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Abstract. Conversational Case-Based Reasoning (CCBR) systems engage a 
user in a series of questions and answers to retrieve cases that solve his/her 
current problem. Help-desk and interactive troubleshooting systems are among 
the most popular implementations of the CCBR methodology. As in traditional 
CBR systems, features in a CCBR system can be expressed at varying levels of 
abstraction. In this paper, we identify the sources of abstraction and argue that 
they are uncontrollable in applications typically targeted by CCBR systems. We 
contend that ignoring abstraction in CCBR can cause representational 
inconsistencies, adversely affect retrieval and conversation performance, and 
lead to case indexing and maintenance problems. We propose an integrated 
methodology called Taxonomic CCBR that uses feature taxonomies for 
handling abstraction to correct these problems.  We describe the benefits and 
limitations of our approach and examine issues for future research. 

1 Introduction 

Case-Based Reasoning (CBR) systems support problem-solving by recalling and 
applying those experiences or cases that are similar to the problem at hand (Kolodner, 
1993). A wide range of applications has been developed using CBR methodology. By 
far, the most frequently developed real-world applications of CBR include help-desk, 
interactive troubleshooting, and equipment maintenance systems. These systems 
engage a user in a series of questions and answers to retrieve cases that solve his/her 
problem. They have been referred to in the literature as Conversational CBR (CCBR) 
systems  (Aha et al., 2001). 
A pervasive issue in CCBR case bases, and case bases in general, is that the case 
contents and their features may be expressed at different levels of abstraction (Baudin 
& Waterman, 1998; Kolodner, 1993; Shimazu, 1998).  For example, a feature in a 
printer troubleshooting application could be expressed generally as “My printer is 
showing an error message” or more specifically as “My printer is showing a paper out 
error.”  Ignoring abstraction can create unique problems for end users, case base 
developers, and the CCBR system.  
In this paper, we note that the existing CCBR approaches only partially address 
abstraction. We propose that CCBR systems should be designed with an integrated 
approach for supporting abstraction. The remainder of the paper is organized as 
follows. In Section 2, we identify the problems that result when abstraction is ignored 
in CCBR. In Section 3, we develop an integrated methodology called Taxonomic 
CCBR to overcome these problems. Section 4 summarizes the benefits and limitations 
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of our approach. Section 5 presents related work on CCBR systems. Section 6 
concludes the paper. 

2 Abstraction in CCBR Systems  

Features of a CCBR system may be expressed at different levels of abstraction. For 
example, a problem in the domain where weather is a factor in decision-making (e.g., 
a Noncombatant Evacuation Operation Planning (DoD, 1997)) may record weather 
conditions at the following levels of abstraction: 
(1.)  The weather was bad 

(1.1)  The weather was stormy 
(1.1.1)  The wind speed was very high 

(1.1.1.1) The wind speed was over 90 mi./hr. 
Abstraction affects interactive decision support systems in two ways: (1) The 
communication between a human user and the system becomes problematic (Furnas 
et al., 1987), and (2) the design, development, and maintenance of systems for 
optimal performance becomes a problem (Pedrycz & Vukovich, 2000).  CBR systems 
are prone to the same problems.  
In general, CBR systems have dealt with abstraction in a limited way (Kolodner, 
1993; See for example Alterman (1986)). For traditional CBR systems that are highly 
structured and do not engage in a conversation, the communication between human 
user and the system is usually not a problem. In these systems, the approach has been 
to design abstraction into them.  For example, Bergmann and Wilke (1996) and  
Branting and Aha (1995) have used cases and features at  predefined levels of 
abstraction to reduce the representational complexity and to improve the retrieval 
efficiency of case bases. Likewise, Drastal and Czako (1989) compute an abstract 
representational feature space for inductive learning to improve the learning and 
classification accuracy of their system. These systems are restricted to well-defined 
application domains such as hierarchical planning and do not require conversation. 
The assumption that system developers can define feature spaces at suitable levels of 
abstraction for optimal system performance is unrealistic for a highly dynamic CCBR 
application. In CCBR, not only can case features occur at multiple levels of 
abstraction, but neither the feature set nor their levels of abstraction can be 
determined with certainty in advance and over the life-cycle of the case base. The 
problem is that the domain is often both ill structured and dynamic (i.e., features and 
cases continue to be added over the life cycle of the case base). In addition, end users 
have different backgrounds and degrees of expertise than case authors.  In the 
following subsections, we examine the sources of abstraction and the ways in which it 
affects CCBR systems. 

2.1 Sources of Abstraction 

We identify the following sources of abstraction: 
1. Variations in the level of domain expertise between users and developers: The 

level of domain expertise is the dominant factor in a user’s ability to describe and 
formulate problems (i.e., specify features and their values). Experts can be very 
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precise, complete, or very abstract in their description, whereas non-experts’ 
description are usually imprecise, incomplete, or ambiguous (Arocha & Patel, 
1995).  Consequently, there can be significant differences in the levels of 
abstraction between users and developers.  

2. Variations in information availability and the cost of its acquisition: Lack of 
information or the expense of acquiring it at the desired level of abstraction (i.e., 
detail) can limit a user’s ability to provide it. For example, in the description of a 
weather condition described above, the wind speed information may not be 
available or it may be too expensive to acquire because it may require a setup of 
measuring instruments. This is particularly true of customer support and 
troubleshooting applications where information may be unavailable or may only 
become available in the future. Variations in information availability and the cost 
of acquisition affect the level of abstraction.  

3. Variations in decision-making needs:  The most appropriate level of abstraction 
depends on user’s decision-making and problem solving needs (Rosch, 1978). 
Often the information is available at a higher level of precision (i.e., lower level of 
abstraction), however, information at a lower level of precision (i.e., higher level of 
abstraction) may be sufficient. Variations and differences in decision-making 
needs affect the appropriate level of abstraction. 

These sources are to a large extent uncontrollable and CCBR systems must be 
capable of tolerating their effects. Ignoring them can result in problems discussed in 
the following section.     

2.2 Problems Due to Ignoring Abstraction 

Abstraction has not been addressed adequately in CCBR systems. However, the issue 
of vocabulary differences between end users and case authors has been recognized 
(Shimazu, 1999). Such differences adversely impact the user system communication 
and limit the effective use of a CCBR system. Still, the connection between 
abstraction as a source of vocabulary differences and its adverse impact on CCBR 
performance has not been established.  In a CCBR system, abstract features are 
frequently used to classify a problem into a case (Trott & Leng, 1997). However, a 
common over simplification is mixing the abstract features with the more specific 
case features into a single level (e.g., a list of question answer pairs, (Aha et al., 
1998)). This leads to the following problems: 
1. Unwanted correlation among features: Placing abstract and specific features in the 

same level introduces significant unwanted correlation among them. This can be 
problematic for nearest-neighbor matching functions that assume independent 
uncorrelated features. Often, artful weighting of questions is required to address 
such feature correlation (Trott & Leng, 1997). 

2. Limited ability to assess similarity: Ignoring abstract relations between features is 
in effect ignoring their similarity. In systems that ignore abstraction, two cases 
describing the same problem using different features related by abstraction cannot 
be assessed as similar. This leads to redundancy and inconsistency among cases 
(Everett & Bobrow, 2000; Racine &Yang, 2001). 

3. Redundant questions are generated during conversation: Depending on the user’s 
approach to problem description, redundant and irrelevant questions are presented 
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by the conversation algorithm. Often, this is a result of ignoring the abstract 
relations between questions. Background knowledge in the form of rules and 
models can be used to answer other questions and overcome the problem (Aha et 
al., 1998).  Question selection algorithms using frequency or information theoretic 
measures are likely to be misled by abstraction (e.g., Aha et al., 1998, Yang & Wu, 
2001), as are those that use probabilistic or belief net strategies (e.g., Montazemi & 
Gupta, 1996; McSherry, 2001).     

4. Loss of decisional information due to feature generalization: When a single level 
of feature abstraction is encoded, often abstract features are retained over specific 
features to improve the applicability of a case to new problems. This can be 
problematic because discarding specific features during indexing can cause loss of 
vital information needed for discriminating cases (Kolodner, 1993).  

5. Difficulty of assigning indices: Not unlike authors of scientific publications who 
assign keywords to their paper, case authors face a difficult problem of indexing, 
without the benefit of a predefined question list. A case author often tends to index 
a case using multiple features that express the same semantic feature at different 
levels of abstraction. This is done to improve the recall and to manage 
conversation (Trott & Leng, 1997).  

6. Inconsistencies develop in case representation when new features are added: 
Introducing new generalized features without the ability to accommodate 
abstraction relationships among them can yield situations where related cases are 
expressed and represented with a combination of features that are conflicting or at 
inconsistent levels of abstraction.  

In the following section, we propose an integrated methodology to handle abstraction 
in CCBR systems. To this end, we recognize abstract relations between features and 
explicitly structure them into taxonomies. We exploit these taxonomies to develop a 
new case representation scheme. We call a CCBR system that incorporates this 
methodology as a Taxonomic CCBR system.  

3 Proposed Taxonomic CCBR System 

3.1 Case Representation with Feature Taxonomies 

CCBR tools that support problem solving typically use a case representation structure 
that includes a problem description and a solution.  The problem is described by a set 
of question-answer (i.e., feature and a value) pair, which is the basis of case retrieval 
(Aha et al. 1998; Gupta, 1998).  For example, a printer troubleshooting CCBR 
application may have the following question answer pair: “Do you have a print 
quality problem?=Yes.” 

We assume that the Taxonomic CCBR includes the following: 
1. A set of questions Q that are used for indexing cases. The ith member of Q is 

denoted by qi   (0 < i ?  n, where n = number of questions in the case base) and has 
a set of answers ai applicable to it. The jth member of ai   is denoted by ai,j  (0 < j ?  
mi, where mi = number of possible answers for qi ). We denote a specific question 
answer pair (qi, ai,j) by qai,j. We denote the set of all possible question answer pairs 
by QA. For example, in a printer troubleshooting CCBR application, a question in 
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the set Q regarding the nature of print quality problems could be “What does the 
print quality look like?” with “Black Streaks”, “Faded”, and “No Problem” as 
potential answers. For simplicity, we consider only binary and nominal valued 
questions. Our experience shows that, in CCBR applications, a disproportionately 
large number of questions are binary and nominal valued (Gupta, 1998). 

2. Feature Taxonomies: We define a feature taxonomy T to be an acyclic directed 
graph comprising nodes tj  (0 < j ?  l, where l = number of nodes in the taxonomy).  
A node tj in a taxonomy includes a question-answer pair drawn from the set QA. It 
is related to a set of parent nodes ? j. The relationships between node tj and its 
parents are either of type is-a-type-of or is-a-part-of.  If the set ? j is empty tj is the 
root node of the taxonomy.  The node tj is also related to a set of child nodes 
denoted by ? i. If the set ? i is empty, tj is a leaf node in T. The relationships between 
nodes are transitive. If a node ti is a ancestor of tj we denote this relationship by ti = 
? (tj). Also, an ancestor node is said to subsume all its descendent nodes. Figure 1 
shows a subset of the taxonomy from a CCBR application for printer 
troubleshooting.   In this figure, the node t2 representing question-answer pair 
“Print quality problem?=Yes” has one parent node t1 and two child nodes t5 and t6 .  

Legend

t2 Print quality problem? 
=Yes

t5 Quality problem looks 
like?= Black Streaks

t3 Printer prints black 
pages? =Yest1 Printing problem?=Yes

t6 Quality problem looks 
like?= Faded

t4 Printer prints blank 
pages? =Yes

t7 Printer prints extra 
blank pages? =Yesis-a-type-of relationship  

Figure 1. Subset of a feature taxonomy from a printer troubleshooting application 

A Taxonomic CCBR includes a set of taxonomies each representing a family of 
question-answer pairs interrelated by abstract relations. 

3. A set of cases C:  We define a case Ck  (0 < k ?  r, where r = number of cases in the 
case base) to include the following: 
a. Problem State: This is a set of question-answer pairs Pk. The members of Pk 

are drawn from the set of question-answer pairs QA in the case base and are 
denoted by pk,i  (0 < i ?  rk, where rk = number  of question answer pairs in  Pk). 
We apply the following representational rules to the question-answer pairs in 
pk,i:  
i. Only one question-answer pair from a taxonomy can be included in a 

case: No two question-answer pairs in a case refer to the same question 
and no two pairs are related by an abstract relation.  This representational 
rule eliminates redundant indexing and correlation among features in a 
case. For example, referring to the Figure 1, a case cannot simultaneously 
include question answer pairs t2 and t6, but may include either t2 or t6 . 

ii. The most specific available and applicable question-answer pair is 
used to represent the case: This representational rule is based on the 
assumption that specific question-answer pairs are more likely to include 
the necessary information required to discriminate cases.  For example, 
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referring to Figure 1, if t6 applies to the case and is known at the time of 
indexing the case, t6 should be included in it.  

b. Solution: We denote a solution in case Ck by Sk.  The solution includes a 
sequence of actions that corrects the problem described by the problem state.  

Table 1 compares the Taxonomic CCBR case representation with a current approach 
(e.g., Aha et al., 1998). Taxonomic CCBR eliminates redundant indexing and reduces 
the number of features used for representing the case. Further, the textual problem 
description in cases is eliminated by our search technique presented in Section 3.2. 

Table 1. Comparison of the Taxonomic CCBR case representation with a typical CCBR case 
representation for a printer troubleshooting application 

Case Representation  Example Text Taxonomic 
CCBR 

CCBR 

Case Title Ink cartridge is damaged causing black streaks. Included Included 
Text Description Vertical black streaks or smears appear on 

successive pages 
Excluded Included 

Do you have a print quality problem? = Yes Excluded Included 
What does the print quality look like? = Black 
streaks 

Included Included 
qa pairs 

Does cleaning the printer with cleaning paper 
remove problem? = No 

Included Included 

Solution  Check toner cartridge and replace if it is low in 
toner or damaged. For toner level, check the 
indicator on the left side of the cartridge. 

Included Included 

 
For simplicity, we ignore feature weighting that is typically included in CCBR 
systems.   

3.2 Taxonomic CCBR Processes  

A problem solving session with a CCBR system proceeds as follows (Aha et al., 
1998; Gupta, 1999) (See Figure 2).  The user describes a problem with a short textual 
description. Next, the system retrieves cases by searching, matching, and ranking 
(Gupta & Montazemi, 1997). The user and the system engage in a conversation where 
the system selects, rank orders, and presents questions to the user and the user refines 
his/her problem description by selecting and answering questions from those 
presented by the system. The conversation and retrieval iterate until the user finds a 
case that solves his/her problem or determines that no existing case solves his/her 
problem. Depending on the situation the user may select a case and apply its solution 
or trigger new case acquisition. 
Consider a user query description Q. It includes the following: 
1. Textual problem description (QT):  Search for potentially relevant cases is initiated 

by the textual problem description.  
2. Problem description represented by a set of question answer pairs QP. The 

members of QP are drawn from the set of question answer pairs QA in the case 
base and are denoted by qpi  (0 < i ?  wk, where wk = number of question answer 
pairs in QP). 

Using this notation, we present our methodologies for case retrieval, conversation, 
and acquisition.  
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Figure 2. User interactions with a Taxonomic CCBR system 

Case Retrieval. Case retrieval includes searching, matching, ranking and selection 
steps. 

Step I-Search 
Search for potentially relevant cases is initiated by QT. The search includes the 
following steps: 
1. Question-answer pair identification:  The system matches the textual problem 

description QT with question answer pairs in QA to identify the question answer 
pair that is most similar to the users textual description.  One of the many available 
string and text matching algorithms can be used for this purpose (e.g., using n-
grams).  We denote this initially identified question-answer pair as qp1. This step is 
only performed once in a problem solving session and it eliminates the need for a 
text problem description in a case. 

2. Search scope expansion by taxonomy traversal:  For each member qpi in QP 
traverse its corresponding taxonomy Ti to identify all its descendants. This step 
expands the search scope.  

3. Candidate cases selection: For all the descendant nodes identify their associated 
cases. An inverted index could be used for this purpose or the cases can be indexed 
directly on the taxonomies.  We denote the candidate set of cases for a query Q by 
CQ. 

Step II-Match 

Matching a user query Q with each candidate case in CQ
 establishes its rank.  It 

involves assessing similarity between the set of question-answer pairs in QP and Pk 
(i.e., the question-answer pairs of the kth candidate case). For each candidate case, the 
matching takes place in two steps: 
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1. Question answer pair similarity assessment: This involves considering the user’s 
query level by reference to taxonomies. If the user’s question-answer pair is an 
ancestor of a question-answer pair in the case, it matches with a score of 1. This is 
based on the assumption that there is no information loss when moving from 
general to a more specific question-answer pair.  However, when the user’s 
question-answer pair is a descendant of a question-answer pair in the case, the 
similarity is less than 1. This is based on the assumption that moving from specific 
question-answer pair to a general one causes information loss. Formally, we denote 
the similarity of a question-answer pair qpi  in QP and question-answer pair pk,i in 
candidate case Ck by simk(qpi, pk,j).   We compute similarity between two nodes in 
a taxonomy as follows: 

if qpi  = ? (pk,j),  i.e., qpi  is an ancestor of pk,j 
 simk(qpi, pk,j) = 1 ;        (1) 

else if pkj  = ? (qpi), i.e., qpi  is a descendant  of pk,j 
  simk(qpi, pk,j) = (n+1-m)/(n+1+m);    (2) 

where,  n = the number of links between qpi and the root of the taxonomy 
m = is the number of links between pk,j   and qpi.  

Otherwise simk(qpi, pk,j) = 0;      (3) 

Note that the similarity metric is asymmetric because of its reference to the user’s 
query level. Furthermore, the metric in equation 2 considers the depth and the 
density of the taxonomy to establish a notion of semantic distance by including a 
normalizing factor in the denominator. For the same m, the similarity of nodes at 
deeper levels of the taxonomy is higher. Table 2 shows an example similarity 
computation by referring to the taxonomy shown in Figure 1. 

Table 2. Example of question-answer pair similarity assessment 

(qpi, pk,i) Applicable Condition simk
  

t2,t6 qpi  is an ancestor of pk,j 1.0 
t6,t2 qpi  is a descendant  of pk,j , n=2, m=1 0.5 
t6,t1 qpi  is a descendant  of pk,j , n=2, m=2 0.2 
t4,t6 Otherwise 0.0 

2. Aggregate similarity score assessment using a similarity metric: We compute the 
overall similarity of a user query QP with a case problem description Pk

  denoted 
by Simk(QP,Pk) by adapting the Rogers and Tanimoto (1960) similarity coefficient 
to include graded similarity as follows: 

 ? ?
? ?

T

pqpsim
Sim kPjQPi

jkik

kk

?
??? ,

,,
PQP,     (3) 

Where T is the number of taxonomies common to the question-answer pairs of QP 
and Pk. 

 
Step III-Rank and Select 

A set of retrieved cases CR that is a subset of candidate cases CQ is presented to the 
user ranked in descending order by the similarity score.  
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Conversation. Conversation involves presenting the user with a rank ordered set of 
questions derived from CR. We denote such a set presented in response to user query 
description Q by QQ. We select and rank order the members of QQ in the following 
steps: 

1. Taxonomy selection: By reference to CR, select the applicable taxonomies based on 
their question-answer pairs. 

2. Question scoring and selection: To select an ordered list of questions, by reference 
to applicable taxonomies selected in step 1, we first score each question-answer 
pair in the taxonomies and then score the corresponding questions as follows:  
a. Question-answer pair and taxonomy scoring:  The score at a node ti in a 

taxonomy T is denoted by s(ti). It is the sum of scores of all its child nodes and 
the aggregate similarity scores of those retrieved cases that are indexed by it.  
We perform a backward pass on the taxonomy to compute all its node scores.   
Consider the example shown in Figure 3. It shows an extension of the printing 
problem taxonomy with example case similarities and node scores. We 
assume that the user’s problem description contains a question-answer pair t1 
based on which the cases 1,2,3,7, and 11 were retrieved with scores as shown.  
For example, we compute the s(t4)  as follows: 

(s(t4) = 0.6)= (Sim11
 = 0.2) + (s(t7) = 0.4) 

We denote the score of the root node as the taxonomy score s(T). In the 
example, s(T) = 2.0. 

Legend

t2 Print quality problem? 
=Yes

t5 Quality problem looks 
like?= Black Streaks

t3 Printer prints black 
pages? =Yest1 Printing problem?=Yes

t6 Quality problem looks 
like?= Faded

t4 Printer prints blank 
pages? =Yes

t7 Printer prints extra 
blank pages? =Yes

is-a-type-of relationship

Case 1
Sim1= 0.5

Case 2
Sim2= 0.4

Case 3
Sim3= 0.4

Case 7
Sim7= 0.5

Case 11
Sim11 = 0.2

Taxonomy node
Case Case indexed to the node

Node Score 

0.5

0.4

0.4

0.9

0.5

0.6

2.0

 
Figure 3. An example of question-answer pair scoring using the backward pass 

algorithm. 
b. Question selection and scoring:  If the user problem description already 

contains a question-answer pair from the taxonomy, then we select its 
children.  By reference to Figure 3 in our previous example, given that the user 
had selected t1, we select nodes t2, t3, and t4 for presenting questions. If the user 
problem description does not contain any question-answer pair from the 
taxonomy, then we select the most specific node that subsumes the set of 
retrieved cases CR. Consider the following example scenario by reference to 
the taxonomy shown in Figure 3. We assume that CR

 consists of only case 1 
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(Sim1
 =0.5) and case 2 (Sim2

 =0.5). We also assume that the cases 3,7, and 11 
are not retrieved because their scores were below the specified threshold (e.g., 
?  0).  In this scenario, the most specific node subsuming CR  is t2 with a score  
s(t2 ) = 0.9. 

3. Question ranking: The score of a question qi, denoted by s(qi) is a tuple ‘< >’ 
with two values:  taxonomy score s(T), and sum of its corresponding question-
answer pair scores.  For example, the score for the question “print quality 
problem” is s(q) = <2.0, 0.9>.  The members of QQ are sorted in descending 
order on their taxonomy score followed by the question-answer score. 

 
During a problem solving session, if the user selects more than one question-answer 
pair from the same taxonomy, the most specific question-answer pair is retained in 
QP.   For the example taxonomy shown in Figure 1, if the user selects t1 (Printing 
Problem?=Yes) and t2  (Print Quality Problem=Yes),  t2 is retained and t1 is discarded. 
This rule is the same as the one that applies to the case representation to enforce 
representational consistency. 

We illustrate the advantages of the question selection and ranking technique by the 
following two examples. We assume that users interact with a Taxonomic CCBR 
system to troubleshoot printers, parts of which have been presented earlier.  

Example 1, Abstract problem description: Consider a scenario where the user starts 
with a textual problem description QT such as “I am having printing problems.” The 
CCBR application determines using search step 1 that the corresponding question-
answer pair is “Printing Problem?=Yes.” Based on this question-answer pair, the 
search expands the query to include all its descendents using the taxonomy presented 
in Figure 3 and retrieves cases 1,2,3,7, and 11.  Let us assume that the overall 
similarity scores were the same as presented earlier.  The user is presented with the 
following questions in order (for simplicity, we exclude other questions that might be 
derived from the candidate cases): 

Do you have a print quality problem? 
Is the printer printing blank pages?  
Is the printer printing black pages? 

We assume that the user answers the question “Print quality problem?” with a Yes.  
Consequently, the question answer pair “Print quality problem?=Yes” is used to 
replace the earlier general question “Printing problem?=Yes.” The traversal on 
taxonomy from node t2  (i.e., search step 2) implies that only cases 1 and 2 are 
retrieved with scores 0.5 and 0.4.  In this iteration, only the nodes t1, t2, t5, and t6 have 
scores greater than 0.  The nodes that are subordinate to t2 are t5 and t6. Therefore, the 
question presented is “What does the quality problem look like?” This example 
illustrates how the conversation guides a user in refining his/her problem description 
when the query is expressed at an abstract level.  

Example 2, Specific problem description: Consider a scenario where the user starts 
with a textual problem description QT such as “I have black streaks on my printout.”  
Taxonomic CCBR application determines using search step 1 that the corresponding 
question-answer pair is “Printing quality problem?=Black Streaks.”  Since this 



 
 

Gupta K .M.(2001), Case-Based Reasoning Research and development, Proceedings of the 
fourth  ICCBR ,D. W. Aha  & I. Watson (Eds.), Springer, Berlin, Germany, pp. 219-233. 

question-answer pair does not have any descendents, the search only retrieves case 1 
and there is no further conversation. 
Comparing examples 1 and 2, we note that the retrieval and conversation 
appropriately respond to the abstraction level of user’s problem description.  On the 
one hand, when a user expresses his/her query at an abstract level, s/he is guided in 
progressively refining his/her query. On the other hand, when the user expresses a 
query at a concrete or specific level s/he is spared irrelevant general questions and 
presented with a set of cases with high precision.  

Case Acquisition. During a problem solving session, if no suitable cases are 
presented to the user, s/he can trigger new case acquisition.  Typically, in such a 
scenario, the unsolved problem session comprising the user’s problem description is 
complemented with a solution by a case author.  The case author then adds the new 
case to the case base by following these steps: 
1. Add new questions to the case base.  Depending on the availability of information 

in a new case, the case author has the flexibility to retain and create new question-
answer pairs at appropriate levels of abstraction. Our proposed methodology does 
not force an author to generalize or specialize a new question to one that already 
exists as would happen in CCBR system where abstraction is ignored.    

2. Add the corresponding question-answer pairs to existing taxonomies or create new 
taxonomies. 

3. Index the new case with appropriate question-answer pairs. 

4 Advantages of Taxonomic CCBR 

The following are the benefits of Taxonomic CCBR: 
1. Consistent and efficient representation: Taxonomic CCBR methodology ensures 

representational consistency in user queries and stored cases. That is, a case or 
query cannot be indexed by more than one question-answer pair that belong to the 
same taxonomy.  It also makes the case representation efficient since it is indexed 
by fewer and only the most specific question-answer pairs available at the time of 
indexing. There is no need for redundant indexing with a combination of general  
and specific features because the taxonomic search appropriately expands the 
search scope.  

2. Accurate and responsive retrieval:  Representational consistency eliminates any 
unwanted correlation among features that could result from inherent abstract 
relationships between question-answer pairs.  This simplifies and improves 
matching.  The retrieval is responsive to the abstraction level in the user’s query 
since it appropriately expands or contracts search scope using taxonomic traversal. 

3. Responsive conversation with reduced information load:  The conversation is 
responsive to the level of abstraction in a user’s query. Furthermore, the 
information load during the conversation is reduced since only the questions from 
the most appropriate level of abstraction are selected. 

4. Simplified and flexible case maintenance:  Since the representational consistency 
can be enforced by feature taxonomies, error prone and redundant indexing of 
cases is eliminated.  Case maintenance is simplified as new features are introduced 
because only the taxonomies need to be maintained.  In addition, the taxonomic 
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CCBR methodology affords indexing flexibility by allowing case authors to create 
new question-answer pairs at appropriate levels of abstraction thereby preserving 
information at the level of abstraction at which it was originally expressed.  

 
These benefits, however, come at an expense (See Table 2). First, the computational 
complexity is increased by taxonomic traversal during retrieval and conversation. A 
worst-case scenario analysis shows that this increase is linear with the maximum 
number of nodes in any taxonomy (i.e., m).  However, the gains in representational 
efficiency ( qq ?ˆ ) can partially offset this increase.  Second, the space requirement in 
Taxonomic CCBR increases linearly with the number of question-answer pairs in the 
case base O(Q.A). Third, additional knowledge engineering is needed to develop and 
maintain feature taxonomies, which is not discussed here. 

Table 2.  Computation and Space Complexity Comparison  

Complexity CCBR Taxonomic CCBR 
Computation )( 2CqO   )ˆ( 2mqCO  
Space  )( QACQO ?  

Cases + Question answers 
 = )( QACQO ?  
Cases + Taxonomies 

C= number of cases in the case base 
Q= total number of questions in the case base 
A= Maximum number of possible answers per question 
q = Maximum number of questions per case in regular CCBR 
q̂ = Maximum number of questions per case in Taxonomic CCBR ( qq ?ˆ ) 
m = Maximum number of nodes in a taxonomy 

 
Nonetheless, we conjecture that our claimed benefits are likely to outweigh the above 
expenses. As presented in Section 6, we intend to empirically investigate this 
conjecture in our future research. We plan to compare the existing CCBR 
performance with Taxonomic CCBR in terms of representational efficiency, retrieval 
accuracy, conversational efficiency, and development and maintenance effort (e.g., 
taxonomies).  

5 Related Work 

The commercial success of CCBR applications has been particularly noteworthy in 
troubleshooting and help-desk tasks.  However, the performance of these systems can 
be significantly affected by the extent of their scope, complexity, and application 
domain dynamics.   This issue presents opportunities for formalizing and improving 
CCBR. For example, Montazemi and Gupta (1996) presented a diagnostic CBR 
application for troubleshooting AC motors called TRAAC. TRAAC used an adaptive 
agent to converse with a troubleshooter. The conversation was generated using a 
belief net to assist the troubleshooter in the identification of potential hypotheses and 
tests. The user selections were used to retrieve appropriate cases.   While this 
approach was effective, it required the development and the maintenance of belief 
nets. Furthermore, they did not recognize the abstract relations among features (e.g., 
“Motor vibration” and “Drive-end motor vibration”). This research recognizes such 
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abstract relations and exploits it for retrieval and conversation. However, we do not 
consider causal and evidential relationship among features that might be pertinent to 
troubleshooting applications.   
Aha et al. (1998) addressed the problem of redundant questions in conversation by 
means of their CCBR tool NaCoDAE. They examined rule-based and model-based 
approaches to automatically answer questions. Their approach led to more efficient 
conversation and retrieval.   In their example application to printer troubleshooting, 
they include abstraction as instance-of and implies relations. However, unlike the 
Taxonomic CCBR, their approach was not explicitly motivated by abstraction. Aha et 
al. (2001) present problems of representational redundancies arising from case design 
guidelines that promote the use of general and specific features to index cases. They 
correct these inconsistencies in part by automatically revising case libraries. In 
contrast, we exploit the abstract relations in the feature taxonomies to create a robust 
representation framework that eliminates representational inconsistencies and 
simplifies similarity assessment.  Instead of automatically answering questions we 
exploit the taxonomy to tailor the conversation and retrieval to the level of abstraction 
in the user’s problem description.  
McSherry (2001) addressed user interface issues in CCBR application for sequential 
diagnosis. His research focused on determining an optimal conversation strategy 
based on an attribute’s ability to confirm or disconfirm candidate hypotheses.  Our 
research differs from his in terms of assumptions we make about the domain. We 
assume heterogeneous case structures where abstraction is an issue combined with the 
domain dynamics as opposed to homogeneous case structures at a single-level of 
abstraction. Consequently, our research focuses on feature taxonomies to support the 
differences in conceptual level of end users.  It conducts conversation and retrieval 
that is responsive to these differences.  
Carrick et al. (1999) addressed the problem of trivial or repeated questions that CCBR 
systems prompts a user.  They reduce the number of questions asked of the user by 
accessing other information sources that can be used to answer them.  Their question 
generation strategy considers information quality together with the cost of acquiring 
information from additional sources to conduct the conversation. Their notion of 
information quality is very similar to our question-answer score. However, they did 
not consider feature abstraction in their system nor do they address the 
representational problems that arise from it. 

6 Conclusion 

In this paper, we established that sources of variation and differences in levels of 
abstraction are, in large part, uncontrollable in application domains typically targeted 
by CCBR systems such as help-desk and troubleshooting. Because CCBR systems are 
mixed-initiative systems their performance can be adversely affected when 
abstraction among features is ignored.  We argued that ignoring abstraction could 
cause representational inconsistencies, redundant conversations, poor case retrieval 
performance, and numerous indexing and case maintenance problems.   
We presented an integrated methodology called Taxonomic CCBR that explicitly 
represents abstract relations in taxonomies. We showed that the methodology 
eliminates representational inconsistencies, generates non-redundant conversation that 
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adapts to the abstraction level of a user’s problem description, and dramatically 
simplifies case indexing and case base maintenance. In our future work, we plan to 
empirically assess the benefits and limitations of Taxonomic CCBR.  We recognize 
that the success of Taxonomic CCBR could be limited by the availability of tools and 
methodologies for acquisition and maintenance of taxonomies. We will investigate 
these methodologies in future research. 
While we contend that the Taxonomic CCBR methodologies can improve the 
performance of existing CCBR systems, there can be other kinds of relationships 
among features that could be pertinent to CCBR systems and were not included in our 
methodology. For example, troubleshooting and diagnostic domains can include 
causal and evidential relations among features (e.g., Montazemi & Gupta (1995); 
McSherry, 2001).  We intend to explore this issue further in our research. 
Finally, we believe that this research is relevant to textual CBR systems that retrieve 
short text documents (Ashley & Lenz, 1998). In such systems, document cases do not 
undergo extensive knowledge engineering and abstraction is a common problem.  A 
problem resulting from abstraction is that of case redundancy and inconsistency 
(Everett & Bobrow, 2000; Racine &Yang, 2001).  In our future work, we will 
examine the applications of this research to textual CBR.  
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