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Abstract 

In this paper, a diagnostic system based on a uniquely 
structured Kalman filter is developed for its application to in-
flight fault detection of aircraft engine sensors. The Kalman 
filter is a hybrid of a nonlinear on-board engine model 
(OBEM) and piecewise linear models. The utilization of the 
nonlinear OBEM allows the reference health baseline of the 
diagnostic system to be updated, through a relatively simple 
process, to the health condition of degraded engines. Through 
this health baseline update, the diagnostic effectiveness of the 
in-flight sensor fault detection system is maintained as the 
health of the engine degrades over time. The performance of 
the sensor fault detection system is evaluated in a simulation 
environment at several operating conditions during the cruise 
phase of flight. 

Introduction 
In-flight diagnostics of aircraft gas turbine engines is a 

critical task for the improvement of aviation safety. The 
capability to detect and/or isolate any faults, which may cause 
the engine to operate at an undesirable condition during flight, 
can improve not only the safety but also the efficiency of 
engine operation. Since the diagnostic system results can 
influence the follow-on actions taken by the flight crew or 
control system, it is critical that they be highly reliable. In-
flight diagnostic systems, therefore, must be designed with 
robustness to non-fault-related factors which exist in the real 
environment and can potentially mislead diagnostic systems to 
generate incorrect results. 

In-flight diagnostic systems are, in general, designed at a 
nominal health, or non-degraded, condition. This design 
condition becomes a reference health baseline for the 
diagnostics; any observed deviation in engine outputs from 
their reference condition values indicates the presence of a 
fault. In-flight diagnostic systems can perform effectively as 
long as the health of a real engine remains in the vicinity of 
the reference health baseline, thereby making engine output 
deviations prominent when a fault takes place. 
As the real engine degrades over time, in-flight diagnostic 
systems may lose their effectiveness. Engine health 
degradation is a normal aging process that occurs to all aircraft 
engines due to usage, and therefore is not considered as a 
fault. However, similar to various faults, degradation causes 
the engine outputs to deviate from their reference condition 
values. When engine output deviations eventually exceed a 

certain level, the diagnostic systems may misinterpret the 
health degradation as a fault and consequently generate a false 
alarm. 

One approach to maintaining the effectiveness of in-flight 
diagnostics applied to degraded engines is to periodically 
update or re-design the diagnostic algorithms based on the 
estimated amount of health degradation. Health degradation 
can be estimated by trend monitoring systems using post-flight 
data (refs. 1 to 3). Through the update based on the estimated 
health degradation, the health baseline of an in-flight 
diagnostic system can be shifted to the vicinity of the 
degraded engine, and therefore the system is able to 
effectively detect the presence of a fault. One issue with this 
approach is its practicality. Depending on the complexity of 
the diagnostic algorithms, the update process may take too 
much time and thus may be impractical. 

To address the above issue, a Kalman filter based in-flight 
sensor fault detection system is developed in this paper. The 
proposed Kalman filter is composed of a nonlinear on-board 
engine model (OBEM) and piecewise linear state-space 
models, which include Kalman gain matrices. With this 
architecture, the system update to account for engine health 
degradation is achieved through a relatively simple process: 
by feeding the estimated health degradation values into the 
OBEM. Thus, fault detection can be accomplished even 
without updating linear models and associated Kalman gains 
as the real engine degrades over time. 

In the following sections of this paper, the problem setup 
and the design approach for an in-flight sensor fault detection 
system are descried, followed by the application of the design 
methodology to a large commercial aircraft engine model. To 
validate its diagnostic effectiveness, the in-flight sensor fault 
detection system is evaluated in a simulation environment 
using various fault and degradation scenarios at multiple 
operating conditions during the cruise phase of flight. 

Nomenclature 
BST  Booster 
CGEKF  Constant Gain Extended Kalman Filter 
HPC  High Pressure Compressor 
HPT  High Pressure Turbine 
LPT  Low Pressure Turbine 
OBEM  On-Board Engine Model 
P2  Engine inlet pressure 
P25  HPC inlet pressure 
Pamb  Ambient pressure 
PLA  Power Lever Angle 
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PLKF  Piecewise Linear Kalman Filter 
PS3  Combustor inlet static pressure 
T2  Engine inlet temperature 
T3  Combustor inlet temperature 
T49  LPT inlet temperature 
Tamb  Ambient temperature 
TMHS23 BST metal temperature 
TMHS3  HPC metal temperature 
TMHS41 HPT nozzle metal temperature 
TMHS42 HPT metal temperature 
TMHS5  LPT metal temperature 
TMSHBC Combustor case metal temperature 
TMHSBL Combustor liner metal temperature 
VBV  Variable bleed valve 
VSV  Variable stator vane 
WF36  Fuel flow 
WSSR  Weighted Sum of Squared Residuals 
XN12  Fan speed, measured 
XN25  Core speed, measured 
XNH  Core speed, actual 
XNL  Fan speed, actual 
e  Environmental parameter vector 
h  Health parameter vector 
href  Reference health condition vector 
ucmd  Control command vector 
v  Sensor noise vector 
x  State variable vector 
y  Sensor output vector (controls/diagnostics) 
z  Sensor output vector (ambient/engine inlet) 

Problem Setup for an In-Flight Fault 
Detection System 

The objective of an in-flight fault detection system is to 
detect faults as quickly as possible from the observed engine 
outputs while avoiding false alarms and missed detections. 
Since false alarms are generated as the result of 
misinterpretation of non-fault-related factors, it is important to 
understand the influence of such factors on engine outputs. 
Engine health degradation is one of the non-fault-related 
factors that can cause false alarms. As shown in figure 1, 
engine health degradation is described as gradual deviations of 
health parameters from the initial healthy baseline. Health 
parameters are efficiencies and flow capacities of engine 
components such as compressors and turbines, and they 
indicate the health of such components. As they deviate from 
the initial healthy baseline, engine outputs will also deviate 
from their nominal condition values. Since degradation is a 
normal aging process that all aircraft engines will experience 
due to usage, it is not considered a fault, whereas a fault is an 
abnormal and unexpected event. However, as the engine 
output deviations increase with time due to the progression of 
health degradation, it becomes difficult to distinguish the 
presence of faults from health degradation through the 
observation of engine outputs. As a result, an in-flight fault 
detection system loses its diagnostic effectiveness as the 
engine degrades over time. An example of such loss of 
 

 
 

 
 

diagnostic effectiveness, due to health gradation, is shown in 
references 4 and 5 for the case of sensor fault diagnostics 
based on Neural Networks. 

To reduce the influence of health degradation on in-flight 
diagnostic performance, the fault detection system needs to be 
updated periodically based on the estimated amount of health 
degradation, as shown in figure 2. Health degradation can be 
estimated by trend monitoring systems using post-flight data 
(refs. 1 to 3). Since health degradation progresses gradually 
with time, it is expected that the actual change in health 
parameters is small for a number of flights. Therefore, the 
process of estimating health degradation and updating the in-
flight diagnostic system needs to be accomplished once per a 
number of flights. When the updating process is complete, the 
estimated health condition becomes the new reference baseline 
for the fault detection system, as shown in figure 3, until the 
next update process is completed. Through this periodic 
baseline update, the in-flight diagnostic system can operate in 
the vicinity of the degraded engine and thus maintain its 
effectiveness for fault detection. 

In this paper, it is assumed that a trend monitoring system, 
which is capable of estimating engine health degradation 
(health parameters), is available. Moreover, it is assumed that  
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this trend monitoring system will achieve a certain level of 
precision in its estimation performance. The rest of the paper 
focuses on the development of the in-flight sensor fault 
detection system based on the hybrid Kalman filter approach.  

Development of an In-Flight Sensor Fault 
Detection System 

The in-flight fault detection system described in this section 
is based on the Kalman filter approach with a unique hybrid 
architecture. The Kalman filter is composed of a nonlinear on-
board engine model (OBEM) and piecewise linear state-space 
models, which include Kalman gain matrices. The OBEM is a 
physics-based model designed to run in real time, while the 
piecewise linear state-space models are derived off-line from 
the OBEM at the nominal health baseline. These two main 
components are merged together to form the “hybrid” Kalman 
filter. Based on the residuals generated by the hybrid Kalman 
filter, a fault indicator signal is constructed for detecting 
faults. 

Hybrid Kalman Filter Design 
The design steps for the hybrid Kalman filter are exactly the 

same as those for the general linear Kalman filter. First, a 
nonlinear plant model is linearized at operating points. Then, 
Kalman gains are computed based on the linear 
representations of the plant model. When implemented, 
however, linear models and associated Kalman gains are 
integrated with the nonlinear plant model. An aircraft engine 
under consideration is represented by a nonlinear model of the 
following form: 
 

 
( )
( ) veuhxgy

euhxfx

cmd

cmd

+=
=

,,,
,,,

 (1) 

 
where x, h, ucmd, and e represent the vectors of state variables, 
health parameters, control command inputs, and 

environmental parameters, respectively. For given input 
values, the nonlinear functions f and g generate the vectors of 
state derivatives x  and sensor outputs y. The sensor outputs 
are corrupted by the white noise vector v. By linearizing the 
engine model at a reference health baseline (e.g., nominal 
health condition) and also at a specific environmental 
condition, the following state-space equations are obtained: 
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where A, B, C, D, L, and M are the state-space matrices with 
appropriate dimensions. The vectors xss, yss, uss contain the 
steady-state values at which the engine model is trimmed for 
linearization. The vector href represents a reference health 
baseline. The Kalman gain is computed based on the matrix 
pair [A, C], and the linear Kalman filter equation is given as 
follows: 
 

 ( ) ( ) ( )
( ) ( )sscmdssss

sscmdss

uuDxxCyy
yyKuuBxxAx

−+−=−

−+−+−=
ˆˆ

ˆˆˆ
 (3) 

 
The vectors x̂  and ŷ  represent the estimates of the state 

variables and sensor outputs, respectively. The matrix K 
represents the Kalman gain. In order for the Kalman gain to 
converge, the matrix pair [A, C] must be observable. 
It should be noted that the linear Kalman filter in 
equation (3) does not account for the influence of health 
parameter deviations from the reference health baseline in 
equation (2). Since the Kalman filter is designed with some 
robustness to system uncertainty in the form of process noise, 
it has robustness to health parameter deviations to some 
extent. However, the Kalman filter does not have the level of 
robustness that can handle the full health deterioration that an 
engine will experience over its lifetime. Therefore, as 
discussed in references 6 and 7, the Kalman filter must be 
updated periodically based on the estimated health condition 
in order to allow the Kalman filter to operate in the vicinity of 
a real engine as it degrades. The process of health baseline 
update for the general linear Kalman filter is described in the 
following four steps: 1) estimate the health degradation, 
2) trim the closed-loop engine model at the new reference 
health baseline (estimated health condition), which should be 
close to the actual health condition, and generate the steady-
state vectors, 3) linearize the open-loop engine model and 
generate state-space matrices, and then 4) compute the 
Kalman gain. Step 1 can be done off-line by a trend 
monitoring system which monitors the engine health 
degradation over time. Steps 3 and 4 may not be necessary 
according to reference 6, but step 2 alone can be a time-
consuming, troublesome process, especially when many 
operating points must be covered over the flight envelope. 
Thus, it is desirable to simplify the update process in order to 
make it feasible in the real application environment. 

Insight on simplifying the health baseline update process 
can be found from past studies. Reference 6 indicated that the 
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performance of the linear Kalman filter when applied to 
degraded engines can be improved significantly just by 
updating the steady-state vectors (xss, yss, uss) to the new values 
derived at degraded conditions. Moreover, reference 8 
demonstrated that the constant gain extended Kalman filter 
can operate over a wide operating range despite its simple 
architecture, which basically combines a nonlinear engine 
model with a single Kalman gain matrix computed at a single 
operating point. These studies indicate that the Kalman gain 
itself is not of primary importance to operate the Kalman filter 
in the environment where various elements, such as health or 
flight condition, are changing. Rather, the accuracy of the 
plant model is of primary importance. 

Based on the above knowledge, the hybrid Kalman filter is 
developed by replacing the steady-state vectors of 
equation (3) with the following nonlinear OBEM: 
 

 
( )
( )zuhxgy

zuhxfx

cmdrefOBEMOBEM

cmdrefOBEMOBEM

,,ˆ,

,,ˆ,

=

=
 (4) 

 

where the vector refĥ  represents the health condition 
estimated by a trend monitoring system, which is updated 
once per a number of flights. The vector z represents the 
measured parameters which define the flight condition. By 
integrating the OBEM and linear state-space models, the 
following hybrid Kalman filter is formed: 
 

 ( ) ( )
( ) OBEMOBEM

OBEM

yxxCy
yyKxxAx

+−=

−+−=
ˆˆ

ˆˆˆ
 (5) 

 
In equation (5), the steady-state vectors which appeared in 

equation (3) were replaced by the state variables and engine 
outputs generated by the OBEM. Furthermore, the control 
command inputs and associated matrices B and D in 
equation (3) do not appear in equation (5) since the effect of 
control command inputs is accounted for by the OBEM as 
seen in equation (4). 

There are a few things which should be noted about the 
hybrid structure. First, the hybrid Kalman filter depends on the 
OBEM but not vice versa. The OBEM runs in parallel with the 
actual engine at the estimated health condition without 
receiving any feedback signals from the hybrid Kalman filter. 
Therefore, the numerical stability of the OBEM is not 
influenced by the performance of the hybrid Kalman filter. 
The objective of the OBEM is to generate the state variables 
and sensor outputs at the estimated health condition. By 
updating the health condition of the OBEM, its state variables 
and sensor outputs can be brought close to the values of the 
degraded engine. Since health condition mismatches still exist 
between the OBEM and the degraded engine due to estimation 
errors, sensor output mismatches also exist between them. The 
objective of the hybrid Kalman filter, or specifically its linear 
component, is to further improve the sensor output matching 
between its estimates and the measured values through the 
tuning of the state variable estimates. As long as the OBEM 

operates in the vicinity of the degraded engine (i.e., health 
condition estimation errors are small), the hybrid Kalman filter 
will maintain its accurate sensor output estimation 
performance. 

Construction of Fault Indicator Signal 

The validation of the Kalman filter estimates is generally 
done by checking residuals, or the differences between the 
measured and estimated sensor output values. If residuals are 
large, it can be considered that the Kalman filter is generating 
inaccurate sensor output estimates because of the presence of 
an anomaly, such as a sensor fault, that was not accounted for 
in the Kalman filter design. To indicate the presence of a fault, 
a weighted sum of squared residuals (WSSR) is computed as 
follows: 
 

 ( ) ( )yyyyWSSR T ˆˆ 1 −Σ−= −  (6) 
 
where 
 

 2diag ⎡ ⎤∑ = σ⎣ ⎦  
 
The vector σ represents the standard deviation of the sensor 
measurements. The square matrix ∑ normalizes the residual 
vector ( )yy ˆ− . Since the hybrid Kalman filter design 
discussed in the previous section does not account for the 
presence of a sensor fault, the value of the fault indicator 
signal, WSSR, should increase when such a fault occurs in the 
system. The next step for detecting a fault is to compare the 
fault indicator signal to a pre-established detection threshold. 
When the fault indicator signal exceeds the detection 
threshold, it is considered that a fault indeed exists in the 
system. The establishment of a detection threshold can be 
based on statistics or achieved through systematic analysis. 

Overall Architecture of the In-Flight Sensor Fault 
Detection System 

The overall architecture of the in-flight sensor fault 
detection system is shown in figure 4. The fault detection 
system receives the measured variables (y and z) and control 
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commands (ucmd) from the on-board digital engine control 
unit, while receiving a periodically updated health baseline 
( refĥ ) from the trend monitoring system. The output of the 
fault detection system is one of two possibilities: fault exists 
or fault does not exist. The fault detection system reveals only 
the existence of a fault, not its identity or severity. 

Since the current system is designed without any restrictions 
on the types of faults it should detect, it may detect faults in 
something other than sensors. Additional faults that an engine 
may encounter during flight include actuator and component 
faults. Similar to the case of sensor faults, actuator and 
component faults must be detected through the observation of 
sensor output deviations. However, the level of sensor output 
deviations due to these faults heavily depends on location of 
sensors. Some of the actuator and component faults, therefore, 
may be very difficult to detect with a given set of sensors 
unless their fault magnitude is significantly large. Although it 
is desirable to detect any type of fault, the focus of the current 
system is placed on sensor fault detection. 

Fault detection is the first step in the diagnostic process. It 
only reveals the existence of a fault without identifying the 
nature of the detected fault. After fault detection comes fault 
isolation (refs. 6 and 7) and then fault accommodation (refs. 9 
and 10).  

Application of the Hybrid Kalman Filter 
Methodology to Aircraft Engine Model 

In this section, the in-flight sensor fault detection system 
based on the hybrid Kalman filter is applied to an aircraft 
engine model. A description of the engine model is given first, 
followed by a discussion of the piecewise linear models. Then, 
the derivation of the fault detection threshold is discussed. 

Engine Model 

The engine model used in this paper is a nonlinear 
simulation of an advanced high-bypass turbofan engine, a 
typical power plant for a large commercial aircraft. This 
engine model has been constructed as a Component Level 
Model (CLM), which consists of the major components of an 
aircraft engine. The CLM represents highly complex engine 
physics while designed to run in real time. Engine 
performance deviations from the nominal health baseline are 
modeled by adjustments to efficiency and flow capacity 
scalars of the following five components: Fan (FAN), Booster 
(BST), High-Pressure Compressor (HPC), High-Pressure 
Turbine (HPT), and Low-Pressure Turbine (LPT). There are a 
total of 10 of these adjustments which are called health 
parameters. The engine state variables, health parameters, 
actuator variables, and environmental parameters are shown in 
table 1. 

 
 
 
 

TABLE 1.—STATE VARIABLES, HEALTH PARAMETERS, 
ACTUATORS, AND ENVIRONMENTAL PARAMETERS 

State variables XNL, XNH, TMHS23, TMHS3 
TMHSBL, TMHSBC, TMHS41 
TMHS42, TMHS5 

Health 
parameters 

FAN efficiency, FAN flow capacity 
BST efficiency, BST flow capacity 
HPC efficiency, HPC flow capacity 
HPT efficiency, HPT flow capacity 
LPT efficiency, LPT flow capacity 

Actuators WF36, VBV, VSV 
Environmental 
parameters 

Altitude, Mach number 
Ambient temperature 

 
 
There are a total of 11 measured parameters (y and z in 

figure 4) that are available to the digital engine control unit of 
this engine. Table 2 shows seven sensors (y) along with their 
standard deviations given in percent of steady-state values at 
the ground maximum power condition. The control actions 
and diagnostics are based on those sensed variables. Table 3 
shows four additional measured parameters (z) along with 
their standard deviations given in their actual units. These four 
parameters indicate the ambient and engine inlet conditions. 
Some of them (Tamb, Pamb, and T2) are equivalent to the 
environmental parameters in table 1, while T2 and P2 are used 
for parameter corrections (ref. 11). 

 
 

TABLE 2.—STANDARD DEVIATIONS OF CONTROLS AND 
DIAGNOSTICS SENSORS (σ IN PERCENT OF STEADY- 

STATE VALUES AT GROUND MAXIMUM 
POWER CONDITION) 

Sensors (y) σ (%) 
XN12 0.25 
XN25 0.25 
P25 0.50 
T25 0.75 
PS3 0.50 
T3 0.75 
T49 0.75 

 
 
 
TABLE 3.—STANDARD DEVIATIONS OF AMBIENT AND 

ENGINE INLET SENSORS (σ IN ACTUAL UNITS) 
Sensors (z) σ 

Tamb 5.0 °F 
Pamb 0.1 psi 
T2 5.0 °F 
P2 0.1 psi 
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This nonlinear engine model is used to represent both the 
actual engine and the OBEM in the subsequent sections. 
Typically, there will be a mismatch between the model and the 
actual engine due to modeling errors and un-modeled 
elements. The influence of such a mismatch will be assessed 
in the later section. The engine model representing an actual 
engine operates at given health conditions, and its flight 
condition is specified by the three environmental parameters 
in table 1. The OBEM operates at estimated health conditions, 
and its flight condition is specified by three measured 
parameters: Tamb, Pamb, and T2. The actual engine and the 
OBEM receive the same three control commands (table 1). In 
the current control architecture, the power lever angle (PLA) 
is converted to desired corrected fan speed (an indicator of 
thrust). The control system adjusts three actuation values to 
cause the corrected measured fan speed to match the desired 
value. The closed-loop engine simulation runs with a 0.02-
second time step.  

Piecewise Linear Model Design 

The linear component of the hybrid Kalman filter (A, C, K 
in equation (5)) is designed using the nonlinear engine model 
through the following steps. The nonlinear engine model is 
first linearized at specific operating conditions. For each of the 
linear engine models, a Kalman gain is computed. Then, the 
piecewise linear models are saved in table lookup form. As the 
operating condition moves from one point to another, the 
piecewise linear models are interpolated based on a scheduling 
parameter as discussed in reference 7. 

The unique aspect of the hybrid Kalman filter design is that 
the piecewise linear models are integrated with the OBEM, 
instead of the steady-state vectors for the case of a pure 
piecewise linear Kalman filter design (refs. 7 and 12). As 
discussed earlier, having an accurate plant representation is of 
primary importance in the Kalman filter operation. Because of 
the usage of the OBEM, which is a good representation of an 
actual engine, the number of operating conditions at which the 
piecewise linear models are derived does not have to be as 
many as the case for a pure piecewise linear Kalman filter 
design. In this paper, the piecewise linear models are 
generated along the steady-state power setting line at a cruise 
condition. For the interpolation of the piecewise linear models, 
the corrected fan speed (XN12) is used as the scheduling 
parameter. A preliminary study indicated that this specific 
hybrid Kalman filter design maintains its accurate estimation 
performance over a wide operating range. When a similar 
study was done for the hybrid Kalman filter using piecewise 
linear models generated at sea level static condition, the 
estimation performance was not as good as the case of cruise 
condition design. Better estimation performance may be 
achieved by linking linear models generated at multiple flight 
conditions, such as climb and cruise. However, it is desirable 
to keep the number of piecewise linear models as small as 
possible, since a lesser number of linear models reduces 
design complexity and also improves execution speed. 

When the hybrid Kalman filter was implemented in a 
simulation environment, the system was discretized to run at 

the frequency of 50 Hz. The parameters used by the hybrid 
Kalman filter algorithm are corrected based on the engine inlet 
condition T2 and P2.  

Selection of the Detection Threshold 

The selection of the detection threshold is a critical part in 
the diagnostic system design. Setting the threshold at a low 
value increases the chance of detecting faults but also 
increases the chance of generating false alarms. Conversely, 
setting the threshold at a high value decreases the chance of 
generating false alarms but also decreases the chance of 
detecting faults. As such, the balance between true positive 
(fault detection) and false positive (false alarms) is adjusted by 
the threshold. It is statistically impossible to achieve zero false 
alarm rates while detecting any faults, but it is the general 
consensus that the false alarm rate should be maintained as 
low as possible. Keeping that in mind, the threshold is 
determined in this section. 

A false alarm is the result of misinterpretation of non-fault-
related factors1 which exist in various forms to various 
degrees. If the influence of such factors on the fault indicator 
signal is known, a threshold can be derived from that 
knowledge. Among the numerous non-fault-related factors 
that can cause false alarms, health condition mismatches are 
used as an example to derive the threshold. 

As discussed earlier, in the current approach, the health 
baseline of the OBEM must be updated periodically as the 
health of the real engine degrades gradually with time. 
However, the health baseline update will never be exact in the 
real environment, and therefore, health condition mismatches 
will always exist between the OBEM and the real engine. 
These mismatches can cause the fault indicator signal (WSSR 
in equation (6)) to increase. If the threshold is set to a point 
higher than the maximum value that the fault indicator signal 
can reach due to health condition mismatches, then false 
alarms can be avoided at least for the case of health condition 
mismatches. 

To investigate the influence of health condition mismatches 
on the fault indicator signal, 300 cases of health degradation 
and associated health condition estimates were first generated. 
Three hundred cases of health degradation were created by 
randomly shifting all 10 health parameters shown in table 1. 
The deviation values were uniformly distributed over the 
range from 1 to 5 percent, and this level of deviation is beyond 
the typical level of engine-to-engine variation due to 
manufacturing tolerance. Estimated health conditions were 
created by adding estimation errors to the 300 cases of health 
degradation. The estimation error for each health parameter 
was a random number with uniform distribution over the range 
of ±0.5 percent. As mentioned earlier, it is assumed that a 
trend monitoring system is available, and its estimation 
accuracy is assumed to be within ±0.5 percent from the actual 
values. 
                                                           
1Engine health degradation is one of these factors, but its contribution to the cause of 
false alarms is reduced through the health baseline update. Other examples of non-fault-
related factors are customer bleeds, horsepower extractions, and dirt washout from fan 
and compressors. 



NASA/TM—2006-214418 7

Using the above 300 health condition mismatch cases, the 
engine and the hybrid Kalman filter were run for 100 seconds 
at a specific operating point. For each mismatch case, the 
hybrid Kalman filter generated a time history of the fault 
indicator signal. Then, the maximum value that the fault 
indicator signal reached during the 100-second run was saved 
for each of the 300 cases. Based on the maximum WSSR 
values for the 300 cases, a histogram was generated to 
investigate the variation of the fault indicator signal due to 
health condition mismatches. This process was then repeated 
at various flight conditions with various power settings. 
Examples of the histograms generated at three power settings 
(PLA = 65, 69, and 70) at a cruise condition are shown in 
figure 5. In the current implementation, the fault indicator 
signal (WSSR) has been scaled and also processed by a low 
pass filter with a cutoff frequency of 0.1 rad/sec. The arrows 
in the figure indicate the largest maximum WSSR value 
among the 300 cases. 

From the histograms generated at various operating 
conditions, it was found that the largest maximum WSSR 
value generally increases and becomes an outlier in the 
distribution as the power setting increases. This tendency can 
be seen in figure 5. After extensive study, it was found that 
this is due to the fact that health condition mismatches (as 
large as ±0.5 percent) can on rare occasions result in quite 
large mismatches in the state variables and sensor outputs 
between the engine and the OBEM at high power settings. 
Under the presence of such large mismatches in sensor 
outputs, the hybrid Kalman filter performs poorly since its 
linear component can improve the sensor output matching 
only to a limited extent. 

From the above observation, it would be a reasonable 
approach to use different threshold values at different power 
settings in order to achieve effective fault detection 
performance. The threshold selection in this section is focused 
on the cruise condition where the power setting is in the 
intermediate range. At high power settings, such as takeoff 
and climb, different thresholds must be determined. 

As can be seen in figure 5, the largest maximum WSSR 
value becomes a noticeable outlier in the distribution around 
70° PLA. Similar tendencies were also observed at different 
flight conditions. Since the nominal power setting is in the 
range of 60 to 65° PLA during cruise phase, the threshold is 
set to the value of 1.60. With this threshold value, some 
margin is available at 65° PLA. This threshold value is used 
for the PLA value up to 69°. To further ensure that the 
threshold violation is due to the existence of a fault, the 
persistency of threshold violation is checked before declaring 
the fault. It was determined that the threshold must be violated 
25 consecutive time steps (0.5 second) to declare fault 
detection. The threshold value and persistency test are 
adjusted based on the engineering judgment of the designer, 
and the performance of the fault detection system will vary 
with those design factors. In the following section, the 
performance of the fault detection system is evaluated using 
the threshold value of 1.60. 

 

Performance Evaluation 
In this section, the sensor fault detection system is 

evaluated at a cruise condition. First, the minimum bias that 
the system can detect for individual sensors is determined at 
two power settings (PLA = 65 and 69) with three different 
health condition cases. Then, the fault detection system is 
evaluated to determine if it would generate a false alarm 
during transient operations by running the engine simulation 
model through moderate transient scenarios. 

Sensor Bias Detection 

The value of the detection threshold determined in the 
previous section was based on the 300 cases of health 
condition mismatch between the engine and the OBEM. With 
this threshold value, no false alarm is generated at least for 
those 300 cases of health condition mismatch. As discussed 
earlier, decreasing the chance of generating false alarms also 
decreases the chance of detecting faults. Thus, to evaluate the 
suitability of the threshold value, the minimum bias that can 
be detected for individual sensors is determined in this section. 
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If the level of detectable sensor bias is not acceptable, the 
threshold value must be adjusted accordingly. 

The minimum detectable bias is determined for individual 
sensors by running the engine simulation and the hybrid 
Kalman filter for 100 seconds at a steady-state cruise 
condition. When the fault indicator signal (WSSR) exceeds the 
detection threshold for 25 consecutive time steps, a fault is 
detected. 

Table 4 shows the minimum bias detected for each sensor at 
65° PLA at three different health conditions. The bias values 
are given in terms of measurement standard deviations. For 
the nominal health case, both the engine and the OBEM are 
set to the nominal health condition. This case represents an 
ideal scenario where no health mismatches exist between the 
engine and the OBEM. For degradation case A, the engine and 
the OBEM are set to degraded and estimated health 
conditions, respectively. This case represents a more realistic 
scenario where health condition mismatches exist. As can be 
seen in figure 5, health condition mismatches cause the WSSR 
value to vary. The health condition used in case A is the one 
whose WSSR value represents the 90th percentile value in the 
65° PLA histogram of figure 5; the WSSR values of 270 cases 
(90 percent) are less than or equal to the WSSR value at the 
health condition used in case A. Degradation case B is similar 
to case A, except that the health condition used in case B 
results in the largest WSSR value among the 300 cases. 

 
TABLE 4.—MINIMUM DETECTABLE SENSOR BIAS AT 65° 
PLA (NUMBERS IN TERMS OF STANDARD DEVIATIONS) 

 Nominal 
health Degradation A Degradation B 

XN12 6.4/–6.4 6.9/–4.6 7.4/–3.2 
XN25 5.4/–5.4 5.4/–3.9 6.4/–3.0 
P25 1.9/–1.9 1.6/–1.8 1.3/–1.6 
T25 2.9/–2.9 2.2/–2.8 1.7/–3.3 
PS3 2.4/–2.4 1.4/–3.2 0.9/–3.7 
T3 3.7/–3.7 3.0/–3.8 2.3/–3.4 

T49 4.4/–4.5 4.0/–4.0 3.6/–3.2 
    

Tamb 0.4/–0.5 0.3/–0.5 0.2/–0.6 
Pamb 0.7/–0.6 0.8/–0.5 0.8/–0.3 
T2 0.6/–0.6 0.7/–0.4 0.7/–0.3 
P2 ---------- ---------- ---------- 

 
From table 4, it can be observed that, for the nominal health 

case, the bias magnitudes that can be detected are symmetric 
between the positive and negative directions. Such symmetry, 
however, does not appear in degradation cases A and B where 
the health condition mismatches exist. The health condition 
mismatches result in sensor output mismatches between the 
engine and the OBEM. Consequently, the WSSR value 
increases and gets closer to the detection threshold as seen in 
figure 5. Therefore, a smaller magnitude bias, when compared 
to the nominal health case, can be detected if a bias and the 
corresponding sensor’s output mismatch are in the same 
direction (positive or negative). On the other hand, if a bias is 
in the opposite direction of the corresponding sensor’s output 
mismatch, the bias counteracts the sensor output mismatch to 
some extent, and thus it requires a larger magnitude to be 

detected. From table 4, it can be observed that the skewness 
between the positive and negative biases is more prominent in 
degradation case B than case A. 

Table 4 also shows that very small biases are detected for 
those sensors which indicate the ambient and engine inlet 
conditions. At first glance, these numbers may lead one to 
conclude that the fault detection system is too sensitive to 
biases in those sensors. The reason for such sensitivity is that 
three sensors (Tamb, Pamb, and T2) define the flight condition 
for the OBEM and thus a bias in these sensors causes the 
OBEM to operate at a different flight condition. Since altitude 
and Mach number can be calculated from those three 
measurements, it may be necessary to compare the calculated 
values to measured altitude and Mach number in order to 
validate those three sensors. The fault detection system was 
not able to detect a bias in the P2 sensor. This sensor is 
currently used for the correction of pressure measurements. 
Since both measured and estimated pressure values are 
corrected by the P2 value, a bias in this sensor does not 
increase the residuals. 

Table 5 shows the minimum bias detected for each sensor at 
69° PLA at three different health conditions. This example is 
similar to the previous case except that the power setting is 
higher, and thus health condition mismatches can results in the 
WSSR value closer to the detection threshold. For the nominal 
health case, both the engine and the OBEM are set to the 
nominal health condition. For degradation cases C and D, the 
engine and the OBEM are set to degraded and estimated 
health conditions, respectively. The health condition mismatch 
of case C results in the 90th percentile WSSR value in the 69° 
PLA histogram of figure 5, whereas that of case D results in 
the largest WSSR value among the 300 cases. 

 
TABLE 5.—MINIMUM DETECTABLE SENSOR BIAS AT 69° 
PLA (NUMBERS IN TERMS OF STANDARD DEVIATIONS) 

 Nominal 
health Degradation C Degradation D 

XN12 6.0/–5.9 6.0/–4.5 1.0/–10.4 
XN25 5.9/–6.0 5.5/–4.4 1.1/–7.0 
P25 1.9/–1.9 1.6/–1.8 2.6/–0.3 
T25 3.0/–2.9 2.7/–2.7 3.3/–0.9 
PS3 2.3/–2.3 1.5/–2.7 2.5/–0.4 
T3 3.5/–3.5 2.5/–3.8 2.8/–0.8 

T49 4.2/–4.2 3.2/–4.3 2.1/–1.6 
    

Tamb 0.4/–0.4 0.4/–0.5 0.6/–0.1 
Pamb 0.7/–0.6 0.7/–0.6 0.1/–1.0 
T2 0.6/–0.6 0.7/–0.5 0.1/–0.8 
P2 ---------- ---------- ---------- 

 
At the nominal health condition, the fault detection system 

appears to perform in a consistent manner; the level of 
detectable bias at this power setting is similar to that of the 
previous case of the 65° PLA, and the detectable bias 
magnitudes are symmetric between the positive and negative 
directions. The above observation, however, does not hold for 
degradation cases C and D. Especially for degradation case D 
where the WSSR value gets very close to the detection 
threshold, the level of skewness between the positive and 
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negative directions is very prominent. For some of the sensors, 
smaller magnitude biases, when compared to the nominal 
health case, can be detected in both positive and negative 
directions. This gives an impression that it is advantageous to 
have health condition mismatches so that smaller magnitude 
biases can be detected. It should be understood, however, that 
the closer the WSSR gets to the detection threshold due to 
health condition mismatches, the higher the chance of 
generating false alarms becomes. From tables 4 and 5, it is 
obvious that health condition mismatches and power settings 
have significant influence on the level of detectable sensor 
biases. The reader should be reminded that these results show 
the level of bias that will trigger a fault detection alarm. The 
detection algorithm will not identify the biased sensor; it only 
indicates that a fault exists. 

Minor Transient Operation for False Alarm Test 

The detection threshold used in this paper has been fixed to 
a specific value for its application during cruise phase. The 
fixed threshold seems to be applicable as long as the engine 
operates under steady-state conditions. Since it is desirable to 
extend the operation of the fault detection system to transient 
cases, the applicability of the fixed threshold is evaluated in 
this section by running the engine simulation through minor 
transient operations. If minor transient operation causes the 
WSSR value to exceed the fixed threshold, an adaptive 
threshold, whose value changes as the engine undergoes 
transients, must be used as was done in reference 13 in order 
to avoid false alarms. 

For this evaluation, the engine and the hybrid Kalman filter 
are run under the following six transient scenarios: 
 
1) PLA is ramped from 60 to 69° in 1 second. After steady-

state operation, PLA is ramped back to 60° in 1 second. 
2) In addition to the PLA ramp in scenario 1, altitude is 

increased by 1000 ft in 10 seconds. After steady-state 
operation, altitude is decreased by 1000 ft in 10 seconds. 

3) In addition to the PLA ramp in scenario 1, Mach number is 
increased by 0.02 in 5 seconds. After steady-state 
operation, Mach number is decreased by 0.02 in 5 seconds. 

4) Same as scenario 1 except that a turbine clearance model is 
added to the engine model. 

5) Same as scenario 2 except that a turbine clearance model is 
added to the engine model. 

6) Same as scenario 3 except that a turbine clearance model is 
added to the engine model. 

 
Each transient scenario is 200 seconds long, and the time 

histories of three inputs (PLA, altitude, Mach number) are 
shown in figure 6. Scenarios 4 through 6 are a repeat of 
scenarios 1 through 3 except that a turbine clearance model is 
added to the engine model. Since it is unlikely that the real 
engine is perfectly modeled in the OBEM, there will be model 
mismatch, other than health condition mismatches, between 
the real engine and the OBEM. In scenarios 4 through 6, a 
turbine clearance model, which represents the turbine 
clearance dynamics with high fidelity, is added only to the 
 

 
 
engine model representing a real engine in order to introduce 
unknown dynamics. The presence of the turbine clearance 
model introduces sensor output mismatches between the 
engine and the OBEM during transient operations. 

The engine simulation and the hybrid Kalman filter were 
run through the six transient scenarios at five health 
conditions: nominal health and degradation levels used in 
cases A through D in tables 4 and 5. Table 6 shows the result 
of this simulation test. The symbol “O” indicates that no false 
alarm was generated, “X” indicates that a false alarm was 
generated. Figure 7 shows the time histories of the WSSR for 
transient scenario 2 at the nominal health (solid line) and 
degradation D (dashed line). 

 
TABLE 6.—FALSE ALARM TEST WITH MINOR TRANSIENT 

SCENARIOS (Ο: NO FALSE ALARM, X: FALSE ALARM) 
  Transient scenario 
  1 2 3 4 5 6 

Nominal O O O O O O 

Degr. A O O O O O O 

Degr. B O O O O O O 

Degr. C O O O O O O 

H
ea

lth
 c

on
di

tio
n 

Degr. D O X O O X O 
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As was noted in figure 5, the WSSR gets very close to the 

detection threshold at degradation case D with 69° PLA. The 
minor transient of scenario 2, in which both PLA and altitude 
are ramped, causes the WSSR to exceed the threshold 
temporarily but long enough (at least 25 consecutive time 
steps) to generate a false alarm. In order to avoid false alarms, 
the threshold value or the period of persistency check must be 
adjusted as the engine undergoes transient operations. 

Another observation made during the transient test is that 
the turbine clearance model caused an increase in the sensor 
output mismatch between the engine and the OBEM at the 
nominal health and degradation case D. However, in other 
degradation cases, the turbine clearance model caused a 
reduction in the sensor output mismatch. Similar to some of 
the sensor bias cases, it appears that the turbine clearance 
model counteracted health condition mismatch, resulting in 
better sensor output matching between the engine and the 
OBEM. Thus, the presence of unknown dynamics in the 
engine does not mean that the estimation performance of the 
Kalman filter always gets worse. 

Discussion 
The unique structure of the hybrid Kalman filter possesses 

advantages over conventional Kalman filter approaches and is 
well suited for application to in-flight diagnostics. In this 
section, some benefits of the hybrid architecture are discussed. 

One obvious benefit of the hybrid architecture is that the 
reference health baseline of the hybrid Kalman filter can be 
updated to the health condition of the degraded engine in a 
relatively simple manner: by feeding the estimated health 
condition values to the OBEM. This update process is much 
simpler than for the case of the pure piecewise linear Kalman 
filter (PLKF) approach. Without the baseline update, the fault 
detection system loses its diagnostic effectiveness as the real 
engine degrades over time. To evaluate the significance of the 
baseline update, the hybrid Kalman filter was applied to the 
300 degraded engines, used in the previous sections, without 
going through the health baseline update. When the reference 

baseline of the hybrid Kalman filter was fixed to the nominal 
health condition, the fault detection system misinterpreted 
degradation as a fault in 283 engines out of 300 (94.3 percent 
false alarm rate). Obviously, such a high false alarm rate is not 
acceptable, and thus the baseline update is a necessary step. 

Another benefit is that the hybrid Kalman filter combines 
the advantages of the constant gain extended Kalman filter 
(CGEKF) approach (refs. 8 and 14) and the PLKF approach 
(ref. 7). The advantage of the CGEKF over the PLKF is its 
capability to capture the nonlinearity of engine operation 
under the influence of faults. For instance, when an engine 
experiences a fault, the control system adjusts the actuator 
positions to meet its objective, such as maintaining fan speed 
at the commanded value. Because of such control adjustments, 
the engine moves to a new operating condition which may be 
a significant deviation from the condition before the fault 
occurrence. Such nonlinear engine operation due to closed-
loop control effects in the presence of fault can be captured by 
the CGEKF and the hybrid Kalman filter but not by the PLKF. 
Although the CGEKF approach has such an advantage over 
the PLKF approach, it also has disadvantages in other areas. 
As noted in reference 14, the numerical stability of the 
CGEKF may not be as robust as that of the PLKF. Since the 
nonlinear engine model of the CGEKF receives feedback 
signals (residuals multiplied by a Kalman gain matrix), large 
residuals may drive the nonlinear engine model out of the 
range that the model was designed for. If this happens even for 
a short period, the numerical stability of the CGEKF may be 
lost. On the other hand, in the hybrid Kalman filter approach, 
the numerical stability of the nonlinear engine model is not 
influenced by the estimation process since the OBEM does not 
receive any feedback signals. The OBEM runs as a stand-
alone engine simulation, generating state variables and sensor 
outputs at a given health baseline. Based on the information 
provided by the OBEM, the Kalman filter algorithm is 
processed using the piecewise linear state-space models. As 
such, the hybrid Kalman filter possesses the numerical 
stability of the PLKF approach and also the nonlinear 
estimation capability of the CGEKF approach. 

Finally, the hybrid Kalman filter approach can be easily 
expanded to a bank of Kalman filters for its application to 
fault isolation (refs. 6 and 7). In the hybrid architecture, only 
the linear component of the filter (A, C, K) must be expanded 
while keeping only one OBEM. By combining one OBEM 
and multiple piecewise linear models, each of which is 
designed based on a unique fault hypothesis, a bank of hybrid 
Kalman filters can be formed. Therefore, this level of 
expansion is similar to the case of the pure PLKF approach. 

Conclusion 
The hybrid Kalman filter approach was developed for its 

application to in-flight sensor fault detection. The hybrid 
Kalman filter has a unique architecture which is composed of 
a nonlinear on-board engine model (OBEM) and piecewise 
linear state-space models. In this hybrid architecture, the 
OBEM functions as an integral part between the off-line and 
real-time diagnostic systems; it operates at a reference health 
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baseline specified by a trend monitoring system and provides 
information needed to process the Kalman filter algorithm for 
in-flight diagnostics. Because of this integration, the in-flight 
sensor fault detection system does not need to deal with 
engine health degradation by itself. 

To validate this approach, the in-flight sensor fault 
detection system was evaluated in a simulation environment 
using a nonlinear model of a large commercial aircraft engine. 
Its performance was evaluated at multiple steady-state 
operating points at a cruise condition and also evaluated over 
minor transients. The performance of the sensor fault detection 
system was satisfactory in general; however, further study is 
needed in some areas to improve its capability. It was found 
that a fixed threshold is not good enough to cover the range of 
operation that an engine may undergo during flight. For some 
cases of health condition mismatch between the engine and the 
OBEM, the value of the fault indicator signal became large at 
high power settings. In order to avoid false alarms, the 
threshold must be adjusted according to the power setting and 
also adjusted during transients. Therefore, the utilization of an 
adaptive threshold is needed to improve the overall capability 
of the in-flight sensor fault detection system. 
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