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ABSTRACT
Pseudo-relevance feedback is an effective technique for im-
proving retrieval results. Traditional feedback algorithms
use a whole feedback document as a unit to extract words
for query expansion, which is not optimal as a document
may cover several different topics and thus contain much
irrelevant information. In this paper, we study how to ef-
fectively select from feedback documents those words that
are focused on the query topic based on positions of terms
in feedback documents. We propose a positional relevance
model (PRM) to address this problem in a unified probabilis-
tic way. The proposed PRM is an extension of the relevance
model to exploit term positions and proximity so as to assign
more weights to words closer to query words based on the
intuition that words closer to query words are more likely to
be related to the query topic. We develop two methods to es-
timate PRM based on different sampling processes. Exper-
iment results on two large retrieval datasets show that the
proposed PRM is effective and robust for pseudo-relevance
feedback, significantly outperforming the relevance model in
both document-based feedback and passage-based feedback.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models, Relevance feedback, Query formulation

General Terms
Algorithms

Keywords
Positional relevance model, pseudo-relevance feedback, po-
sitional language model, proximity, passage-based feedback,
query expansion

1. INTRODUCTION
Pseudo-relevance feedback (or blind feedback) is an im-

portant general technique for improving retrieval accuracy
[26, 24, 27, 3, 25, 16, 32]. The basic idea of pseudo-relevance
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feedback is to assume that a small number of top-ranked doc-
uments in the initial retrieval results are relevant and select
from these documents related terms to the query to improve
the query representation through query expansion, which
generally leads to improvement of retrieval performance.

Most existing feedback algorithms (e.g., [26, 24, 27, 3, 25,
16, 32]) use a whole feedback document as a unit for select-
ing expansion terms, which, however, is non-optimal when
the content of a document is incoherent (i.e., covering sev-
eral different topics) and thus may contain much irrelevant
information as often happens in Web search. The existence
of multiple topics and irrelevant information would lead to
a noisy feedback model as potentially harmful terms from
non-relevant topics may be picked up to include in the feed-
back model. As a result, the use of pseudo feedback may not
improve or even decrease the retrieval performance. Thus
a critical challenge in improving all feedback methods is to
effectively select from feedback documents those terms that
are most likely relevant to the query topic.

In this paper, we solve this challenge by exploiting the po-
sition and proximity information of terms as cues to assess
if a term is related to the query topic. Since topically re-
lated content is usually grouped together in text documents,
terms closer to the occurrences of query words are, in gen-
eral, more likely relevant to the query topic, thus a good
feedback model should intuitively place higher weights on
such terms.

Based on this intuition, we propose a novel positional rel-
evance model (PRM) to incorporate the cues of term posi-
tions and term proximity in a probabilistic feedback model
based on statistical language modeling. The key idea is to
extend the relevance model [16] to aggregate the associations
between a term and query words at the position level via the
positional language model (PLM) [19]. An important advan-
tage of estimating a relevance model based on PLM is that it
can model the “relevant positions” in a feedback document
with probabilistic models so as to assign more weights to
terms at more relevant positions in a principled way, thus
leading naturally to selection of expansion terms more likely
relevant to the query topic.

Since PRM estimates a relevance model at the level of
term positions, it incorporates individual term positions di-
rectly into a probabilistic model. This is in contrast with
virtually all the existing pseudo feedback techniques which
have only made use of term statistics at the document level
[26, 24, 27, 3, 25, 16, 32, 18], or at the best, at the level of
passages [2, 30, 17, 21] without distinguishing every different
position.



Analogously to the two methods proposed for estimat-
ing the relevance model [16], we also derive two methods
for estimating PRM, leading to two different ways to aggre-
gate term information based on positions. We evaluate the
proposed PRM on two large TREC datasets. Experimental
results demonstrate that PRM is effective in exploiting term
proximity for pseudo feedback and significantly outperforms
the relevance model in both document-based feedback and
passage-based feedback.

2. RELATED WORK

2.1 Pseudo-Relevance Feedback
Pseudo-relevance feedback has been shown to be effective

with various retrieval models [26, 24, 27, 3, 25, 16, 32, 18].
In the vector space model, feedback is usually done by

using the Rocchio algorithm, which forms a new query vec-
tor by maximizing its similarity to pseudo-relevant docu-
ments [26]. The feedback method in classical probabilis-
tic models is to select expansion terms primarily based on
Robertson/Sparck-Jones weight [24].

Several query expansion techniques have been developed
in the language modeling framework, including, e.g., the
mixture-model feedback method [32] and the relevance model
[16]. The basic idea is to use feedback documents to estimate
a better query language model. Both the mixture model and
relevance model have been shown to be very effective, but
the relevance model appears to be more robust [18].

In the mixture-model feedback [32], the words in feed-
back documents are assumed to be drawn from two models:
(1) background model and (2) topic model. The mixture-
model feedback finds the topic model that best describes the
feedback documents by separating the topic model from the
background model. The topic model is then interpolated
with the original query model to form the expanded query.

Much like mixture-model feedback, the relevance model
also estimates an improved query language model. Given
a query Q, a relevance model is a multinomial distribution
P (w|Q) that encodes the likelihood of each term w given
the query as evidence. To estimate the relevance model, the
authors first compute the joint probability of observing a
word together with the query words in each feedback doc-
ument and then aggregate the evidence by summing over
all the documents. It essentially uses the query likelihood
P (Q|D) as the weight for document D and takes an aver-
age of the probability of word w given by each document
language model.

All these pseudo feedback algorithms use a whole feedback
document as a unit, and thus term position and proximity
evidences are largely ignored. Our work is an extension of
the relevance model to estimate a feedback model based on
individual term positions.

2.2 Passage Feedback
There have been several studies to exploit passage-level

evidence of documents for feedback, e.g., [2, 30, 17], which
can potentially address the heterogeneous topical structure
of documents to some degree. However, these approaches
usually take a traditional feedback model as a black box to
handle sub-document units as if they were regular docu-
ments. For example, Liu and Croft’s work [17] estimates a
relevance model based on the best matching passage of each
feedback document, where fixed-length arbitrary passages

that resemble overlapped windows but with an arbitrary
starting point [12] can often be used due to its effective-
ness and efficiency [12, 17]. A limitation of this approach
is that term positions are not directly incorporated into the
feedback model. As we will show later in the paper, the pro-
posed PRM outperforms such a passage feedback approach.

Some other approaches, e.g., [31, 4], make use of visual
cues or eye tracker to improve passage feedback for web
search: on the server side of a search engine, documents
can be decomposed into topically different components via
visual cues [31], while on the client side of users, gaze-based
attention feedback [4] can go down to the sub-document level
by exploiting evidence about which document parts the user
looks at. However, such approaches face the same problems
as general passage feedback without being able to model
each individual position.

In fact, these passage-based or sub-document level feed-
back models are orthogonal to the proposed PRM in the
sense that PRM can be applied to passages to model prox-
imity inside a passages in the same way as it can be applied
to whole documents. Moreover, the underlying positional
language model [19], which can capture passage-level evi-
dence in a soft way in model estimation, has been shown to
work better than imposing a “hard” boundary of passages.

Recently, Metzler and Croft’s work on Latent Concept
Expansion [21] also indirectly captures term position and
proximity evidence through the use of appropriate passages.
Their work provides a more general model which is com-
plementary with our ideas in that we can use PRM as an
effective feature defined on their graph, so our PRM scores
can then be combined with other features explored in [21]
to further improve its performance.

2.3 Term Proximity Heuristic in IR
The term proximity heuristic, which rewards a document

where the matched query terms occur close to each other,
has been previously studied in [13, 14, 11, 9, 23, 20, 5, 6,
28, 19, 10, 34]. Keen’s work [13, 14] is among the earliest
efforts, in which, a “NEAR” operator was introduced to ad-
dress proximity in Boolean retrieval model. The shortest
interval containing a match set was first used as a mea-
sure of proximity in [9, 11]. Recent work has attempted to
heuristically incorporate proximity into an existing retrieval
model (often through score combinations) [22, 23, 5, 6, 28].
For example, a variety of proximity measures were proposed
and explored in [28]. Another work [10] used a learning
approach to combine various proximity measures to obtain
an effective proximity-based retrieval function. Recently in
our previous work [19], we proposed a positional language
model (PLM) for information retrieval, which not only cap-
tured term proximity information but also covered passage
retrieval in a unified language modeling approach. However,
in all these studies, term proximity has been solely used for
ranking documents in response to a given query rather than
improving pseudo feedback.

There has been relatively little work done in the area of
formally modeling term proximity heuristic in the context
of pseudo feedback. However, there have been several at-
tempts to simply combine term proximity with other feed-
back heuristics to select good expansion terms. In [29], sev-
eral distance functions were evaluated for selecting query ex-
pansion terms from windows or passages surrounding query
term occurrences; however, no improvement was observed as



compared to existing feedback methods. Cao et al. [7] used
a supervised method to classify whether an individual ex-
pansion term is good or not, in which term proximity is one
of their features. Their method only loosely combined term
proximity with traditional feedback heuristics; in contrast,
we incorporate term position and proximity into a proba-
bilistic feedback model with more meaningful parameters.

3. POSITIONAL RELEVANCE MODEL
In this section, we describe the proposed positional rele-

vance model (PRM) which incorporates term position infor-
mation into the estimation of feedback models so that we
can naturally reward terms close to query terms in the feed-
back documents and avoid including irrelevant terms in the
feedback model.

The proposed PRM can be regarded as an extension to
the relevance model (RM) [16]. We thus first give a brief
introduction to the relevance model.

3.1 Relevance Models
As a pseudo feedback method, the relevance model [16]

has proven to be not only effective, but also robust in a re-
cent study [18]. The basic idea is to use the query likelihood
score of a feedback document as the weight and estimate
a query language model (for feedback) based on weighted
aggregation of term counts in the feedback documents.

Formally, let Q = {q1, q2, · · · , qm} be a query and Θ rep-
resent the set of smoothed document models for the pseudo
feedback documents. One of the most robust variants of the
relevance model (RM1) [18] is computed as follows [16]:

P (w|Q) ∝
∑

θD∈Θ

P (w|θD)P (θD)
m∏

i=1

P (qi|θD) (1)

where p(θD) is a prior on documents and is often assumed
to be uniform without any additional prior knowledge about
document D. Thus, the estimated relevance model is essen-
tially a weighted combination of individual feedback docu-
ment model with the query likelihood score of a document
as its weight.

After the relevance model is estimated, the estimated P (w|Q)
can then be interpolated with the original query model θQ

to improve performance [1].

P (w|θ′Q) = (1− α)P (w|θQ) + αP (w|Q) (2)

where α is a parameter to control the amount of feedback.
In the rest of the paper, we will refer to this instantiation of
relevance model as RM3.

3.2 Positional Relevance Models
In the relevance model, the count of a term is computed

over an entire feedback document. The main idea of the
proposed positional relevance model (PRM) is to further
distinguish different positions of a term and discount the
occurrences of a term at positions that are far away from a
query term in a feedback document.

Similarly to RM, a PRM is also a multinomial distribution
P (w|Q) that attempts to capture the probability that term
w is seen in a relevant document. However, PRM goes be-
yond RM to estimate the conditional probability P (w|Q) in
terms of the joint probability of observing w with the query

Figure 1: Dependence networks for two methods,
i.e., method 1 (left) and method 2 (right), of esti-
mating positional relevance models.

Q at every position in every feedback document. Formally,

P (w|Q) =
P (w, Q)

P (Q)
∝ P (w, Q) =

∑

D∈F

|D|∑

i=1

P (w, Q, D, i) (3)

where i indicates a position in document D, and F is the
set of feedback documents (assumed to be relevant).

The challenge now lies in estimating the joint probabil-
ity P (w, Q, D, i). Inspired by the two estimation methods
proposed in [16] for estimating relevance models, we derive
two methods similarly for estimating P (w, Q, D, i). The first
method assumes that w is sampled in the same way as Q,
while the second method assumes that w and Q are sampled
using two different mechanisms.

3.2.1 Method 1: i.i.d. sampling
In this method, we first compute the joint probability of

observing a word together with the query words at each
position and then aggregate the evidence by summing over
all the possible positions. Specifically, we factor the joint
probability P (w, Q, D, i) for each pseudo-relevant document
D as follows:

P (w, Q, D, i) = P (D)P (i|D)P (w, Q|D, i) (4)

Intuitively, we have assumed a generative model in which
we would first pick a document according to P (D), then
choose a position i in document D with probability P (i|D),
and finally generate word w and query Q conditioned on D
and i, with probability P (w, Q|D, i).

P (D) can be interpreted as a document prior and set to
a uniform distribution with no prior knowledge about doc-
ument D. While it is possible to estimate P (i|D) based on
document structures, here we assume that every position is
equally likely, i.e., P (i|D) = 1

|D| . Improving the estimation

of p(D) and P (i|D) would be an interesting future work.
An illustration of the dependencies between the variables
involved in the derivation is shown on Figure 1 (left side).

After making these assumptions and a further assump-
tion that the generation of word w and that of query Q are
independent, we have

P (w, Q, D, i) ∝ P (w, Q|D, i)

|D| =
P (Q|D, i)P (w|D, i)

|D| (5)

Plugging Equation 5 into Equation 3, we obtain the fol-
lowing estimate of the PRM:

P (w|Q) ∝ P (w, Q) ∝
∑

D∈F

|D|∑

i=1

P (Q|D, i)P (w|D, i)

|D| (6)



In the above equation, P (w|D, i) is the probability of sam-
pling word w at position i in document D. To improve the
efficiency of PRM, we simplify P (w|D, i) as:

P (w|D, i) =

{
1.0 if w occurs at position i in D

0.0 otherwise
(7)

The term P (Q|D, i) in Equation 6 is the key component
in estimating the positional relevance model. It is the query
likelihood at position i of document D, and we will discuss
how to estimate it based on the positional language model
[19] in Section 3.2.3. Additionally, there is a third term |D|
in the equation, which penalizes long documents to prevent
them from dominating the feedback model (long documents
naturally have more positions).

Thus, Equation 6 essentially combines all terms in feed-
back documents by assigning different weights to each term:
(1) P (Q|D, i) serves as a relevance-based weight for each
position in each document so that a position with many
query terms nearby would have a higher weight. Thus as an
intra-document weight, P (Q|D, i) can measure the relative
weights of positions within a document: a position closer to
query words would more likely generate the query, and as
a result a term that occurs at this position would naturally
receive a higher weight. (2) |D| comes into the formula be-
cause of the assumption about uniform distribution over all
the positions in a document and can be interpreted as an
inter-document weight: it penalizes a long document which
is reasonable since a longer document by nature has more
positions and more occurrences of terms to contribute.

3.2.2 Method 2: conditional sampling
In this method, we consider the following different way to

decompose the joint probability distribution:

P (w, Q, D, i) = P (Q)P (D|Q)P (i|Q, D)P (w|D, i) (8)

The assumed generative model is as follows. We first pick
a query according to some prior P (Q). We then generate a
document D with probability P (D|Q). Finally, we select a
position i in D with probability P (i|Q, D) and generate word
w according to P (w|D, i). An illustration of this sampling
process is given on the right side of Figure 1.

For the purpose of estimating P (w|Q), we can clearly ig-
nore the term P (Q) as it is a query-specific constant. Using
Bayes Rule and assuming both P (D) and P (i|D) to be uni-
form (as we have assumed in the first estimation method),
we have

P (D|Q) =
P (Q|D)P (D)∑

D∈F P (Q|D)P (D)
=

P (Q|D)∑
D∈F P (Q|D)

(9)

P (i|D, Q) =
P (Q|D, i)P (i|D)

∑|D|
i=1 P (Q|D, i)P (i|D)

=
P (Q|D, i)

∑|D|
i=1 P (Q|D, i)

(10)

Plugging Equations 8, 9, and 10 into Equation 3, we ob-
tain the following estimate of PRM:

P (w|Q) ∝
∑

D∈F

|D|∑

i=1

P (Q|D)∑
D∈F P (Q|D)

P (Q|D, i)
∑|D|

i=1 P (Q|D, i)
P (w|D, i)

(11)

where P (Q|D) is the query likelihood score of document D,
which can be computed using either the positional language
models [19] or the standard document language model. In
our experiments, we use the latter, i.e., P (Q|D) =

∏m
j=1 P (qj |D).

As in the first estimation method, we compute P (w|D, i)
using Equation 7.

Similarly to the first estimation method, this second esti-
mate of PRM also essentially combines all terms in feedback
documents by assigning different weights to each term: the
first weighting term in Equation 11 is seen to be the normal-
ized query likelihood score of the document, which assigns
more weights to documents that are more likely to be rel-
evant, while the second weighting term is the normalized
query likelihood of each positional language model, which
assigns more weights to terms that are closer to query words.

Compared to the first estimation method, the document
length normalizer |D| is missing, but a comparable effect is
now achieved by normalizing the query likelihood of each
positional language model P (Q|D, i). Indeed, the effect of
intra-document weighting and inter-document weighting can
now be seen even more clearly, i.e., the normalized P (Q|D)
can be interpreted as the inter-document weight favoring
a document matching the query well, while the normalized
P (Q|D, i) clearly achieves intra-document weighting to place
more weight on terms closer to query terms in document D.

3.2.3 More Estimation Details
This section provides the final estimation details for our

positional relevance model (Equation 6 and 11), i.e., how
to estimate P (Q|D, i). We adapt the positional language
model [19] to do that.

The key idea of PLM is to estimate a language model for
each position of a document. Specifically, we let each word
at each position of a document propagate the evidence of
its occurrence to all other positions in the document so that
positions closer to the word would get more share of the
evidence than those far away. The PLM at each position
can then be estimated based on all the propagated counts of
all the words to the position as if all the words had appeared
actually at the position with discounted counts. This new
family of language models is intended to capture the content
of the document at a position level, which is roughly like a
“soft passage” centered at this position but can potentially
cover all the words in the document with less weight on
words far away from the position.

Formally, the PLM at position i of document D can be
estimated as:

P (w|D, i) =
c′(w, i)∑

w′∈V c′(w′, i)
(12)

where c′(w, i) is the total propagated count of term w at
position i from the occurrences of w in all the positions.
Following [19], we estimate c′(w, i) using the Gaussian kernel
function:

c′(w, i) =

|D|∑

j=1

c(w, j) exp

[−(i− j)2

2σ2

]
(13)

where i and j are absolute positions of the corresponding
terms in the document, and |D| is the length of the docu-
ment; c(w, j) is the real count of term w at position j. With
the approximation method proposed in [19], the following
estimation of P (w|D, i) is obtained:

P (w|D, i) =
c′(w, i)

√
2πσ2 ·

[
Φ

( |D|−i
σ

)
− Φ

(
1−i
σ

)] (14)



where Φ(·) is the cumulative normal distribution and the
denominator is essentially the length of the “soft” passage
centered at position i.

However, there is one issue with the above estimation: the
length of “soft” passages around the boundaries of a docu-
ment would be smaller than that in the middle of the docu-
ment; as a result, boundary positions tend to unfairly receive
more weights. This may not raise problems in PLMs for re-
trieval [19], but it is a more serious concern for PRM, where
the relative weights of terms are more important. So we
decide to use a fixed length for all “soft” passages in feed-
back documents to estimate their corresponding positional
language models as follows:

P (w|D, i) =
c′(w, i)√

2πσ2
(15)

This strategy has shown to be better than the original im-
plementation in [19] for estimating PRM.

The distribution P (·|D, i) needs to be smoothed. Now
that all “soft” passages have equal length, we use Jelinek-
Mercer smoothing method to smooth PLM, which is shown
to work as well as the Dirichlet prior smoothing method and
is relatively insensitive to the setting of σ in our experiments.

Pλ(w|D, i) = (1− λ)P (w|D, i) + λP (w|C) (16)

where λ ∈ [0, 1] is a smoothing parameter and p(w|C) is
the collection language model. Now we can compute the
positional query likelihood score P (Q|D, i) for position i.

P (Q|D, i) =
m∏

j=1

Pλ(qj |D, i) (17)

Plugging Equation 17 into Equations 6 and 11, we would
be able to compute the two estimation methods directly.
Interestingly, if we set λ = 1 or σ = ∞, Method 2 will
degenerate to the general relevance model (see Equation 1).

The computation of positional query likelihood is the most
time-consuming part in estimating PRM. Fortunately, there
is no serious efficiency concern even with an unoptimized
implementation. The reason is because we only need to tra-
verse each position of a document twice: during the first
pass, the positions of query terms are recorded; in the sec-
ond, we compute a positional query likelihood for each po-
sition directly based on the position information of query
terms collected in the first pass. Therefore, the efficiency is
comparable to the estimation of the relevance model.

Finally, the estimated positional relevance model P (w|Q)
will also be interpolated with the original query model θQ

using Equation 2 to improve performance with a similar pa-
rameter α to that used in the mixture-model feedback [32]
and RM3 [1].

4. EXPERIMENTS

4.1 Experimental Setup
We used two standard TREC datasets in our study: Ter-

abyte (i.e., the Gov2 collection) and ClueWeb09 Category
B. They represent two very large web text collections in En-
glish. Queries were taken from the title field of the TREC
topics. We used the Lemur toolkit (version 4.10) and In-
dri search engine (version 2.10) 1 to implement our algo-
rithms. For both datasets, the preprocessing of documents

1http://www.lemurproject.org/

Terabyte05 Terabyte06 ClueWeb09 Cat. B
queries 751-800 801-850 20001-21000

#qry(with qrel) 50 49 358
#documents 25, 205, 179 50, 220, 423

mean(dl) 931 875

Table 1: Document set characteristic

and queries included stemming with the Porter stemmer and
stopwords removing using a total of 418 stopwords from the
standard InQuery stoplist. Table 1 shows some basic statis-
tics about the datasets.

We evaluated seven methods. (1) The basic retrieval model
is the KL-divergence retrieval model [15], and we chose the
Dirichlet smoothing method [33] for smoothing document
language models, where the smoothing parameter µ was set
empirically to 1500. This method was labeled as “NoFB”.
(2) The baseline pseudo feedback method is the relevance
model “RM3” described in Section 3.1 [1], which is one of
the most effective and robust pseudo feedback methods un-
der language modeling framework [18]. (3) Another baseline
pseudo feedback method is a standard passage-based feed-
back model, labeled as “RM3-p”, which estimates the RM3
relevance model based on the best matching passage of each
feedback document [17]. (4) We have two variations of PRM,
i.e., “PRM1” and “PRM2”, which are based on the two es-
timation methods described in Section 3.2, respectively. (5)
In addition, we also used PRM1 and PRM2 for passage feed-
back in a way as RM3-p does. Specifically, we first computed
a PLM for each position of the document, and then we esti-
mate a PRM based on a passage of size 2σ centered at the
position with the maximum positional query likelihood score
(see Equation 17). These two runs are labeled as “PRM1-p”
and “PRM2-p” respectively.

There are several parameters in these pseudo feedback al-
gorithms. We fixed the number of feedback documents to
20 and the number of terms in feedback model to 30. Other
parameters, including the feedback interpolation coefficient
α, the two additional parameters σ and λ in PRM, the pas-
sage size, and the passage smoothing parameter in RM3-p,
were all tuned on Terabyte05 dataset.

We used Terabyte06 and ClueWeb09 for testing. The top-
ranked 1000 documents for all runs were compared in terms
of their mean average precisions (MAP) (for Terabyte06) or
eMAP [8] (for ClueWeb09). In addition, other performance
measures, such as Pr@10, Pr@30 and Pr@100 for Terabyte06
and eP@10, eP@30 and eP@100 for ClueWeb09, were also
considered in our evaluation.

4.2 Feedback Effect
We first examine the overall retrieval precision of the pseudo

feedback models for document-based feedback. The results
are summarized in Table 2, where the best result for each
row is highlighted. As we see, both PRM1 and PRM2 signif-
icantly outperform the basic KL-divergence retrieval model
in terms of MAP. In addition, PRM1 and PRM2 are also
significantly better than RM3 across data sets. For ex-
ample, the relative improvements of PRM1 over NoFB are
9.0% on Terabyte06 and 13.5% on ClueWeb09 in terms of
average precision, which are much larger than the corre-
sponding improvements achieved by RM3 (only 2.8% and
5.9% respectively). RM3 improves Pr@10 over NoFB in nei-
ther dataset; however both PRM1 and PRM2 often improve
Pr@10, though not significantly. Besides, comparing PRM1



Collection Metric NoFB RM3 PRM1 PRM2

Terabyte06
MAP 0.3047 0.3131 0.3322∗+ 0.3319∗+
Pr@10 0.5367 0.5041 0.5306 0.5490+

Pr@30 0.4653 0.4660 0.4884+ 0.4871+

Pr@100 0.3547 0.3576 0.3671∗+ 0.3741∗+

ClueWeb09
eMAP 0.0713 0.0755 0.0809∗+ 0.0786∗+
eP@10 0.2371 0.2307 0.2418+ 0.2377+

eP@30 0.2433 0.2486 0.2536∗+ 0.2525∗+
eP@100 0.2216 0.2283 0.2356∗+ 0.2325∗+

Table 2: Comparison of different pseudo feedback models for document-based feedback. ‘*’ and ‘+’ mean
the corresponding improvements over NoFB and RM3 are significant respectively.

Collection RM3-p PRM1 PRM2 PRM1-p PRM2-p
Terabyte06 0.3077 0.3322∗ 0.3319∗ 0.3331∗ 0.3290∗

ClueWeb09 0.0781 0.0809∗ 0.0786 0.0800∗ 0.0798∗

Table 3: MAP/eMAP comparison of passage-based
feedback methods. ‘*’ means the corresponding im-
provement over RM3-p is significant.

and PRM2, we find that PRM1 is slightly more effective
than PRM2.

We are also interested in evaluating if a heuristic passage-
based feedback (i.e., RM3-p) can work as well as PRM,
since both PRM1 and PRM2 essentially can be regarded
as achieving a soft effect of passage feedback. Moreover,
we can also use PRM1 and PRM2 for “hard” passage feed-
back in a way as RM3-p does, which leads to PRM1-p and
PRM2-p respectively. So we further compare the average
precision of PRM1, PRM2, PRM1-p, PRM2-p, and RM3-p
in Table 3. From the table, it is clear that PRM1, PRM2,
PRM1-p and PRM2-p all outperform RM3-p significantly
in most cases, suggesting that our model does not only have
sound statistical foundation but also works effectively. In
addition, we also observe that RM3-p behaves quite differ-
ently in two datasets: it beats RM3 on ClueWeb09 but loses
to RM3 on Terabyte06. However, all the four variations of
PRM perform better than RM3 consistently. Finally, it is
also interesting to see that PRM1 and PRM2 work similarly
to PRM1-p and PRM2-p respectively, which may mean that
PRM1 and PRM2 have already achieved successfully an ef-
fect of passage-based feedback by assigning weights to dif-
ferent positions, so it does not bring too much additional
benefit to apply PRM to passages explicitly.

Next we examine the robustness to the parameter setting
in PRM on the Terabyte06 collection.

4.3 Robustness Analysis
In PRM1 and PRM2, there is a parameter σ inherited

from the positional language model to control the propaga-
tion range, which would influence the effect of term position
and term proximity. Specifically, if we increase σ to infinity,
the effect of term position and proximity will be disabled.
However, if we decrease this parameter to a finite value, term
position and proximity will play an important role in PRM.
We fix other parameters to their default values as trained
on Terabyte05 and focus on understanding how σ affects
the retrieval performance of PRM1 and PRM2. From Fig-
ure 2 (left), we can see that, as long as σ is in the range of
[100, 1000], both PRM1 and PRM2 outperform RM3 clearly.
Indeed, by setting σ around 200, we can often obtain the op-
timal performance for both PRM1 and PRM2. This result
confirms the observation in previous work [19]. In addition,

comparing PRM1 and PRM2, PRM2 seems to be less sen-
sitive to σ.

Next, the positional language model is smoothed using
Jelinek-Mercer method to estimate PRM. The smoothing
is controlled by a parameter λ. When λ = 0, we are us-
ing the pure positional language model, while if λ = 1, we
completely ignore the position and proximity evidence so
that every position will receive the same weight. Again,
we fix other parameters and show in Figure 2 (right) how
the average precision changes under different λ. The ex-
periment results indicate that when λ is set to around 0.1,
both PRM1 and PRM2 achieve their optimal performance.
However, PRM1 and PRM2 always outperform RM3 with
λ < 1. Comparing PRM1 and PRM2, we see again that
PRM2 seems to be more robust.

Recall that we interpolate the feedback model with the
original query model. The interpolation is controlled by a
coefficient α. When α = 0, we are only using the origi-
nal query model (i.e., no feedback), while if α = 1.0, we
completely ignore the original query model and use only the
estimated feedback model. We fix other parameters and
show in Figure 3 (left) how the average precision changes
according to the value of α. We can see that both PRM1
and PRM2 are clearly better than RM3 with different α val-
ues. And the optimal α for all the methods seems to be in
a range around 0.5. Besides, it is also interesting to observe
that the pure feedback model results (α = 1.0) of PRM1
and PRM2 are much better than that of RM3, suggesting
that the positional relevance model can lead to a more ac-
curate query model. Finally, comparing PRM1 and PRM2,
the former seems to be slightly more effective.

We further compare the robustness of different methods
w.r.t. the number of feedback documents. We change the
number of feedback documents from 1 to 200. The MAP
results are shown in Figure 3 (middle). We notice that
PRM1 and PRM2 are more robust to the number of feed-
back documents as compared to RM3. It is also interesting
to see there is almost no performance decrease of PRM1 and
PRM2 even when we set the parameter to 200, suggesting
that the proposed positional relevance model works better
in tolerating noisy information. Moreover, with only 1 feed-
back document, PRM1 and PRM2 have already been able
to outperform RM3, no matter how many feedback docu-
ments RM3 uses, which may indicate that our methods can
identify good feedback terms more accurately by assigning
position-dependent weights.

Additionally, we also compare the sensitivity of differ-
ent methods to the number of expansion terms in Figure
3 (right). We vary the number of terms from 5 to 100,
and observe that both PRM1 and PRM2 can achieve a very
effective performance with only 10 expansion terms, while
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 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0.34

 0  0.2  0.4  0.6  0.8  1

M
A

P

Feedback coefficient α

RM3
PRM1
PRM2
NoFB

 0.3

 0.305

 0.31

 0.315

 0.32

 0.325

 0.33

 0.335

 0.34

 0  20  40  60  80  100

M
A

P

Number of feedback documents

RM3
PRM1
PRM2

 0.3

 0.305

 0.31

 0.315

 0.32

 0.325

 0.33

 0.335

 0.34

 0  20  40  60  80  100

M
A

P

Number of expansion terms

RM3
PRM1
PRM2

Figure 3: Sensitivity to the feedback interpolation coefficient α (left), the number of feedback documents
(middle), and the number of expansion terms (right) of different pseudo feedback methods

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

RM3

P
R

M
1

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

RM3

P
R

M
2

Figure 4: MAP Plot of PRM1 (left) and PRM2
(right) as compared to RM3 on Terabyte06

RM3 needs 70 terms, but even so, its performance is still not
as good as our methods with 10 terms. This would be an-
other advantage of our methods since fewer expansion terms
mean higher efficiency, which is very important for retrieval
systems.

To further see the robustness of our methods on individual
queries, we plot the MAP of PRM1 versus RM3 and PRM2
versus RM3 on Terabyte06 in Figure 4. It is interesting that
the proposed methods, particularly PRM2, are quite robust;
they improve most of the queries clearly with only a small
number of queries decreased slightly.

5. CONCLUSIONS
We proposed a novel positional relevance model (PRM)

for pseudo-relevance feedback. The PRM exploits term posi-
tion and proximity evidence to assign more weights to words
closer to query words based on the intuition that words
closer to query words are more likely to be consistent with

the query topic. Specifically, PRM generalizes the relevance
model to aggregate the associations between a word and
query words at the position-level in a probabilistic way. We
also developed two methods to estimate the PRM based on
different generative models.

Experiment results on two large web data sets show that
the proposed PRM is quite effective and robust and per-
forms significantly better than the state of the art relevance
model in both document-based feedback and passage-based
feedback. Compared to the relevance model, the proposed
models are also less sensitive to the setting of various param-
eters, such as feedback coefficient, number of feedback docu-
ments, and number of expansion terms. Comparing the two
estimation methods of PRM, the first method (PRM1) ap-
pears to be more effective, while the second (PRM2) tends to
be more robust. Both methods achieve its optimal retrieval
performance when setting the σ value in a range around 200
and λ to around 0.1.

There are many interesting future research directions to
explore. One of the most interesting directions is to further
study whether setting a term-specific and/or query-specific
σ can further improve performance. Another interesting di-
rection is to study how to optimize σ automatically based
on the layout of web pages. Improving the estimate of other
components in PRM (e.g., the probability of choosing a po-
sition in a document) would also be interesting.
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