, there is no guarantee that the solution found will be optimal. We report here onthe application of Genetic Algorithms (GAs) | stochastic search algorithms touted as e�ectivesearch methods for large and complex spaces | to the problem of clustering. GAs which have beenmade applicable to the problem of clustering (by adapting the representation, �tness function, anddeveloping suitable evolutionary operators) are known as Genetic Clustering Algorithms (GCAs).There are two parts to our investigation of GCAs: �rst we look at clustering into a given numberof clusters. The performance of GCAs on three generated data sets, analysed using 4320 di�eringcombinations of adaptions, establishes their e�cacy. Choice of adaptions and parameter settingsis data set dependent, but comparison between results using generated and real data sets indicatethat performance is consistent for similar data sets with the same number of objects, clusters,attributes, and a similar distribution of objects. Generally, group-number representations arebetter suited to the clustering problem, as are dynamic scaling, elite selection and high mutationrates. Independent generalised models �tted to the correctness and timing results for each of thegenerated data sets produced accurate predictions of the performance of GCAs on similar real datasets.While GCAs can be successfully adapted to clustering, and the method produces results asaccurate and correct as traditional methods, our �ndings indicate that, given a criterion based onsimple distance metrics, GCAs provide no advantages over traditional methods.Second, we investigate the potential of genetic algorithms for the more general clusteringproblem, where the number of clusters is unknown. We show that only simple modi�cations to theadapted GCAs are needed. We have developed a merging operator, which with elite selection, isemployed to evolve an initial population with a large number of clusters toward better clusterings.With regards to accuracy and correctness, these GCAs are more successful than optimisationmethods such as simulated annealing. However, such GCAs can become trapped in local minimain the same manner as traditional hierarchical methods. Such trapping is characterised by thesituation where good (k-1)-clusterings do not result from our merge operator acting on good k-clusterings. A marked improvement in the algorithm is observed with the addition of a localheuristic. iii
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Chapter 1IntroductionClustering, or grouping, is an exploratory procedure that searches for \natural" structure withina data set. This process involves sorting the data cases, or objects, into groups, or clusters, so thatobjects in the same cluster are more like one another than they are like objects in other clusters.Sorting occurs on the basis of similarities calculated from the data; no assumptions about thestructure of the data are made. Clustering is useful for data reduction (reducing a large amountof data to a number of characterising sub-groups), developing classi�cation schemes (also knownas taxonomies), and suggesting or supporting hypotheses about the structure of the data.Clustering techniques have been used in a wide range of disciplines. In psychiatry, Pilowski,Levine and Boulton [32] used clustering to develop a classi�cation of depression. In market research,Green, Frank, and Robinson [27] used a clustering algorithm to identify homogeneous sets of testmarkets. In archaeology, Hodson [30] applied clustering to the problem of classifying BritishHand-axes. In pattern recognition, Levrat et al. [45] used fuzzy clustering to segment an image. Inengineering, Reich and Fenves [54] used a clustering algorithm to create a hierarchy of speci�cationsand associated designs for existing bridges, and in medicine, Funk et al. [21] used clustering as amethod of knowledge acquisition for expert system assisted diagnosis.1.1 BackgroundThis section contains a review of clustering, including a more formal de�nition of the clusteringproblem and an introduction to traditional clustering techniques.1.1.1 The Clustering ProblemWe shall de�ne the clustering problem as follows:The set of n objects X = fX1; X2; :::; Xng is to be clustered. Each Xi 2 <p is anattribute vector consisting of p real measurements describing the object. The objectsare to be clustered into non-overlapping groups C = fC1; C2; :::; Ckg (C is known asa clustering), where k is the number of clusters, C1 [ C2 [ ::: [ Ck = X, Ci 6= ;, andCi \Cj = ; for i 6= j. The objects within each group should be more similar to each1



CHAPTER 1. INTRODUCTION 2other than to objects in any other group, and the value of k may be unknown. If k isknown, the problem is referred to as the k-clustering problem.1.1.2 Measures of SimilarityTo cluster objects according to their similarity, one must de�ne a measure of how close two objectsare, or how well their values compare. A small distance between the objects should indicate a highsimilarity. Thus a distance measure can be used to quantify dissimilarity.Several distance measures are employed for clustering [35, 15]. The most commonly used is theEuclidean distance, d(Xi; Xj) =q(Xi �Xj)0(Xi �Xj) = [ pXl=1(xil � xjl)2] 12 ;the straight line distance between the two points representing the objects. An alternate measureis the \city-block" distance which sums the di�erence between all the attributes,d(Xi; Xj) = pXl=1 jxil � xjlj:This measure is problematic if the attributes are correlated. Both of these distance measures arespecial cases of the more general Minkowski distance,d(Xi; Xj) = [ pXl=1(xil � xjl)m] 1m :The Mahalanobis distance is a standardised form of the Euclidean distanced(Xi; Xj) =q(Xi �Xj)0��1(Xi �Xj);where � is the correlation matrix. This measure scales the data in terms of standard deviationsand adjusts for inter-correlations between the variables. However, it is not as commonly used asthe Euclidean as prior knowledge of the clusters are required to compute �.1.1.3 Traditional Clustering AlgorithmsClustering algorithms can be catergorised as either hierarchical or optimisation.Hierarchical TechniquesHierarchical clustering techniques proceed by either a series of successive mergers or a series ofsuccessive divisions. The result is the construction of a tree{like structure or hierarchy of clusteringswhich can be displayed as a diagram known as a dendogram (Figure 1). Agglomerative hierarchicalmethods begin with the each observation in a separate cluster. These clusters are then merged,according to their similarity (the most similar clusters are merged at each stage), until only onecluster remains.Divisive hierarchical methods work in the opposite way. An initial cluster containing all theobjects is divided into sub-groups (based on dissimilarity) until each object has its own group.Agglomerative methods are more popular than divisive methods.



CHAPTER 1. INTRODUCTION 3
Figure 1: Dendogram for hierarchical clustering (from [35]).For both methods, the number of clusters is needed to select a clustering from the hierarchy.However the di�erence between the levels of the hierarchy may be an indication of the correctnumber of clusters.The following are the the steps in an agglomerative hierarchical clustering algorithm forgrouping n objects. Methods di�er in how the distance between clusters is calculated.1. Begin with n clusters, each containing one object.2. Calculate the distance between each pair of clusters. These distances are usually stored in asymmetric distance matrix, Dn�n = fdijg.3. Merge the two clusters with the minimum distance.4. Update the distance matrix.5. Repeat Steps 3 and 4 until a single cluster remains.There are four important agglomerative clustering algorithms: single-linkage, complete-linkage,average-linkage, and Ward's minimum variance method. For single-linkage, or nearest neighbourclustering [20], the distance between two clusters is the distance between the two nearest objectsin those clusters. Problems occur when the clusters are poorly delineated; this method can resultin long chains with dissimilar objects at the ends (Figure 2).
Figure 2: Chaining in single-linkage clustering (from [2]).



CHAPTER 1. INTRODUCTION 4Complete-linkage or furthest neighbour clustering [59] joins the two clusters with the minimumdistance between their two furthest objects, thus eliminating the chaining problem experiencedwith single-linkage clustering.Average-linkage or group-average clustering [58] de�nes the distance between two clusters to bethe average distance from all objects in one cluster to all objects in the other cluster. This approachtends to combine clusters with small variances, and the method is biased towards producing clusterswith approximately equal variance. In a variation of this method, called centroid clustering [44],the distance between two clusters is de�ned as the distance between their centroids. This methodcan produce messy and confusing results, since the centroids move as clusters are combined. Thusthe distance between two clusters may be less than the distance between the centroids of clustersmerged at an earlier stage (Figure 3).
Figure 3: Reversal in centroid clustering: (a) dendogram showing reversal; (b) migration ofcentroids | if clusters with centroids p and q are merged, the centroid of the resulting cluster, t,is closer to r than either p or q (from [2]).Unlike the above clustering methods, Ward's minimum variance method [67] optimises anobjective statistic { the sum of the squared distances between each object and its cluster centre.At each step the algorithm merges the clusters that will minimise the increase of this statistic.This method tends to join clusters with small numbers of objects, and is biased towards producingclusters of approximately the same size.Further detail on these clustering methods can be found in [2, 65, 15].Comparison studies show that the performance of hierarchical methods vary according to thetype of data | there is no one method that is best in all circumstances [53, 15]. However, Ward'sminimumvariance method and the average-linkage method cluster relatively accurately over a widerange of data types.Hierarchical clustering methods su�er from several disadvantages:(i) they are restricted to smaller data sets due to the need to store similarity matrices;(ii) there is no provision for reallocation of objects that have been incorrectly grouped at an earlystage; and(iii) the results reect the degree to which the data conforms to the structural forms embeddedin the algorithm.



CHAPTER 1. INTRODUCTION 5Optimisation TechniquesUnlike hierarchical techniques, which produce a series of related clusterings, optimisationtechniques produce a single clustering which optimises a pre-de�ned criterion or objective function.The number of clusters in this clustering, is either speci�ed a priori or is determined as part of theclustering method.Optimisation methods start with an initial partition of objects into a speci�ed number ofgroups. Objects are then reassigned to clusters according to the objective function until someterminating criterion is met. These methods di�er with respect to the starting partitions, theobjective functions, the reassignment processes, and the terminating criteria.Optimisation methods may use a random initial partition or one generated from seed points [2].In the latter these seed points may be random, or may be selected using a method that attemptsto ensure that they span the data. There are several methods for building partitions from seedpoints.Objective functions which are commonly used as clustering criteria [15] include:� Minimisation of trace (W )� Minimisation of the determinant of (W )� Maximisation of trace (BW�1)where: W = kXi=1 niXj=1(Xij �Xj)(Xij �X i)0is the pooled within-cluster covariance matrix, andB = kXi=1 ni(Xi �X)(X i �X)0is the between cluster covariance matrix. Here ni is the number of objects in cluster i, Xij is thejth object of the ith cluster, X i = 1ni Pnil=1Xil is the centroid of cluster i, and X = 1nPnl=1Xl isthe grand mean.The minimisation of trace (W ) is equivalent to minimising the sum of square Euclideandistances between individuals and their cluster centroids (Ward's minimum variance method usesthis statistic to determine which clusters to merge at each step). This clustering criterion favoursspherical clusters, since the correlation between the attributes is not considered. The secondcriterion is scale invariant, and is suitable for clusters which do not have a spherical distribution.The third criterion, trace (BW�1), is a generalisation of the Mahalanobis distance to more thantwo groups. For a more detailed review of these and other criterion refer to [26, 15].Two types of reassignment are generally employed. The �rst loops through all the objects,reassigning each to the cluster whose centroid is the closest. The second searches a localneighbourhood of clusterings for one which improves the objective function value. Although themajority of optimisation methods require the number of clusters a priori, some reassignmentprocesses have been designed to allow the number of clusters to evolve during clustering [2].



CHAPTER 1. INTRODUCTION 61. Start with an arbitrary partition into k initial clusters.2. Take each object in sequence and move to the cluster which reduces the numerical criterion themost. Transfer the object, compute new centroids.3. Repeat Step 2 until a full cycle through the objects cannot reduce the criterion value.Figure 4: The k-means algorithm.Optimisation algorithms terminate when there are no reassignments that will reduce thecriterion value. This occurs when all objects are in the cluster whose centroid is closest to them,or the current clustering is a local minima.Two popular optimisation methods are k-means and hill-climbing. Algorithms for thesemethods are given in Figures 4 and 5. Further discussion of optimisation methods can be foundin [2, 29, 53, 15]. A more recent approach to the problem, using simulated annealing, is introducedin [41].The k-means technique performs well in comparison to hill-climbing and hierarchical methods,although it is sensitive to its initial partition [53]. The k-means method is also less a�ected byoutliers, the choice of distance measure, and the presence of irrelevant attributes or dimensions.Unlike hierarchical clustering techniques, optimisationmethods do not store similaritymatrices.Thus the size of the data is not limited by storage space. However, there are a number ofdisadvantages a�ecting optimisation methods:(i) some methods require the number of clusters a priori, and will divide the data into thisnumber of clusters regardless of the data structure;(ii) certain clustering criterion are biased toward particular cluster shapes, and will impose theseshapes on the data; and(iii) the performance of optimisation techniques is highly dependent on the initial partition.1. Start with an arbitrary partition into k initial clusters.2. Search the local neighbourhood for the clustering which which reduces the numerical criterionthe most.3. Repeat Step 2 until no clusterings in the neighbourhood reduce the clustering criterion.Figure 5: The hill-climbing algorithm.1.2 MotivationThe number of ways of sorting n objects into k groups is given by Liu [46]:N (n; k) = 1k! kXi=0(�1)i ki ! (k � i)n



CHAPTER 1. INTRODUCTION 7For example, there are N (25; 5) = 2; 436; 684;974;110; 751 ways of sorting 25 objects into �vegroups [2]. If the number of clusters is unknown the objects can be sorted Pni=1 N (n; k) ways.For our 25 objects this is over 4 � 1018 clusterings. Clearly, it is impractical for an algorithm toexhaustively search the solution space to �nd the optimal solution.Furthermore, traditional clustering algorithms search a relatively small subset of the solutionspace (these subsets are de�ned by the number of clusters, the clustering criteria, and the clusteringmethod). Consequently, the probability of success of these methods is small. Algorithms such assingle-linkage are deterministic and will repeatedly �nd the same solution for a given data set,whereas algorithms such as k-means conduct a local search starting from an initial partition. Ineach case, the solution may be a local optimum, which is not necessarily the global solution. Thisis exacerbated when the solution space is very large.Clearly, we need an algorithm with the potential to search large solution spaces e�ectively.Recently, genetic algorithms have been widely employed for optimisation problems in severaldomains. Their success lies in their ability to span a large subset of the search space. Theapplication of genetic algorithms to clustering is the focus of this work. Below we introduce thefundamentals of genetic algorithms.1.3 Genetic AlgorithmsA Genetic Algorithm (GA) is a computational abstraction of biological evolution that can be usedto solve some optimisation problems [31, 24]. In its simplest form, a GA is an iterative processapplying a series of genetic operators such as selection, crossover and mutation to a populationof elements (Figure 6). These elements, called chromosomes, or individuals represent possiblesolutions to the problem; the initial chromosomes are selected randomly from the solution space.Genetic operators combine the genetic information of the elements to form new generations ofthe population; this process is known as reproduction. Each chromosome has an associated �tnessvalue which quanti�es its value as a solution to the problem | a chromosome representing a bettersolution will have a higher �tness value. The chromosomes compete to reproduce based on their�tness values, thus the chromosomes representing better solutions have a higher chance of survival.
Randomly generate an 
initial population  P(0)

Calculate individual fitnesses f(i)
for current population  P(t)

Select parents for reproduction
based on individual fitness  f(i)

Mutation
P(t+1)

Until stopping
criterion satisfied

CrossoverFigure 6: Outline of a simple GA.



CHAPTER 1. INTRODUCTION 8Selection according to �tness combined with crossover gives the GA its evolutionary power.The underlying assumption is that the recombination of short sequences of genetic material, orbuilding blocks, from �t parents will lead to children of higher �tness. This is known as the buildingblock hypothesis, and violation of this assumption may lead to poor performance [24].GAs have been used to solve a variety of optimisation problems. Goldberg [24] reviews theapplication of GAs to problems including natural gas pipeline control, structural optimisation,and image registration. Michalewicz [48] discusses the application of evolutionary techniques toproblems such as job scheduling, path planning, and the travelling salesman problem.To successfully apply a GA to solve a problem one needs to determine the following:1. how to represent possible solutions, or the chromosomal encoding;2. what to use as the �tness function which accurately represents the value of the solution;3. which genetic operators to employ; and4. the parameter values (population size, probability of applying operators, etc.) which aresuitable.1.3.1 RepresentationThe representation should be complete, that is one should be able to encode all possible solutionsto the problem. Clearly, if the GA cannot represent the solution, it can never �nd it. A secondaryconsideration is validity, that is all possible encodings should correspond to points inside thesolution space. Invalid representations can be used, but it may be necessary to adapt the GAto avoid invalid encodings. The representation may also have a number of di�erent chromosomesthat represent the same solution, this is known as redundancy. Since a GA is a search overits representation space, not the solution space, high redundancy may present problems forconvergence [36].As a simple example of an encoding scheme let us consider a bank of six input switches. Wecan create a code by using a string of six 1's and 0's where each switch is represented by a 1 if theswitch is on and a 0 if the switch is o� (Figure 7). This representation is complete, valid and hasno redundancy.
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CHAPTER 1. INTRODUCTION 9sub-string possible. Secondly, the alphabet should be the smallest that permits a natural expressionof the problem. The binary encoding we have selected is a natural representation for the switchingproblem.In accordance with the above principles, the majority of traditional GAs have used the binaryalphabet. Antonisse [3] argues that larger encoding alphabets are suitable for GAs, and empiricalstudies [34, 48] show that GAs with oating point representations are faster and more precise thanbinary encodings on continuous domains. Davis [13, 14] and Michalewicz [48] further emphasisethe need for an encoding scheme that gives a natural representation of the problem irrespectiveof the alphabet size. For example, a permutation is perhaps the most natural representation of atour for the travelling salesman problem (Figure 8).
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6 (a) 1 2 4 5 3 6(b)Figure 8: Encoding scheme for the travelling salesman problem: (a) a tour of six cities; (b) arepresentation of the given tour.1.3.2 Fitness FunctionThe �tness function quanti�es the suitability of each chromosome as a solution and is used as abasis for selecting chromosomes for reproduction. Chromosomes with high �tness have more chanceof being selected, and thus, passing their genetic material (recombined via crossover) to the nextgeneration. The �tness function provides the pressure for the GA to evolve its population towardchromosomes of higher �tness, and clearly, the success of the GA for the problem is dependent onthe choice of the �tness function.The chromosome representing the optimal solution should have the maximum �tness value forthe solution space; near optimal solutions should have high �tness values. Since GAs tend toretain genetic material found in chromosomes of high �tness, appropriate choice of �tness functionwill increase the probability of retaining genetic material associated with optimal or near optimalsolutions.Consider the six switches from Figure 7. The switches belong to a black box optimisationproblem that has an associated payo� measure. A selection of payo� values are given in Table 1.An appropriate �tness function to �nd the switch settings with the highest payo� would be thepayo� values themselves. However, if we wanted to �nd the switch settings that would give thepayo� closest to $20, we would use a �tness function based around the di�erence between thepayo� and $20 (for example, f = �j20� Payo�j).



CHAPTER 1. INTRODUCTION 10Switch Payo�1 2 3 4 5 6 $OFF OFF OFF OFF OFF OFF 0.9OFF ON OFF OFF ON ON 15.1OFF ON ON ON ON OFF 1.7ON OFF OFF OFF OFF OFF 21.0ON ON OFF OFF OFF ON 39.4ON ON ON ON ON ON 23.3Table 1: Some payo� values for the black box optimisation problem with six switches.A further issue when considering the �tness function is scaling. When the population �tnessvalues are diverse, the �tter individuals will have high selection probabilities compared to averageindividuals. However, as the �tness values converge the �tter individuals will have similarprobabilities to the average individuals. Thus the probability of selecting the �tter individuals(the driving force behind the GA's evolution) can be signi�cantly reduced.Selection pressure can be maintained by scaling the �tness values. Linear scaling calculatesthe scaled �tness f 0 from the raw �tness f using a linear transformation, f 0 = af + b [24]. Theconstants a and b are chosen so that the average scaled �tness is equal to the average raw �tness,and the maximum scaled �tness equals the maximum raw �tness multiplied by the number ofexpected copies desired for the best population member. Linear scaling may produce negativescaling values, although Goldberg [24] provides an algorithm to avoid this. Power law scalingcalculates the scaled �tness as some speci�ed power of the raw �tness, f 0 = fc [24]. The value ofc is problem dependent.1.3.3 Genetic OperatorsThere are four major operators used for GAs: initialisation, selection, crossover and mutation.The Initialisation OperatorThis operator is used to generate the initial population for the GA. The initial population shouldcontain chromosomes which are scattered throughout the solution space, thus providing theGA with a variety of genetic material. The easiest way to achieve this is to randomly selectchromosomes from the representation space. For our switches example (Section 1.3.1) we couldgenerate a population of random binary strings of length six. Alternatively, a population of randompermutations of the integers 1 to 6 is appropriate for our travelling salesman representation.The Selection OperatorSelection chooses individuals for reproduction based on their �tness values. Fitness proportionalselection or roulette wheel selection [24] chooses individuals with a probability proportional to theirrelative �tness. This corresponds to a spinning wheel where each chromosome has been allocateda section of the wheel according to its relative �tness value | the higher the �tness the larger theallocated section. An alternate selection scheme is remainder stochastic sampling [9]. Here, thenumber of expected occurrences of each individual in the next population are calculated. Parents



CHAPTER 1. INTRODUCTION 11are selected according to the integer part of this number, and the chromosomes then competeaccording the the fractional parts for the remaining places in the population. Stochastic universalsampling [4] selects all the parents at the same time. This method is analogous to a single spinningwheel with the number of (equally spaced) pointers representing the desired number of parents.Tournament selection [9] is a process which selects parents according to their rank. The identity ofa parent is decided by randomly selecting a predetermined number of individuals, and then �ndingthe �ttest individual within this set.A simple GA will select a su�cient number of parents to reproduce and form the nextgeneration. However, steady state GAs will select a single pair of parents to reproduce andthen add the resulting o�spring back into the population (perhaps deleting the parents to makeroom for them) before selecting another pair to reproduce. Elite selection strategies [37] copy the�ttest individuals straight from one generation to the next to prevent them from being lost duringreproduction. Further discussion of these and other selection mechanisms can be found in [24, 48].The Crossover OperatorCrossover combines the genetic material of one or more parents to produce one or more o�spring.Single-point crossover exchanges the tails of two parent strings. The size of the strings exchangedis determined by a randomly generated crossover point (Figure 9a). Uniform crossover exchangeseach bit with a random probability (Figure 9b).
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CHAPTER 1. INTRODUCTION 12Numerous crossovers have been designed for permutation representations. Partially mappedcrossover or PMX [23] chooses a substring of one parent and then preserves the order and positionof as many values as possible from the other parent (Figure 10a). PMX starts by swapping arandomly selected substring between the two parents. This substring de�nes a series of mappingswhich are applied to produce the o�spring.Order-based crossover or OX [12] builds o�spring by choosing a substring from one parent andpreserving the relative order of values from the other parent (Figure 10b). OX starts by copyinga (randomly selected) substring of the second parent into the �rst child. Then starting at the endof the substring, the sequence of the remaining values in the �rst parent is copied into the child.
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values(b)Figure 10: Crossover operators for permutation representations: (a) PMX preserves the order andposition of values in the parents; (b) OX preserves the order of values within the parents.Michalewicz [48] describes suitable crossover operators for a variety of encoding schemes.The second problem to consider when selecting a crossover operator is one of contextinsensitivity. This occurs when a chromosome is similar to its parent chromosomes, but thesolution it represents is not similar to the solutions represented by the parent chromosomes |the crossover operator is insensitive to the solutions that the parents represent. We shall discussthis further in Chapter 2.The Mutation OperatorThe mutation operator introduces new genetic material into the population. For a binary string,a simple mutation would change a 0 to a 1 (or a 1 to a 0) somewhere along the string. For apermutation, we might swap two integer values. For real-valued chromosomes, a mutation operatorcould replace values by using a Gaussian distribution with a mean equal to the current real value.As with the crossover operator, it is possible to create invalid chromosomes by applyingsome mutation operators to certain representations (for example, applying a binary mutationto a permutation encoding), so we need to ensure that the mutation operator is suitable for therepresentation.



CHAPTER 1. INTRODUCTION 131.3.4 Parameter ValuesGA performance is sensitive to certain parameter values, in particular the population size,frequency of operator application, and the termination criterion. Small populations may convergequickly to sub-optimal solutions, while large populations waste computational resources. Lowcrossover rates slow down the convergence because of the increased time required to explore theexisting genetic material. If the mutation rate is too high, the relationship between generationsmay be too low, possibly decaying into random search. If the rate is too low, unseen and noveltraits will appear infrequently.There are two common termination criteria. The �rst allows the GA a set number of generationswhich may not be enough to produce a satisfactory solution. The second requires the convergenceof the population. If complete convergence is necessary for termination the GA will only stop whenall members of the population are the same chromosome. This may never occur. An alternative isto stop the GA when one chromosome occupies a certain percentage of the population.A number of studies have been conducted to determine appropriate parameter values.De Jong [37] calculated parameter values from theory, using a suite of �ve functions to test thevalues. Grefenstette [28] used a GA to evolve parameter values | a meta-GA with a populationof GAs with varying parameter values. Scha�er et al. [56] ran exhaustive tests for a wide rangeof values. More recently, numerous theoretical studies model GAs as Markov chains in order todetermine the optimal parameter values [25, 52, 62] However, all of these studies consider onlybinary encoding schemes, and only small problems are used in the empirical studies. An alternateapproach is to allow the operator probabilities to adapt during the GA's evolution [13, 61].1.3.5 Final Comments | GAsGAs have gained popularity for solving optimisation problems. However, De Jong [38] emphasisesthat GAs are not function optimisers, but can be adapted to work as such. Davis [13, 14] andMichalewicz [48] go even further, stressing that a GA must be adapted to suit the problem | inparticular, the representation and operators need to be be designed carefully. In fact Davis [13]states:. . . a great many real-world optimization problems appear ripe for solution by geneticalgorithms, yet the binary representation appears ine�ective or ine�cient for them.Further, operators other than binary crossover and binary mutation appear tocontribute to good performance in those domains. . . . [A further problem] then, is thatof parameterizing a genetic algorithm that di�ers from the type studied so thoroughlyby researchers in the �eld.1.4 OverviewThis thesis is an investigation of using genetic algorithms to cluster. In particular, we:(i) determine the adaptions necessary to enable the GA to cluster successfully;(ii) �nd suitable parameter values for k-clustering (these may vary for di�erent data sets);



CHAPTER 1. INTRODUCTION 14(iii) compare the performance of genetic clustering with traditional k-clustering algorithms; and(iv) explore the potential of GAs for the general clustering problem.The layout of this thesis is as follows: Chapter 2 discusses the process of adapting GAs forthe clustering problem when the number of clusters is known, Chapter 3 contains a comparisonof genetic clustering with other clustering methods, and Chapter 4 examines the issue of geneticclustering when the number of clusters is unknown. A �nal discussion is presented in Chapter 5.



Chapter 2Adapting GAs for k-ClusteringA number of authors have applied GAs to the problem of k-clustering, where the required numberof clusters is known [43, 1, 8, 6]. Various adaptions are used to enable the GAs to cluster and toenhance their performance, but there is little or no comparison between the di�erent adaptions.Further, the clustering GAs or genetic clustering algorithms (GCAs) are tested on small data sets,or heuristics are added to enable the GAs to cope with a larger number of objects. It is not clearwhich adaptions are best suited to the clustering problem, or how any adaptions will a�ect GAperformance for di�ering data sets.In this chapter we shall compare a number of adaptions appropriate for the k-clustering problem,including some used for more general grouping problems. The aim is to determine which adaptionswill enable GAs to �nd the correct clusterings in the fastest time. We shall also ascertain whetherthese adaptions should vary with the data set.2.1 BackgroundAdaptions for the k-clustering problem fall into the following areas: representation, �tness function,operators, and parameter values.2.1.1 RepresentationGenetic representations for clustering or grouping problems are based on two underlying schemes.The �rst allocates each object one (or more) integers or bits, known as genes, and uses the valueof these genes to signify which cluster the object belongs to. The second scheme represents theobjects with gene values, and the position of these genes signi�es how the objects are dividedamongst the clusters. Representations using these schemes di�er in how the genes are assignedand how the gene values are interpreted.Figure 11 contains encodings of the clustering ffX1; X3; X6g; fX2; X4; X5gg for a number ofrepresentations that we will discuss in detail shortly. The two clusters are denoted as 1 and 2respectively, and the six objects are denoted by the numbers 1 to 6.Group-number encoding [36] is based on the �rst encoding scheme and represents a clusteringof n objects as a string of n integers where the ith integer signi�es the group number of the ith15
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1 112 2 2(a) 1 10010

1 110 0 0(b) 1 23 6 7 4 5(c) 1 2 63 4 5(d) 1 3 6 2 4 5(e)Figure 11: Chromosomes representing the clustering ffX1; X3; X6g; fX2; X4; X5gg for variousencoding schemes: (a) group-number; (b) matrix; (c) permutation with the separator character 7;(d) greedy permutation1; (e) order-based1. 1 assuming the correct clustering is the local minimumfor this chromosome.object. When there are only two clusters this can be reduced to a binary encoding scheme by using0 and 1 as the group identi�ers [43].Bezdek et al. [6] use an n�k matrix to represent a clustering, with each row corresponding to acluster and each column associated with an object. A 1 in row i, column j means that object j is ingroup i. Each column contains exactly one 1, whereas a row can have many 1's. All other elementsare 0's. This representation can be adapted for overlapping clusters or fuzzy clustering [5].Encoding schemes that signify objects by gene values use permutations of the object numbers torepresent clusterings. Permutation with separators encoding [36] uses the integers n+1 to n+k�1(or other appropriate separators) to indicate where the cluster boundaries are in the permutation.There are also permutation representations that need a local search to determine whichclustering they correspond to | these are known as greedy representations. Greedy permutationencoding [36] uses the �rst k objects in the permutation to seed k clusters. The remaining objectsare then, in the order they appear in the permutation, added to the cluster which yields the bestobjective function value (typically the cluster with the closest centroid).Bhuyan, Raghavan, and Elayavalli [8] also use a greedy encoding scheme. Here a permutationrepresents all possible clusterings with the correct number of clusters and the objects in that order.An algorithm by Fisher [19, 29] is used to �nd which of these clusterings gives the best objectivefunction value (Figure 12). This algorithm will �nd the optimal k-clustering for the permutation,but the clustering is not necessarily unique. This is called order-based encoding.As we saw in Chapter 1, when selecting a genetic representation we need to consider:completeness, validity, and redundancy. An incomplete representation cannot encode all possiblesolutions as chromosomes, and any GA using such a representation will be searching a propersubset of the solution space. All of the above representations are complete except for the twogreedy encoding schemes. Both of these decode clusterings using local search, so only clusteringsthat are local minima (or maxima) are represented. This can be a problem if the optimal clusteringis not a minima (or maxima) of the local search.For the k-clustering problem, any chromosome that does not represent a clustering with kgroups is necessarily invalid: a group number chromosome that does not include all group numbersas gene values is invalid; a matrix encoding with a row of 0's is invalid; a permutation withseparators chromosome with adjacent separators, or a separator as the �rst or last gene, is invalid.A matrix encoding is also invalid if there is more than one 1 in any column. Chromosomes withgroup values that do not correspond to a group or object, and permutations with repeated ormissing object identi�ers are invalid.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 171. Compute the diameter D(I; J) for the cluster (I; I +1; :::; J), for all I; J such that 1 � I < J �M . D(I; J) =PfI � L � Jg[X(L) �X ]2 and X =PfI � L � Jg X(L)J�I+12. Compute the errors of the optimal partitions, 2 � I � M , by e[P (I; 2)] = min[D(1; J � 1) +D(J; I)] over the range 2 � J � I.3. For each L(3 � L � K) compute the errors of the optimal partitions e[P (I; L)](L � I �M ) bye[P (I; L)] = minfe[P (J � 1; L� 1)] +D(J; I)gover the range L � J � I.4. The optimal partition P (M;K) is discovered from the table of errors e[P (I; L)](1 � L � K; 1 �I �M ) by �rst �nding J so thate[P (M;K)] = minfe[P (J � 1;K � 1)] +D(J;M )g:The last cluster is then (J; J + 1; :::;M ). Now �nd J� so that e[P (J � 1;K)] = e[P (J � 1;K �1)] +D(J�; J � 1). The second-to-last cluster of P (M;K) is (J�; J� + 1; :::; J � 1), and so on.Figure 12: Fisher's Algorithm for �nding the optimal k-clustering for a permutation (from [29]).All of the above encoding schemes have some level of redundancy (more than one chromosomerepresents a clustering). We can swap the group numbers (or rows) k! ways, and the redundancyof permutation encoding grows exponentially with the number of objects [17].A �nal consideration when selecting a representation is the complexity of the local search forthe greedy representations. The local search for greedy permutation is O(nk), while the order ofFisher's algorithm for order-based encoding is O(n2k).2.1.2 Fitness FunctionObjective functions used for traditional clustering algorithms (see Section 1.1.3) can act as �tnessfunctions for GCAs. However, if the optimal clustering corresponds to the minimal objectivefunction value, we will need to transform the objective function value since GAs work to maximisetheir �tness values. In addition, �tness values in a GA need to be positive if we are using �tnessproportional selection.Krovi [43] uses the ratio of the between sum of squares and within sum of squares as his �tnessfunction. Since the aim is to maximise this value, no transformation is necessary. Bhuyan etal. [8] and Bhuyan [7] use the sum of squared Euclidean distance of each object from the centroidof its cluster. This value is then transformed (f 0 = Cmax � f , where f is the raw �tness, f 0 isthe scaled �tness, and Cmax is the value of the poorest string in the population | this is knownas a local transformation) and linearly scaled (see Section 1.3.2) to get the �tness value. Alippiand Cucchiara [1] also use the same criterion, but use a GA that has been adapted to minimise�tness values. Bezdek et al.'s [6] clustering criterion is also based around minimising the sumof squared distances of objects from their cluster centres, but they use three di�erent distancemetrics (Euclidean, diagonal, and Mahalonobis) to allow for di�erent cluster shapes. Bezdek etal. have adapted their selection operator to avoid the need to transform the criterion values (see



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 18Section 2.1.3).2.1.3 Genetic OperatorsThe operators pass genetic information between subsequent generations of the population. As aresult, operators need to be matched with or designed for the representation, so that the o�springare valid and inherit characteristics from their parents. Operators used for genetic clusteringor grouping include some of the selection, crossover and mutation methods we looked at in theprevious chapter, some adaptions of these, and some totally novel operators.InitialisationThe initial population of a GCA should provide a wide variety of genetic material, necessary for athorough search of the problem space. Care also needs to be taken to ensure that the populationcontains only valid chromosomes unless the GCA can handle invalid ones. Randomly generatingthe initial population is one method of selecting a spread of genetic material. Heuristic initialisationoperators can be used to select �t chromosomes in an e�ort to reduce the time required for theGCA to converge on a solution.� Group-numberAn initial group-number population can be created from chromosomes with each object'sgroup number a random number between 1 and k inclusive (Krovi [43] uses 0 or 1).This method may produce invalid chromosomes (with less than k groups) so Jones andBeltramo [36] check to see that all groups are included. If not, the chromosome is rejected.� MatrixBezdek, et al. [6] use a partially random initialisation process. k cluster centres are producedby selecting feature values from random objects (the jth attribute of the ith centre is thejth attribute of a randomly selected object). A matrix chromosome is then created from thecluster centres | the exact method is not explained in detail. Alippi and Cucchiara [1] donot elaborate on their initialisation process.� Permutation with separatorsJones and Beltramo [36] use a three step process to produce valid chromosomes for thisrepresentation:1. Generate a string of random group numbers and divide the objects into groupsaccordingly. Reject the chromosome if there is an empty group.2. Randomly permute the order of the objects in each group.3. Create the chromosome by listing the objects in their permuted order and adding theseparators (in random order).� Greedy permutationJones and Beltramo [36] use random permutations as the initial population for thisrepresentation.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 19� Order-basedBhuyan et al. [8] compare three di�erent initial population constructors, namely A, B, andC. The �rst constructor, A, randomly places the objects into a random list. The second,constructor B, chooses an initial object randomly, and then selects (from the remainingobjects) the object that is closest to the last selected object. This is repeated until all theobjects have been selected. The complexity of this constructor is O(n2). Constructor C isthe same as constructor B except that instead of searching all remaining objects to �nd theclosest one, only c (a constant de�ned by the user) are searched. Bhuyan [7] uses the sameconstructor C.SelectionChromosomes are selected for reproduction based on their relative �tness. Thus the representationis not a factor when choosing an appropriate selection operator, but the �tness function is. If all�tness values are positive, and the maximum �tness value corresponds to the optimal clustering,then �tness proportional selection may be appropriate. Otherwise, a ranking selection methodmay be used. In addition, elite selection will ensure that the �ttest chromosomes are passed fromone generation to the next.Krovi [43] uses the �tness proportional selection provided in Goldberg's book [24]. The selectionoperator used by both Bhuyan et al. [8] and Bhuyan [7] is an elite version of �tness proportionalselection. A new population is formed by picking the x (a parameter provided by the user) beststrings from the combination of the old population and the o�spring. The remaining chromosomesin the new population are selected from the o�spring.Jones and Beltramo [36] and Bezdek et al. [6] use ranking selection methods. Jones andBeltramo use a steady-state GCA where only two parents are selected for reproduction duringeach iteration. The selection probability depends linearly on rank | the best population memberis selected with probability b=P and the worst member with probability (2� b)=P . Here b is thebias and P is the population size. The parents are crossed to form a single child which is insertedinto the population and the worst population member is deleted so the population size remainsconstant.The selection operator used by Bezdek et al. works as follows. First, the population is sortedby �tness value and a set of R chromosomes with the lowest values are chosen to reproduce. Thereproduction pairs are randomly chosen from this set. After reproduction the R child matricesare added to the population and those with the greatest �tness values are dropped. Bezdek et al.actually state that P �R matrices are dropped but this would mean that the population size wouldchange unless R is half the value of P (which it is in all their examples). If instead R matrices aredropped the population size will remain constant for all values of P and R. Since Bezdek et al.use a ranking selection method, the �tness function values do not need to be transformed. Hencethe lower �tness values correspond to better solutions in this case, which is why the chromosomeswith low �tness values are selected for reproduction.Alippi and Cucchiara [1] do not report their selection method.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 20CrossoverThe crossover operator is designed to transfer genetic material from one generation to the next.The major concerns with this operator are validity and context insensitivity. It may be necessary tocheck that o�spring produced by a certain operator are valid, and reject any invalid chromosomes.Context insensitivity occurs when the crossover operator used in a redundant representationacts on the chromosomal level instead of the clustering level. In this case the child chromosomemay resemble the parent chromosomes, but the child clustering does not resemble the parentclusterings | the operator is insensitive to the context of the chromosomes. Figure 13 shows
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2 2 2 2 2 2Figure 13: Context insensitivity of single-point crossover.that single-point crossover is context insensitive for the group-number representation. Here bothparents represent the same clustering, ffX1; X2; X3g; fX4; X5; X6gg although the group numbersare di�erent. Given that the parents represent the same solution, we would expect the children toalso represent this solution. Instead both children are the clustering ffX1; X2; X3; X4; X5; X6ggwhich does not resemble either parents (it is also invalid, but that is a separate issue).Falkenauer [18] demonstrates the context insensitivity of the PMX operator for permutationencodings of grouping problems.� Group-numberSingle-point and uniform crossover can be used for group-number chromosomes. Howeverboth operators may produce invalid chromosomes and are context insensitive.Krovi [43] uses single-point crossover as implemented by Goldberg [24].Jones and Beltramo [36] compare three types of cross-over for the group-numberrepresentation: single-point, uniform, and edge-based. They use two versions of the formeroperators: one with rejection, and one with rejection and renumbering. Rejection isintroduced to counter the problem of validity | a child is only accepted if it is valid.Renumbering is an attempt to cope with context insensitivity | the parents are canonicallyrenumbered before crossover. For example the �rst parent in Figure 13 would be renumberedto match the second.For single-point crossover all possible children are generated and then one valid child isselected from these. Uniform crossover is repeated until the child has k groups or a limiton the number of attempted crosses is reached (if this occurs the child is set to one of theparents at random).



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 21The edge-based crossover operator constructs a child chromosome by combining the edges ofthe parent chromosomes (two objects are considered to be connected by an edge if they arein the same group). This proceeds as follows:1. Initialise the child to the set of non-empty intersections of the clusters of the two parents.Let L denote the number of non-empty intersections.2. If L = K, stop. Otherwise go to step 3.3. Select the pair of groups with the minimum number of non-inherited edges (between-groupedges not present in either parent), breaking ties at random. Join this pair of groups, setL = L � 1, and go to step 2.Since edge-based crossover manipulates the parent clusterings rather than their chromosomes,this operator is context sensitive for all representations. Further, if both parents are valid,edge-based crossover will always produce a valid child. However, this crossover has O(k4)complexity.For example, consider the following parent chromosomes:
1

1 2

3 2 2 2 3

3 2 2 3These parents encode the clusterings:ffX1g; fX3; X4; X5g; fX2; X6ggffX3g; fX2; X4; X6g; fX1; X5gg;and the non-empty intersections of these clusterings are:ffX1g; fX3g; fX4g; fX5g; fX2; X6ggWe initialise the child to the set of intersections and then merge clusters until the correctnumber of clusters is reached.One possible child is:
3 2 2 31 1which inherits fX3; X4g from parent 1, fX1; X5g from parent 2, and fX2; X6g from both par-ents.Von Laszewski [66] and M�uhlenbein [50] also describe crossover operators (for the graphpartitioning problem) that work with partitionings rather than chromosomes. Both copy arandom group from one parent to the other and then rearrange the result to form a validpartitioning (Von Laszewski and M�uhlenbein have the constraint of equal group sizes). Inorder to deal with the problem of context insensitivity, M�uhlenbein [50] rearranges the groupnumbers in the second parent so that the group number of the partition being copied is thesame as the most similar partition in the second parent.� MatrixAlippi and Cucchiara [1] use a single-point asexual crossover to avoid the problem of
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0Figure 14: Alippi and Cucchiara's asexual crossover (adapted from [1]).redundancy (Figure 14). The tails of two rows of the matrix are swapped, starting froma randomly selected crossover point. Clusterings with less than k groups may be producedby this operator.Bezdek et al. [6] use a sexual 2-point crossover (Figure 15). A crossover point and a distance(the number of columns to be swapped) are randomly selected | these determine whichcolumns are swapped between the parents. This operator is context insensitive, and mayproduce children with less than k groups.
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Figure 15: Bezdek et al.'s 2-point matrix crossover (adapted from [6]).� Permutation with separatorsJones and Beltramo [36] use two crossovers for permutation encodings, PMX and OX (seeSection 1.3.3). In both cases parents are repeatedly crossed until the child decodes into aclustering with k groups.� Greedy permutationJones and Beltramo [36] also use PMX and OX crossover for the greedy permutationrepresentation.� Order-basedBhuyan et al. [8] describe two operators for their order-based representation. Operator 1(Figure 16a) randomly selects a dominating parent; the remaining parent becomes thesupporting parent. Next an object and a distance or window size are selected at random.These de�ne the substring which is copied from the supporting parent to the child | thesubstring is the selected object plus any other objects within the window size (either side ofthe selected object). The substring is copied into the child so that the selected object is inthe same position as in the dominating parent, and the order of the objects in the dominating
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{ 2, 4, 8 }(b) Operator 2Figure 16: Bhuyan et al.'s crossover operators (adapted from [8]). 1placement order di�ers slightlyfrom that shown.parent is maintained. The remaining objects are placed into the child in the same order theyappear in the dominating parent.Operator 2 (Figure 16b) starts by selecting the object in the �rst position of one of theparents, and placing this in the �rst position of the child. We then select an object from allthe objects that are next to this object in either parent. The selected object becomes thesecond object in the child. This process continues until all of the objects are represented inthe child.A third operator is mentioned in the results section but is never described.Bhuyan's [7] crossover operator is similar to Operator 1 above, in that a substring from asupporting parent is copied to the dominating parent (Figure 17). However, in this case wecopy complete clusters (one or more) rather than random substrings. First, the \borrowed"
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CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 24clusters are added to the dominating parent. Then we rearrange the remaining clusters in thedominating parent to make it a valid clustering. This is done by removing any clusters thatcontain objects also in the borrowed clusters, and using a local search to add any missingobjects to the clustering. This is essentially the same operator Von Laszewski [66] used forgroup-number encoding.MutationMutation introduces new genetic material into the population. In a clustering context thiscorresponds to moving an object from one cluster to another. How this is done is dependenton the representation.� Group-numberKrovi [43] uses the mutation function implemented by Goldberg [24]. Here each bit of thechromosome is inverted with a probability equal to the mutation rate, Pmut. Jones andBeltramo [36] change each group number (provided it is not the only object left in thatgroup) with probability, Pmut = 1n where n is the number of objects .� MatrixAlippi and Cucchiara [1] use a column mutation. An element is selected from the matrix atrandom and set to 1. All other elements in the column are set to 0. If the selected elementis already 1 this operator has no e�ect.Bezdek et al. [6] also use a column matrix, but they choose an element that is currently 0and set it to 1 (Figure 18). The element that is 1 is set to 0.
0
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Column before
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1Figure 18: Bezdek et al.'s mutation (adapted from [6]).� Permutation with separatorsJones and Beltramo [36] randomly select two objects and swap them. To ensure that theresulting chromosome is valid, group separators cannot be swapped.� Greedy permutationTwo objects are randomly selected and swapped [36].� Order-basedThe mutation operator used by Bhuyan, et al. [8] is the same as that used for the greedypermutation representation. Bhuyan [7] compares two mutation operators. The �rst movesa randomly selected object to a randomly selected cluster; the second moves the object onlyif the move results in a decrease in the objective function value.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 25Other Operators� Order-basedBhuyan et al. [8] apply a local-tuning operator after a speci�ed number of generations. Eachobject is considered in turn, and moved to the �rst cluster that reduces the value of theobjective function.2.1.4 Parameter ValuesThe parameter values used for the genetic clustering implementations vary considerably, and thereis little or no documented justi�cation for the selection of these values. Some parameters values areeven omitted. Population sizes range from 40 [8, 7] to 1000 [36]; the number of generations variesfrom 40 [8] to 200 [6] or to complete convergence; crossover probabilities are high (0.70, 1.0); andmutation rates are low (0.1, 0.3) | although these values are high compared to typical mutationrates for genetic algorithms.2.2 MethodologyIn order to determine the best adaptions for the clustering problem, and the relationship betweenthe data and these adaptions, we compared the performance of a range of adaptions over a numberof data sets. This was achieved as follows:1. We selected three data sets with di�ering numbers of objects and clusters. For each of thesewe generated a similar data set (same number of objects, attributes, and clusters; similarcluster shape and proximity).2. Exhaustive tests with di�erent combinations of adaptions were performed on the generateddata sets.3. Using the test results from Step 2, suitable adaptions were selected for each of the generateddata sets. We then compared the performance of these adaptions on the original andgenerated data.2.2.1 Data SetsThe selected data sets were Ruspini [55, 39], German Towns [60] and Iris [51] (Figure 19); theproperties of these data sets are listed in Table 2. The Ruspini data represents a relatively smallnumber of objects clustered into a moderate number of well separated clusters. The GermanTowns data has a small number of objects, but there is no \correct" clustering for this data set.The data can be \successfully" divided into di�ering numbers of clusters (although �ve, seven, ornine clusters appear to best suit the data [60]). For this experiment we chose the correct numberof clusters to be seven. The Iris data set contains a larger number of objects which are dividedamongst three hyperspherical clusters. Two of these clusters overlap slightly.The new data sets were generated with the same number of objects, attributes, and clusters asthe original data sets. Further, the shape and proximity of the clusters were based on those found
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(a) Ruspini (from [39]) (b) German Towns (adapted from [60])
Sepal Width (cm)

Petal Length (cm)

Petal Width (cm)

(c) IrisFigure 19: Two dimensional plots of the selected data sets.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 27Number of Number of Number ofobjects attributes clustersRuspini 75 2 4German Towns 59 2 7Iris 150 4 3Table 2: Properties of the experimental data sets.in the original sets. However, the range of attribute values, the number of objects in the individualclusters, and the relative positioning of the clusters was purposely altered for the generated datasets. Finally, the shape and positioning of the clusters was adjusted so that the correct clusteringcorresponded to the maximum value of the objective function (or that the clusters were clearlyseparable).2.2.2 Objective FunctionThe objective function for the experiment was trace (W ) or the sum of the squared distancesbetween objects and their cluster centres (see section 1.1.3). This was minimised over the solutionspace.The attribute values were standardised to minimise the di�erence in objective function valuesfor di�erent data sets.2.2.3 AdaptionsThe following adaptions were compared:� RepresentationBoth the group-number and order-based representations were implemented. The poorperformance of the GCAs with order-based representation meant that these trials tooklonger to complete, and due to time constraints the range of adaptions compared for thisrepresentation was reduced.� Fitness FunctionFour di�erent scaling mechanisms were used for the group-number representation: localtransformation, adjusted transformation, linear scaling with CMult = 2:0, and linear scalingwith CMult = 4:0. Adjusted and linear scaling were also compared for the order-basedrepresentation.� SelectionFitness proportional selection was compared with three di�erent elite levels: the top 0, 1, or5% of population size individuals were copied straight from one generation to the next. Elitelevels of 0 and 5% were used with order-based encoding.� CrossoverFor the group-number representation, single-point, uniform, and edge-based crossover werecompared. For order-based encoding the PMX crossover operator was compared with twonew operators. The �rst, borrow, is similar to the operator described by both Bhuyan [7] and



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 28Von Laszewski [66], but the operator has been designed to avoid the need for local search. Asingle cluster (randomly selected) is copied from the �rst parent and placed into the child.The remaining objects are added to the child in the order they occur in the second parent.The second operator is an edge-based operator for order-based encodings. This operatorworks exactly the same as for the group-number representation, but the objects are placedin the child in the same order they occur in the �rst parent.� MutationThe mutation implemented for the group-number representation randomly changes a group-number with probability Pmutn . Two types of mutation were compared for order-basedencoding. The �rst, uniform, moves an object with probability Pmutn to a uniformlydistributed point along the length of the chromosome. The second, gaussian, moves theobject according to a Gaussian distribution with a mean of 0 and a standard deviation of n4 .� ParametersThe following parameters were compared for the group-number representation: populationsize 2 f50; 100; 200;400g; crossover probability 2 f0:50; 0:70; 0:90g; and mutation rate2 f0:01; 0:05;0:10; 0:20;0:50;0:70;0:90g. For order-based these were reduced to: populationsize 2 f50; 100; 200g; crossover probability 2 f0:50; 0:70;0:90g; and mutation rate 2f0:10; 0:20;0:70; 0:90g.All of the GCAs used random initialisation, and replaced the entire population during thereproduction phase (except in the case of elite selection). There were no checks to ensure that allchromosomes contained k groups.Since the operators are dependent on the representation type, the experimental tests weredivided into two groups according to the representation type. Each group involved �ve replications(using di�erent random seeds) of each possible combination of relevant adaptions. There were 3024combinations of adaptions for the group-number representation and 1296 combinations for order-based encoding. These combinations were tested on each of the three data sets, giving a total ofsix result sets according to the representation and the data.Each run of the GCA continued until the correct clustering was found or the execution timeexceeded �ve CPU minutes which was considered a reasonable amount of time to �nd a solution.The number of correct runs (maximumof �ve) and the average time to �nd the solution (calculatedfrom those runs that found the solution) were recorded for each combination.2.2.4 Testing ConditionsAll of the tests were conducted on one of two Sparc Ultras (all runs for a particularrepresentation/data combination were conducted on the same machine). The load average onboth machines during testing was approximately 1.0.2.2.5 Statistical AnalysisEach of the six representation type/data set results were analysed separately. Independentgeneralised linear models were �tted to the correctness and time results. These were used to



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 29determine the factors inuencing correctness and speed, and also to predict which adaptions wouldgive the highest probability of a correct clustering in the fastest time. All statistical analysis wascompleted using S-Plus version 3.4 release 1 for Silicon Graphics Iris, IRIX 5.3: 1996.Generalised linear models were �tted to both the correctness and time data. The probabilityof �nding the correct clustering was assumed to follow the logit model� = exp(z0�)1 + exp(z0�) ;with the design vector z0 =(1, PS, Tr, El, Cr, CP, Mu, MR, PS:Tr, PS:El, . . . ). The symbolsin the design vector represent population size, �tness transformation, elite constant, crossovertype, crossover probability, mutation type, and mutation rate. Terms such as PS:Tr represent theinteraction between these two factors, namely the population size and the �tness transformation.The time to �nd the solution was assumed to follow the Poisson model (with z0 as above)� = exp(z0�):Each model was assumed to be hierarchical, that is higher-order terms were only included iflower-order related terms were also included. The �nal models were the best possible models withno higher than third-order terms. All of the variables (including those continuous) were treated asfactors as the purpose of the analysis was to �nd the best of the selected factors levels. Analysis ofdeviance was used to judge the signi�cance of terms, with insigni�cant terms being dropped fromthe models. Information on generalised linear models can be found in [64, 47, 16].The mean time to solution on the real and generated data sets was compared with the predictedvalues using two-sided z tests (or t tests when there were less than 30 correct runs). Each testused the null hypothesis that the actual mean time was equal to the predicted time.2.3 Results2.3.1 Generated DataFigure 20 contains the three generated data sets: Ruspini2, Towns2, and Iris2.2.3.2 AdaptionsTable 3 contains the correctness results for the group-number GCAs. The majority of the GCAsfound the correct clustering for both Ruspini2 and Iris2 in all �ve runs (79.1% and 73.2 %respectively). However, only 4% found the solution for the Towns2 data in all �ve runs. 97.8% ofthe group-number GCAs found the correct clustering for Ruspini2 four or �ve times | with allGCAs �nding the solution in at least two runs for this data set. A considerable proportion of theGCAs did not �nd the solution in any run for both Towns2 (10.8%) and Iris2 (15.1%).The correctness results for the order-based trials are presented in Table 4. For each data set,a large proportion of the trials did not �nd the correct clustering in any run. In fact, for the Iris2data set, the GCAs were unable to �nd the solution in any run of any trial. However, a reasonableproportion of the GCAs found the correct clustering in all �ve runs for both Ruspini2 and Towns2.
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CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 31No. of Correct Runs0 1 2 3 4 5Ruspini2 No. of Trials 0 0 4 64 564 2392% of Trials 0.0 0.0 0.1 2.1 18.7 79.1Towns2 No. of Trials 327 549 849 783 394 122% of Trials 10.8 18.2 28.1 25.9 13.0 4.0Iris2 No. of Trials 456 70 61 64 157 2216% of Trials 15.1 2.3 2.0 2.1 5.2 73.2Table 3: Correctness of group-number GCAs.No. of Correct Runs0 1 2 3 4 5Ruspini2 No. of Trials 547 63 47 78 104 457% of Trials 42.2 4.9 3.6 6.0 8.0 35.3Towns2 No. of Trials 578 56 40 48 66 508% of Trials 44.6 4.3 3.1 3.7 5.1 39.2Iris2 No. of Trials 1296 0 0 0 0 0% of Trials 100.0 0.0 0.0 0.0 0.0 0.0Table 4: Correctness of order-based GCAs.Table 5 contains the time results for the group-number GCAs. The GCAs were able to �ndsolutions to the Ruspini2 data set in the shortest time, with 95.3% of the trials �nding at least onesolution in under 120 seconds. The mean time to solution for Iris2 was higher than that for theother two data sets, and the mean time for the Towns2 data set was higher than that for Ruspini2.The time results for the order-based GCAs can be found in Table 6. The results for the Iris2data set were not included as no solutions were found. Notice that the recorded times for theTowns2 data set are less than those of Ruspini2. In both cases, the times are greater than thoseof the corresponding group-number trials.We now present the results for each of the representation/data set combinations in greaterdetail. Tables 7 to 10 contain the correctness distributions for the various adaptions, and Figures 21to 25 provide the corresponding boxplots of the time data. Tables 12 and 13 contain the �nal modelsfor these results. Further detail on the models can be found in Appendix A. There are no modelsfor the order-based GCAs on Iris2 since no solutions were found.Time to solution1 Percentage of trials2Minimum Mean Median < 20 sec < 60 sec < 120 sec < 300 secRuspini2 1.98 41.3 27.1 40.1 76.1 95.3 100.0Towns2 2.50 77.8 58.3 16.6 45.2 69.6 89.2Iris2 6.41 115.0 89.5 5.2 29.5 51.4 85.0Table 5: Time to solution for group-number GCAs. 1seconds CPU. 2that found one or moresolution(s).



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 32Time to solution1 Percentage of trials2Minimum Mean Median < 20 sec < 60 sec < 120 sec < 300 secRuspini2 50.2 183.0 184 0.0 0.5 11.0 57.3Towns2 20.5 124.0 91.4 0.0 18.0 32.5 55.4Table 6: Time to solution for order-based GCAs. 1seconds CPU. 2that found one or moresolution(s).Group-number and Ruspini2For each of the distribution tables we are looking for adaptions that give an increased probability of�nding the correct solution. In this particular case, the number of trials with less than four correctruns is small and we should concentrate on the last two columns in each table. The adaptions thatshow marked changes in proportion are population size (200 or 400 appears best), crossover (edge-based out-performs uniform and single-point), and mutation (0.20 { 0.90 are more successful). The�nal model includes these terms as well as a few higher-order interaction terms.PS No. of Correct Runs2 3 4 550 25.0 20.3 31.9 23.5100 25.0 28.1 27.0 24.5200 0.0 20.3 20.4 26.3400 50.0 31.3 20.7 25.8 Tr No. of Correct Runs2 3 4 5adjust 0.0 25.0 29.6 24.0local 25.0 28.1 22.5 25.5scale2.0 75.0 25.0 24.3 25.1scale4.0 0.0 21.9 23.6 25.5El No. of Correct Runs2 3 4 50 75.0 34.4 33.9 33.11 25.0 31.3 30.9 34.05%1 0.0 34.4 35.3 32.9 Cr No. of Correct Runs2 3 4 5edge 50.0 18.8 21.1 36.6single 25.0 40.6 38.5 31.9uniform 25.0 40.6 40.4 31.5CP No. of Correct Runs2 3 4 50.50 75.0 42.2 33.9 32.90.70 0.0 26.6 33.7 33.50.90 25.0 31.3 32.4 33.6 MR No. of Correct Runs2 3 4 50.01 0.0 18.8 17.9 13.30.05 25.0 20.3 16.5 13.60.10 0.0 18.8 17.2 13.50.20 0.0 15.6 13.1 14.50.50 0.0 9.4 11.7 15.10.70 0.0 10.9 13.5 14.60.90 75.0 6.3 10.1 15.4Table 7: Empirical distributions of the adaptions with group-number encoding for Ruspini2(relative frequencies in percents). 1of population size.All of the �rst-order factors are included in the time model. The larger population sizes tookmore time to �nd the correct clustering, plus there was a greater range of times; the adjusted�tness transform produced faster and more consistent times; increasing the elite constant decreasedthe time to �nd the solution; single-point crossover was clearly the fastest crossover, with edge-based being the slowest; there was not much di�erence in the average times between the crossoverprobabilities, but the 0.50 level appears to be slightly more consistent; mutation rates of 0.50 and0.70 appear to give the fastest results.
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)Figure 21: Time results for group-number GCAs on Ruspini2.PS No. of Correct Runs0 1 2 3 4 550 11.6 26.4 27.4 25.7 29.9 17.2100 16.5 22.6 27.1 27.2 23.9 33.6200 26.0 26.8 22.0 25.8 24.6 31.1400 45.9 24.2 23.4 21.3 21.6 18.0 Tr No. of Correct Runs0 1 2 3 4 5adjust 11.0 26.2 28.7 27.3 25.4 14.8local 27.8 22.8 24.3 25.2 26.1 27.9scale2.0 29.7 25.9 23.9 23.8 25.1 23.8scale4.0 31.5 25.1 23.1 23.8 23.4 33.6El No. of Correct Runs0 1 2 3 4 50 64.2 45.2 32.3 24.5 17.3 13.11 23.9 26.0 33.8 35.6 42.9 42.65%1 11.9 28.8 33.9 39.8 39.8 44.3 Cr No. of Correct Runs0 1 2 3 4 5edge 60.9 26.4 28.4 29.5 30.7 58.2single 11.6 33.0 36.3 39.0 36.8 25.4uniform 27.5 40.6 35.3 31.5 32.5 16.4CP No. of Correct Runs0 1 2 3 4 50.50 26.6 38.6 32.7 35.6 29.7 28.70.70 35.5 32.2 32.9 33.8 33.0 33.60.90 37.9 29.1 34.4 30.5 37.3 37.7 MR No. of Correct Runs0 1 2 3 4 50.01 14.7 16.8 16.7 12.4 11.9 4.90.05 8.9 16.6 17.8 13.9 10.4 9.00.10 10.1 17.3 16.4 12.4 13.5 12.30.20 8.6 13.7 13.9 16.3 14.7 20.50.50 13.1 12.8 13.8 15.3 16.2 14.80.70 18.0 12.0 10.1 16.1 18.0 19.70.90 26.6 10.9 11.3 13.5 15.2 18.9Table 8: Empirical distributions of the adaptions with group-number encoding for Towns2 (relativefrequencies in percents). 1of population size.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 34Group-number and Towns2For the Towns2 data set, lower population sizes (50 { 200) seem to increase the probability ofcorrectness, although the proportion of trials with population size of 50 and �ve runs correct isrelatively small. The treatment data is di�cult to interpret, with each method represented in thesame proportions in the trials with 0 and 5 correct. Elite selection clearly improved the chancesof �nding the solution in all �ve runs, with 64.2% of the GCAs with 0 correct runs lacking eliteselection. Edge-based crossover also corresponds to a high proportion of trials with 5 correctruns. However, 60.9% of GCAs with 0 correct runs also have edge-based crossover. The crossoverprobability did not signi�cantly inuence the correctness. Finally, higher mutation rates seem toimprove the probability of correctness.
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CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 35PS No. of Correct Runs0 1 2 3 4 550 3.1 5.7 8.2 7.8 22.9 31.2100 5.5 24.3 24.6 32.8 34.4 28.2200 30.7 42.9 42.6 39.1 24.2 22.4400 60.7 27.1 24.6 20.3 18.5 18.2 Tr No. of Correct Runs0 1 2 3 4 5adjust 3.3 7.1 14.8 23.4 24.8 30.4local 34.0 30.0 29.5 26.6 26.8 22.7scale2.0 31.8 38.6 31.1 17.2 26.1 23.1scale4.0 30.9 24.3 24.6 32.8 22.3 23.8El No. of Correct Runs0 1 2 3 4 50 53.9 57.1 57.4 45.3 41.4 26.81 27.6 25.7 29.5 29.7 28.7 35.35%1 18.4 17.1 13.1 25.0 29.9 38.0 Cr No. of Correct Runs0 1 2 3 4 5edge 75.4 45.7 45.9 42.2 49.7 22.5single 0.4 5.7 11.5 14.1 15.9 43.4uniform 24.1 48.6 42.6 43.8 34.4 34.1CP No. of Correct Runs0 1 2 3 4 50.50 31.8 28.6 26.2 29.7 33.1 34.10.70 33.1 30.0 31.1 40.6 35.0 33.20.90 35.1 41.4 42.6 29.7 31.8 32.7 MR No. of Correct Runs0 1 2 3 4 50.01 21.9 37.1 49.2 51.6 47.8 7.60.05 12.1 15.7 11.5 14.1 10.8 15.00.10 9.9 7.1 11.5 10.9 9.6 15.90.20 9.6 8.6 4.9 9.4 7.6 16.30.50 11.4 10.0 9.8 3.1 8.3 15.90.70 15.4 14.3 8.2 7.8 7.0 14.90.90 19.7 7.1 4.9 3.1 8.9 14.4Table 9: Empirical distributions of the adaptions with group-number encoding for Iris2 (relativefrequencies in percents). 1of population size.
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CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 36The time results for the Iris2 data set follow the same trends as the two previous models,although the averages and spreads of the values in this case are greater than those of both theprevious models. The time models for all three data sets are similar.Order-based and Ruspini2Here the GCAs with smaller population sizes (50, 100) achieved a higher level of correctness.The scaling transformations were more likely to produce �ve correct runs than the adjustedtransformation, although the trials with 0 correct were divided fairly evenly between the three.There was a slight advantage to using elite selection. Edge-based crossover clearly out-performedthe other crossovers (75% of the trials with 5 correct runs used edge-based crossover). Further,none of the GCAs using PMX crossover found the solution more than three times in any trial, and77.9% of the trials with 0 correct runs used PMX crossover.PS No. of Correct Runs0 1 2 3 4 550 28.2 41.3 25.5 38.5 41.3 36.5100 30.3 22.2 42.6 38.5 35.6 36.1200 41.4 36.5 31.9 23.1 23.1 27.4 Tr No. of Correct Runs0 1 2 3 4 5adjust 32.4 58.7 38.3 42.3 40.4 27.4scale2.0 34.6 15.9 36.2 29.5 24.0 36.8scale4.0 33.1 25.4 25.5 28.2 35.6 35.9El No. of Correct Runs0 1 2 3 4 50 52.3 44.4 53.2 47.4 47.1 48.85%1 47.7 55.6 46.8 52.6 52.9 51.2 Cr No. of Correct Runs0 1 2 3 4 5borrow 21.6 81.0 80.9 69.2 64.4 22.8edge 0.5 12.7 17.0 29.5 35.6 77.2PMX 77.9 6.3 2.1 1.3 0.0 0.0CP No. of Correct Runs0 1 2 3 4 50.50 39.3 36.5 46.8 34.6 28.8 25.20.70 31.8 44.4 29.8 33.3 38.5 32.80.90 28.9 19.0 23.4 32.1 32.7 42.0 Mu No. of Correct Runs0 1 2 3 4 5gaussian 49.5 60.3 57.4 46.2 48.1 49.5uniform 50.5 39.7 42.6 53.8 51.9 50.5MR No. of Correct Runs0 1 2 3 4 50.10 26.3 50.8 38.3 44.9 20.2 16.20.20 23.4 22.2 36.2 26.9 39.4 22.50.70 23.9 14.3 17.0 14.1 24.0 30.60.90 26.3 12.7 8.5 14.1 16.3 30.6Table 10: Empirical distributions of the adaptions with order-based encoding for Ruspini2 (relativefrequencies in percents). 1of population size.Only six of the GCAs with PMX crossover found the solution in one or more runs, so theseGCAs were removed before the time data was analysed. As with the group-number GCAs, largerpopulations resulted in a longer time to �nd the solution and increasing the mutation rate tended todecrease this time. However, the adjusted transformation was considerably slower than the scalingtransformations, elite selection did not decrease the time to solution (in fact it increased it slightly),edge-based crossover found the solution faster than the simpler borrow operator, and increasingthe crossover probability resulted in a marked decrease in the average time to �nd the solution.Finally, there was a slight time advantage to using uniform rather than gaussian mutation.
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)Figure 24: Time results for order-based GCAs on Ruspini2.PS No. of Correct Runs0 1 2 3 4 550 27.7 33.9 37.5 33.3 47.0 37.6100 31.1 37.5 30.0 47.9 37.9 33.7200 41.2 28.6 32.5 18.8 15.2 28.7 Tr No. of Correct Runs0 1 2 3 4 5adjust 26.0 42.9 40.0 39.6 37.9 39.0scale2.0 37.4 23.2 30.0 31.3 27.3 31.1scale4.0 36.7 33.9 30.0 29.2 34.8 29.9El No. of Correct Runs0 1 2 3 4 50 55.7 51.8 40.0 37.5 27.3 48.25%1 44.3 48.2 60.0 62.5 72.7 51.8 Cr No. of Correct Runs0 1 2 3 4 5borrow 26.8 87.5 95.0 100.0 95.5 15.6edge 0.0 0.0 0.0 0.0 4.5 84.4PMX 73.2 12.5 5.0 0.0 0.0 0.0CP No. of Correct Runs0 1 2 3 4 50.50 36.3 46.4 42.5 14.6 22.7 30.90.70 33.0 32.1 32.5 43.8 25.8 33.90.90 30.6 21.4 25.0 41.7 51.5 35.2 Mu No. of Correct Runs0 1 2 3 4 5gaussian 49.7 60.7 37.5 47.9 57.6 49.4uniform 50.3 39.3 62.5 52.1 42.4 50.6MR No. of Correct Runs0 1 2 3 4 50.10 23.5 30.4 40.0 45.8 37.9 21.30.20 23.0 25.0 25.0 29.2 31.8 26.00.70 25.8 21.4 17.5 18.8 16.7 26.80.90 27.7 23.2 17.5 6.3 13.6 26.0Table 11: Empirical distributions of the adaptions with order-based encoding for Towns2 (relativefrequencies in percents). 1of population size.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 38Order-based and Towns2The distributions for Towns2 are similar to those for Ruspini2, but a higher proportion ofGCAs with 5 runs correct used the adjusted �tness transformation. Further, the di�erences inperformance due to crossover probability and mutation rate were not as great, and the dominanceof the edge-based crossover was more pronounced (all of the GCAs with edge-based crossover foundthe solution in four or �ve runs).
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)Figure 25: Time results for order-based GCAs on Towns2.The trends shown in the time results are similar to those of Ruspini2, but the averages for theTowns2 data set are lower and the deviations higher (except for crossover, which has lower averagesand smaller deviances). The di�erences in times for the crossover probability and mutation rateas also not as great. The type of mutation did not signi�cantly inuence the time.The Final ModelsThe terms which signi�cantly contributed to each model are listed in Tables 12 and 13. A completelisting of the coe�cients and discussion of the �t of each model is contained in Appendix A. Thegroup-number correctness models for Ruspini2 and Iris2, and the order-based correctness modelsfor Ruspini2 and Towns2 contain mainly �rst and second order terms and �t the data well. Thecorrectness model for the group-number GCAs on Towns2 does not �t as well, but is the best thirdorder model for the data. The time models contain a larger number of higher order terms, withthe group-number models for Ruspini2 and Iris3 providing a good �t. The remaining time modelsdo not �t as well.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 39Ruspini2 Towns2 Iris2Factor Correctness Time Correctness Time Correctness TimePS ** ** ** ** ** **Tr ns ** * ** ** **El ** ** ** ** **Cr ** ** ** ** ** **CP ** ns ** ** **MR ** ** ** ** ** **PS:Tr ** ** ** ** **PS:El ** ** ** ** **PS:Cr ** ** ** ** ** **PS:CP ** ns ** ** **PS:MR ns ** ** ** ** **Tr:El ** ** ** **Tr:Cr ** ** ** ** ** **Tr:CP ns ** **Tr:MR ** ** ** ** **El:Cr ** ** ** **El:CP * ** **El:MR ** ** ** ** **Cr:CP ** ** ** **Cr:MR ns ** ns ** ** **CP:MR ** **PS:Tr:El ** ** **PS:Tr:Cr ** ** ** **PS:Tr:CP ** ** **PS:Tr:MR ** * **PS:El:Cr ** ** **PS:El:CP * **PS:El:MR ** * ** **PS:Cr:CP **PS:Cr:MR * ** ** **PS:CP:MR ** **Tr:El:Cr ** ** **Tr:El:CP **Tr:El:MR ** ** ** **Tr:Cr:CP **Tr:Cr:MR ** * ** **Tr:CP:MR **El:Cr:CP **El:Cr:MR ** ** **El:CP:MR ** **Cr:CP:MR ** **cont.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 40cont. Ruspini2 Towns2 Iris2Factor Correctness Time Correctness Time Correctness TimeTable 12: Factors included in the correctness and time models forthe group-number encoding GAs. * = signi�cant at the 5% level; **= signi�cant at the 1% level; ns = not signi�cant at the 5% levelbut still included in the model to maintain hierarchical structure; nosymbol indicates the factor was not included in the model; : signi�es aninteraction term. Ruspini2 Towns2Factor Correctness Time Correctness TimePS ** ** ** **Tr ** ** ** **El * ** ** **Cr ** ** ** **CP ** ** ** **Mu ** nsMR ** ** ** **PS:Tr ** **PS:El ** ** **PS:Cr ** * **PS:CP ** ** **PS:Mu nsPS:MR ** ** * **Tr:El ns ** **Tr:Cr ** ** ** **Tr:CP ** **Tr:Mu ns **Tr:MR ** ** **El:Cr ** ** **El:CP *El:Mu nsEl:MR ** ** **Cr:CP ** ** **Cr:Mu nsCr:MR ** ** **CP:Mu nsCP:MR * ** **Mu:MR nsPS:Tr:El * **PS:Tr:Cr ** **PS:Tr:CP **cont.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 41cont. Ruspini2 Towns2Factor Correctness Time Correctness TimePS:Tr:MR ** **PS:El:Cr **PS:El:Mu *PS:El:MR **PS:Cr:CP ** **PS:Cr:MR ** **PS:CP:Mu *PS:CP:MR **PS:Mu:MR *Tr:El:CP **Tr:El:Mu *Tr:El:MR **Tr:Cr:CP **Tr:Cr:MR *Tr:CP:Mu *Tr:CP:MR ** **El:Cr:MR **El:CP:Mu **Cr:CP:MR *Cr:Mu:MR **Table 13: Factors included in the correctness and time models for theorder-based GAs. * = signi�cant at the 5% level; ** = signi�cant at the1% level; ns = not signi�cant at the 5% level but still included in themodel to maintain hierarchical structure; no symbol indicates the factorwas not included in the model; : signi�es an interaction term. Factorsmissing from the table are not in either model.The top �ve GCAs for each representation/data set combination are presented in Tables 14to 18. In each case the correctness model was used to predict the adaptions that would give thehighest probability of �nding the correct clustering. These adaptions were then ranked accordingto the predictions of the appropriate time model.PS Tr El Cr CP MR Correctness Time200 scaled 4.0 5% edge-based 0.50 0.50 1.000 42.954200 scaled 4.0 5% edge-based 0.70 0.50 1.000 50.187200 scaled 4.0 5% edge-based 0.90 0.50 1.000 57.205200 scaled 4.0 1 edge-based 0.50 0.50 1.000 61.510200 scaled 4.0 0 edge-based 0.50 0.50 1.000 68.034Table 14: Top �ve predicted adaption combinations for group-number GCAs on Ruspini2.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 42PS Tr El Cr CP MR Correctness Time100 scaled 2.0 1 edge-based 0.70 0.50 0.826 109.29150 scaled 2.0 1 single-point 0.50 0.70 0.819 8.615100 scaled 2.0 1 single-point 0.70 0.90 0.818 37.17050 scaled 2.0 1 single-point 0.90 0.70 0.806 9.761100 scaled 2.0 1 edge-based 0.70 0.70 0.804 150.931Table 15: Top �ve predicted adaption combinations for group-number GCAs on Towns2.PS Tr El Cr CP MR Correctness Time50 adjusted 5% single-point 0.90 0.70 1.000 6.67850 adjusted 0 single-point 0.90 0.70 1.000 7.17650 adjusted 5% single-point 0.70 0.70 1.000 7.43250 adjusted 1 single-point 0.70 0.70 1.000 7.63550 adjusted 5% single-point 0.50 0.90 1.000 7.773Table 16: Top �ve predicted adaption combinations for group-number GCAs on Iris2.PS Tr El Cr CP Mu MR Correctness Time50 scaled 2.0 0 edge-based 0.90 uniform 0.70 0.999983 57.31750 scaled 2.0 0 edge-based 0.90 gaussian 0.70 0.999983 68.45550 scaled 2.0 5% edge-based 0.90 uniform 0.70 0.999981 57.411950 scaled 2.0 5% edge-based 0.90 gaussian 0.70 0.999981 66.643250 scaled 2.0 0 edge-based 0.90 gaussian 0.70 0.999975 59.171Table 17: Top �ve predicted adaption combinations for order-based GCAs on Ruspini2.PS Tr El Cr CP Mu MR Correctness Time50 scaled 4.0 0 edge-based 0.90 gaussian 0.10 1.000 23.88850 scaled 4.0 0 edge-based 0.90 uniform 0.10 1.000 24.81450 scaled 4.0 5% edge-based 0.90 gaussian 0.10 1.000 27.81250 scaled 4.0 5% edge-based 0.90 uniform 0.10 1.000 28.89250 scaled 4.0 5% edge-based 0.90 gaussian 0.20 1.000 30.190Table 18: Top �ve predicted adaption combinations for order-based GCAs on Towns2.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 432.3.3 Performance of Selected AdaptionsTables 19 and 20 contain summaries of the performance of the top predictions for each model onthe generated and real data sets. For the purposes of this experiment, the correct clustering foreach of the real data sets was assumed to be the clustering with the minimum objective functionvalue (thus the correct clustering for the Iris data set was not its real clustering, since the realclustering includes overlapping clusters).The group-number results on both the real and generated Ruspini data match the predictionswell, as do the correctness results for the Iris data. However, the group-number GCA was unable toconsistently �nd the correct clustering for the German Towns data set despite good results in thegenerated data set. Although the mean time to solution for the GCAs on the real and generatedIris data was signi�cantly higher than the predicted value, it was within an order of magnitude ineach case. Predicted Generated Data Real DataCorr. Time Corr. Time Corr. TimeRuspini 40.000 42.954 39 42.130 (4.523) 38 43.882 (5.942)German Towns 33.058 109.291 37 120.593 (50.638) 11 187.283� (28.374)Iris 40.000 6.678 40 7.827� (0.9225) 40 11.901� (2.403)Table 19: Performance of the top group-number GCAs on generated and real data sets. Corr. isthe number of correct runs out of 40. For the real data sets the correct clustering was assumedto correspond to the minimum objective function value. Time is the average time to solution inseconds CPU for the correct runs, the standard deviations are included in brackets. � = signi�cantlydi�erent from predicted value at 1% level.The the correctness of the order-based GCA on the real Ruspini data matched that on thegenerated data and the prediction, although the time to �nd the solution was signi�cantly higherin both cases. The order-based GCA for the German Towns data set, matched the prediction onthe generated data set but was unable to �nd a single solution for the real data.Predicted Generated Data Real DataCorr. Time Corr. Time Corr. TimeRuspini 39.999 57.317 40 66.482� (18.770) 40 110.498� (67.870)German Towns 40.000 23.888 40 29.010 (27.920) 0 -Table 20: Performance of the top order-based GCAs on generated and real data sets. Corr. isthe number of correct runs out of 40. For the real data sets the correct clustering was assumedto correspond to the minimum objective function value. Time is the average time to solution inseconds CPU for the correct runs, the standard deviations are included in brackets. � = signi�cantlydi�erent from predicted value at 1% level.Figure 26 shows the evolution of a successful group-number GCA's population over 200generations for the Ruspini data set. The initial population (Generation 0) has high raw �tness (orobjective function) values, which indicate that these clusterings do not suit the Ruspini data. Asthe number of generations increases, the raw �tness of clusterings within the population decreases,as the GCA is biased towards the survival of genetic material contained within the clusterings withlow objective function values. For this data set, the minimum objective function value is 10.088which corresponds to the correct clustering for the data set. This GCA found the correct clustering
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200Figure 27: Fitness distribution of 200 Generations1 of a unsuccessful group-number GCA onRuspini. PS = 50, Tr = local, El = 0, Cr = single-point, CP = 0.50, MR = 0.05. 1sampled every20 generations.in the 140th generation, and this clustering made up 39% of the �nal population.Figure 27 shows the evolution of an unsuccessful GCA for the Ruspini data. Although the�tness of the population is decreasing over the generations, the evolution is not fast enough for theCGA to �nd the correct clustering within the 200 generations.2.4 DiscussionThe overall correctness results for the generated data (Tables 3 and 4) raise some interestingquestions | why did the group-number GCAs perform so well on Ruspini2 and Iris2, yet poorlyon Towns2? and why did the order-based GCAs fail to �nd a single solution for Iris2? The answerto the �rst question appears to be the high value of k for the Towns2 data set; whereas the largenumber of objects in the Iris2 data set may provide the answer for the second question.



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 45A group-number representation for a data set with a large number of clusters has a high levelof redundancy (each clustering can be represented by k! di�erent chromosomes). This means thatthe representation space has many more optima than the solution space. This divides the focus ofthe population, and crosses between chromosomes near di�ering optima tend to be unproductiveand wasteful. Overall, redundancy slows down the convergence and reduces the diversity of thepopulation.Since edge-based crossover is context sensitive (and therefore not a�ected by redundancy) weexpect the GCAs with this crossover to out-perform the other GCAs on this data set. In fact, ahigh proportion of the trials with 5 correct runs did use edge-based crossover. However, there werealso a large number of edge-based GCAs that did not �nd a single solution. This is due to the highcomplexity of the edge-based operator, O(k4), combined with large population sizes which greatlyincreases the time required to produce a new generation. Five processor minutes was simply notenough time for these GCAs to �nd the solution.The poor performance of the order-based GCAs on Iris2 can be explained by the large numberof objects in the data set, which a�ects the speed of the local search (due to its complexity ofO(n2k)) and the size of the representation space (see Table 21). This meant that the time limitof 300 seconds restricted the GCA to only a few generations, limiting the GCAs' search to a verysmall portion of a very large representation space. Size of SpaceData Set n k Solution Group-number Rep.1 Order-based Rep.2Ruspini2 75 4 6�1043 1�1045 7�10112Towns2 59 7 1�1046 7�1049 2�1083Iris2 150 3 6�1070 3�1071 6�10266Table 21: Size of the representation space for generated data sets. 1Size of group-numberrepresentation space is kn. 2Size of order-based representation space is e�ectively 12n(n + 1)!(the local heuristic searches through 12n(n+ 1) clusterings for each chromosome, and there are n!possible chromosomes).When considering the results of the adaptions tests, it is important to remember that thesetests were limited to 300 seconds. Thus the correctness models that have been presented featureadaptions that increase the probability of �nding the correct clustering in under �ve minutes.The adaption tests for the data sets resulted in a di�erent model for each. This suggests thatthe type of data set should be an important consideration when selecting or designing a suitableGCA.� Population SizeIncreasing the population size increases the size of the GCA's gene pool which is advantageousfor group-number GCAs that are searching for clusterings with high k (for Ruspini and Iris2GCAs with the smallest population size were not as successful at �nding the correct solutionas the GCAs with larger populations). The local search used for order-based encoding meansthat a relatively small population can span a considerable portion of the representation space(the results do not suggest that increasing the population size will improve performance).However, increasing the population size means that each reproductive phase takes longerand therefore less generations occur in the same time. This is important because it is the



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 46reproductive phase that evolves the population. It will also take longer to converge a largerpool of genes.� Fitness TransformationFitness transformations can allow certain chromosomes to dominate the population by givingthem high relative �tness values. For smaller populations and larger solution spaces scalingis important as it increases the probability that the genes of �tter solutions remain in thepopulation. However, too high a level of scaling can quickly converge the population tosub-optimal solutions. The results suggest that linear scaling (with CMult of 2.0 or 4.0) isappropriate for data sets used in the experiments. Some time advantage may be gained byusing the adjusted transformation on data sets with small k.� Elite ConstantElite selection ensures that good genes are not lost from the population. However, eliteselection also decreases the size of the population that is actively searching for new solutions.The results suggest that elite selection is useful for decreasing the time taken to �nd thesolution for group-number GCAs, and it does appear to improve the correctness for the largerdata sets. However performance of the order-based GCAs was worse with elite selection,possibly because it reduced the size of the active population.� Crossover TypeThe crossover type had a large inuence on the correctness and time results for both thegroup-number and order-based GCAs. Single-point crossover was clearly su�cient for thedata set with low k; this was also the fastest crossover method for the group-number GCAs.However, group-number GCAs with the slower edge-based crossover found more correctsolutions on Ruspini2 and Towns2. Perhaps a context sensitive crossover is more importantfor data sets with higher k. With the order-based GCAs, the best performing crossover wasedge-based which found the solution in less generations than borrow or PMX. Due to thetime complexity of the local search, and consequently the reduced number of generations,it was important that the crossover operator combined genetic material e�ectively duringreproduction.� Crossover ProbabilityThe crossover probability had little e�ect on the performance of the group-number GCAs,although increasing the value tended to reduce the time to �nd the solution. The order-basedGCAs also performed well with high crossover probabilities.� Mutation TypeThere was only a small time di�erence between the two mutation types used for the order-based GCAs. There does not seem to be any reason to favour one operator over the other.� Mutation RateThe largest a�ect of changing the mutation rate is seen in the time to solution. However,a certain level is necessary to introduce new genetic material to the population (note thegenerally poor performance of all GCAs with very low mutation). Too high a mutation rate



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 47will also degrade the performance of a GCA by reducing the GCA's evolution to a randomsearch.The models produced from the results of adaption experiments all contain interaction terms,which means the combination of some adaptions will be more e�ective than others. Hence it isnecessary to select a total set of adaptions carefully.There appears to be advantages to using both clustering representations. Group-numberencoding when combined with single-point crossover is a fast method of �nding clusterings fordata sets with low k. This method also seems to be able to cope with relatively large data sets,although size of the data sets used in these experiments was limited. The performance of thegroup-number GCAs on data sets with high k values was poorer, with many CGAs returningsub-optimal minima.The performance of the order-based GCAs with edge-based crossover on the �rst two generateddata sets was excellent. The time to �nd the solution for Ruspini2 was comparable with the group-number GCAs, whereas the time to �nd the solution for Towns2 was considerably less. However,this method was unable to �nd a single solution for the data set with the most objects. As a resultof the complexity of the local search, this method cannot cope with large data sets, but is suitablefor small data sets with large values of k.The comparison of GCA performance on the generated and real data sets raises some importantpoints. For both the group-number and order-based GCAs, the results on the Ruspini datasets matched the predictions very well (the �t of the time model for the order-based GCA wasquestionable, so we do not expect the time results to match too well). The correctness results forthe other GCAs on the generated data sets were close to the predicted values (the group-numbercorrectness model for Towns2 also had questionable �t), and the group-number correctness for theIris data was equal to the predicted value. However, both the group-number and the order-basedGCAs performed poorly on the German Towns data set.The fact that the best adaptions for each data set were clearly di�erent suggests that GAsshould be modi�ed in order to attain optimal performance for a particular data set. However, theresults for the generated and real data sets were similar for Ruspini and Iris, indicating that itmay be possible to adapt GAs to suit a class of data sets (with approximately the same numberof objects, clusters, and distribution). The contrasting performance of the GCAs on the GermanTowns data set may be a result of the low similarity between the distribution of the generated andreal objects. The generated data set is clearly separable into seven clusters, whereas the towns inthe real data set do not fall into distinct clusters. For the real data this means there will be a largenumber of clusterings with objective function values close to the optimum value. Clearly, such adata set is harder for a GCA to cluster, and the chances of �nding a local minima rather than theoptimal solution are greatly increased. Increasing the rate of mutation in the early generations (toincrease the available genetic material during the initial stages), may improve performance in thiscase.Although the results presented in this chapter suggest that di�ering data sets require di�erentadaptions for optimal performance (correctness and speed), this does not mean that a particularset of adaptions will not �nd the correct solution to a large number of data sets if given enoughtime. Indeed, it would seem that a number of adaptions (elite constant, �tness transformation,



CHAPTER 2. ADAPTING GAS FOR K-CLUSTERING 48crossover probability, and mutation rate) have a large e�ect on the time taken to �nd the optimalsolution, and that for simpler data sets these adaptions can be used to speed up the evolution ofthe GCA without sacri�cing correctness. So although it seems important to invest some time inadapting the GA to suit the data set, it may not be necessary to �nd the optimal adaptions to�nd correct clusterings within a reasonable time.Finally, the adaptions implemented in this experiment are only a sample of the numerouspossible adaptions. Thus the performance of GCAs on these and other data sets may be improvedby the investigation of further adaptions.



Chapter 3Genetic versus TraditionalClustering AlgorithmsIn the last chapter we described how GAs can be adapted for the problem of clustering, andcompared the e�ectiveness of some selected adaptions. In this chapter we compare these adaptedGAs with three hierarchical clustering methods (SLINK, average-linkage, and Ward's method) andfour optimisation clustering methods (k-means, iterated nearest neighbour, iterated hillclimber,and simulated annealing) in terms of correctness, consistency, and speed.3.1 Clustering AlgorithmsTraditional clustering methods were broadly described in Chapter 1. In this section we describethose algorithms selected for this experiment in further detail.SLINKHierarchical clustering techniques use a series of successive fusions or divisions to construct ahierarchy of clusterings. The single-linkage method [20] starts with each object in its own cluster.Clusters are then merged according to the distance between their nearest members until only onecluster remains.A simple implementation of the single-linkage algorithm involves calculating and storing then � n distance matrix, D = fdijg where dij is the Euclidean distance between the closest objectsin Cluster i and Cluster j. At each stage the clusters with the minimum distance are merged,and the distance matrix is updated by: (i) deleting the rows and columns corresponding to themerged clusters; and (ii) adding a row and column giving distances between the new cluster andthe remaining clusters.SLINK is an optimally e�cient algorithm for the single-linkage clustering method developedby Sibson [57] (Figure 28). Instead of storing a matrix of distances that is referred to and updatednumerous times during the clustering process, the SLINK algorithm only reads (or calculates) eachrow of the initial distance matrix once. 49



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 501. Set �(n + 1) to n+ 1, �(n + 1) to 12. Set M (i) to d(i; n+ 1) for i = 1; :::; n3. For i increasing from 1 to nif �(i) �M (i)set M (�(i)) to min fM (�(i));�(i)gset �(i) to M (i)set �(i) to n+ 1if �(i) < M (i)set M (�(i)) to min fM (�(i));M (i)g4. For i increasing from 1 to nif �(i) � �(�(i))set �(i) to n+ 1Figure 28: The SLINK algorithm (from [57]).The SLINK algorithm manipulates three arrays of size n. The �rst, �, is used to store thelevels at which the clusters are merged | �(i) is the lowest level at which i is no longer the lastobject in its cluster. The second array, �, stores the merging sequence | �(i) is the last object inthe cluster which object i then joins. The �nal array,M , is used for the distance values (d(i; j) isthe Euclidean distance between objects i and j). The implemented algorithm starts by calculatinga row of the lower triangular distance matrix and placing the values in M . These values arecompared against those in �, and the values in � and � are adjusted accordingly. The values of� are then compared against each other and any necessary adjustments made. This is repeatedfor each row of the distance matrix. A �nal step involves decoding the resulting clustering from �and �.Average-linkageThe average-linkage method [58] merges the clusters with the minimum average distance betweenall pairs of objects where one member of a pair belongs to each cluster. Hence the distance betweentwo clusters, A and B, was calculated as1nAnB nAXi=1 nBXj=1 d(XAi; XBj);where nA, nB are the number of objects in clusters A and B, respectively; and d(XAi; XBj) isthe Euclidean distance between the ith object in A and the jth object in B. If there were morethan one pair of clusters with the minimum distance between them, the pair to be merged wasrandomly selected from those with the minimum distance.Since the distance measure was based on the Euclidean distance between pairs of objects, twodistance matrices were stored. The �rst contained the Euclidean distances between all pairs ofobjects, and was used to calculate the distances between clusters. The second matrix stored thedistance between the existing clusters (initially this is the same as the �rst matrix), and wasupdated during the clustering process. Only the lower triangular portion of the matrices werestored since they were both symmetric.The clustering was stored as an array of n clusters, where each cluster was represented by a



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 51list of object numbers and the number of objects stored in this list. An array of cluster numberswas used as an index for the cluster array | the number of values stored in this array varied fromn to 1 during the clustering process. When two clusters, say A and B were selected for merging,the data structure was updated as follows:1. The objects in B were added to A's object list. The number of objects in A was incrementedby the number of objects in B.2. B was removed from the list of cluster numbers.3. The distance matrix was updated by removing the rows and columns for B and recalculatingthose for A (now AB).Ward's MethodThe implementation of Ward's method was similar to that of average-linkage, but in this case thedistance between two clusters was calculated as2 nAnBnA + nB d2(XA; XB);where nA, nB are the number of objects in clusters A and B, respectively; and XA and XB are thecentroids of the two clusters. This distance is a simpli�cation of Ward's sum of squared distancesstatistic [39].Since the distance between two clusters was based on the Euclidean distance between theircentroids, a single distance matrix was su�cient. As with the average-linkage implementation, theclustering was stored as an array of clusters. However, each cluster was represented by its centroid(stored as a p-dimensional vector) and its number of objects.A �nal di�erence was the method of updating the clustering structure during merging (Step 1,from above). For Ward's method, the centroid of Cluster A was replaced by the centroid of ClusterAB, XAB = nAXA + nBXBnA + nB :The number of objects in A was then incremented by the number of objects in B. The remainingupdating steps were the same as those for average-linkage.k-meansOptimisation clustering techniques use a search method to �nd a clustering that optimises apre-de�ned objective function. These techniques start with an initial clustering (containing thecorrect number of groups), and then reassign objects according to the objective function until someterminating criterion is met.The objective function used for the optimisation clustering methods in this experiment was thesum of the squared Euclidean distance between objects and their cluster centroids. This criterion isequivalent to Trace (W ), and is minimised over the representation space (Section 1.1.3). Using thesame objective function for the optimisation algorithms means we are comparing the e�ectiveness



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 52of the search methods when we compare these algorithms. Further, this criterion is similar to thedistance measures used in the above hierarchical methods.The k-means algorithm was implemented as described by Hartigan [29]. The algorithm startsby generating a random clustering, which is the starting point for a local search that takes eachobject in sequence and moves it to the cluster that reduces the objective function value the most. Ifthe objective function value is not reduced, the object remains in its current cluster; the algorithmterminates when the objective function value cannot be reduced by any move.The current clustering for this algorithm was stored in an array using the group-numberrepresentation described in Section 2.1.1. The change in objective function value associated withtransferring Object i from its cluster, A, to Cluster B, was calculated asnB d2(Xi; XB)nB + 1 � nA d2(Xi; XA)nA � 1 ;where nA, nB are the number of objects in clusters A and B, and d2(Xi; Xj) is the squaredEuclidean distance between Object i and the centroid of Cluster j [29]. Here, a negative valueindicates a reduction in the objective function value. An array of clusters was used to store thecentroid of, and the number of objects in, each cluster | the same structure as used in theimplementation of Ward's method. However, since the current clustering always has k clusters,there were only k clusters in the data structure, and there was no need to keep track of clusternumbers.Moving an object simply required changing the object's group-number in the current clustering,and updating the two relevant clusters | the cluster the object was moving from, and the clusterit was moving to.Iterated Nearest NeighbourThe iterated nearest neighbour algorithm is adapted from the greedy permutation representationdiscussed in Section 2.1.1. GAs with this representation tend to �nd their optimal solution in theinitial generation [36], which suggests that an iterated version of this local search would make anappropriate clustering algorithm.The algorithm starts by generating a random permutation of the objects. The �rst k objectsbecome seed points and each is assigned to a separate cluster. The remaining objects are, in theorder they occur in the permutation, added to the cluster with the closest centroid (measured as thesquared Euclidean distance between the object and the cluster centroid). These steps are repeateda number of times (determined by the user) and the clustering with the minimumobjective functionvalue is returned as the solution.In general, if the seed points correspond to the clusters in the data set (that is, there is a seedpoint in each cluster), and the clusters are well separated, this algorithm will �nd the clusteringthat corresponds to the minimum sum of squared Euclidean distance between objects and theircluster centres. For more complicated data sets, only seed points close to the cluster centroids willlead to the optimal clustering. In either case, the probability of �nding the solution is increasedby increasing the number of iterations, as this improves the chances of �nding good seed points.The data structure for this implementation was the same as that for k-means. However, asecond array was necessary to store the best clustering found during the iterations. Adding an



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 53object to a cluster involved setting the object's group-number in the clustering, updating thecluster's centroid, and incrementing the number of objects in the cluster.Iterated HillclimberThe hill-climbing or steepest descent algorithm starts from a random clustering and searches alocal neighbourhood for the clustering which reduces the objective function value the most. Ifsuch a clustering is found, it becomes the current clustering and the algorithm then searches theneighbourhood of this clustering; otherwise the algorithm terminates. The success or failure ofthis algorithm is determined by the starting string, and the chances of �nding the global optimumfor a problem with many local optima are slim. An iterated version of the hill-climbing algorithmcan be found in [48]. This simply repeats the normal hill-climbing algorithm a set number of timesand saves the clustering with the minimum objective function value.For this experiment, the local neighbourhood of a given clustering was considered to includethe clusterings in which all the objects were in the same groups, except for a single object whosegroup-number di�ered by 1. For example, given a clustering with Object 1 in Cluster 4, we cancreate two neighbours by moving Object 1 to Cluster 3 and Cluster 5 respectively. This de�nitionmeans that a clustering in a data set with n objects has 2n neighbours.The current clustering for the hillclimbing algorithm was stored using group-numberrepresentation, and the best clustering for the iterations was saved in a similar manner. Thecluster centroids were re-calculated during each evaluation of a clustering.Simulated AnnealingSimulated annealing [40] is a method of function optimisation that is modelled on the annealingprocess used in glass blowing and metallurgy. The annealing process involves heating the glass ormetal to a temperature just below its melting point, and then allowing it to cool slowly. Duringthe cooling stage the molecules in the material re-align themselves and crystalise, which reducesthe internal stresses resulting from working the material.In simulated annealing, the search is controlled by a parameter called \temperature", whichoccasionally allows the search to move uphill (and thus escape local optima). Moves that decreasethe objective function value are always accepted; while moves that increase this value are acceptedwith a probability based on the temperature, and the change in objective function value. Thetemperature value | initially high | is lowered in stages to mimic the annealing process, and theprobability of accepting an uphill move decreases with decreasing temperature.Figure 29 contains an outline of the implemented simulated annealing algorithm. This is similarto the algorithm described in [48]; a more complex implementation for the clustering problem canbe found in [41].The algorithm contains two loops. The outer loop controls the temperature, which starts atT0 and is successively decreased by a (cooling) factor of T�. The algorithm terminates when thetemperature falls below the �nal temperature, TF .The inner loop, which is repeated Tsteps times for this implementation, randomly generates anew clusterings by selecting a new group for an object. The new clustering is accepted as the



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 54Initialise the temperature T to T0Select a current clustering Cc at random and calculate its objective function value f(Cc)repeat for Tsteps doSelect a new clustering Cn by randomly selecting a new group for an objectIf f(Cn) < f(Cc) thenCn becomes the current clustering Ccelse Cn becomes the current clustering Cc with probability exp( f(Cc)�f(Cn)T )T = T� � Tuntil T < TF Figure 29: Clustering with simulated annealing.current clustering: (1) if its objective function value is lower than that of the current clustering;or (2) with a probability based on the temperature, and the di�erence in the objective functionvalues between the new and current clusterings.The current and new clusterings were stored using group-number representation, and the clustercentroids were re-calculated for each clustering.Genetic ClusteringThe GCAs used for this experiment have two important di�erences to those developed in theprevious chapter. Firstly, exponential mutation has been added to the GCAs for the Ruspini andGerman Towns data sets. The mutation rate is high for the initial generations and then decaysexponentially with increasing generations. This increases the amount of new genetic materialintroduced in the early generations and reduces the chances of mutation destroying good solutionsin later generations.Exponential mutation is described by two mutation rates | the initial and �nal rate. Eachmutation rate is expressed as the probability of mutating a chromosome, that is mutating a singlegene on that chromosome. The mutation rate for a given generation, gen, is calculated asMRgen =MRF � exp �ln�MR0MRF ��1� genMG��whereMR0 andMRF are the initial and �nal mutation rates, respectively; andMG is the maximumnumber of generations.Secondly, the GCAs here are run for a set number of generations rather than for a set timeinterval as in the previous chapter. The number of generations to use in each case was calculatedfrom the performance of the GCAs on the real data sets in the last chapter (the generation thatthe correct solution was found was recorded, and the average and standard deviation of thesevalues were used to calculate a 95% con�dence interval that was used as a guide for selecting anappropriate number of generations).As in the previous chapter, each GCA is described by a list of parameters: PS (populationsize), MG (maximum number of generations), Tr (scaling transformation), El (elite constant), Cr(crossover type), CP (crossover probability), and MR (mutation rate(s)).



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 553.2 MethodologyAll of the described algorithms were implemented by the author. The algorithms were coded in Cand compiled using gcc with the optimisation ag set to level 3. The clustering algorithms werecompared on the three data sets introduced in the previous chapter | Ruspini, German Towns,and Iris (see Section 2.2.1). Each data set was clustered 40 times by each algorithm. The followinginformation was collected: (i) the number of runs that found the correct solution, (ii) the averageand standard deviation of the correctness over the 40 runs, (iii) the consistency of the 40 solutions,and (iv) the average and standard deviation of the time taken by the algorithm.The correctness was measured as the maximum percentage of objects that were clustered inthe same groups as the correct clustering (there are k! ways that the groups can be matchedsince the group-numbers do not necessarily correspond). For example, if the correct clusteringwas ffX1; X3; X6g; fX2; X4; X5gg, the clustering ffX2; X3; X4; X5g; fX1; X6gg has a correctnessof 83.3% (�ve out of six objects). This matches the �rst group in the correct clustering withthe second group in the other clustering | the alternate matching has only one object correctlyclustered.A run was considered to be correct only if there was a perfect match between the clusteringfound by the algorithm and the correct clustering (that is, a correctness of 100.0%). For thisexperiment the correct clustering for each of the data sets was assumed to be the clustering thatcorresponded to the minimum sum of squared distances between the objects and their clustercentres. Consistency was calculated as the maximum percentage of objects that were clusteredin the same clusters for all 40 runs (groups were matched in a similar manner to the correctnesscalculations). The time taken by the algorithm was measured in seconds CPU (resolution of theclock was 16.667 milliseconds), and did not include the time taken to store the objects' attributevalues. In order to remain consistent with the previous chapter, the objects' attribute values werestandardised so that each attribute had a mean of 0 and a standard deviation of 1. The tests wereconducted on a single Sparc Ultra; the load average during testing was approximately 0.9.The number of iterations for both the iterated nearest neighbour and iterated hillclimberalgorithmwere varied until the performance of these algorithms exceeded that of the GCA (either interms of correctness, or time). The temperature parameters for the simulated annealing algorithmwere adapted in a similar manner.The mean correctness and time of the algorithms was compared against that of the GCA usingone-sided z tests (null hypothesis of equal mean values), which were appropriate due to the largenumber of runs.3.3 ResultsTables 22 to 24 contain the clustering results for the three data sets. All of the clustering algorithms,except for k-means, found the correct solution for the Ruspini data set in every run. SLINK wasthe fastest of the algorithms that found the correct clustering in all runs. The time for the iteratedhillclimber was closest to that of the GCA, but all of the comparison algorithms were signi�cantlyfaster than the GCA.



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 56Algorithm Correctness Consistency TimeRuns % std dev. % sec. CPU std dev.SLINK 40 100.0 0.0 100.0 0.004y 0.007average linkage 40 100.0 0.0 100.0 0.016y 0.006Ward's method 40 100.0 0.0 100.0 0.022y 0.008k-means 35 95.8 11.2 66.7 0.002y 0.005iterated nearest neighbour1 40 100.0 0.0 100.0 0.054y 0.007iterated hillclimber1 40 100.0 0.0 100.0 46.808y 1.098simulated annealing2 40 100.0 0.0 100.0 3.009y 0.022GCA3 40 100.0 0.0 100.0 51.707 1.996Table 22: Comparison of k-clustering algorithms on Ruspini. 1100 iterations. 2T0 = 10:0; Tsteps =200; T� = 0:9; and TF = 0:000001. 3PS = 200, MG = 200, Tr = scaled 4.0, El = 10, Cr =edge-based, CP = 0.50, MR = 0.90 { 0.10. ysigni�cantly faster than the GCA at 1% level.Algorithm Correctness Consistency TimeRuns % std dev. % sec. CPU std dev.SLINK 0 57.6 0.0 100.0 0.001y 0.004average linkage 0 79.7 0.0 100.0 0.008y 0.008Ward's method 0 94.9� 0.0 100.0 0.010y 0.008k-means 9 85.5 9.9 44.1 0.004y 0.007iterated nearest neighbour1 31 98.6� 4.0 79.7 4.870y 0.025iterated hillclimber2 0 59.4 6.5 5.1 271.910y 4.767simulated annealing3 15 90.1 7.8 76.3 249.229y 2.505GCA4 14 86.4 12.2 45.8 284.695 10.269Table 23: Comparison of k-clustering algorithms on German Towns. 110000 iterations. 21000iterations. 3T0 = 10:0; Tsteps = 200; T� = 0:999; and TF = 0:00001. 3PS = 100, MG = 1500, Tr= scaled 2.0, El = 1, Cr = edge-based, CP = 0.70, MR = 0.90 { 0.10. �signi�cantly more correctthan the GCA at 1% level. ysigni�cantly faster than the GCA at 1% level.Algorithm Correctness Consistency TimeRuns % std dev. % sec. CPU std dev.SLINK 0 68.0 0.0 100.0 0.014y 0.006average linkage 0 68.0 0.0 100.0 0.108y 0.008Ward's method 0 80.0 0.0 100.0 0.165y 0.010k-means 40 100.0 0.0 100.0 0.004y 0.007iterated nearest neighbour1 40 100.0 0.0 100.0 1.415y 0.022iterated hillclimber2 40 100.0 0.0 100.0 71.600 2.824simulated annealing3 40 100.0 0.0 100.0 2.735y 0.015GCA4 40 100.0 0.0 100.0 38.633 2.515Table 24: Comparison of k-clustering algorithms on Iris. 11000 iterations. 210 iterations.3T0 = 1:0; Tsteps = 100; T� = 0:9; and TF = 0:00001. 3PS = 50, MG = 1000, Tr = adjusted,El = 3, Cr = single-point, CP = 0.90, MR = 0.70. ysigni�cantly faster than the GCA at 1% level.



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 57None of the hierarchical methods found the correct clustering for German Towns. However, themean correctness of Ward's method was signi�cantly higher than that of the GCA, and all of thehierarchical methods were signi�cantly faster. Only two algorithms, iterated nearest neighbour andsimulated annealing, found the solution for the German Towns data set more times than the GCA.Both of these algorithms were signi�cantly faster than the GCA, and iterated nearest neighbourwas also signi�cantly more correct.None of the hierarchical methods found correct solution for the Iris data set, but all of theoptimisation methods, including the GCA, found the clustering with the minimum objectivefunction value on every run. All of the algorithms, except for the iterated hillclimber, weresigni�cantly faster than the GCA.3.4 DiscussionAll clustering methods search a restricted subset of the solution space. Hierarchical methods tendto search a smaller subset than the optimisation methods. Thus the search is faster and the resultsare more consistent, though the constraints of the hierarchical techniques sometimes prevent thealgorithms from �nding the optimal solution (for example, the hierarchical methods were unableto �nd the correct clustering for either the German Towns or Iris data sets).The performance of optimisation methods is limited by two factors: the suitability of theobjective function, and the e�ectiveness of the search method. Optimisation clustering methodssearch for the clustering that corresponds to the minimum (or maximum) objective function value,which may or may not be the correct clustering. For example, all of the optimisationmethods foundthe clustering with the minimum objective function value for the Iris data set, but this is not thereal clustering of this data set (the clustering de�ned as the correct clustering for this experimenthas a correctness of 83.3% when compared to the real clustering). For data sets such as Iris,with over-lapping clusters, it may be impossible to de�ne an objective function that can identifythe correct solution. However, the selected objective function was su�cient for the optimisationmethods to �nd a more correct solution than the hierarchical algorithms.Even if the objective function can identify the correct solution, there is no guarantee that thesearch method will �nd it. Consider the performance of the optimisation algorithms on the GermanTowns data. By de�nition, the correct clustering was the clustering with the minimum objectivefunction value, yet the iterated nearest neighbour algorithm did not �nd this clustering on nineruns, and the iterated hillclimber was unable to �nd it on any run. Clearly, some of the searchmethods are more e�ective than others for certain data sets.Optimisation methods such as k-means and iterated nearest neighbour search a relatively smallsubset of the solution space. These methods (in particular the iterated nearest neighbour method)are well suited to the objective function used for these experiments, and the subset they searchcontains solutions with high correctness. Hence these algorithms produce fast results with relativelyhigh correctness.The three remaining optimisation methods search a larger subset of the solution space, thusthese algorithms are the slowest. For the iterated hillclimber and simulated annealing, this subsetis determined by the de�nition of the neighbourhood, and the parameter values. The iterated



CHAPTER 3. GENETIC VERSUS TRADITIONAL CLUSTERING ALGORITHMS 58hillclimber did not perform well on the German Towns data set, perhaps due to the large numberof local optima for this data set. However, altering the neighbourhood de�nition may improve thisalgorithm's performance.Overall, we are looking for a method that consistently produces correct clusterings in a relativelyshort amount of time for a wide range of data sets, where correctness is most important. Hence theGCA was clearly out-performed by two other clustering methods: iterated nearest neighbour andsimulated annealing. This suggests that there is no advantage to using genetic clustering for thek-clustering problem for data sets with similar characteristics to those used in our experiment. Theaddition of further adaptions to the GCA may enhance its performance, but it is improbable thatsuch improvements would allow the algorithm to match the performance of the iterated nearestneighbour algorithm.We also expect that the iterated nearest neighbour clustering algorithm would continue tooutperform the GCA on data sets with more objects and a larger number of clusters. However,the described iterated nearest neighbour algorithm is based around the given objective function.It may not be possible to use a similar method for other objective functions. Thus a GCA with adi�erent objective function may outperform this method for certain data sets.The trend across the three data sets indicates that the GCA may outperform simulatedannealing on data sets with large numbers of clusters.Thus, although the GCA can match or better the correctness results for all of the algorithms(except for iterated nearest neighbour) on the given data sets, it is also signi�cantly slower thanthese clustering algorithms.



Chapter 4Genetic Clustering for Unknown kThus far we have concentrated on the k-clustering problem, where the number of clusters is known.Here we extend our GCA to deal with the more general clustering problem, where the optimalnumber of clusters is determined as part of the clustering process.4.1 BackgroundDetermining the optimal number of clusters for a data set is one of the more di�cult aspects to theclustering process. Most optimisation clustering methods require the user to specify the numberof clusters, and hierarchical methods typically produce a series of clusterings from 1 to n clusterswithout specifying the most appropriate number of clusters.Numerous procedures have been suggested for determining the optimal number of clusters [10,11, 49, 15], including some criteria appropriate for use as the objective function for optimisationclustering methods. For these criteria, the clustering that results in the minimum (or maximum)value of the objective function should be the best possible clustering (with the optimal number ofclusters) for the data set.4.1.1 Criteria for Determining the Number of ClustersMilligan and Cooper [49] compare 30 criteria for determining the number of clusters. The criteriawere used in conjunction with four hierarchical clustering methods to determine the best numberof clusters for arti�cial data sets with distinct non-overlapping clusters. The method suggested byCalinski and Harabasz [10], (n� k)� trace(B)(k � 1)� trace(W ) ;produced the best results for the experiment (B and W are de�ned in Section 1.1.3). The optimalclustering is indicated by the maximum value of this measure.The cluster separation method suggested by Davies and Bouldin [11, 33] also performedreasonably well. This criterion is based on the minimum ratio of within-cluster dispersions, Si,59



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 60and between-cluster separation, Ti;j: Wk = 1k kXi=1Riwhere Ri = maxj;j 6=i Si + SjTi;jSi = 24 1ni niXj=1 jxij � xijs351sTi;j = " pXl=1 jxli � xljjt# 1tand the values of s and t are user-de�ned (although Davies and Bouldin o�er some guidance forselecting appropriate values). The criterion value should be minimised over the solution space.Further discussion of criteria for determining the number of clusters can be found in [63, 15].Criteria for use with fuzzy clustering methods is described in [5, 22, 42].4.1.2 Adaptions for the General Clustering ProblemIt is possible to adapt the group-number GCAs we developed in Chapter 2 by simply exchangingthe �tness function for a criterion appropriate for the general clustering problem. The k parameternow becomes an upper limit on the number of clusters, maxk (which might even be n), rather thanthe required number of clusters. The group-number representation allows clusters to have anywherebetween 1 andmaxk groups (missing group numbers indicate less thanmaxk groups). The uniformmutation operator will randomly move objects between groups (perhaps even introducing a newgroup), while single-point and uniform crossover recombine group-numbers during crossover (edge-based crossover is not appropriate because it always produces o�spring with k clusters). However,this is not necessarily the best or the only approach.RepresentationWhile the number of clusters is implicit in the group-number representation, this is not thecase for all representations. The matrix representation can be extended in a similar mannerto group-number, by increasing the number of rows to maxk. Adjacent separators in thepermutation with separators encoding scheme could be used to indicate empty groups if maxk� 1separators were included in each chromosome. However, both the greedy permutation and order-based representations require some independent means of storing the number of clusters for eachchromosome. Adding an extra gene to store this value is one possible method.Falkenauer [17, 18] describes an encoding scheme speci�cally designed for grouping GAs. Underthis scheme each chromosome consists of two parts: an object part and a group part. The grouppart is exactly the same as a standard group-number encoding, and the object part is simply alist of the group-numbers that occur in the object part. Figure 30 contains Falkenauer's encodingof the clustering ffX1; X3; X6g; fX2; X4; X5gg. Since the number of groups in the object part canvary, so can the length of the chromosome. The genetic operators work with the group part of therepresentation, thus the operators are manipulating groups rather than objects.



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 61
part

object
part

group

1 12 1 2 2 2 1Figure 30: Chromosome representing the clustering ffX1; X3; X6g; fX2; X4; X5gg for Falkenauer'sencoding scheme.InitialisationFor the k-clustering problem we initialised the group-number population by generating strings ofrandom numbers between 1 and k. For the general clustering problem we could use the samemethod but increase the upper limit of the group-numbers to maxk. However, when n is muchlarger than maxk most of the population would contain maxk groups.The initial population should provide a random selection of strings from the representationspace, thus there should be approximately the same number of chromosomes with each possiblevalue of k. Such a population could be generated by creating chromosomes as follows:1. Randomly select the number of clusters, k, from [1,maxk].2. Randomly select a k group-numbers from [1,k].3. Randomly select a group-number (from the group-numbers selected in Step 2) for each object.The second step is included to ensure that the group-numbers in the chromosomes are randomlydistributed, rather than between 1 to k inclusive in each case.CrossoverThe context insensitive crossover operators, single-point and uniform, can be used for a group-number approach to the general clustering problem. However, again there is no de�nite relationshipbetween the clusterings of the parents and the o�spring. We saw in Chapter 2 that these crossoverswere less e�ective for data sets with higher k values, so we consider these operators inappropriate forthe general clustering problem (e�ectively we are looking for a maxk-clustering, where maxk > k).As mentioned previously, the edge-based crossover will always produce an o�spring with kclusters. This is appropriate if both the parents have k clusters, but unsatisfactory otherwise. Onesolution to this problem is to modify the operator so that it produces two o�spring and the k valuesof both parents are inherited by the children (the �rst child has the same number of clusters as the�rst parent, the second child has the same number of clusters as the second parent). Alternatively,the edge-based operator could be modi�ed to produce a single child with its number of clustersrandomly selected from the range of the parents' values. For example, if the parents have 3 and 6clusters, the number of clusters in the child is selected from the interval [3; 6]. Thus the numberof clusters in the child is inuenced by the number of clusters in both parents.Falkenauer's [18] crossover operator is similar to that of Bhuyan [7] and von Laszewski [66]in that it copies a number of groups from one parent to another and then uses a local search toproduce the �nal child. Such an operator is easier to apply to Falkenauer's representation.



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 62MutationThe mutation operator for the k-clustering problem can be used for the general clustering problem.It is capable of both introducing new groups and removing existing groups in its current form.However, the mutation of a single gene is unlikely to result in any great increase in �tness, andmutations of this form will be quickly lost from the population [18]. Thus we need some methodof introducing a new clusters that contain a number of objects.The simplest approach may be to introduce a split operator that selects a group from aparticular clustering and moves objects from that group into a new group with a set probability.Other mutation operators appropriate for this problem include a merge operator that moves allthe objects in one cluster to another pre-existing cluster, and a move operator which shifts objectsbetween groups already existing on a chromosome. Figure 31 illustrates the e�ects of these threeoperators. All three operators may be applied, with di�ering rates, to the population.
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2 2 1 2(c) MoveFigure 31: Mutation operators for the general clustering problem: (a) Split randomlymoves objectsfrom group 2 into the new group 3; Merge moves all of the objects from group 1 into group 3; andMove randomly shu�es objects between pre-existing groups.Falkenauer [17, 18] outlines similar strategies for his mutation operators | creating a newgroup, eliminating existing groups, and shu�ing objects among their respective groups. However,once again, local search is used to place objects in groups during the mutation process. For example,a group is eliminated by moving all of the objects in that group to other groups according to alocal search.4.2 Methods4.2.1 Objective FunctionOur �rst step in adapting a GA for the general clustering problem involved �nding an appropriateobjective function. Thus the �rst part of our experiment was the evaluation of a number ofclustering criterion. Each of our three data sets (Ruspini, German Towns, and Iris see Section 2.2.1)was clustered into 1 to 10 clusters using the iterated nearest neighbour algorithm from the previouschapter. Then the values of the criteria described in Section 4.1.1 were calculated for each clusteringof each data set (the data was not standardised for this experiment). The objective function wasselected on the basis of these values. The values of s = 2:0 and t = 2:0 were used for the Daviesand Bouldin criterion during this experiment.



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 634.2.2 Clustering AlgorithmsGenetic clustering was compared with three traditional clustering algorithms | Ward's method,iterated nearest neighbour, and simulated annealing| that were modi�ed for the general clusteringproblem. For the �rst two methods, this involved �nding the best clusterings into 2 tomaxk groupsand then using the objective function value to select the optimal clustering from these (this requiredone run of Ward's method, and maxk � 1 runs of the iterated nearest neighbour algorithm). Theneighbourhood de�nition used in the implementation of the simulated annealing algorithm allowsthe number of clusters to vary (moving the last object in one group into a pre-existing group willdecrease the number of clusters by one, introducing a new group number will increase the numberof clusters by one), so this was not changed. However, the initial clustering was created using theinitialisation process described in Section 4.1.2, and the objective function was replaced.To adapt the GCA for the general clustering problem, changes were made to the representation,�tness function, and the initialisation, crossover, and mutation operators. A group-numberrepresentation was used, but each chromosome also stored its number of clusters. Since the GCAwas to search for the maximum objective function value, the objective function could be used asthe �tness function without transformation. However, the local and scaled transformations wereupdated to suit this objective function. The initialisation operator described in Section 4.1.2,choosek, was added as an alternative to random initialisation. Two edge-based crossover operatorswere implemented: the �rst, edge1, producing two children with the same number of clusters asthe �rst and second parent, respectively; and the second, edge2, producing a single child with itsnumber of clusters randomly selected from [k1; k2] where ki is the number of clusters in the ithparent. The split,move, andmergemutation operators described previously were also implemented.Each data set was clustered 40 times with each algorithm, and the clusterings found wereranked in order of frequency. The objective function value and the correctness (percentage ofobjects correctly clustered, de�ned in the previous chapter) of the most frequent clustering werealso recorded. For this experiment the correctness of the clusterings was calculated from the realclusterings of the data sets. The correctness for the German Towns data set was not recorded sincethe real clustering for this data set is unknown. The average clustering time of the algorithms wasmeasured in seconds of CPU time. A maxk value of 10 was used throughout this experiment.All of the tests were conducted on a Sparc Ultra, with load average around 0.9. The algorithmswere written in C and compiled using gcc with the optimisation ag set to level 3.The number of iterations for the iterated nearest neighbour algorithm were the same as thoseused in the previous experiment (Section 3.3). The parameters for the simulated annealingalgorithms and GCAs were varied until a reasonable level of performance was achieved, or untilthe clustering time became excessive.The mean time of the algorithms was compared against that of the GCAs using one-sided ztests (null hypothesis of equal mean values).



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 644.3 Results4.3.1 Objective FunctionTables 25 to 27 list the values of the selected criteria for the clusterings of the three data sets. Thecorrect clustering for the Ruspini data set gives the minimum Calinski and Harabasz value, andthe maximum Davies and Bouldin criterion value, for the given clusterings.k Calinski and Harabasz Davies and Bouldin1 unde�ned unde�ned2 126.68 0.75823 136.28 0.537741 425.33y 0.4003�5 404.80 0.48356 379.46 0.67857 376.09 0.81898 370.29 0.78199 380.24 0.779810 389.72 0.7480Table 25: Clustering criteria values for ten clusterings of the Ruspini data set. 1correct clustering.�minimum criterion value. ymaximum criterion value.For the German Towns data set, the clustering with seven clusters has the maximumCalinskiand Harabasz criterion value; whereas the clustering with ten clusters has the minimum Daviesand Bouldin criterion value. In fact, the Davies and Bouldin values indicate that none of theseclusterings represent the natural structure of the data (Davies and Bouldin [11] suggest that valuesabove 0.6 (s = t = 2:0) for two-dimensional data indicate a particularly inappropriate clustering).k Calinski and Harabasz Davies and Bouldin1 unde�ned unde�ned2 76.34 0.86413 75.28 0.79554 86.66 0.84715 85.55 0.75456 88.00 0.79847 92.09y 0.80818 89.05 0.78099 87.56 0.809610 87.216 0.7014�Table 26: Clustering criteria values for ten clusterings of the German Towns data set. �minimumcriterion value. ymaximum criterion value.For the Iris data set, the maximum Calinski and Harabasz criterion value is given by theclustering with three clusters; whereas the Davies and Bouldin criterion indicates that the clusteringwith two clusters is the best. The 3-clustering evaluated in Table 27 is not the correct clustering forthe Iris data set. The criteria values for the correct clustering | 486.32 and 0.8446, respectively| are not the maximum (or minimum) value for either criterion. Consequently, neither of thecriterion are suitable for �nding the real clustering for this data set.



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 65k Calinski and Harabasz Davies and Bouldin1 unde�ned unde�ned2 513.30 0.4747�32 560.40y 0.72594 529.40 0.84385 494.09 0.85736 474.52 0.99137 450.77 1.03498 436.61 0.99909 409.70 1.000510 385.52 1.1162Table 27: Clustering criteria values for ten clusterings of the Iris data set. 2not the correct clustering(the criteria values for the correct clustering are 486.32 and 0.8446, respectively). �minimumcriterion value. ymaximum criterion value.Since the Calinski and Harabasz criterion correctly indicated the number of clusters in theRuspini and Iris data sets (the correct clustering for the German Towns data set is not de�ned) itwas selected as the objective function for the clustering algorithms. However, since this measureis unde�ned when there is only one cluster, the implemented clustering algorithms were restrictedto clusterings with more than one cluster.4.3.2 Clustering AlgorithmsThe results of the comparison between the selected clustering algorithms can be found in Tables 28to 30. Both Ward's method and the iterated nearest neighbour algorithm found the correctclustering of the Ruspini data on every run. However, the simulated annealing algorithm wasunable to �nd the correct clustering. In fact, this algorithm always clustered the Ruspini data setinto maxk clusters. The GCA performed reasonably well, �nding the correct clustering on 35 ofthe 40 runs. Ward's method and the iterated nearest neighbour algorithm were signi�cantly fasterthan the GCA.Ward's method found the same clustering of the German Towns data set on each run; thisclustering divided the objects between ten groups, and had the lowest objective function valueof the clusterings found by the algorithms. The simulated annealing algorithm also clustered thedata set into ten groups, but this clustering still had a relatively high objective function value.The most frequent clustering for both the iterated nearest neighbour and GCAs had seven groups,Algorithm Frequency k Obj. Function Correctness TimeValue % sec. CPU std dev.Ward's method 40 4 425.33 100.0 0.022y 0.008iterated nearest neighbour1 40 4 425.33 100.0 0.549y 0.012simulated annealing2 7 10 356.80 54.7 712.151 6.284GCA3 35 4 425.33 100.0 602.182 51.245Table 28: Comparison of clustering algorithms on Ruspini. 1100 iterations. 2T0 = 10:0; Tsteps =300; T� = 0:999; and TF = 0:000001. 3PS = 200, MG = 200, In = random, Tr = none, El = 5, Cr= edge2, CP = 1.00, MR = move 0.70, merge 0.10 { 0.50. ysigni�cantly faster than the GCA at1% level.



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 66Algorithm Frequency k Obj. Function TimeValue sec. CPU std dev.Ward's method 40 10 78.87 0.011y 0.008iterated nearest neighbour1 35 7 92.09 42.973y 0.686simulated annealing2 7 10 86.88 564.614 9.416GCA3 17 7 92.09 546.022 18.288Table 29: Comparison of clustering algorithms on German Towns. 110000 iterations. 2T0 =100:0; Tsteps = 300; T� = 0:999; and TF = 0:000001. 3PS = 100, MG = 2000, In = random, Tr =none, El = 5, Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 { 0.40. ysigni�cantly fasterthan the GCA at 1% level.and was the clustering with the highest objective function value for this data set. However, theiterated nearest neighbour algorithm was twice as successful at �nding this clusters as the GCA.In addition, the iterated nearest neighbour algorithm was signi�cantly faster than the GCA.The iterated nearest neighbour algorithm was the only method that divided the Iris data intothe correct number of clusters. Ward's method, and the GCA, found two clusters on every run,while the simulated annealing algorithm always found a clustering with ten groups.Algorithm Frequency k Obj. Function Correctness TimeValue % sec. CPU std dev.Ward's method 40 2 501.93 66.7 0.161y 0.008iterated nearest neighbour1 40 3 560.40 89.3 14.863y 0.120simulated annealing2 21 10 380.59 41.3 947.744 15.657GCA3 40 2 513.30 66.7 668.516 74.050Table 30: Comparison of clustering algorithms on Iris. 11000 iterations. 2T0 = 10:0; Tsteps =200; T� = 0:999; and TF = 0:000001. 3PS = 50, MG = 1000, In = random, Tr = none , El = 5,Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 { 0.30. ysigni�cantly faster than the GCAat 1% level.Numerous parameter combinations were tested for the simulated annealing algorithm on all ofthe data sets. However, the algorithm always found clusterings with nine or ten clusters, with themost frequent clusterings having ten clusters.Initial attempts at �nding good parameter values for the GCA involved using the choosekinitialisation operator, the edge1 crossover operator, and various rates of the three mutationoperators. The resulting performance was poor, with the population converging rapidly to asub-optimal number of clusters (Figure 32). Subsequent attempts used the random initialisationoperator to seed the population with clusterings containing maxk clusters. The probability ofthe merge operator was exponentially increased over the generations to force the GCA to exploreclusterings with less groups. The edge2 crossover operator was used since it can create a child witha di�erent number of groups than either parent, and the move mutation operator used to moveobjects between pre-existing groups. These parameter values forced the GCA's population to movethrough di�erent k values over the generations (Figure 33). The results presented in Tables 28 to30 use these parameter values.
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k = 3 k = 2k = 4Figure 32: Distribution of k values during genetic clustering of the Ruspini data set with initialparameter values: PS = 200, MG = 200, In = choosek, Tr = none, El = 5, Cr = edge1, CP =1.00, MR = split 0.30 { 0.10, merge 0.30 { 0.10, move 0.70.
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CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 684.3.3 Local SearchA �nal attempt at improving the GCA's performance involved modifying the merge mutationoperator. Instead of joining two random groups, the operator was modi�ed to place objects froma randomly selected group into the clusters (not including the selected group) with the closestcentroid | each object was placed in the cluster with the closest centroid to it. The overallstrategy was similar to the one described previously, with the population seeded with maxk-clusterings which were then merged to form clusterings with less groups. The modi�ed mergeshould enhance the �tness of these clusterings. In order to prevent the population from convergingto too few groups, split mutation was used.The resulting performance of the GCA on our three data sets is contained in Table 31. Thisalgorithm performed better on both Ruspini and Iris, �nding the correct clustering in every runfor the Ruspini data, and every run except one for the Iris data (this is comparable with theperformance of the iterated nearest neighbour algorithm). In addition, on these data sets, thealgorithm was signi�cantly faster (at 1% level) with these parameter values.Modifying the merge operator also improved the performance of the GCA on the German Townsdata set, but the algorithm still only found the correct solution on 60% of the runs. Further, themodi�ed algorithmwas signi�cantly slower (at 1% level) than the previous version of the algorithm.Clearly, the iterated nearest neighbour algorithm still produced the best results for this data set.Data Frequency k Obj. Function Correctness TimeValue % sec. CPU std dev.Ruspini1 40 4 425.33 100.0 307.556 18.671German Towns2 24 7 92.09 - 643.814 42.077Iris3 39 3 560.40 89.33 522.471 56.755Table 31: Performance of GCAs with modi�ed merge mutation. 1PS = 200, MG = 200, In =random, Tr = none , El = 5, Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 { 0.30, split0.05 { 0.25. 2PS = 100, MG = 2000, In = random, Tr = none , El = 5, Cr = edge2, CP = 1.00,MR = move 0.70, merge 0.10 { 0.40, split = 0.05 { 0.20. 3PS = 50, MG = 1000, In = random, Tr= none , El = 5, Cr = edge2, CP = 1.00, MR = move 0.70, merge 0.10 { 0.30, split 0.05 { 0.15.4.4 Discussion4.4.1 Objective FunctionThe objective function for a clustering algorithm should: (i) be de�ned for every clustering thealgorithm can produce; and (ii) provide a relative measure of each clustering's worth | theminimum (or maximum) value should correspond to the optimal clustering for the data set. Noneof the clustering criteria tested in this chapter satis�ed these requirements for all three data sets.The Calinski and Harabasz, and Davies and Bouldin measures are unde�ned when all objects areplaced in a single cluster, and neither could identify the real clustering of the Iris data set. However,the Calinski and Harabasz criterion can be used to determine the correct number of clusters in allof the given data sets, whereas the Davies and Bouldin measure only identi�ed the correct numberof clusters for the Ruspini data set. Further, the values of this measure for the German Towns



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 69data set suggest that none of the clusterings for this data set are appropriate. These results agreewith those of Milligan and Cooper [49] in which the Calinski and Harabasz criterion outperformedthe Davies and Bouldin measure.4.4.2 Clustering AlgorithmsThe fact that the objective function was an external criterion for Ward's method (it was usedto select from clusterings that had been produced by the hierarchical algorithm) meant that thisalgorithm could not always �nd the clustering with the maximumobjective function value. In fact,this algorithm found clusterings with the wrong number of clusters for both German Towns andIris, since these clusterings had higher objective function values than any of the other clusteringsproduced by the algorithm. However, a di�erent external criterion may produce better results withthis method.The iterated nearest neighbour algorithm clearly out-performed the other clustering algorithmson all three data sets. This is a result of the high correspondence between the method used to createthe clusterings and the external objective function. The algorithm creates clusterings by placingobjects into clusters with the closest centroid; this minimises the sum of the Euclidean distancebetween objects and their cluster centres, which is the denominator of the Calinski and Harabaszcriterion. However, since these clusters are built around random seed points, the algorithm mustbe iterated; and complex data sets (high k, close clusters) will require a large number of iterationsto produce good results (for complex data sets, there are fewer seed points that will lead to goodclusterings). Despite this, this method is still a relatively fast method of clustering data sets.The simulated annealing algorithm always clustered the data sets into maxk groups. This ismost probably due to the interaction between the neighbourhood de�nition, which allows a singleobject to be moved into a random group, and the objective function. Moving a single object willnot often increase the objective function value, unless the object is being moved to a new group.Hence the algorithm will tend to divide the objects into as many clusters as possible.The performance of the GCA on the �rst two data sets is promising, although this requires aparticular set of adaptions: random initialisation, exponentially increasing merge mutation, andedge2 crossover. This combination of adaptions uses the same concept as the hierarchical clusteringalgorithms, that is merging two clusters in a good k-clustering will most likely result in a good(k-1)-clustering. Thus the random initialisation operator is used to create a population of maxk-clusterings, and the merge mutation operator is applied exponentially to allow the population todevelop some good clusterings for each number of clusters, before the population evolves to a newnumber of clusters. Elite selection ensures that the best clusterings found so far remain in thepopulation, and ensures that the �nal population is based around clusterings with the correctnumber of clusters (assuming that these are also the �ttest clusterings).The edge2 crossover operator enables a child chromosome to have a di�erent number of clustersto its parents. But the number of clusters is restricted to the range of the number of clusters inthe parents. Given that edge-based crossover creates a child by �nding groups in both parents,this operator will often have the same e�ect as the merge operator.The emphasis on merging explains the poor performance of the GCA on the Iris data set. The
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Sepal Width (cm)Figure 34: Optimal 4-clustering for the Iris data set.best clustering of the Iris data set into four clusters divides two of the correct groups betweenthree di�erent clusters, one of which has equal numbers of the objects that belong in di�erentgroups (Figure 34). Thus the optimal clustering cannot be reached by merging any two of theexisting clusters, and such a merging would result in a clustering with a relatively low �tnessvalue. However, if the three closest clusters are merged, a good 2-cluster results, which is why theGCA �nds this clustering rather than the optimal one. A similar e�ect can be observed in theresults for Ward's method since the hierarchical algorithms also work by merging clusters.Since the GCA works by exchanging information (in this case cluster membership) betweenmembers of its population, it appears that the GCA (as described in this Chapter) is not suitable forthe k-clustering problem| the clusters contained in a good k-clustering will not necessarily lead toa good (k-1)-clustering. Thus, allowing the clusterings in the population to have di�ering numbersof clusters, and exchanging clusters between them using an edge-based crossover, is perhaps notthe best approach to this problem.4.4.3 Local SearchThe modi�ed merge operator used a local search to place objects from a randomly selected groupinto the clusters with the closest centroids. Thus the GCA could form better (k-1)-clusteringsfrom the k-clusterings in its population (hence the GCA was more likely to �nd the optimalsolution). Due to the increased �tness of the clusterings with less groups, the GCA convergedto clusterings with fewer clusters in a shorter space of time (except for the German Towns data,where the relatively high �tness of clusterings with seven clusters, kept the number of clusters inthe population high). Given that the majority of time per generation is spent on crossover, andthat the complexity of the edge-based crossover is proportional to the number of clusters, thismeant that this modi�cation actually decreased the time taken for the GCA on the Ruspini andIris data sets. This was despite the fact that the modi�cation to the merge operator increased thetime taken for this operator. However, since the number of clusters in the population of the GCA



CHAPTER 4. GENETIC CLUSTERING FOR UNKNOWN K 71for the German Towns data set remained high, there was a noticeable increase in the time takenfor this data set.The success of the modi�ed GCA was comparable to the iterated nearest neighbour algorithmfor the Ruspini and Iris data sets. However, the iterated nearest neighbour algorithm was moresuccessful on the German Towns data set, and was signi�cantly faster than the GCA on everydata set. Thus there is no advantage to choosing the GCA over the iterated nearest neighbouralgorithm, even with the addition of a local search.



Chapter 5ConclusionsThis research has been an investigation into the use of GAs for clustering data. We reviewed thevarious adaptions that enable GAs to cluster into a pre-de�ned number of groups, and comparedthe performance of 4320 combinations of adaptions on three generated data sets. Each adaptioncombination was ranked according to: (1) the number of times (out of �ve replications) that itfound the clustering with the minimumobjective function value in less than �ve processor minutes;and (2) the average time taken to �nd this clustering. Independent generalised linear models were�tted to the correctness and time results for each of the generated data sets, and the models wereused to predict the performance of the GCAs on three real data sets with similar structure. Thelinear models quanti�ed the e�ects of the various adaptions on the performance of the GCAs;and accurate predictions were produced, by models with good �t, when there was high similaritybetween the real and generated data.A number of adaptions are essential for GCAs, namely an appropriate representation, �tnessfunction, and suitable operators | the GCA needs to be able to encode potential solutions; the�tness function is necessary to drive the evolution of the population toward the optimal clustering;and the operators must be able to produce valid o�spring by manipulating the representation.Other adaptions such as context sensitive operators, elite selection, and parameter values such asthe population size and the mutation rate can have a large e�ect on the time taken to �nd theoptimal clustering for a given data set. Further, the e�ects of these adaptions and parameters variesfor di�erent data sets, although comparison between the real and generated data sets suggests thatthe variation is not signi�cant for data sets with the same number of objects, clusters, attributes,and a similar distribution of objects. However, the group-number representation is better suitedfor the k-clustering problem than the order-based representation, and high dynamic scaling of the�tness function values, elite selection, and high mutation rates increase the probability of �ndingthe correct clustering within a reasonable time. Larger population sizes and context sensitivecrossover appear more important for data sets with a high number of clusters.Comparison of GCAs with traditional k-clustering algorithms for the three data sets shows,that although the GCAs cluster the data successfully, the method provides no advantages overtraditional methods. This is due to the high complexity of the GCAs when compared to thetraditional algorithms, which are based around simple distance measures. Further, these same72



CHAPTER 5. CONCLUSIONS 73distance measures are used in several clustering criteria, which limits the correctness of bothGCAs using these clustering criteria, and the traditional algorithms based around these measures.Only simple modi�cations to the developed GCAs were needed for the general clusteringproblem, where the value of k is unknown. The best performance resulted from exploiting themerging concept behind hierarchical clustering, by seeding the population with clusterings withhigh numbers of clusters and then forcing the GCA to evolve clusterings with fewer clusters. If theoptimal solution is found during this evolution process, the elite selection strategy will ensure thatit remains in the population. However, such a GCA can become trapped in a local minimum ina similar manner to various hierarchical algorithms, since merging clusters in a good k-clusteringdoes not always lead to a good (k-1)-clustering. In fact, the population structure of the GCA (asdescribed in this thesis) is not appropriate for the general clustering problem, as given free reign itevolves the population by swapping genetic information between randomly selected members of thepopulation (e�ectively, the GCA is trying to build good k-clusterings using subsets of groupingsfound in good 2-clusterings to maxk-clusterings).The addition of local search to the merge operator markedly improved the performance of theGCAs on both the German Towns, and the Iris data sets. For the Iris data the GCA found theclustering with the maximumobjective function value in 39 out of 40 trials (this clustering correctlyallocates 89.3% of the objects according to the real clustering of the data, and is comparable tothe performance of other clustering GAs [6]).There are two factors limiting the performance of GCAs: the choice of objective function, andthe high complexity of the GCA. The objective function drives the evolution of the GCA, and assuch if the objective function does not suit the structure of the data, the GCA will be unable to �ndgood clusterings for the data set. Further, traditional clustering algorithms are based on conceptssimilar to the majority of clustering criteria. Thus the solutions given by these methods match,or better any that can be found by using these clustering criteria. Plus the complexity of thesetraditional algorithms is low. There is no advantage to conducting a more thorough search of thesolution space, as the objective function is not su�cient to �nd a better solution. Incorporatingheuristics into the GCA will improve its performance, but for the same reasons will not match theperformance of the heuristic on its own.There are four possible areas of improvement for the genetic clustering algorithms. Firstly,the GCAs could be adapted to control their own operator probabilities [13, 61]. This may eveninvolve di�erent rates according to the �tness of each chromosome, so that, for example, less �tchromosomes are more likely to undergo mutation. This would remove the need to determine goodparameter values, and should enhance the performance of the GCAs.Secondly, better clustering criteria may give the GCA an advantage over other clusteringmethods. Certainly, work in the area of fuzzy clustering suggests that genetic clustering maybene�t from the clustering criteria in this �eld (the matrix representation is suitable for fuzzyclustering) [22, 42]. GCAs may perform better when there are large numbers of sub-optimalminima that trap other search techniques.Thirdly, parallel implementations of GAs [66, 50] divide the algorithm between a number ofcomputers by creating a number of small populations rather than a single larger population. Sucha method may o�er both time and correctness advantages. Further, individual sub-populations



CHAPTER 5. CONCLUSIONS 74could be devoted to a certain number of clusters, thus this method may give worthwhile resultsfor the general clustering problem.Finally, the addition of further adaptions, such as modi�cations to the population structureand better reproductive operators, may enhance the e�ectiveness of the GCAs' search.
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Appendix AModels for GA adaptionsThis appendix contains the coe�cients for all of the models used in Chapter 2. There are twomodels for each representation/data set combination, one that gives a probability of �nding thesolution within 300 seconds, the other giving a time to �nd the solution. These models were usedto determine the best set of adaptions for each data set (Tables 14 to 18). Since the order-basedGCAs were unable to �nd the correct clustering for the Iris2 data set there are no models for thisrepresentation/data set combination.In each case the correctness models were derived from the complete set of correctness data.The time models were based only on the GCAs which found one or more solutions, since there wasno time data for the GCAs that didn't �nd a solution. The data for GCAs with PMX crossoverwas removed from the time models for the order-based GCAs since the number with correct runswas extremely low (6 for Ruspini2 and 9 for Towns2). Some of the models have coe�cients thatare not de�ned due to singularity (the data was insu�cient to determine the e�ect of the factor).This is an indication of a low probability of a GCA with this particular factor �nding the correctsolution in under 300 seconds.The �t of each model is also assessed, using the residual deviance, comparison of theexperimental and �tted values, and plots of the residuals for the time models. The �nal model ineach case was the model that gave the best �t with no higher than third-order terms (the timetaken to �t higher order models was prohibitive).For both the correctness and time models a good �t is indicated by a low residual deviance,preferably lower than the corresponding degrees of freedom. The residual plots should be randomlydistributed around a mean of zero, and the range of the residuals should be approximately uniformalong the �tted scale (the �tted values have been transformed to the constant-information scale ofthe error distribution, 2p� for Poisson errors [47]).A.1 Group-number and Ruspini2We will start with the correctness model for the group-number GCAs on the Ruspini2 data set.The coe�cients are listed in Table 32, with Figures 35 containing the comparative histograms. Theresidual deviance of 2084.3 on 2904 degrees of freedom indicates that this model �ts well, although80
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lsFigure 35: Comparison of experimental and �tted correctness values for group-number GCAs onRuspini2.the comparative histograms show that the model over-predicts the number of trials with �ve runscorrect.Covariate E�ect Covariate E�ect Covariate E�ect(Intercept) 2.6618 PS100 0.0071 PS200 1.2169PS400 0.7550 Trlocal 0.5587 Trscale2 0.0502Trscale4 0.1576 Crsingle -0.4156 Cruniform 0.4430MR0.05 -0.1014 MR0.10 -0.5742 MR0.20 -0.0000MR0.50 0.3748 MR0.70 -0.1014 MR0.90 0.1114Crsingle:MR0.05 0.3431 Cruniform:MR0.05 0.4974 Crsingle:MR0.10 1.0104Cruniform:MR0.10 0.6614 Crsingle:MR0.20 0.5475 Cruniform:MR0.20 0.6612Crsingle:MR0.50 1.0133 Cruniform:MR0.50 0.2864 Crsingle:MR0.70 0.3431Cruniform:MR0.70 0.3850 Crsingle:MR0.90 1.2767 Cruniform:MR0.90 0.1722PS100:Crsingle 0.7751 PS200:Crsingle -1.4620 PS400:Crsingle 0.2854PS100:Cruniform -0.6665 PS200:Cruniform -2.0313 PS400:Cruniform -1.0767PS100:MR0.05 0.1014 PS200:MR0.05 -1.0358 PS400:MR0.05 -0.6167PS100:MR0.10 0.3090 PS200:MR0.10 -0.5630 PS400:MR0.10 1.2797PS100:MR0.20 -0.1405 PS200:MR0.20 4.9454 PS400:MR0.20 -0.4179PS100:MR0.50 0.5000 PS200:MR0.50 4.5706 PS400:MR0.50 -0.3748PS100:MR0.70 1.3885 PS200:MR0.70 -1.0358 PS400:MR0.70 -0.8524PS100:MR0.90 7.0244 PS200:MR0.90 -0.1114 PS400:MR0.90 -1.8224Trlocal:Crsingle -0.4395 Trscale2:Crsingle 0.0079 Trscale4:Crsingle 0.3295Trlocal:Cruniform -0.6575 Trscale2:Cruniform -0.7235 Trscale4:Cruniform -1.2511Crsingle:MR0.05:PS100 -0.7734 Cruniform:MR0.05:PS100 -0.3309 Crsingle:MR0.10:PS100 -1.4177Cruniform:MR0.10:PS100 -0.5422 Crsingle:MR0.20:PS100 -0.2674 Cruniform:MR0.20:PS100 -0.3542Crsingle:MR0.50:PS100 -2.4048 Cruniform:MR0.50:PS100 -0.9015 Crsingle:MR0.70:PS100 -2.2273Cruniform:MR0.70:PS100 -0.9362 Crsingle:MR0.90:PS100 -8.4125 Cruniform:MR0.90:PS100 -6.4120Crsingle:MR0.05:PS200 1.4132 Cruniform:MR0.05:PS200 1.0473 Crsingle:MR0.10:PS200 0.5329Cruniform:MR0.10:PS200 1.5213 Crsingle:MR0.20:PS200 -4.9854 Cruniform:MR0.20:PS200 -5.0974Crsingle:MR0.50:PS200 -5.3397 Cruniform:MR0.50:PS200 -4.4867 Crsingle:MR0.70:PS200 1.8369Cruniform:MR0.70:PS200 1.4973 Crsingle:MR0.90:PS200 -0.3941 Cruniform:MR0.90:PS200 1.5851Crsingle:MR0.05:PS400 -0.0172 Cruniform:MR0.05:PS400 -0.1165 Crsingle:MR0.10:PS400 -1.9287Cruniform:MR0.10:PS400 -1.0057 Crsingle:MR0.20:PS400 -0.2411 Cruniform:MR0.20:PS400 0.3532Crsingle:MR0.50:PS400 -0.5899 Cruniform:MR0.50:PS400 0.3101 Crsingle:MR0.70:PS400 1.0341Cruniform:MR0.70:PS400 1.4650 Crsingle:MR0.90:PS400 0.8577 Cruniform:MR0.90:PS400 1.9000PS100:Trlocal:Credge 0.8135 PS200:Trlocal:Credge 1.7935 PS400:Trlocal:Credge 1.3700PS100:Trscale2:Credge 0.6108 PS200:Trscale2:Credge 6.8054 PS400:Trscale2:Credge 1.5857PS100:Trscale4:Credge 0.3810 PS200:Trscale4:Credge 6.6980 PS400:Trscale4:Credge 2.8800PS100:Trlocal:Crsingle -0.1716 PS200:Trlocal:Crsingle 0.4107 PS400:Trlocal:Crsingle -0.6371PS100:Trscale2:Crsingle -0.2551 PS200:Trscale2:Crsingle 0.3992 PS400:Trscale2:Crsingle -0.5152PS100:Trscale4:Crsingle 0.0527 PS200:Trscale4:Crsingle -0.0981 PS400:Trscale4:Crsingle -0.8117PS100:Trlocal:Cruniform -0.1431 PS200:Trlocal:Cruniform -0.1405 PS400:Trlocal:Cruniform -0.2260PS100:Trscale2:Cruniform 0.9113 PS200:Trscale2:Cruniform 0.5475 PS400:Trscale2:Cruniform 0.4065PS100:Trscale4:Cruniform 1.2672 PS200:Trscale4:Cruniform 1.8184 PS400:Trscale4:Cruniform 0.5155Table 32: Coe�cients for the correctness model for group-numberGCAs on Ruspini2.



APPENDIX A. MODELS FOR GA ADAPTIONS 82The coe�cients for the corresponding time model are listed in Table 33. The residual deviancefor this model is 2405.7 on 2694 degrees of freedom, indicating a good �t which is supported bythe similarities between the experimental and predicted values shown in Figure 36. The plot of theresidual values (Figure 37) shows perhaps a little skewness, but no indications of serious violationsof the model assumptions.
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10Figure 37: Residual plot for time model for group-number GCAs on Ruspini2.Covariate E�ect Covariate E�ect Covariate E�ect(Intercept) 3.8172 PS100 0.0833 PS200 0.4025PS400 0.5480 Trlocal 0.2539 Trscale2 0.2394Trscale4 0.0869 El1 0.0889 El5% 0.2455Crsingle 0.1355 Cruniform 0.4006 CP0.70 0.1554CP0.90 0.3129 MR0.05 -1.1686 MR0.10 -1.3989MR0.20 -1.5000 MR0.50 -1.6459 MR0.70 -1.5176MR0.90 -1.3481 PS100:Crsingle -0.0183 PS200:Crsingle -0.3530PS400:Crsingle -0.3351 PS100:Cruniform 0.0365 PS200:Cruniform -0.1112PS400:Cruniform -0.1556 PS100:MR0.05 0.3162 PS200:MR0.05 0.3653PS400:MR0.05 0.8118 PS100:MR0.10 0.3002 PS200:MR0.10 0.5214PS400:MR0.10 0.9020 PS100:MR0.20 0.3726 PS200:MR0.20 0.5291PS400:MR0.20 0.9506 PS100:MR0.50 0.6151 PS200:MR0.50 0.6688PS400:MR0.50 1.0893 PS100:MR0.70 0.4308 PS200:MR0.70 0.6207PS400:MR0.70 1.0514 PS100:MR0.90 0.2880 PS200:MR0.90 0.5423PS400:MR0.90 0.9445 Crsingle:MR0.05 -0.0348 Cruniform:MR0.05 -0.0993Crsingle:MR0.10 -0.4892 Cruniform:MR0.10 -0.2756 Crsingle:MR0.20 -0.7342Cruniform:MR0.20 -0.5717 Crsingle:MR0.50 -0.9949 Cruniform:MR0.50 -0.5581Crsingle:MR0.70 -1.4153 Cruniform:MR0.70 -0.6337 Crsingle:MR0.90 -1.4267Cruniform:MR0.90 -0.7264 PS100:Trlocal 0.1157 PS200:Trlocal 0.0801PS400:Trlocal 0.2156 PS100:Trscale2 0.0059 PS200:Trscale2 0.0740PS400:Trscale2 0.2542 PS100:Trscale4 0.0385 PS200:Trscale4 0.0830PS400:Trscale4 0.3267 PS100:El1 -0.0013 PS200:El1 -0.0176PS400:El1 0.0363 PS100:El5% -0.0584 PS200:El5% -0.1452PS400:El5% -0.1421 Trlocal:Crsingle -0.0248 Trscale2:Crsingle -0.1396Trscale4:Crsingle -0.0302 Trlocal:Cruniform -0.0116 Trscale2:Cruniform 0.0181cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 83cont.Covariate E�ect Covariate E�ect Covariate E�ectTrscale4:Cruniform 0.0399 El1:Crsingle -0.0516 El5%:Crsingle -0.0069El1:Cruniform -0.1070 El5%:Cruniform -0.0852 Trlocal:MR0.05 0.2710Trscale2:MR0.05 0.2853 Trscale4:MR0.05 0.2666 Trlocal:MR0.10 0.4613Trscale2:MR0.10 0.3633 Trscale4:MR0.10 0.4504 Trlocal:MR0.20 0.7203Trscale2:MR0.20 0.6231 Trscale4:MR0.20 0.7330 Trlocal:MR0.50 0.9926Trscale2:MR0.50 0.8689 Trscale4:MR0.50 0.9441 Trlocal:MR0.70 1.1261Trscale2:MR0.70 1.0173 Trscale4:MR0.70 1.1368 Trlocal:MR0.90 1.2712Trscale2:MR0.90 1.2053 Trscale4:MR0.90 1.2705 El1:MR0.05 -0.1258El5%:MR0.05 -0.0862 El1:MR0.10 -0.1865 El5%:MR0.10 -0.2508El1:MR0.20 -0.2771 El5%:MR0.20 -0.4409 El1:MR0.50 -0.3001El5%:MR0.50 -0.5506 El1:MR0.70 -0.4742 El5%:MR0.70 -0.6912El1:MR0.90 -0.6190 El5%:MR0.90 -0.8497 Trlocal:El1 -0.2397Trscale2:El1 -0.1863 Trscale4:El1 -0.1799 Trlocal:El5% -0.4311Trscale2:El5% -0.4016 Trscale4:El5% -0.3522 PS100:CP0.70 -0.0183PS200:CP0.70 0.0002 PS400:CP0.70 0.0080 PS100:CP0.90 -0.0129PS200:CP0.90 -0.0264 PS400:CP0.90 0.0248 Crsingle:CP0.70 -0.2394Cruniform:CP0.70 -0.1990 Crsingle:CP0.90 -0.4469 Cruniform:CP0.90 -0.4137PS100:Crsingle:MR0.05 -0.1735 PS200:Crsingle:MR0.05 -0.1910 PS400:Crsingle:MR0.05 -0.2218PS100:Cruniform:MR0.05 -0.2362 PS200:Cruniform:MR0.05 -0.1668 PS400:Cruniform:MR0.05 -0.1826PS100:Crsingle:MR0.10 -0.1872 PS200:Crsingle:MR0.10 -0.0768 PS400:Crsingle:MR0.10 -0.1443PS100:Cruniform:MR0.10 -0.1475 PS200:Cruniform:MR0.10 -0.1054 PS400:Cruniform:MR0.10 -0.1215PS100:Crsingle:MR0.20 -0.2512 PS200:Crsingle:MR0.20 -0.0478 PS400:Crsingle:MR0.20 -0.0864PS100:Cruniform:MR0.20 -0.1295 PS200:Cruniform:MR0.20 -0.0176 PS400:Cruniform:MR0.20 0.0054PS100:Crsingle:MR0.50 -0.0996 PS200:Crsingle:MR0.50 0.0002 PS400:Crsingle:MR0.50 0.1964PS100:Cruniform:MR0.50 -0.2583 PS200:Cruniform:MR0.50 -0.1921 PS400:Cruniform:MR0.50 -0.1946PS100:Crsingle:MR0.70 -0.0686 PS200:Crsingle:MR0.70 0.2049 PS400:Crsingle:MR0.70 0.1723PS100:Cruniform:MR0.70 -0.2231 PS200:Cruniform:MR0.70 -0.1413 PS400:Cruniform:MR0.70 -0.1666PS100:Crsingle:MR0.90 -0.0459 PS200:Crsingle:MR0.90 0.2150 PS400:Crsingle:MR0.90 0.2797PS100:Cruniform:MR0.90 0.0141 PS200:Cruniform:MR0.90 0.0889 PS400:Cruniform:MR0.90 0.0318PS100:Crsingle:Trlocal -0.0891 PS200:Crsingle:Trlocal 0.0738 PS400:Crsingle:Trlocal -0.0636PS100:Cruniform:Trlocal 0.0053 PS200:Cruniform:Trlocal 0.0635 PS400:Cruniform:Trlocal 0.0783PS100:Crsingle:Trscale2 0.0122 PS200:Crsingle:Trscale2 0.0851 PS400:Crsingle:Trscale2 -0.1260PS100:Cruniform:Trscale2 0.0414 PS200:Cruniform:Trscale2 -0.0479 PS400:Cruniform:Trscale2 -0.0621PS100:Crsingle:Trscale4 0.0085 PS200:Crsingle:Trscale4 0.0320 PS400:Crsingle:Trscale4 -0.1337PS100:Cruniform:Trscale4 0.0358 PS200:Cruniform:Trscale4 0.0300 PS400:Cruniform:Trscale4 0.0502Crsingle:MR0.05:Trlocal -0.3072 Cruniform:MR0.05:Trlocal -0.0300 Crsingle:MR0.10:Trlocal -0.1748Cruniform:MR0.10:Trlocal -0.0980 Crsingle:MR0.20:Trlocal -0.1357 Cruniform:MR0.20:Trlocal -0.1029Crsingle:MR0.50:Trlocal -0.2732 Cruniform:MR0.50:Trlocal -0.0217 Crsingle:MR0.70:Trlocal -0.1557Cruniform:MR0.70:Trlocal 0.1746 Crsingle:MR0.90:Trlocal -0.2301 Cruniform:MR0.90:Trlocal 0.5176Crsingle:MR0.05:Trscale2 -0.3513 Cruniform:MR0.05:Trscale2 -0.0449 Crsingle:MR0.10:Trscale2 -0.0937Cruniform:MR0.10:Trscale2 -0.1241 Crsingle:MR0.20:Trscale2 -0.1335 Cruniform:MR0.20:Trscale2 -0.1913Crsingle:MR0.50:Trscale2 -0.1873 Cruniform:MR0.50:Trscale2 -0.0619 Crsingle:MR0.70:Trscale2 -0.0771Cruniform:MR0.70:Trscale2 0.0884 Crsingle:MR0.90:Trscale2 -0.1754 Cruniform:MR0.90:Trscale2 0.4398Crsingle:MR0.05:Trscale4 -0.3559 Cruniform:MR0.05:Trscale4 -0.0728 Crsingle:MR0.10:Trscale4 -0.0822Cruniform:MR0.10:Trscale4 -0.1476 Crsingle:MR0.20:Trscale4 -0.0013 Cruniform:MR0.20:Trscale4 -0.1287Crsingle:MR0.50:Trscale4 -0.3236 Cruniform:MR0.50:Trscale4 -0.0099 Crsingle:MR0.70:Trscale4 -0.1825Cruniform:MR0.70:Trscale4 0.1298 Crsingle:MR0.90:Trscale4 -0.2488 Cruniform:MR0.90:Trscale4 0.4637Crsingle:MR0.05:El1 0.0440 Cruniform:MR0.05:El1 -0.0037 Crsingle:MR0.10:El1 0.0122Cruniform:MR0.10:El1 -0.0475 Crsingle:MR0.20:El1 -0.0588 Cruniform:MR0.20:El1 -0.0099Crsingle:MR0.50:El1 -0.0849 Cruniform:MR0.50:El1 -0.2352 Crsingle:MR0.70:El1 0.1683Cruniform:MR0.70:El1 -0.4336 Crsingle:MR0.90:El1 0.0282 Cruniform:MR0.90:El1 -0.9027Crsingle:MR0.05:El5% -0.0271 Cruniform:MR0.05:El5% -0.0446 Crsingle:MR0.10:El5% -0.0341Cruniform:MR0.10:El5% -0.0483 Crsingle:MR0.20:El5% -0.0015 Cruniform:MR0.20:El5% 0.0380Crsingle:MR0.50:El5% -0.0278 Cruniform:MR0.50:El5% -0.2005 Crsingle:MR0.70:El5% 0.1161Cruniform:MR0.70:El5% -0.4089 Crsingle:MR0.90:El5% 0.0956 Cruniform:MR0.90:El5% -0.9237PS100:MR0.05:Trlocal 0.0822 PS200:MR0.05:Trlocal 0.2034 PS400:MR0.05:Trlocal -0.0479PS100:MR0.10:Trlocal 0.0412 PS200:MR0.10:Trlocal 0.0364 PS400:MR0.10:Trlocal -0.0523PS100:MR0.20:Trlocal -0.1589 PS200:MR0.20:Trlocal -0.1265 PS400:MR0.20:Trlocal -0.2460PS100:MR0.50:Trlocal -0.2276 PS200:MR0.50:Trlocal -0.2271 PS400:MR0.50:Trlocal -0.3493PS100:MR0.70:Trlocal -0.2277 PS200:MR0.70:Trlocal -0.3095 PS400:MR0.70:Trlocal -0.4269cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 84cont.Covariate E�ect Covariate E�ect Covariate E�ectPS100:MR0.90:Trlocal -0.1573 PS200:MR0.90:Trlocal -0.2880 PS400:MR0.90:Trlocal -0.4557PS100:MR0.05:Trscale2 0.0896 PS200:MR0.05:Trscale2 0.2031 PS400:MR0.05:Trscale2 -0.0160PS100:MR0.10:Trscale2 0.1346 PS200:MR0.10:Trscale2 0.1788 PS400:MR0.10:Trscale2 0.0691PS100:MR0.20:Trscale2 -0.0456 PS200:MR0.20:Trscale2 0.0593 PS400:MR0.20:Trscale2 -0.1186PS100:MR0.50:Trscale2 -0.1927 PS200:MR0.50:Trscale2 -0.0943 PS400:MR0.50:Trscale2 -0.1999PS100:MR0.70:Trscale2 -0.1313 PS200:MR0.70:Trscale2 -0.1117 PS400:MR0.70:Trscale2 -0.2947PS100:MR0.90:Trscale2 -0.0845 PS200:MR0.90:Trscale2 -0.2116 PS400:MR0.90:Trscale2 -0.3642PS100:MR0.05:Trscale4 0.1817 PS200:MR0.05:Trscale4 0.2702 PS400:MR0.05:Trscale4 -0.0490PS100:MR0.10:Trscale4 0.0982 PS200:MR0.10:Trscale4 0.1248 PS400:MR0.10:Trscale4 -0.0829PS100:MR0.20:Trscale4 -0.1450 PS200:MR0.20:Trscale4 -0.0601 PS400:MR0.20:Trscale4 -0.3241PS100:MR0.50:Trscale4 -0.1354 PS200:MR0.50:Trscale4 -0.1367 PS400:MR0.50:Trscale4 -0.3680PS100:MR0.70:Trscale4 -0.1359 PS200:MR0.70:Trscale4 -0.2443 PS400:MR0.70:Trscale4 -0.4919PS100:MR0.90:Trscale4 -0.0686 PS200:MR0.90:Trscale4 -0.2152 PS400:MR0.90:Trscale4 -0.5424PS100:MR0.05:El1 -0.0294 PS200:MR0.05:El1 0.0791 PS400:MR0.05:El1 0.1035PS100:MR0.10:El1 0.0792 PS200:MR0.10:El1 0.1435 PS400:MR0.10:El1 0.1338PS100:MR0.20:El1 0.1488 PS200:MR0.20:El1 0.2371 PS400:MR0.20:El1 0.2480PS100:MR0.50:El1 0.0350 PS200:MR0.50:El1 0.3079 PS400:MR0.50:El1 0.2706PS100:MR0.70:El1 0.2255 PS200:MR0.70:El1 0.4302 PS400:MR0.70:El1 0.3955PS100:MR0.90:El1 0.3383 PS200:MR0.90:El1 0.4833 PS400:MR0.90:El1 0.5515PS100:MR0.05:El5% -0.1229 PS200:MR0.05:El5% -0.0526 PS400:MR0.05:El5% -0.0509PS100:MR0.10:El5% 0.0301 PS200:MR0.10:El5% 0.0941 PS400:MR0.10:El5% 0.0959PS100:MR0.20:El5% 0.1688 PS200:MR0.20:El5% 0.2601 PS400:MR0.20:El5% 0.2687PS100:MR0.50:El5% 0.1268 PS200:MR0.50:El5% 0.3426 PS400:MR0.50:El5% 0.3645PS100:MR0.70:El5% 0.2596 PS200:MR0.70:El5% 0.3916 PS400:MR0.70:El5% 0.4028PS100:MR0.90:El5% 0.2654 PS200:MR0.90:El5% 0.3992 PS400:MR0.90:El5% 0.4825Table 33: Coe�cients for the time model for group-number GCAs onRuspini2.A.2 Group-number and Towns2Table 34 lists the coe�cients for the correctness model for the Towns2 data set. The residualdeviance of this model (3493.9 on 2634 degrees of freedom) is large, suggesting that the modeldoes not �t the data well. The histograms in Figure 38 con�rm this. The addition of higher orderterms may improve the �t of the model, although initial attempts at this failed to do so. Smoothingtechniques may be more appropriate for the analysis of this data.
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lsFigure 38: Comparison of experimental and �tted correctness for group-number GCAs on Towns2.Covariate E�ect Covariate E�ect Covariate E�ect(Intercept) 0.0163 PS100 0.0592 PS200 -0.4136PS400 -1.2579 Trlocal -0.4924 Trscale2 -0.0251Trscale4 0.0649 El1 -0.6090 El5% -0.2441Crsingle -0.6793 Cruniform -0.7935 CP0.70 -0.1819cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 85cont.Covariate E�ect Covariate E�ect Covariate E�ectCP0.90 0.0790 MR0.05 0.4244 MR0.10 -0.0872MR0.20 0.2146 MR0.50 -0.0274 MR0.70 0.2263MR0.90 -0.3584 PS100:Trlocal -0.0570 PS200:Trlocal -0.3305PS400:Trlocal -0.2988 PS100:Trscale2 -0.7732 PS200:Trscale2 -0.2080PS400:Trscale2 -1.5268 PS100:Trscale4 -0.3497 PS200:Trscale4 -0.2279PS400:Trscale4 -1.1307 PS100:El1 -0.0702 PS200:El1 0.4306PS400:El1 0.8390 PS100:El5% -0.3911 PS200:El5% 0.6444PS400:El5% 0.9410 PS100:Crsingle 0.2175 PS200:Crsingle 0.5694PS400:Crsingle 1.4896 PS100:Cruniform -0.1638 PS200:Cruniform -0.2041PS400:Cruniform 0.6541 PS100:CP0.70 0.0754 PS200:CP0.70 0.2575PS400:CP0.70 -0.0134 PS100:CP0.90 -0.0679 PS200:CP0.90 -0.3923PS400:CP0.90 0.0371 PS100:MR0.05 -0.1367 PS200:MR0.05 -0.2002PS400:MR0.05 0.0418 PS100:MR0.10 0.3696 PS200:MR0.10 0.0084PS400:MR0.10 0.6928 PS100:MR0.20 -0.2155 PS200:MR0.20 -0.1927PS400:MR0.20 0.8380 PS100:MR0.50 -0.0929 PS200:MR0.50 0.1983PS400:MR0.50 0.9534 PS100:MR0.70 -0.0410 PS200:MR0.70 -0.0272PS400:MR0.70 0.2401 PS100:MR0.90 0.3261 PS200:MR0.90 0.5527PS400:MR0.90 0.2470 Trlocal:El1 1.2626 Trscale2:El1 1.3048Trscale4:El1 0.8623 Trlocal:El5% 0.5797 Trscale2:El5% 0.2377Trscale4:El5% 0.4699 Trlocal:Crsingle 0.5308 Trscale2:Crsingle 1.1076Trscale4:Crsingle 0.2667 Trlocal:Cruniform 0.3639 Trscale2:Cruniform 0.3767Trscale4:Cruniform 0.7979 Trlocal:CP0.70 0.0101 Trscale2:CP0.70 -0.3035Trscale4:CP0.70 0.2550 Trlocal:CP0.90 0.0152 Trscale2:CP0.90 -0.3099Trscale4:CP0.90 0.1515 Trlocal:MR0.05 -0.2313 Trscale2:MR0.05 -0.6699Trscale4:MR0.05 -1.4110 Trlocal:MR0.10 0.1214 Trscale2:MR0.10 -0.4448Trscale4:MR0.10 -0.9189 Trlocal:MR0.20 0.1059 Trscale2:MR0.20 -0.3195Trscale4:MR0.20 -0.8365 Trlocal:MR0.50 -0.1956 Trscale2:MR0.50 -0.4191Trscale4:MR0.50 -1.0612 Trlocal:MR0.70 -1.3977 Trscale2:MR0.70 -1.3987Trscale4:MR0.70 -1.9714 Trlocal:MR0.90 -1.6628 Trscale2:MR0.90 -2.8230Trscale4:MR0.90 -2.9995 El1:Crsingle 0.7620 El5%:Crsingle 1.1177El1:Cruniform 0.7530 El5%:Cruniform 1.2061 El1:CP0.70 0.2190El5%:CP0.70 0.3604 El1:CP0.90 0.1442 El5%:CP0.90 0.2142El1:MR0.05 -0.1687 El5%:MR0.05 -0.0381 El1:MR0.10 0.2568El5%:MR0.10 -0.5664 El1:MR0.20 0.0016 El5%:MR0.20 -0.1489El1:MR0.50 0.0738 El5%:MR0.50 -0.0242 El1:MR0.70 0.8053El5%:MR0.70 0.0929 El1:MR0.90 1.1449 El5%:MR0.90 0.9163Crsingle:MR0.05 -0.6166 Cruniform:MR0.05 0.1206 Crsingle:MR0.10 -0.2023Cruniform:MR0.10 0.5849 Crsingle:MR0.20 -0.0357 Cruniform:MR0.20 0.4234Crsingle:MR0.50 -0.5131 Cruniform:MR0.50 0.5680 Crsingle:MR0.70 0.5162Cruniform:MR0.70 1.0597 Crsingle:MR0.90 1.0559 Cruniform:MR0.90 1.5341PS100:Trlocal:El1 0.0916 PS200:Trlocal:El1 -0.1509 PS400:Trlocal:El1 -0.0330PS100:Trscale2:El1 -0.0257 PS200:Trscale2:El1 -0.1329 PS400:Trscale2:El1 -0.0945PS100:Trscale4:El1 -0.0774 PS200:Trscale4:El1 -0.1183 PS400:Trscale4:El1 0.2117PS100:Trlocal:El5% -0.1157 PS200:Trlocal:El5% -0.0203 PS400:Trlocal:El5% 1.1924PS100:Trscale2:El5% 0.0316 PS200:Trscale2:El5% 0.3178 PS400:Trscale2:El5% 1.3507PS100:Trscale4:El5% 0.1628 PS200:Trscale4:El5% -0.3612 PS400:Trscale4:El5% 1.3883PS100:Trlocal:CP0.70 -0.1877 PS200:Trlocal:CP0.70 0.1399 PS400:Trlocal:CP0.70 -0.2312PS100:Trscale2:CP0.70 0.3627 PS200:Trscale2:CP0.70 0.5063 PS400:Trscale2:CP0.70 0.3807PS100:Trscale4:CP0.70 -0.6548 PS200:Trscale4:CP0.70 -0.1328 PS400:Trscale4:CP0.70 0.0151PS100:Trlocal:CP0.90 -0.3893 PS200:Trlocal:CP0.90 0.4392 PS400:Trlocal:CP0.90 -0.4901PS100:Trscale2:CP0.90 0.5204 PS200:Trscale2:CP0.90 0.6193 PS400:Trscale2:CP0.90 0.0362PS100:Trscale4:CP0.90 -0.5900 PS200:Trscale4:CP0.90 0.3665 PS400:Trscale4:CP0.90 -0.6317PS100:Trlocal:MR0.05 -0.0692 PS200:Trlocal:MR0.05 0.4122 PS400:Trlocal:MR0.05 0.6231PS100:Trscale2:MR0.05 -0.1647 PS200:Trscale2:MR0.05 -0.2042 PS400:Trscale2:MR0.05 0.9546PS100:Trscale4:MR0.05 0.6849 PS200:Trscale4:MR0.05 0.4664 PS400:Trscale4:MR0.05 0.7748PS100:Trlocal:MR0.10 0.0807 PS200:Trlocal:MR0.10 0.4725 PS400:Trlocal:MR0.10 0.2655PS100:Trscale2:MR0.10 0.2638 PS200:Trscale2:MR0.10 -0.2469 PS400:Trscale2:MR0.10 0.7317PS100:Trscale4:MR0.10 0.7133 PS200:Trscale4:MR0.10 0.9757 PS400:Trscale4:MR0.10 0.7997PS100:Trlocal:MR0.20 0.3592 PS200:Trlocal:MR0.20 0.2528 PS400:Trlocal:MR0.20 -0.5889PS100:Trscale2:MR0.20 0.5722 PS200:Trscale2:MR0.20 -0.4241 PS400:Trscale2:MR0.20 0.3746cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 86cont.Covariate E�ect Covariate E�ect Covariate E�ectPS100:Trscale4:MR0.20 0.8317 PS200:Trscale4:MR0.20 0.4785 PS400:Trscale4:MR0.20 0.2606PS100:Trlocal:MR0.50 -0.0943 PS200:Trlocal:MR0.50 0.0868 PS400:Trlocal:MR0.50 -1.1640PS100:Trscale2:MR0.50 0.6654 PS200:Trscale2:MR0.50 -0.3871 PS400:Trscale2:MR0.50 0.0265PS100:Trscale4:MR0.50 1.1694 PS200:Trscale4:MR0.50 -0.0237 PS400:Trscale4:MR0.50 -0.2410PS100:Trlocal:MR0.70 0.0625 PS200:Trlocal:MR0.70 -0.0883 PS400:Trlocal:MR0.70 -0.7016PS100:Trscale2:MR0.70 0.0708 PS200:Trscale2:MR0.70 -1.2915 PS400:Trscale2:MR0.70 -0.6538PS100:Trscale4:MR0.70 0.5010 PS200:Trscale4:MR0.70 -0.1179 PS400:Trscale4:MR0.70 -0.5025PS100:Trlocal:MR0.90 0.2524 PS200:Trlocal:MR0.90 -0.4611 PS400:Trlocal:MR0.90 -1.0660PS100:Trscale2:MR0.90 0.5682 PS200:Trscale2:MR0.90 -0.8716 PS400:Trscale2:MR0.90 -0.6303PS100:Trscale4:MR0.90 0.7817 PS200:Trscale4:MR0.90 -0.5102 PS400:Trscale4:MR0.90 -1.1989PS100:El1:Crsingle -0.4868 PS200:El1:Crsingle -0.0064 PS400:El1:Crsingle -0.0652PS100:El5%:Crsingle -0.0271 PS200:El5%:Crsingle -0.5608 PS400:El5%:Crsingle -1.5655PS100:El1:Cruniform -0.3206 PS200:El1:Cruniform 0.4398 PS400:El1:Cruniform 0.4516PS100:El5%:Cruniform -0.1253 PS200:El5%:Cruniform 0.0455 PS400:El5%:Cruniform -1.0153PS100:El1:CP0.70 0.3798 PS200:El1:CP0.70 -0.7366 PS400:El1:CP0.70 -0.2884PS100:El5%:CP0.70 0.1269 PS200:El5%:CP0.70 -0.6140 PS400:El5%:CP0.70 0.0315PS100:El1:CP0.90 -0.0230 PS200:El1:CP0.90 -0.3499 PS400:El1:CP0.90 -0.2389PS100:El5%:CP0.90 0.2772 PS200:El5%:CP0.90 -0.0042 PS400:El5%:CP0.90 -0.0613PS100:El1:MR0.05 0.6082 PS200:El1:MR0.05 0.4234 PS400:El1:MR0.05 -0.3330PS100:El5%:MR0.05 0.9577 PS200:El5%:MR0.05 0.2178 PS400:El5%:MR0.05 -0.1702PS100:El1:MR0.10 -0.0485 PS200:El1:MR0.10 0.2921 PS400:El1:MR0.10 -0.6182PS100:El5%:MR0.10 0.0624 PS200:El5%:MR0.10 -0.0795 PS400:El5%:MR0.10 -0.7380PS100:El1:MR0.20 0.1810 PS200:El1:MR0.20 0.8461 PS400:El1:MR0.20 -0.5836PS100:El5%:MR0.20 0.1940 PS200:El5%:MR0.20 0.5061 PS400:El5%:MR0.20 -0.3672PS100:El1:MR0.50 0.9379 PS200:El1:MR0.50 0.6032 PS400:El1:MR0.50 -0.1090PS100:El5%:MR0.50 0.7728 PS200:El5%:MR0.50 0.2042 PS400:El5%:MR0.50 -0.0158PS100:El1:MR0.70 0.3750 PS200:El1:MR0.70 -0.1725 PS400:El1:MR0.70 -0.2501PS100:El5%:MR0.70 0.0527 PS200:El5%:MR0.70 0.5216 PS400:El5%:MR0.70 0.2961PS100:El1:MR0.90 0.0293 PS200:El1:MR0.90 -0.5382 PS400:El1:MR0.90 0.2145PS100:El5%:MR0.90 -0.0658 PS200:El5%:MR0.90 -0.1129 PS400:El5%:MR0.90 0.1263Trlocal:El1:Crsingle -1.2683 Trscale2:El1:Crsingle -1.2155 Trscale4:El1:Crsingle -0.8199Trlocal:El5%:Crsingle -1.4448 Trscale2:El5%:Crsingle -1.4345 Trscale4:El5%:Crsingle -1.1153Trlocal:El1:Cruniform -0.6899 Trscale2:El1:Cruniform -0.8144 Trscale4:El1:Cruniform -0.9308Trlocal:El5%:Cruniform -0.7348 Trscale2:El5%:Cruniform -0.7863 Trscale4:El5%:Cruniform -1.1547Trlocal:El1:MR0.05 -0.2528 Trscale2:El1:MR0.05 -0.1546 Trscale4:El1:MR0.05 0.4280Trlocal:El5%:MR0.05 -0.7807 Trscale2:El5%:MR0.05 0.0085 Trscale4:El5%:MR0.05 0.1764Trlocal:El1:MR0.10 0.0730 Trscale2:El1:MR0.10 -0.2196 Trscale4:El1:MR0.10 0.1891Trlocal:El5%:MR0.10 0.4752 Trscale2:El5%:MR0.10 1.0540 Trscale4:El5%:MR0.10 0.4916Trlocal:El1:MR0.20 0.1910 Trscale2:El1:MR0.20 -0.2181 Trscale4:El1:MR0.20 -0.0078Trlocal:El5%:MR0.20 0.2562 Trscale2:El5%:MR0.20 0.3671 Trscale4:El5%:MR0.20 0.3862Trlocal:El1:MR0.50 0.0733 Trscale2:El1:MR0.50 -0.0055 Trscale4:El1:MR0.50 0.2469Trlocal:El5%:MR0.50 0.5409 Trscale2:El5%:MR0.50 0.5119 Trscale4:El5%:MR0.50 0.3165Trlocal:El1:MR0.70 0.5823 Trscale2:El1:MR0.70 0.9482 Trscale4:El1:MR0.70 0.9889Trlocal:El5%:MR0.70 1.5940 Trscale2:El5%:MR0.70 1.8066 Trscale4:El5%:MR0.70 1.6550Trlocal:El1:MR0.90 0.7059 Trscale2:El1:MR0.90 1.5149 Trscale4:El1:MR0.90 1.4046Trlocal:El5%:MR0.90 1.8066 Trscale2:El5%:MR0.90 2.4345 Trscale4:El5%:MR0.90 2.5292Trlocal:Crsingle:MR0.05 1.0303 Trscale2:Crsingle:MR0.05 0.6468 Trscale4:Crsingle:MR0.05 1.1297Trlocal:Cruniform:MR0.05 0.1603 Trscale2:Cruniform:MR0.05 0.6945 Trscale4:Cruniform:MR0.05 0.4819Trlocal:Crsingle:MR0.10 -0.0174 Trscale2:Crsingle:MR0.10 -0.2466 Trscale4:Crsingle:MR0.10 0.2421Trlocal:Cruniform:MR0.10 -0.4287 Trscale2:Cruniform:MR0.10 0.0975 Trscale4:Cruniform:MR0.10 -0.1205Trlocal:Crsingle:MR0.20 0.3442 Trscale2:Crsingle:MR0.20 -0.1343 Trscale4:Crsingle:MR0.20 0.5397Trlocal:Cruniform:MR0.20 0.0809 Trscale2:Cruniform:MR0.20 0.3830 Trscale4:Cruniform:MR0.20 0.3837Trlocal:Crsingle:MR0.50 1.2783 Trscale2:Crsingle:MR0.50 0.5028 Trscale4:Crsingle:MR0.50 1.1198Trlocal:Cruniform:MR0.50 0.4900 Trscale2:Cruniform:MR0.50 0.1254 Trscale4:Cruniform:MR0.50 0.4454Trlocal:Crsingle:MR0.70 1.6183 Trscale2:Crsingle:MR0.70 0.8683 Trscale4:Crsingle:MR0.70 1.0846Trlocal:Cruniform:MR0.70 0.4110 Trscale2:Cruniform:MR0.70 0.4336 Trscale4:Cruniform:MR0.70 0.2885Trlocal:Crsingle:MR0.90 1.3624 Trscale2:Crsingle:MR0.90 1.6787 Trscale4:Crsingle:MR0.90 2.1103Trlocal:Cruniform:MR0.90 0.6762 Trscale2:Cruniform:MR0.90 1.0238 Trscale4:Cruniform:MR0.90 0.6941El1:Crsingle:MR0.05 0.1553 El5%:Crsingle:MR0.05 -0.0662 El1:Cruniform:MR0.05 -0.2909El5%:Cruniform:MR0.05 -0.4194 El1:Crsingle:MR0.10 0.2435 El5%:Crsingle:MR0.10 0.4049cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 87cont.Covariate E�ect Covariate E�ect Covariate E�ectEl1:Cruniform:MR0.10 -0.6569 El5%:Cruniform:MR0.10 -0.2549 El1:Crsingle:MR0.20 -0.0942El5%:Crsingle:MR0.20 -0.3240 El1:Cruniform:MR0.20 -0.3865 El5%:Cruniform:MR0.20 -0.9746El1:Crsingle:MR0.50 -0.3585 El5%:Crsingle:MR0.50 -0.2245 El1:Cruniform:MR0.50 -0.6551El5%:Cruniform:MR0.50 -1.1894 El1:Crsingle:MR0.70 -1.1167 El5%:Crsingle:MR0.70 -1.7169El1:Cruniform:MR0.70 -1.1085 El5%:Cruniform:MR0.70 -1.6653 El1:Crsingle:MR0.90 -1.7653El5%:Crsingle:MR0.90 -2.6483 El1:Cruniform:MR0.90 -1.8884 El5%:Cruniform:MR0.90 -2.4812Table 34: Coe�cients for the correctness model for group-numberGCAs on Towns2.The �t of time model for the Town2 data is also questionable due to a high residual deviance(22985 on 2073 degrees of freedom). The range of time values predicted by this model to not matchthe experimental values (as can be seen in Figure 39). The residual plot shows a de�nite change inthe variance of the residuals over the �tted scale (Figure 40). This model includes all �rst, secondand third order terms which suggests the addition of higher order terms may improve the �t. Thecoe�cients for this model are given in Table 35.
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APPENDIX A. MODELS FOR GA ADAPTIONS 89cont.Covariate E�ect Covariate E�ect Covariate E�ectPS400:Trscale4:MR0.05 0.2886 PS100:Trlocal:MR0.10 -0.0577 PS200:Trlocal:MR0.10 -0.1557PS400:Trlocal:MR0.10 -0.1870 PS100:Trscale2:MR0.10 0.3891 PS200:Trscale2:MR0.10 0.1103PS400:Trscale2:MR0.10 0.1904 PS100:Trscale4:MR0.10 -0.2982 PS200:Trscale4:MR0.10 -0.4066PS400:Trscale4:MR0.10 -0.4717 PS100:Trlocal:MR0.20 -0.3867 PS200:Trlocal:MR0.20 -0.0497PS400:Trlocal:MR0.20 -0.5962 PS100:Trscale2:MR0.20 0.1031 PS200:Trscale2:MR0.20 0.3800PS400:Trscale2:MR0.20 -0.1839 PS100:Trscale4:MR0.20 -0.1883 PS200:Trscale4:MR0.20 0.2214PS400:Trscale4:MR0.20 -0.2213 PS100:Trlocal:MR0.50 0.0973 PS200:Trlocal:MR0.50 0.0907PS400:Trlocal:MR0.50 -0.5383 PS100:Trscale2:MR0.50 0.3241 PS200:Trscale2:MR0.50 0.2542PS400:Trscale2:MR0.50 -0.3400 PS100:Trscale4:MR0.50 0.3362 PS200:Trscale4:MR0.50 -0.0035PS400:Trscale4:MR0.50 -0.4269 PS100:Trlocal:MR0.70 -0.1460 PS200:Trlocal:MR0.70 -0.2299PS400:Trlocal:MR0.70 -0.7035 PS100:Trscale2:MR0.70 0.2924 PS200:Trscale2:MR0.70 0.1463PS400:Trscale2:MR0.70 -0.5560 PS100:Trscale4:MR0.70 0.1254 PS200:Trscale4:MR0.70 -0.1765PS400:Trscale4:MR0.70 -0.6106 PS100:Trlocal:MR0.90 0.0431 PS200:Trlocal:MR0.90 -0.3133PS400:Trlocal:MR0.90 -0.2514 PS100:Trscale2:MR0.90 0.2298 PS200:Trscale2:MR0.90 -0.2393PS400:Trscale2:MR0.90 0.0737 PS100:Trscale4:MR0.90 -0.0386 PS200:Trscale4:MR0.90 -0.5498PS400:Trscale4:MR0.90 0.0773 PS100:El1:Crsingle 0.3495 PS200:El1:Crsingle 0.2748PS400:El1:Crsingle 0.3952 PS100:El5%:Crsingle 0.1770 PS200:El5%:Crsingle 0.0932PS400:El5%:Crsingle -0.0059 PS100:El1:Cruniform 0.0682 PS200:El1:Cruniform -0.1105PS400:El1:Cruniform 0.1382 PS100:El5%:Cruniform 0.1144 PS200:El5%:Cruniform -0.0035PS400:El5%:Cruniform 0.0217 PS100:El1:CP0.70 0.1619 PS200:El1:CP0.70 -0.0583PS400:El1:CP0.70 -0.0476 PS100:El5%:CP0.70 0.0145 PS200:El5%:CP0.70 -0.2614PS400:El5%:CP0.70 -0.1765 PS100:El1:CP0.90 0.0641 PS200:El1:CP0.90 -0.0488PS400:El1:CP0.90 -0.1906 PS100:El5%:CP0.90 -0.1679 PS200:El5%:CP0.90 -0.3572PS400:El5%:CP0.90 -0.2069 PS100:El1:MR0.05 -0.2520 PS200:El1:MR0.05 -0.1123PS400:El1:MR0.05 0.1063 PS100:El5%:MR0.05 -0.0057 PS200:El5%:MR0.05 0.1329PS400:El5%:MR0.05 0.3863 PS100:El1:MR0.10 0.5227 PS200:El1:MR0.10 1.0112PS400:El1:MR0.10 0.9922 PS100:El5%:MR0.10 0.7703 PS200:El5%:MR0.10 1.0136PS400:El5%:MR0.10 0.9113 PS100:El1:MR0.20 0.4139 PS200:El1:MR0.20 0.6507PS400:El1:MR0.20 0.7819 PS100:El5%:MR0.20 0.2971 PS200:El5%:MR0.20 0.6330PS400:El5%:MR0.20 0.7636 PS100:El1:MR0.50 0.4170 PS200:El1:MR0.50 0.9139PS400:El1:MR0.50 0.8368 PS100:El5%:MR0.50 0.4564 PS200:El5%:MR0.50 0.8843PS400:El5%:MR0.50 0.9183 PS100:El1:MR0.70 0.5567 PS200:El1:MR0.70 0.5661PS400:El1:MR0.70 1.1095 PS100:El5%:MR0.70 0.6051 PS200:El5%:MR0.70 0.6518PS400:El5%:MR0.70 1.1223 PS100:El1:MR0.90 0.2449 PS200:El1:MR0.90 0.3150PS400:El1:MR0.90 0.5996 PS100:El5%:MR0.90 -0.0188 PS200:El5%:MR0.90 0.2850PS400:El5%:MR0.90 0.6141 PS100:Crsingle:CP0.70 -0.0904 PS200:Crsingle:CP0.70 -0.0921PS400:Crsingle:CP0.70 -0.1444 PS100:Cruniform:CP0.70 0.0941 PS200:Cruniform:CP0.70 -0.0982PS400:Cruniform:CP0.70 -0.2333 PS100:Crsingle:CP0.90 -0.2016 PS200:Crsingle:CP0.90 -0.3046PS400:Crsingle:CP0.90 -0.3501 PS100:Cruniform:CP0.90 -0.0389 PS200:Cruniform:CP0.90 -0.3279PS400:Cruniform:CP0.90 -0.3874 PS100:Crsingle:MR0.05 -0.2860 PS200:Crsingle:MR0.05 -0.2127PS400:Crsingle:MR0.05 -0.2852 PS100:Cruniform:MR0.05 -0.4600 PS200:Cruniform:MR0.05 -0.3675PS400:Cruniform:MR0.05 -0.2699 PS100:Crsingle:MR0.10 -0.5361 PS200:Crsingle:MR0.10 -0.8165PS400:Crsingle:MR0.10 -0.6451 PS100:Cruniform:MR0.10 -0.5231 PS200:Cruniform:MR0.10 -0.6083PS400:Cruniform:MR0.10 -0.4318 PS100:Crsingle:MR0.20 -1.0316 PS200:Crsingle:MR0.20 -1.0198PS400:Crsingle:MR0.20 -0.9058 PS100:Cruniform:MR0.20 -0.9619 PS200:Cruniform:MR0.20 -0.8419PS400:Cruniform:MR0.20 -0.7767 PS100:Crsingle:MR0.50 -0.1961 PS200:Crsingle:MR0.50 0.0504PS400:Crsingle:MR0.50 -0.1088 PS100:Cruniform:MR0.50 -0.4037 PS200:Cruniform:MR0.50 -0.3580PS400:Cruniform:MR0.50 -0.6042 PS100:Crsingle:MR0.70 -0.2065 PS200:Crsingle:MR0.70 0.1391PS400:Crsingle:MR0.70 0.0995 PS100:Cruniform:MR0.70 -0.0610 PS200:Cruniform:MR0.70 -0.2957PS400:Cruniform:MR0.70 -0.2202 PS100:Crsingle:MR0.90 -0.3472 PS200:Crsingle:MR0.90 0.2949PS400:Crsingle:MR0.90 -0.1836 PS100:Cruniform:MR0.90 -0.5127 PS200:Cruniform:MR0.90 -0.1243PS400:Cruniform:MR0.90 -0.6526 PS100:CP0.70:MR0.05 0.2870 PS200:CP0.70:MR0.05 0.2941PS400:CP0.70:MR0.05 0.3385 PS100:CP0.90:MR0.05 -0.0652 PS200:CP0.90:MR0.05 -0.1683PS400:CP0.90:MR0.05 0.0129 PS100:CP0.70:MR0.10 0.1491 PS200:CP0.70:MR0.10 0.0559PS400:CP0.70:MR0.10 0.0832 PS100:CP0.90:MR0.10 0.1031 PS200:CP0.90:MR0.10 -0.3014PS400:CP0.90:MR0.10 -0.1866 PS100:CP0.70:MR0.20 -0.0667 PS200:CP0.70:MR0.20 -0.0736PS400:CP0.70:MR0.20 -0.2124 PS100:CP0.90:MR0.20 0.2008 PS200:CP0.90:MR0.20 -0.0419PS400:CP0.90:MR0.20 0.0217 PS100:CP0.70:MR0.50 -0.2009 PS200:CP0.70:MR0.50 -0.2819PS400:CP0.70:MR0.50 -0.2514 PS100:CP0.90:MR0.50 -0.2991 PS200:CP0.90:MR0.50 -0.2069PS400:CP0.90:MR0.50 -0.2186 PS100:CP0.70:MR0.70 0.1942 PS200:CP0.70:MR0.70 -0.0597cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 90cont.Covariate E�ect Covariate E�ect Covariate E�ectPS400:CP0.70:MR0.70 -0.0373 PS100:CP0.90:MR0.70 -0.1299 PS200:CP0.90:MR0.70 -0.3095PS400:CP0.90:MR0.70 -0.1242 PS100:CP0.70:MR0.90 -0.1667 PS200:CP0.70:MR0.90 -0.1296PS400:CP0.70:MR0.90 0.0476 PS100:CP0.90:MR0.90 -0.0224 PS200:CP0.90:MR0.90 -0.0855PS400:CP0.90:MR0.90 0.5474 Trlocal:El1:Crsingle -0.2649 Trscale2:El1:Crsingle -0.1724Trscale4:El1:Crsingle -0.1065 Trlocal:El5%:Crsingle -0.3236 Trscale2:El5%:Crsingle -0.0789Trscale4:El5%:Crsingle -0.2180 Trlocal:El1:Cruniform -0.5018 Trscale2:El1:Cruniform -0.1962Trscale4:El1:Cruniform -0.3689 Trlocal:El5%:Cruniform -0.5550 Trscale2:El5%:Cruniform -0.3825Trscale4:El5%:Cruniform -0.2486 Trlocal:El1:CP0.70 0.0522 Trscale2:El1:CP0.70 0.0119Trscale4:El1:CP0.70 -0.0100 Trlocal:El5%:CP0.70 0.1609 Trscale2:El5%:CP0.70 0.1215Trscale4:El5%:CP0.70 0.1555 Trlocal:El1:CP0.90 -0.0431 Trscale2:El1:CP0.90 -0.1101Trscale4:El1:CP0.90 -0.2044 Trlocal:El5%:CP0.90 0.1615 Trscale2:El5%:CP0.90 0.0076Trscale4:El5%:CP0.90 -0.0667 Trlocal:El1:MR0.05 -0.0086 Trscale2:El1:MR0.05 0.1346Trscale4:El1:MR0.05 -0.1495 Trlocal:El5%:MR0.05 -0.1620 Trscale2:El5%:MR0.05 0.0891Trscale4:El5%:MR0.05 -0.2351 Trlocal:El1:MR0.10 -0.1551 Trscale2:El1:MR0.10 -0.0769Trscale4:El1:MR0.10 -0.2154 Trlocal:El5%:MR0.10 0.1766 Trscale2:El5%:MR0.10 0.1791Trscale4:El5%:MR0.10 0.0670 Trlocal:El1:MR0.20 -0.3971 Trscale2:El1:MR0.20 -0.3011Trscale4:El1:MR0.20 -0.6303 Trlocal:El5%:MR0.20 -0.5180 Trscale2:El5%:MR0.20 -0.5984Trscale4:El5%:MR0.20 -0.6966 Trlocal:El1:MR0.50 -0.3277 Trscale2:El1:MR0.50 -0.4076Trscale4:El1:MR0.50 -0.3712 Trlocal:El5%:MR0.50 -0.6607 Trscale2:El5%:MR0.50 -0.7748Trscale4:El5%:MR0.50 -0.7497 Trlocal:El1:MR0.70 -0.4596 Trscale2:El1:MR0.70 -0.6811Trscale4:El1:MR0.70 -0.6682 Trlocal:El5%:MR0.70 -0.8603 Trscale2:El5%:MR0.70 -0.8512Trscale4:El5%:MR0.70 -0.9105 Trlocal:El1:MR0.90 -0.4336 Trscale2:El1:MR0.90 -0.6385Trscale4:El1:MR0.90 -0.8994 Trlocal:El5%:MR0.90 -0.4841 Trscale2:El5%:MR0.90 -0.7810Trscale4:El5%:MR0.90 -0.9093 Trlocal:Crsingle:CP0.70 -0.1683 Trscale2:Crsingle:CP0.70 -0.2114Trscale4:Crsingle:CP0.70 -0.0579 Trlocal:Cruniform:CP0.70 0.1913 Trscale2:Cruniform:CP0.70 0.0816Trscale4:Cruniform:CP0.70 0.0857 Trlocal:Crsingle:CP0.90 -0.2665 Trscale2:Crsingle:CP0.90 -0.1988Trscale4:Crsingle:CP0.90 -0.1383 Trlocal:Cruniform:CP0.90 0.0175 Trscale2:Cruniform:CP0.90 -0.1619Trscale4:Cruniform:CP0.90 -0.1452 Trlocal:Crsingle:MR0.05 -0.3103 Trscale2:Crsingle:MR0.05 -0.2001Trscale4:Crsingle:MR0.05 -0.3887 Trlocal:Cruniform:MR0.05 -0.6278 Trscale2:Cruniform:MR0.05 -0.4601Trscale4:Cruniform:MR0.05 -0.5563 Trlocal:Crsingle:MR0.10 -0.6691 Trscale2:Crsingle:MR0.10 -0.3436Trscale4:Crsingle:MR0.10 -0.2394 Trlocal:Cruniform:MR0.10 -0.1465 Trscale2:Cruniform:MR0.10 -0.0907Trscale4:Cruniform:MR0.10 -0.1533 Trlocal:Crsingle:MR0.20 -0.0692 Trscale2:Crsingle:MR0.20 0.0904Trscale4:Crsingle:MR0.20 0.0040 Trlocal:Cruniform:MR0.20 -0.6063 Trscale2:Cruniform:MR0.20 -0.3280Trscale4:Cruniform:MR0.20 -0.3921 Trlocal:Crsingle:MR0.50 -0.5743 Trscale2:Crsingle:MR0.50 -0.4848Trscale4:Crsingle:MR0.50 -0.5752 Trlocal:Cruniform:MR0.50 -0.3034 Trscale2:Cruniform:MR0.50 -0.3257Trscale4:Cruniform:MR0.50 -0.3244 Trlocal:Crsingle:MR0.70 -0.6056 Trscale2:Crsingle:MR0.70 -0.7781Trscale4:Crsingle:MR0.70 -0.8550 Trlocal:Cruniform:MR0.70 -0.1862 Trscale2:Cruniform:MR0.70 -0.3171Trscale4:Cruniform:MR0.70 -0.0360 Trlocal:Crsingle:MR0.90 -0.4616 Trscale2:Crsingle:MR0.90 -0.4520Trscale4:Crsingle:MR0.90 -0.9147 Trlocal:Cruniform:MR0.90 -0.5368 Trscale2:Cruniform:MR0.90 -0.4225Trscale4:Cruniform:MR0.90 -0.7563 Trlocal:CP0.70:MR0.05 -0.0357 Trscale2:CP0.70:MR0.05 -0.2862Trscale4:CP0.70:MR0.05 0.0126 Trlocal:CP0.90:MR0.05 -0.3605 Trscale2:CP0.90:MR0.05 -0.2423Trscale4:CP0.90:MR0.05 -0.2805 Trlocal:CP0.70:MR0.10 -0.2147 Trscale2:CP0.70:MR0.10 -0.2185Trscale4:CP0.70:MR0.10 -0.2268 Trlocal:CP0.90:MR0.10 -0.2510 Trscale2:CP0.90:MR0.10 -0.0960Trscale4:CP0.90:MR0.10 -0.1342 Trlocal:CP0.70:MR0.20 0.0513 Trscale2:CP0.70:MR0.20 -0.0786Trscale4:CP0.70:MR0.20 -0.0723 Trlocal:CP0.90:MR0.20 0.0408 Trscale2:CP0.90:MR0.20 0.2989Trscale4:CP0.90:MR0.20 0.2408 Trlocal:CP0.70:MR0.50 -0.1200 Trscale2:CP0.70:MR0.50 -0.1771Trscale4:CP0.70:MR0.50 0.0890 Trlocal:CP0.90:MR0.50 -0.1083 Trscale2:CP0.90:MR0.50 0.2023Trscale4:CP0.90:MR0.50 0.0943 Trlocal:CP0.70:MR0.70 -0.0434 Trscale2:CP0.70:MR0.70 -0.2032Trscale4:CP0.70:MR0.70 0.0961 Trlocal:CP0.90:MR0.70 -0.2772 Trscale2:CP0.90:MR0.70 -0.1666Trscale4:CP0.90:MR0.70 -0.3207 Trlocal:CP0.70:MR0.90 -0.2297 Trscale2:CP0.70:MR0.90 -0.1601Trscale4:CP0.70:MR0.90 -0.1549 Trlocal:CP0.90:MR0.90 0.1401 Trscale2:CP0.90:MR0.90 0.3014Trscale4:CP0.90:MR0.90 0.1538 El1:Crsingle:CP0.70 -0.0547 El5%:Crsingle:CP0.70 -0.0737El1:Cruniform:CP0.70 0.0953 El5%:Cruniform:CP0.70 0.1447 El1:Crsingle:CP0.90 -0.0189El5%:Crsingle:CP0.90 -0.1839 El1:Cruniform:CP0.90 0.0369 El5%:Cruniform:CP0.90 0.1275El1:Crsingle:MR0.05 0.1108 El5%:Crsingle:MR0.05 0.1352 El1:Cruniform:MR0.05 -0.1705El5%:Cruniform:MR0.05 -0.0980 El1:Crsingle:MR0.10 0.2119 El5%:Crsingle:MR0.10 -0.0314El1:Cruniform:MR0.10 -0.0338 El5%:Cruniform:MR0.10 0.0188 El1:Crsingle:MR0.20 -0.2689El5%:Crsingle:MR0.20 -0.0070 El1:Cruniform:MR0.20 -0.0052 El5%:Cruniform:MR0.20 0.0321El1:Crsingle:MR0.50 -0.2978 El5%:Crsingle:MR0.50 -0.0026 El1:Cruniform:MR0.50 -0.3947El5%:Cruniform:MR0.50 -0.2799 El1:Crsingle:MR0.70 -0.1714 El5%:Crsingle:MR0.70 0.0132cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 91cont.Covariate E�ect Covariate E�ect Covariate E�ectEl1:Cruniform:MR0.70 -0.5565 El5%:Cruniform:MR0.70 -0.2815 El1:Crsingle:MR0.90 -0.1281El5%:Crsingle:MR0.90 -0.1658 El1:Cruniform:MR0.90 -0.5794 El5%:Cruniform:MR0.90 -0.5479El1:CP0.70:MR0.05 -0.1813 El5%:CP0.70:MR0.05 -0.1406 El1:CP0.90:MR0.05 0.0387El5%:CP0.90:MR0.05 -0.0742 El1:CP0.70:MR0.10 -0.0611 El5%:CP0.70:MR0.10 -0.0372El1:CP0.90:MR0.10 -0.0082 El5%:CP0.90:MR0.10 -0.2141 El1:CP0.70:MR0.20 -0.0757El5%:CP0.70:MR0.20 -0.2779 El1:CP0.90:MR0.20 -0.0502 El5%:CP0.90:MR0.20 -0.2838El1:CP0.70:MR0.50 0.2511 El5%:CP0.70:MR0.50 0.3670 El1:CP0.90:MR0.50 0.5270El5%:CP0.90:MR0.50 0.3791 El1:CP0.70:MR0.70 -0.0918 El5%:CP0.70:MR0.70 0.0335El1:CP0.90:MR0.70 0.1304 El5%:CP0.90:MR0.70 0.1236 El1:CP0.70:MR0.90 -0.2758El5%:CP0.70:MR0.90 0.0054 El1:CP0.90:MR0.90 -0.1352 El5%:CP0.90:MR0.90 0.1876Crsingle:CP0.70:MR0.05 -0.4013 Cruniform:CP0.70:MR0.05 -0.1519 Crsingle:CP0.90:MR0.05 -0.3403Cruniform:CP0.90:MR0.05 -0.1417 Crsingle:CP0.70:MR0.10 -0.3668 Cruniform:CP0.70:MR0.10 -0.2228Crsingle:CP0.90:MR0.10 -0.1181 Cruniform:CP0.90:MR0.10 -0.1989 Crsingle:CP0.70:MR0.20 -0.1177Cruniform:CP0.70:MR0.20 -0.1851 Crsingle:CP0.90:MR0.20 0.1825 Cruniform:CP0.90:MR0.20 -0.2783Crsingle:CP0.70:MR0.50 -0.1358 Cruniform:CP0.70:MR0.50 -0.0720 Crsingle:CP0.90:MR0.50 -0.2277Cruniform:CP0.90:MR0.50 -0.1527 Crsingle:CP0.70:MR0.70 -0.1476 Cruniform:CP0.70:MR0.70 -0.1562Crsingle:CP0.90:MR0.70 -0.1542 Cruniform:CP0.90:MR0.70 -0.1776 Crsingle:CP0.70:MR0.90 -0.2764Cruniform:CP0.70:MR0.90 -0.2750 Crsingle:CP0.90:MR0.90 -0.3850 Cruniform:CP0.90:MR0.90 -0.4017Table 35: Coe�cients for the time model for group-number GCAs onTowns2.A.3 Group-number and Iris2Coe�cients for correctness model for the Iris2 data set can be found in Table 36. This model �tsthe data well (residual deviance of 925.7 on 2908 degrees of freedom, Figure 41).
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lsFigure 41: Comparison of experimental and �tted correctness for group-number GCAs on Iris2.Covariate E�ect Covariate E�ect Covariate E�ect(Intercept) 3.6483 PS100 0.0303 PS200 -3.8453PS400 -9.8023 Trlocal -0.9514 Trscale2 -0.9241Trscale4 0.7082 El1 1.7657 El5% 1.5270Crsingle -1.9064 Cruniform -3.3407 CP0.70 -2.2171CP0.90 -2.6410 MR0.05 16.7435 MR0.10 16.5498MR0.20 15.5493 MR0.50 15.5942 MR0.70 9.6481MR0.90 11.0793 PS100:Crsingle 0.3943 PS200:Crsingle 3.5026PS400:Crsingle 9.4241 PS100:Cruniform -0.1440 PS200:Cruniform 2.0207PS400:Cruniform 6.0565 Crsingle:MR0.05 5.1168 Cruniform:MR0.05 3.5895Crsingle:MR0.10 10.2388 Cruniform:MR0.10 4.2681 Crsingle:MR0.20 13.0922Cruniform:MR0.20 7.9403 Crsingle:MR0.50 15.2249 Cruniform:MR0.50 9.7813Crsingle:MR0.70 15.0433 Cruniform:MR0.70 7.2473 Crsingle:MR0.90 12.4543Cruniform:MR0.90 8.1281 Trlocal:Crsingle 2.5753 Trscale2:Crsingle 2.0225Trscale4:Crsingle 0.8130 Trlocal:Cruniform 1.0837 Trscale2:Cruniform 0.7759Trscale4:Cruniform 0.1122 PS100:MR0.05 -8.7878 PS200:MR0.05 -9.8168PS400:MR0.05 -10.6095 PS100:MR0.10 -7.9343 PS200:MR0.10 -8.2787cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 92cont.Covariate E�ect Covariate E�ect Covariate E�ectPS400:MR0.10 -8.5357 PS100:MR0.20 -2.5203 PS200:MR0.20 -4.7470PS400:MR0.20 -5.4922 PS100:MR0.50 -2.8162 PS200:MR0.50 -5.3126PS400:MR0.50 -5.5382 PS100:MR0.70 -1.8084 PS200:MR0.70 -1.8033PS400:MR0.70 -0.1238 PS100:MR0.90 -4.4764 PS200:MR0.90 -3.9219PS400:MR0.90 -1.9889 PS100:Trlocal -1.3073 PS200:Trlocal -2.7165PS400:Trlocal -4.0142 PS100:Trscale2 -1.0285 PS200:Trscale2 -2.2246PS400:Trscale2 -3.7362 PS100:Trscale4 -1.0908 PS200:Trscale4 -2.3681PS400:Trscale4 -3.7813 PS100El1 -0.0011 PS200El1 0.2187PS400El1 -0.4128 PS100El5% 0.4390 PS200El5% 1.1998PS400El5% 0.9041 Trlocal:MR0.05 -7.5766 Trscale2:MR0.05 -7.0973Trscale4:MR0.05 -8.3979 Trlocal:MR0.10 -7.4056 Trscale2:MR0.10 -7.2346Trscale4:MR0.10 -8.3486 Trlocal:MR0.20 -12.6637 Trscale2:MR0.20 -12.4918Trscale4:MR0.20 -13.5055 Trlocal:MR0.50 -14.9067 Trscale2:MR0.50 -14.2789Trscale4:MR0.50 -15.4905 Trlocal:MR0.70 -13.1867 Trscale2:MR0.70 -13.1047Trscale4:MR0.70 -13.8578 Trlocal:MR0.90 -16.1629 Trscale2:MR0.90 -16.4954Trscale4:MR0.90 -17.1303 El1:MR0.05 1.9172 El5%:MR0.05 4.1203El1:MR0.10 1.1792 El5%:MR0.10 4.3200 El1:MR0.20 3.5082El5%:MR0.20 6.7296 El1:MR0.50 3.7658 El5%:MR0.50 7.9447El1:MR0.70 4.7965 El5%:MR0.70 8.2603 El1:MR0.90 7.8553El5%:MR0.90 11.0439 Crsingle:CP0.70 1.9581 Cruniform:CP0.70 2.0465Crsingle:CP0.90 3.9334 Cruniform:CP0.90 3.6640 PS100:CP0.70 0.5873PS200:CP0.70 0.8287 PS400:CP0.70 0.6567 PS100:CP0.90 -0.1047Table 36: Coe�cients for the correctness model for group-numberGCAs on Iris2.The corresponding time model also provides a good �t (residual deviance of 1635.6 on 2057degrees of freedom). The suitability of this model is also supported by the comparative histograms(Figure 42) and the residual plot (Figure 43). Model coe�cients are listed in Table 37.
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APPENDIX A. MODELS FOR GA ADAPTIONS 93Covariate E�ect Covariate E�ect Covariate E�ect(Intercept) 5.2076 PS100 0.1574 PS200 0.4526PS400 0.5529 Trlocal 0.1546 Trscale2 0.2322Trscale4 0.1606 El1 0.0395 El5% -0.0927Crsingle -0.0784 Cruniform 0.1244 CP0.70 0.0472CP0.90 0.0765 MR0.05 -1.2663 MR0.10 -1.4853MR0.20 -1.6929 MR0.50 -1.7090 MR0.70 -1.7038MR0.90 -1.6420 PS100:Trlocal -0.0224 PS200:Trlocal -0.1268PS400:Trlocal -0.0645 PS100:Trscale2 -0.0675 PS200:Trscale2 -0.1731PS400:Trscale2 -0.1537 PS100:Trscale4 -0.0815 PS200:Trscale4 -0.1246PS400:Trscale4 -0.4615 PS100:El1 -0.0292 PS200:El1 -0.2091PS400:El1 -0.2827 PS100:El5% 0.0353 PS200:El5% -0.0691PS400:El5% -0.1440 PS100:Crsingle -0.0591 PS200:Crsingle -0.1955PS400:Crsingle -0.1744 PS100:Cruniform -0.0966 PS200:Cruniform -0.2925PS400:Cruniform -0.3538 PS100:CP0.70 0.0008 PS200:CP0.70 -0.0051PS400:CP0.70 0.0422 PS100:CP0.90 0.0176 PS200:CP0.90 -0.0091PS400:CP0.90 0.0079 PS100:MR0.05 0.3763 PS200:MR0.05 0.5901PS400:MR0.05 1.0665 PS100:MR0.10 0.3276 PS200:MR0.10 0.6658PS400:MR0.10 1.1672 PS100:MR0.20 0.3548 PS200:MR0.20 0.7175PS400:MR0.20 1.2180 PS100:MR0.50 0.3285 PS200:MR0.50 0.6613PS400:MR0.50 1.1837 PS100:MR0.70 0.2041 PS200:MR0.70 0.5807PS400:MR0.70 1.1156 PS100:MR0.90 0.3904 PS200:MR0.90 0.6313PS400:MR0.90 1.1073 Trlocal:El1 -0.1402 Trscale2:El1 -0.2324Trscale4:El1 -0.1728 Trlocal:El5% 0.0463 Trscale2:El5% -0.0725Trscale4:El5% -0.0349 Trlocal:Crsingle -0.0206 Trscale2:Crsingle 0.0047Trscale4:Crsingle -0.0306 Trlocal:Cruniform -0.0146 Trscale2:Cruniform -0.0280Trscale4:Cruniform -0.0188 Trlocal:CP0.70 -0.0347 Trscale2:CP0.70 -0.0079Trscale4:CP0.70 -0.0259 Trlocal:CP0.90 -0.0748 Trscale2:CP0.90 -0.0304Trscale4:CP0.90 -0.0497 Trlocal:MR0.05 0.6607 Trscale2:MR0.05 0.5679Trscale4:MR0.05 0.5389 Trlocal:MR0.10 1.0267 Trscale2:MR0.10 0.8042Trscale4:MR0.10 0.9062 Trlocal:MR0.20 1.2434 Trscale2:MR0.20 1.1186Trscale4:MR0.20 1.2328 Trlocal:MR0.50 1.5981 Trscale2:MR0.50 1.4927Trscale4:MR0.50 1.5385 Trlocal:MR0.70 1.8863 Trscale2:MR0.70 1.7570Trscale4:MR0.70 1.8583 Trlocal:MR0.90 2.0437 Trscale2:MR0.90 2.0585Trscale4:MR0.90 2.1694 El1:Crsingle 0.0824 El5%:Crsingle 0.1441El1:Cruniform 0.1453 El5%:Cruniform 0.1854 El1:CP0.70 -0.0429El5%:CP0.70 0.0110 El1:CP0.90 -0.0153 El5%:CP0.90 -0.0015El1:MR0.05 0.0421 El5%:MR0.05 0.0382 El1:MR0.10 -0.0622El5%:MR0.10 -0.0363 El1:MR0.20 -0.0775 El5%:MR0.20 -0.0597El1:MR0.50 -0.2031 El5%:MR0.50 -0.2258 El1:MR0.70 -0.2036El5%:MR0.70 -0.2251 El1:MR0.90 -0.3295 El5%:MR0.90 -0.3388Crsingle:CP0.70 -0.0628 Cruniform:CP0.70 -0.0118 Crsingle:CP0.90 -0.0903Cruniform:CP0.90 -0.0355 Crsingle:MR0.05 -0.1107 Cruniform:MR0.05 0.0224Crsingle:MR0.10 -0.4067 Cruniform:MR0.10 -0.1920 Crsingle:MR0.20 -0.6807Cruniform:MR0.20 -0.4149 Crsingle:MR0.50 -1.0613 Cruniform:MR0.50 -0.6421Crsingle:MR0.70 -1.1962 Cruniform:MR0.70 -0.5692 Crsingle:MR0.90 -1.1734Cruniform:MR0.90 -0.6549 CP0.70:MR0.05 0.0782 CP0.90:MR0.05 0.1519CP0.70:MR0.10 0.0691 CP0.90:MR0.10 0.2310 CP0.70:MR0.20 0.1716CP0.90:MR0.20 0.2923 CP0.70:MR0.50 0.1056 CP0.90:MR0.50 0.2560CP0.70:MR0.70 0.1141 CP0.90:MR0.70 0.2523 CP0.70:MR0.90 0.1155CP0.90:MR0.90 0.1545 PS100:Trlocal:El1 0.1534 PS200:Trlocal:El1 0.2273PS400:Trlocal:El1 0.3952 PS100:Trscale2:El1 0.1169 PS200:Trscale2:El1 0.1934PS400:Trscale2:El1 0.3633 PS100:Trscale4:El1 0.1708 PS200:Trscale4:El1 0.2134PS400:Trscale4:El1 0.3561 PS100:Trlocal:El5% 0.0044 PS200:Trlocal:El5% 0.0583PS400:Trlocal:El5% 0.2398 PS100:Trscale2:El5% -0.0131 PS200:Trscale2:El5% 0.0414PS400:Trscale2:El5% 0.1792 PS100:Trscale4:El5% -0.0157 PS200:Trscale4:El5% 0.0438PS400:Trscale4:El5% 0.1364 PS100:Trlocal:Crsingle 0.0167 PS200:Trlocal:Crsingle 0.1238PS400:Trlocal:Crsingle 0.0247 PS100:Trscale2:Crsingle 0.0382 PS200:Trscale2:Crsingle 0.0945PS400:Trscale2:Crsingle -0.0001 PS100:Trscale4:Crsingle 0.0323 PS200:Trscale4:Crsingle 0.0535PS400:Trscale4:Crsingle 0.3706 PS100:Trlocal:Cruniform 0.0637 PS200:Trlocal:Cruniform 0.1841PS400:Trlocal:Cruniform 0.0000 PS100:Trscale2:Cruniform 0.0629 PS200:Trscale2:Cruniform 0.2088cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 94cont.Covariate E�ect Covariate E�ect Covariate E�ectPS400:Trscale2:Cruniform 0.0000 PS100:Trscale4:Cruniform 0.0808 PS200:Trscale4:Cruniform 0.1639PS400:Trscale4:Cruniform 0.4030 PS100:Trlocal:MR0.05 0.1563 PS200:Trlocal:MR0.05 0.2068PS400:Trlocal:MR0.05 0.1146 PS100:Trscale2:MR0.05 0.2212 PS200:Trscale2:MR0.05 0.2722PS400:Trscale2:MR0.05 0.3034 PS100:Trscale4:MR0.05 0.2933 PS200:Trscale4:MR0.05 0.3370PS400:Trscale4:MR0.05 0.3464 PS100:Trlocal:MR0.10 0.0587 PS200:Trlocal:MR0.10 0.0490PS400:Trlocal:MR0.10 -0.0171 PS100:Trscale2:MR0.10 0.1946 PS200:Trscale2:MR0.10 0.1628PS400:Trscale2:MR0.10 0.1629 PS100:Trscale4:MR0.10 0.1719 PS200:Trscale4:MR0.10 0.0979PS400:Trscale4:MR0.10 0.0468 PS100:Trlocal:MR0.20 0.0091 PS200:Trlocal:MR0.20 -0.0268PS400:Trlocal:MR0.20 -0.0537 PS100:Trscale2:MR0.20 0.0595 PS200:Trscale2:MR0.20 0.0304PS400:Trscale2:MR0.20 0.0820 PS100:Trscale4:MR0.20 0.0666 PS200:Trscale4:MR0.20 0.0194PS400:Trscale4:MR0.20 0.0148 PS100:Trlocal:MR0.50 -0.1330 PS200:Trlocal:MR0.50 -0.2032PS400:Trlocal:MR0.50 -0.3277 PS100:Trscale2:MR0.50 -0.1105 PS200:Trscale2:MR0.50 -0.1509PS400:Trscale2:MR0.50 -0.1330 PS100:Trscale4:MR0.50 -0.0673 PS200:Trscale4:MR0.50 -0.1363PS400:Trscale4:MR0.50 -0.1906 PS100:Trlocal:MR0.70 -0.1420 PS200:Trlocal:MR0.70 -0.2776PS400:Trlocal:MR0.70 -0.3148 PS100:Trscale2:MR0.70 -0.0488 PS200:Trscale2:MR0.70 -0.2272PS400:Trscale2:MR0.70 -0.1876 PS100:Trscale4:MR0.70 -0.1185 PS200:Trscale4:MR0.70 -0.2936PS400:Trscale4:MR0.70 -0.2930 PS100:Trlocal:MR0.90 -0.0523 PS200:Trlocal:MR0.90 -0.3351PS400:Trlocal:MR0.90 -0.3855 PS100:Trscale2:MR0.90 -0.1285 PS200:Trscale2:MR0.90 -0.3288PS400:Trscale2:MR0.90 -0.3026 PS100:Trscale4:MR0.90 -0.1616 PS200:Trscale4:MR0.90 -0.3795PS400:Trscale4:MR0.90 -0.4527 PS100:El1:Crsingle -0.1029 PS200:El1:Crsingle 0.0011PS400:El1:Crsingle 0.0165 PS100:El5%:Crsingle -0.0753 PS200:El5%:Crsingle -0.0708PS400:El5%:Crsingle -0.0885 PS100:El1:Cruniform -0.0974 PS200:El1:Cruniform 0.0750PS400:El1:Cruniform 0.2119 PS100:El5%:Cruniform -0.1027 PS200:El5%:Cruniform -0.0458PS400:El5%:Cruniform 0.1164 PS100:El1:MR0.05 -0.0527 PS200:El1:MR0.05 0.0782PS400:El1:MR0.05 0.0778 PS100:El5%:MR0.05 -0.0723 PS200:El5%:MR0.05 0.0180PS400:El5%:MR0.05 0.0123 PS100:El1:MR0.10 0.0611 PS200:El1:MR0.10 0.1508PS400:El1:MR0.10 0.2055 PS100:El5%:MR0.10 0.0111 PS200:El5%:MR0.10 0.0978PS400:El5%:MR0.10 0.1658 PS100:El1:MR0.20 0.0963 PS200:El1:MR0.20 0.1642PS400:El1:MR0.20 0.2823 PS100:El5%:MR0.20 0.1131 PS200:El5%:MR0.20 0.1393PS400:El5%:MR0.20 0.2286 PS100:El1:MR0.50 0.2357 PS200:El1:MR0.50 0.3528PS400:El1:MR0.50 0.4360 PS100:El5%:MR0.50 0.2253 PS200:El5%:MR0.50 0.2954PS400:El5%:MR0.50 0.3724 PS100:El1:MR0.70 0.2759 PS200:El1:MR0.70 0.4810PS400:El1:MR0.70 0.5153 PS100:El5%:MR0.70 0.2900 PS200:El5%:MR0.70 0.4642PS400:El5%:MR0.70 0.4577 PS100:El1:MR0.90 0.1835 PS200:El1:MR0.90 0.5762PS400:El1:MR0.90 0.6153 PS100:El5%:MR0.90 0.2297 PS200:El5%:MR0.90 0.4972PS400:El5%:MR0.90 0.5123 PS100:Crsingle:MR0.05 -0.2360 PS200:Crsingle:MR0.05 -0.3412PS400:Crsingle:MR0.05 -0.5218 PS100:Cruniform:MR0.05 -0.1074 PS200:Cruniform:MR0.05 -0.1420PS400:Cruniform:MR0.05 -0.2453 PS100:Crsingle:MR0.10 -0.1781 PS200:Crsingle:MR0.10 -0.2837PS400:Crsingle:MR0.10 -0.4303 PS100:Cruniform:MR0.10 -0.0355 PS200:Cruniform:MR0.10 -0.0631PS400:Cruniform:MR0.10 -0.1380 PS100:Crsingle:MR0.20 -0.1136 PS200:Crsingle:MR0.20 -0.1649PS400:Crsingle:MR0.20 -0.3676 PS100:Cruniform:MR0.20 0.0290 PS200:Cruniform:MR0.20 0.0554PS400:Cruniform:MR0.20 -0.0793 PS100:Crsingle:MR0.50 -0.0421 PS200:Crsingle:MR0.50 -0.0626PS400:Crsingle:MR0.50 -0.1285 PS100:Cruniform:MR0.50 0.0725 PS200:Cruniform:MR0.50 0.1151PS400:Cruniform:MR0.50 0.0238 PS100:Crsingle:MR0.70 -0.0290 PS200:Crsingle:MR0.70 0.0131PS400:Crsingle:MR0.70 -0.1068 PS100:Cruniform:MR0.70 0.1015 PS200:Cruniform:MR0.70 0.0597PS400:Cruniform:MR0.70 0.0167 PS100:Crsingle:MR0.90 -0.1447 PS200:Crsingle:MR0.90 -0.0813PS400:Crsingle:MR0.90 -0.1561 PS100:Cruniform:MR0.90 -0.0478 PS200:Cruniform:MR0.90 0.0178PS400:Cruniform:MR0.90 0.0000 PS100:CP0.70:MR0.05 -0.0016 PS200:CP0.70:MR0.05 -0.0141PS400:CP0.70:MR0.05 -0.0548 PS100:CP0.90:MR0.05 -0.0378 PS200:CP0.90:MR0.05 -0.0276PS400:CP0.90:MR0.05 -0.0737 PS100:CP0.70:MR0.10 0.0443 PS200:CP0.70:MR0.10 0.0095PS400:CP0.70:MR0.10 -0.0717 PS100:CP0.90:MR0.10 -0.0698 PS200:CP0.90:MR0.10 -0.0461PS400:CP0.90:MR0.10 -0.1321 PS100:CP0.70:MR0.20 -0.0668 PS200:CP0.70:MR0.20 -0.0194PS400:CP0.70:MR0.20 -0.0672 PS100:CP0.90:MR0.20 -0.0588 PS200:CP0.90:MR0.20 -0.0267PS400:CP0.90:MR0.20 -0.0469 PS100:CP0.70:MR0.50 0.0166 PS200:CP0.70:MR0.50 -0.0008PS400:CP0.70:MR0.50 -0.0640 PS100:CP0.90:MR0.50 -0.0694 PS200:CP0.90:MR0.50 -0.0400PS400:CP0.90:MR0.50 -0.0371 PS100:CP0.70:MR0.70 0.0990 PS200:CP0.70:MR0.70 0.0310PS400:CP0.70:MR0.70 -0.0227 PS100:CP0.90:MR0.70 0.1044 PS200:CP0.90:MR0.70 0.0139PS400:CP0.90:MR0.70 0.0388 PS100:CP0.70:MR0.90 -0.0206 PS200:CP0.70:MR0.90 -0.0647PS400:CP0.70:MR0.90 -0.0770 PS100:CP0.90:MR0.90 -0.0518 PS200:CP0.90:MR0.90 -0.0303PS400:CP0.90:MR0.90 0.0079 Trlocal:El1:Crsingle -0.1540 Trscale2:El1:Crsingle -0.0836cont.



APPENDIX A. MODELS FOR GA ADAPTIONS 95cont.Covariate E�ect Covariate E�ect Covariate E�ectTrscale4:El1:Crsingle -0.0801 Trlocal:El5%:Crsingle -0.2333 Trscale2:El5%:Crsingle -0.1511Trscale4:El5%:Crsingle -0.1262 Trlocal:El1:Cruniform -0.1551 Trscale2:El1:Cruniform -0.0721Trscale4:El1:Cruniform -0.1023 Trlocal:El5%:Cruniform -0.1779 Trscale2:El5%:Cruniform -0.1122Trscale4:El5%:Cruniform -0.1058 Trlocal:El1:MR0.05 -0.2334 Trscale2:El1:MR0.05 -0.2032Trscale4:El1:MR0.05 -0.2802 Trlocal:El5%:MR0.05 -0.4556 Trscale2:El5%:MR0.05 -0.3656Trscale4:El5%:MR0.05 -0.3617 Trlocal:El1:MR0.10 -0.3352 Trscale2:El1:MR0.10 -0.2028Trscale4:El1:MR0.10 -0.3162 Trlocal:El5%:MR0.10 -0.5448 Trscale2:El5%:MR0.10 -0.4105Trscale4:El5%:MR0.10 -0.4455 Trlocal:El1:MR0.20 -0.3420 Trscale2:El1:MR0.20 -0.2695Trscale4:El1:MR0.20 -0.3686 Trlocal:El5%:MR0.20 -0.5926 Trscale2:El5%:MR0.20 -0.4923Trscale4:El5%:MR0.20 -0.5659 Trlocal:El1:MR0.50 -0.4032 Trscale2:El1:MR0.50 -0.3383Trscale4:El1:MR0.50 -0.3906 Trlocal:El5%:MR0.50 -0.6868 Trscale2:El5%:MR0.50 -0.5758Trscale4:El5%:MR0.50 -0.6243 Trlocal:El1:MR0.70 -0.5864 Trscale2:El1:MR0.70 -0.4930Trscale4:El1:MR0.70 -0.5725 Trlocal:El5%:MR0.70 -0.9127 Trscale2:El5%:MR0.70 -0.8143Trscale4:El5%:MR0.70 -0.8504 Trlocal:El1:MR0.90 -0.6271 Trscale2:El1:MR0.90 -0.5880Trscale4:El1:MR0.90 -0.6417 Trlocal:El5%:MR0.90 -1.0298 Trscale2:El5%:MR0.90 -0.9412Trscale4:El5%:MR0.90 -0.9838 Trlocal:Crsingle:MR0.05 -0.2053 Trscale2:Crsingle:MR0.05 -0.3123Trscale4:Crsingle:MR0.05 -0.2761 Trlocal:Cruniform:MR0.05 -0.0778 Trscale2:Cruniform:MR0.05 -0.1864Trscale4:Cruniform:MR0.05 -0.1855 Trlocal:Crsingle:MR0.10 -0.2590 Trscale2:Crsingle:MR0.10 -0.3202Trscale4:Crsingle:MR0.10 -0.2447 Trlocal:Cruniform:MR0.10 -0.1393 Trscale2:Cruniform:MR0.10 -0.1639Trscale4:Cruniform:MR0.10 -0.1634 Trlocal:Crsingle:MR0.20 -0.3715 Trscale2:Crsingle:MR0.20 -0.4120Trscale4:Crsingle:MR0.20 -0.3958 Trlocal:Cruniform:MR0.20 -0.1268 Trscale2:Cruniform:MR0.20 -0.1820Trscale4:Cruniform:MR0.20 -0.1992 Trlocal:Crsingle:MR0.50 -0.2681 Trscale2:Crsingle:MR0.50 -0.4002Trscale4:Crsingle:MR0.50 -0.3521 Trlocal:Cruniform:MR0.50 0.0246 Trscale2:Cruniform:MR0.50 -0.0810Trscale4:Cruniform:MR0.50 -0.0617 Trlocal:Crsingle:MR0.70 -0.2603 Trscale2:Crsingle:MR0.70 -0.3328Trscale4:Crsingle:MR0.70 -0.3101 Trlocal:Cruniform:MR0.70 0.1024 Trscale2:Cruniform:MR0.70 0.0523Trscale4:Cruniform:MR0.70 0.0663 Trlocal:Crsingle:MR0.90 -0.1631 Trscale2:Crsingle:MR0.90 -0.3274Trscale4:Crsingle:MR0.90 -0.3398 Trlocal:Cruniform:MR0.90 0.1604 Trscale2:Cruniform:MR0.90 0.0203Trscale4:Cruniform:MR0.90 0.0290 El1:Crsingle:MR0.05 -0.0831 El5%:Crsingle:MR0.05 -0.0534El1:Cruniform:MR0.05 -0.1887 El5%:Cruniform:MR0.05 -0.1364 El1:Crsingle:MR0.10 -0.1143El5%:Crsingle:MR0.10 -0.0802 El1:Cruniform:MR0.10 -0.1984 El5%:Cruniform:MR0.10 -0.1862El1:Crsingle:MR0.20 0.0050 El5%:Crsingle:MR0.20 0.0556 El1:Cruniform:MR0.20 -0.2223El5%:Cruniform:MR0.20 -0.1981 El1:Crsingle:MR0.50 -0.0384 El5%:Crsingle:MR0.50 0.0685El1:Cruniform:MR0.50 -0.4491 El5%:Cruniform:MR0.50 -0.3743 El1:Crsingle:MR0.70 0.0088El5%:Crsingle:MR0.70 0.0652 El1:Cruniform:MR0.70 -0.6753 El5%:Cruniform:MR0.70 -0.6388El1:Crsingle:MR0.90 -0.0280 El5%:Crsingle:MR0.90 0.0242 El1:Cruniform:MR0.90 -0.6452El5%:Cruniform:MR0.90 -0.6228 El1:CP0.70:MR0.05 0.0165 El5%:CP0.70:MR0.05 0.0143El1:CP0.90:MR0.05 0.0292 El5%:CP0.90:MR0.05 0.0473 El1:CP0.70:MR0.10 0.0802El5%:CP0.70:MR0.10 0.0289 El1:CP0.90:MR0.10 0.0749 El5%:CP0.90:MR0.10 0.0452El1:CP0.70:MR0.20 0.0481 El5%:CP0.70:MR0.20 -0.0095 El1:CP0.90:MR0.20 0.0287El5%:CP0.90:MR0.20 -0.0009 El1:CP0.70:MR0.50 0.0829 El5%:CP0.70:MR0.50 0.0641El1:CP0.90:MR0.50 0.1313 El5%:CP0.90:MR0.50 0.0874 El1:CP0.70:MR0.70 0.0774El5%:CP0.70:MR0.70 0.0323 El1:CP0.90:MR0.70 0.0408 El5%:CP0.90:MR0.70 0.0381El1:CP0.70:MR0.90 0.0863 El5%:CP0.70:MR0.90 0.0609 El1:CP0.90:MR0.90 0.1339El5%:CP0.90:MR0.90 0.1608 Crsingle:CP0.70:MR0.05 -0.1256 Cruniform:CP0.70:MR0.05 -0.1131Crsingle:CP0.90:MR0.05 -0.2432 Cruniform:CP0.90:MR0.05 -0.1800 Crsingle:CP0.70:MR0.10 -0.1476Cruniform:CP0.70:MR0.10 -0.1198 Crsingle:CP0.90:MR0.10 -0.2511 Cruniform:CP0.90:MR0.10 -0.2606Crsingle:CP0.70:MR0.20 -0.2024 Cruniform:CP0.70:MR0.20 -0.1900 Crsingle:CP0.90:MR0.20 -0.3663Cruniform:CP0.90:MR0.20 -0.3097 Crsingle:CP0.70:MR0.50 -0.1998 Cruniform:CP0.70:MR0.50 -0.1905Crsingle:CP0.90:MR0.50 -0.4305 Cruniform:CP0.90:MR0.50 -0.3369 Crsingle:CP0.70:MR0.70 -0.2567Cruniform:CP0.70:MR0.70 -0.2276 Crsingle:CP0.90:MR0.70 -0.4971 Cruniform:CP0.90:MR0.70 -0.3439Crsingle:CP0.70:MR0.90 -0.2350 Cruniform:CP0.70:MR0.90 -0.1893 Crsingle:CP0.90:MR0.90 -0.4278Table 37: Coe�cients for the time model for group-number GCAs onIris2. NA = coe�cient not de�ned because of singularity.



APPENDIX A. MODELS FOR GA ADAPTIONS 96A.4 Order-based and Ruspini2Table 38 provides the coe�cients for the order-based correctness model for Ruspini2. The residualdeviance of 926.8 on 1239 degrees of freedom indicates a good �t, and this is supported by thehistograms in Figure 44).
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APPENDIX A. MODELS FOR GA ADAPTIONS 98cont.Covariate E�ect Covariate E�ect Covariate E�ectTrscale4:El5%:MR0.20 -0.0848 Trscale2:El5%:MR0.70 -0.1590 Trscale4:El5%:MR0.70 -0.1707Trscale2:El5%:MR0.90 -0.1368 Trscale4:El5%:MR0.90 -0.1728 Trscale2:Credge:CP0.70 -0.0744Trscale4:Credge:CP0.70 -0.2073 Trscale2:Credge:CP0.90 -0.0770 Trscale4:Credge:CP0.90 -0.1549Trscale2:CP0.70:Muuniform 0.0261 Trscale4:CP0.70:Muuniform -0.0445 Trscale2:CP0.90:Muuniform -0.0517Trscale4:CP0.90:Muuniform -0.0841 Trscale2:CP0.70:MR0.20 0.1006 Trscale4:CP0.70:MR0.20 0.1194Trscale2:CP0.90:MR0.20 0.1208 Trscale4:CP0.90:MR0.20 0.1123 Trscale2:CP0.70:MR0.70 0.1324Trscale4:CP0.70:MR0.70 0.1347 Trscale2:CP0.90:MR0.70 0.2104 Trscale4:CP0.90:MR0.70 0.1566Trscale2:CP0.70:MR0.90 0.1377 Trscale4:CP0.70:MR0.90 0.1783 Trscale2:CP0.90:MR0.90 0.2534Trscale4:CP0.90:MR0.90 0.2239 El5%:Credge:MR0.20 -0.0304 El5%:Credge:MR0.70 0.0265El5%:Credge:MR0.90 0.0622 El5%:CP0.70:Muuniform -0.0856 El5%:CP0.90:Muuniform -0.0816El5%:CP0.70:MR0.20 0.0162 El5%:CP0.90:MR0.20 -0.0118 El5%:CP0.70:MR0.70 0.0216El5%:CP0.90:MR0.70 -0.0422 El5%:CP0.70:MR0.90 -0.0697 El5%:CP0.90:MR0.90 -0.1225Credge:Muuniform:MR0.20 0.0258 Credge:Muuniform:MR0.70 0.1021 Credge:Muuniform:MR0.90 0.0921Table 39: Coe�cients for the time model for order-based GCAs onRuspini2.A.5 Order-based and Towns2The correctness model coe�cients for the order-based GCAs on Towns2 are listed in Table 40.This model has a residual deviance of 386.1 on 1252 degrees of freedom and matches the data well(Figure 47).
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APPENDIX A. MODELS FOR GA ADAPTIONS 99The coe�cients for the �nal time model can be found in Table 41. This model has a residualdeviance of 1182.3 on 591 degrees of freedom which indicates a relatively poor �t (notice thevariations in the histograms in Figure 48). There are no obvious violations of model assumptionsin the residual plot (Figure 49).
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APPENDIX A. MODELS FOR GA ADAPTIONS 100cont.Covariate E�ect Covariate E�ect Covariate E�ectPS200:Credge:CP0.90 0.2745 PS100:Trscale2:El% -0.0562 PS200:Trscale2:El% 0.0823PS100:Trscale4:El% -0.1320 PS200:Trscale4:El% 0.0462 PS100:Trscale2:MR0.20 0.0466PS200:Trscale2:MR0.20 -0.0761 PS100:Trscale4:MR0.20 0.1184 PS200:Trscale4:MR0.20 -0.0847PS100:Trscale2:MR0.70 -0.0321 PS200:Trscale2:MR0.70 -0.2954 PS100:Trscale4:MR0.70 -0.0818PS200:Trscale4:MR0.70 -0.3769 PS100:Trscale2:MR0.90 -0.2367 PS200:Trscale2:MR0.90 -0.5109PS100:Trscale4:MR0.90 -0.1274 PS200:Trscale4:MR0.90 -0.5116 PS100:El%:Credge -0.1347PS200:El%:Credge -0.2354 PS100:El%:MR0.20 -0.1244 PS200:El%:MR0.20 -0.0280PS100:El%:MR0.70 -0.0025 PS200:El%:MR0.70 0.1395 PS100:El%:MR0.90 -0.0079PS200:El%:MR0.90 0.1117 Trscale2:CP0.70:MR0.20 -0.1119 Trscale4:CP0.70:MR0.20 -0.2020Trscale2:CP0.90:MR0.20 -0.1278 Trscale4:CP0.90:MR0.20 0.0395 Trscale2:CP0.70:MR0.70 -0.0482Trscale4:CP0.70:MR0.70 -0.0953 Trscale2:CP0.90:MR0.70 0.0207 Trscale4:CP0.90:MR0.70 -0.0181Trscale2:CP0.70:MR0.90 -0.0919 Trscale4:CP0.70:MR0.90 -0.0754 Trscale2:CP0.90:MR0.90 -0.0206Table 41: Coe�cients for the time model for order-based GCAs onTowns2.


