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Abstract. Accurate estimation of ventricular volumes plays an essen-
tial role in clinical diagnosis of cardiac diseases. Existing methods either
rely on segmentation or are restricted to direct estimation of the left
ventricle. In this paper, we propose a novel method for direct and join-
t volume estimation of bi-ventricles, i.e., the left and right ventricles,
without segmentation and user inputs. Based on the cardiac image rep-
resentation by multiple and complementary features, we adopt regression
forests to jointly estimate the two volumes. Our method is validated on
a dataset of 56 subjects with a total of 3360 MR images which shows
that our method can achieve a high correlation coefficient of around 0.9
with manual segmentation obtained by human experts. With our pro-
posed method, the most daily-used estimation of cardiac function, e.g.,
ejection fraction, can be conducted in a much more efficient, accurate
and convenient way.

1 Introduction

Cardiac ventricular volumes provides an important measurement for assessment
of cardiac functions and diagnosis of cardiac abnormalities. Conventional meth-
ods of estimating ventricular volumes depend on the results of manual or au-
tomatic segmentation. However, manual segmentation of MRI sequences is ex-
tremely time-consuming, subjective and highly non-reproducible. While auto-
matic segmentation which has been extensively researched in the last a few
decades is still regarded as a challenging and computationally expensive task,
and remains unsolved, especially for the right ventricle (RV) [1], [2]. Direct esti-
mation of cardiac ventricular volumes becomes increasingly attractive due to its
efficiency and clinical significance. In recent work by Afshin et al. [3], left ven-
tricle (LV) volumes are calculated by using image statistics, i.e., Bhattacharyya,
similarity between image distributions, however intensive user inputs including
two boxes, i.e., one inside LV cavity and one enclosing the cavity, are required.
In addition, due to the strong assumption of correlation between the considered
statistics and LV cavity areas the method is restricted to the LV, and there-
fore can not be generalised to the RV. In [4] [5], a Bayesian model is used for
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bi-ventricular volume estimation which however highly relies on a large set of
segmented data.

Clinically, the RV has long been overlooked while its dysfunction also serves
as an indicator of heart and lung disease and can adversely affect the function
of the LV [6]. Technically, the RV has also been less researched compared to the
LV because of the fundamental complex structural geometry of the RV, i.e., the
more complex deformations of RV chamber in 3D, crescent-shaped structure of
large variation and the presence of papillary muscles [2]. However, simultaneous
analysis of the LV and RV, e.g., bi-ventricular heart failure, can provide more
meaningful and comprehensive assistance for diagnosis of cardiac diseases [7].
Therefore, direct and joint estimation of bi-ventricular volumes would be valu-
able for accurate, efficient and convenient assessment of cardiac functions, which
has not been addressed yet due to the following challenges. Bi-ventricles exhibit
great variability of cardiac images from gray levels to structure shapes as shown
in Fig. 1. The myocardium and the papillary muscles inside the cavity (3 in the
RV and 2 in the LV) are connected and have almost the same intensity [8]. The
shape of ventricles varies across patients, over time and along the long axis which
makes it extremely difficult for accurate analysis of bi-ventricular volumes. Even
more challenges arise from the complex functional and geometrical interference
and interdependency between the right and left ventricle.

In this work, we propose a novel method for direct and joint bi-ventricular
volume estimation. Our method consists of two main steps: cardiac image repre-
sentation and random forest regression. Specifically, we propose a cardiac image
representation by multiple features including pyramidal Gabor features (PGF),
histogram of oriented gradients (HOG) [9] and appreance. Random forests [10],
[11] are learned from training samples with ground truth obtained by human ex-
perts and then employed for joint estimation of bi-ventricular volumes in unseen
images. Our work contributes in three folds: (1) the first direct and joint esti-
mation of cardiac bi-ventricular volumes without segmentation; (2) customised
and adapted multiple features for cardiac image representation; (3) the use of
regression forests for efficient bi-ventricular volume estimation.

Fig. 1. The illustration of MR images with bi-ventricles.

2 Direct Bi-ventricular Volume Estimation

To overcome the challenges mentioned above, an effective representation of car-
diac images is desired for direct and joint estimation. We propose multiple fea-
tures for cardiac image representation which benefits in the following aspects: it
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1) provides rich and complementary information closely related to bi-ventricular
volumes; 2) can capture substantial features to handle the combinatorial variabil-
ity of bi-ventricles; 3) is more flexible and generalisable than segmentation-based
methods.

The multiple heterogeneous features generate a high-dimensional represen-
tation of cardiac images which demands the regressor to be efficient for estima-
tion. Regression forests have shown the efficiency and effectiveness of modelling
complex relationships between high-dimensional input features and continuous
outputs [10] and are particularly suitable for bi-ventricular volume estimation
because they 1) provide a natural and efficient way for regression based on mul-
tiple features because of their ability of handling heterogeneous features [12]
and fast implementation; 2) produce highly accurate predictions and can avoid
overfitting with a very large number of input variables [13]; 3) are optimised to
choose the most relevant features to bi-ventricular volumes specifically due to
the use of feature selection.

2.1 Cardiac image representation

An effective representation of cardiac images should be able to capture fea-
tures that are closely related to bi-ventricular volumes. Bi-ventricular volumes
as shown in Fig. 2 (a) are determined by their cavity shapes and intensity.
We use PGF, HOG and appearance because of their effectiveness and mutual
complementarity: PGF can effectively capture edges and boundaries in multiple
scales and orientations; HOG describes the main shape of bi-ventricular cavi-
ties; and the appearance, i.e., pixel intensity, carries the fundamental layout of
bi-ventricles. Combination of them provides a comprehensive and informative
representation of cardiac images.

Fig. 2. (a) Gaussian pyramid (upper) and Laplacian pyramid (bottom). (b) Gabor
filtered in 4 orientations. (c) squared gradients along X (upper) and Y (bottom) axis,
respectively.

Pyramidal Gabor features (PGF) are specially developed via multi-
scale and multi-orientation analysis to capture sufficient features related to bi-
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ventricular shapes which determine cavity areas. The multi-scale analysis is re-
alised by the Laplacian pyramid and Gabor filters are adopted to incorporate
multi-orientation information, the key cue of shapes. The Laplacian pyramid is
constructed by differencing adjacent levels of a Gaussian pyramid as shown in
the upper row of Fig. 2 (a). At each level of the Laplacian pyramid, edges with d-
ifferent scales are intensified as shown in the bottom of Fig. 2 (a). On top of each
level of the Laplacian pyramid, we then design a bank of Gabor filters to detect
edges of bi-ventricles in multiple orientations. Fig. 2 (b) illustrate the outputs
of Gabor filtering in four orientations. Compared with gradients in Fig. 2 (c),
much more details related to edges of ventricles are intensified. The 2D Gabor
mother function is defined as:
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where x0 = xcosθ+ ysinθ, y0 = −xsinθ+ ycosθ, and the range of σ decides the
scales of Gabor filters and θ determines orientations.

Histogram of oriented gradients (HOG) [9] describes the main shapes
of bi-ventricles which upholds invariance to geometric and photometric transfor-
mations by operating on localized cells. Fig. 2 (c) shows the squared gradients
along vertical and horizontal directions which are used for the computation of
the HOG descriptor. The rough outlines of bi-ventricular cavities are successfully
captured.

Appearance, i.e., the intensity of pixels, carries fundamental information of
ventricular cavities as the intensity within cavities is brighter than myocardium
and most of the background. In addition, flattening the pixels as feature vector
can also provide us the layout information of bi-ventricles.

2.2 Regression Forests

Random forests [10] are an ensemble of decision trees which combine the ideas
of bagging and the random feature selection, and recently started to attract
interest in medical image analysis [14]. They can effectively deal with the high-
dimensional representation due to the feature selection and possess innate ability
to handle heterogeneous features from different sources, offering a prime option
for bi-ventricular volume estimation with multiple features. Coupled with the
cardiac image representation by multiple features, random forests build a strong
tool for bi-ventricular volume estimation.

Given a multivariate input v which is the feature vector extracted from each
MR image, regression forests are learned to associate v with a continuous multi-
vairate label y which is the cavity areas and then employed to predict cavity
areas in unseen MR images.

Training We build decision trees using the adapted algorithm from [10].
Each internal node of a tree is associated with a split function. The training
process is to construct each tree with a randomly selected training subset. Note
that only a subset of features are used for each decision tree which are fixed for
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prediction. An example of trained random forests are shown in Fig. 3. The split
function at a split node j is formulated as a function with binary outputs

h(v, θj) : R
d × T → {0, 1} (2)

where v is the input feature vector, T represents the space of all split parameters
[11], and θj is the function parameter associated with the j-th node and can be
trained by minimizing a least-squares error function I [10] at the j-th split node:

θj = argmax
θ∈T

I(Sj , θ) (3)

where Sj is a subset of training samples associated with the j-th node. The data
point v arriving at the split node is sent to its left or right child node according
to the result of the split function.

Fig. 3. Illustrated are the random forests comprised of n decision trees
{T1, . . . , Ti, . . . , Tn} learned from the training set. Test images can be quickly predicted
by several simple comparison operations. X# indicates the #-th feature.

Prediction Given a previously unseen MR image v, our objective is to
predict bi-ventricular volumes using the learned random forests. As shown in
Fig. 3, we pass v through each tree starting from the root of each decision tree
Ti, send to the left/right child by applying the split function, and stop when v
reaches a leaf node of the tree. The simple comparison operation on each split
node makes the prediction extremely fast and efficient. Given the t-th tree in a
forest, the associated leaf output takes the form of a density probability function
pt(y|v). The forest output is the average of all tree outputs

p(y|v) =
1

T

T∑

t=1

pt(y|v) (4)

where T is the number of trees in the forest.
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3 Experiments and results

We conduct experiments on clinical MR images and the estimated volumes are
quantitatively evaluated by correlating with those obtained frommanual segmen-
tation by an expert. In our experiments, a set of (3360 in total) 2D short-axis
cine MR images from 56 clinical subjects including both normal and abnormal
cases were used. These images were acquired on a 1.5T scanner with fast imag-
ing employing steady-state acquisition (FIESTA) image sequence mode, using
these acquisition parameters: TR=2.98 ms, TE=1.2 ms, flip angle=30 degrees,
and slice thickness=10 mm. Each subject contains 20 frames throughout a car-
diac cycle. In each frame, three representative slices, i.e., apical, mid-cavity and
basal, are selected following the standard AHA prescriptions [15] for validation,
and their manual segmentations are used as the benchmark. We estimate cavity
areas of the LV and RV in MR images, and the volumes are computed by inte-
grating LV/RV cavity areas in the sagittal direction. A single region of interest
(ROI) rather than two individual ones is placed to enclose the LV and RV in an
MR image, which is obtained by the template matching and hough transform
[5]. We employ a leave-one subject-out validation approach.

3.1 Results
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(a) Left Ventricle (R=92.2%)
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(b) Right Ventricle (R=87.4%)

Fig. 4. Illustration of correlation between
estimated and manually obtained bi-
ventricular volumes. R is the correlation co-
efficient.

The comparison of estimated volumes
with the manual segmentation is de-
picted in Fig. 4 (a) and (e) which
are the correlations between estimat-
ed volumes and manually obtained
volumes for the LV and RV, respec-
tively. Despite of the challenges in
joint estimation of bi-ventricular vol-
umes, the proposed method achieves
a correlation coefficient of 0.922 for
the LV, and can yield 0.874 for the
RV which has much greater geometri-
cal complexity than the LV. The esti-
mation errors are 0.0129±0.0115 (LV)
and 0.0155±0.0127 (RV). The result-
s confirm multiple feature represen-
tation overcomes the great variability
and geometrical complexity of bi-ventricles, and validate the effectiveness of the
proposed method for direct and joint estimation of the two volumes.

The complementarity of PGF, HOG and appearance is demonstrated in Table
1. The results show that the combined feature comprehensively represent cardiac
images for the benefit of estimating bi-ventricular volumes. The effectiveness of
the proposed method are further demonstrated by the results on cardiac apical,
mid-cavity and basal which are plotted in Fig. 4 (b)-(d) and (f)-(h) for the LV
and RV, respectively. The proposed method can achieve a correlation coefficient
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of more than 0.9 for LV apical, although it is much more challenging than mid-
cavity and basal due to the disturb of papillary muscles.

To show the potential of the proposed method for quantification of cardiac
functions, we plot the volumes of the 20 frames from one subject in Fig. 5 (a)
and (b) for left and right ventricles, respectively. The proposed method success-
fully captures the dynamic pattern of volumes in a cardiac cycle which will be
extremely useful for clinical assessment of cardiac functions, e.g., ejection frac-
tion (EF). Moreover, this can now be done directly without segmentation and
user inputs.

Table 1. The correlation coefficients between manually obtained and estimated vol-
umes with different features.

Feature Appearance HOG PGF Combined

Left ventricle 0.793 0.811 0.845 0.922

Right ventricle 0.780 0.804 0.836 0.874
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Fig. 5. Illustration of dynamics of bi-ventricular vol-
umes in one cardiac cycle. (a) left ventricle; (b) right
ventricle.

Fig. 6 (a) and (b) depict
the cases which the proposed
method gives best estimation
results with lowest errors for
the LV and RV, respective-
ly. Although the intensity and
shapes of bi-ventricles varies
greatly across different im-
ages, the proposed method
has produced nearly perfec-
t estimation with errors close
to zeros, which further shows
the strength of the integration
of multiple feature represen-
tation and random forests for
bi-ventricular volume estima-
tion.

4 Conclusion

In this paper, we proposed a novel method for directly estimating volumes of
both left and right ventricles jointly. We remove the need of segmentation and
formulate volume estimation as a regression problem. Cardiac bi-ventricles are
represented by multiple and complementary features and regression forests are
employed for volume estimation. Experimental results show that the proposed
method can predict bi-ventricular volumes with high correlations with those
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Fig. 6. The best estimations for the LV (a) and RV (b).

obtained manually by an expert, which validates the effectiveness of the proposed
method for direct and joint estimation of bi-ventricular volumes. Our method
enables a more efficient and accurate way for assessment of cardiac functions.
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