
An approach to formalize object interactions in distributed real-time systems

Michael Mock

Fraunhofer Institute for Autonomous intelligent Systems
D-53754 St. Augustin, Germany

e-mail: mock@ais.fhg.de

1. Introduction

Distributed control systems are becoming more com-
plex and more heterogeneous. On the one hand, techno-
logical trends and application needs lead to an increased
autonomy of the individual components: hardware (con-
trollers, PLCs, industrial PCs) is equipped with more and
more computing capabilities, networking layers and infra-
structure (field-busses, industrial Ethernet, even wireless
communication) are enabling interactions over several
system hierarchies, and applications are more demanding
with respect to the integration of higher level control and
management systems, and require integration with dis-
tributed programming systems. On the other hand, even
in complex, decentralized scenarios, interactions between
the individual, autonomous nodes must be coordinated
for meeting global real-time requirements. Hence, meth-
odologies are needed that allow for describing and ana-
lyzing the structure of heterogeneous, distributed systems,
the interactions of objects in such systems, and that pro-
vides a means to describe and evaluate the real-time fa-
cilities of these systems.

In [1], different distributed programming models
(shared data space, object oriented frameworks, event
based models) and their relation to communication infra-
structure have been investigated for establishing distrib-
uted control structures. The approach described in this
paper extends this work by developing a coherent, formal
framework that allows to formally describing the effects
of distributed programming structures on object interac-
tions and communication with respect to their real-time
characteristics. The classical approach to express and
implement real-time requirements is that of “deadlines”.
However, deadlines are imposed at the level of a rather
specific system and programming models, either proc-
esses or messages, or distributed threads in real-time
COBRA. As we want to evaluate different distributed
programming models and system structures for their
feasibility real-time requirements, the notion of “dead-
line” must be independently from this model. For this
purpose, we propose the use of the abstract notion of
“precision distance” to express the application’s timing
requirements between different objects. Since the preci-
sion distance is defined independently of a specific pro-

gramming or communication model, it can be used to
describe timing requirements at the abstract object level,
leaving the choice open of how the objects communicate
and interact with each other.

Only few work addresses the problem formalizing
real-time requirements for networks of interacting ob-
jects. In [2], the effects of communication jitter on object
interactions are analyzed, but only specific object-
relations are addressed. The general notion o f the preci-
sion distance is introduced for the special case of repli-
cated objects. In [3], time-triggers in real-time database
systems are used to describe time coherence between
dependent objects in a special database application con-
text. The model of [4] extends this approach to (data-)
objects, but is not distributed and is restricted to consis-
tency considerations (rather than real-time considera-
tions). In particular, control loops cannot be modeled. In
contrast to that, [5] presents a model completely based on
(multi-rate control) loops, but does not consider no distri-
bution of the effects of different programming models.
Finally, real-time UML [6] provides sequence charts
(alternatively concurrency charts) as basic means for
describing interactions between objects, where different
communication styles are expressed by different styles of
arrows and timing requirements can be expressed by
timing annotations. However, the effects of distribution
and of different communication QoS characteristics are
not reflected at the modeling level. Furthermore, there is
no translation of the graphical notation in a formal nota-
tion that could be used in formal analysis.

The roadmap of the paper is as follows: section 2 in-
troduces the model for describing interactions between
the objects, section 3 applies the model to an example
from industrial automation, and section 4 gives some
conclusions.

2. The formal model

Similar to the approach in [2], we the basic structuring
principle is based on objects that encapsulate data and
methods. Objects can interact by the means of communi-
cation, whereby the structuring principle of communica-
tion at the programming level is explicitly left open such
that different programming models can be modeled.

Communication Model
We adopt the model of structuring distributed applica-

tions by the means of objects that provide access to en-
capsulated data by the object interface. In the following,
we denote objects with small letters ,...,, qpo ... and use

the notion of an objectspace (OS) to denote the set of
objects. Objects are assumed to reside on computing
nodes, this is, objects are not distributed by themselves
and do not move between nodes (however, nodes can be
mobile). More formally, if we denote by

{ },...,, qpnN = the set computing nodes, we assume

that there is a mapping NOSLO →: that uniquely
defines the location of an object by assigning a node to
each object. Now, we introduce the communication
distance as the basic means for the describing the com-
munication structure between objects. The goal is to
develop a single and handy abstraction that allows cap-
turing various system structuring aspects that determine
the communication between the objects (topology, com-
munication protocol used, characteristics of the medium,
...). We focus on the temporal aspects of communication,
which constitutes the main idea behind to the following
definition:

DEFINITION 1: DIRECT COMMUNICATION DISTANCE

Let OSOSCON ×⊆ a symmetric relation over the

objectspace OS describing the connectivity of the net-
work infrastructure with the semantic that if a pair of
objects o and p is part of CON , i.e. CONpo ∈),(,

then o can communicate directly with p at the abstrac-

tion layer provided by network infrastructure (and vice
versa). In this case, we say o and p are connected. Let

furthermore +ℜ0 denote the domain of the positive real

numbers (including zero). Then, the direct communica-
tion distance between connected objects of an ob-
jectspace OS is defined as a function

{ } { }{ }∞∪ℜ×ℜ→ ++
00:CONdcd

with the meaning that if

),(),(ulpodcd = ,
then a message sent from o to p at real-time t, then

it will not arrive a p before real time lt + , thus giving a

lower bound on the communication delay, and will be
handled in p no later than at real time ut + , if ∞≠u .

In this case, we say that the direct communication dis-
tance is finite. If ∞=u , then no such upper bound ex-

ists. For the sake of simplicity, we assume that dcd is
commutative and associative. n

The definition of the direct communication distance
generalizes the notion the “temporal uncertainty” as in-

troduced in [2] which describes the general communica-
tion characteristics of a distributed real-time system.
Since the direct communication distance applies to indi-
vidual objects, it can be used to describe the individual
positioning of the objects in the complete system struc-
ture. Note that, unlike the communication cost count that
is usually indicated as weight of an edge in connectivity
graphs describing multi-hop networks (see for instance
[7]), the communication distance can abstract from the
actual network topology and describe the communication
relation between objects as seen at the programming and
application layer.

The communication distance does not only refer to
network topology, but reflects also properties and guar-
antees as provided by the underlying communication
protocols. Other important characteristics of a real-time
communication protocol, such as the jitter, giving the
maximum difference between the minimum and the
maximum delay of messages, can be easily derived. Also,
similar definitions for multicast communication can be
given.

Object Model
Since our final goal is to describe structuring of dis-

tributed computations and their temporal behavior, the
model must comprise a means to describe the interaction
and communication of several objects involved in a dis-
tributed computation. To this end, we introduce the no-
tion of a computational path, describing the sequential
composition of objects in a distributed computation.

DEFINITION 2: COMPUTATIONAL PATH

Let OS be an objectspace with the connectivity rela-

tion CON . A computational path CP is

() OSooonnoooCP niiiniii ∈≥Ν∈= ,...,,,2,,,...,, 2121

a finite sequence of that are connected in the se-
quence of their appearance in CP , i.e.

() CONoo lili
nl

∈+
−=

∀ 1
1,1

,

We say that the computational path CP starts at the

object
1i

o and ends at
ni

o . The objects
1i

o and
ni

o are

said to be connected by CP .n
The notion of the computational path is the basic

means for describing interactions between objects. Note
that its definition is independent of a specific program-
ming model and can be used for describing the actual
object interactions that implement a specific program-
ming model. In contrast to the path expressions used in
[8] to describe global real-time computations, the same
object can appear several times within a computational
path, thus allowing, for instance, modeling control loops
or client/server interactions between two objects.

The notion of the computational path now allows for

extending the model to express timing considerations
where multiple objects are involved. Since we are most
interested in reasoning about the effects of the structure
of object interactions (rather than in issues related to local
object executions), we will assume that the overall timing
behavior of a distributed computation is predominated by
the communication costs and that, hence, effects of
method executions are only of minor impact and can be
subsumed in the communication costs. This can be ex-
pressed using the direct communication distance by as-
suming that choosing appropriate lower and upper bounds
for the direct communication distance express timing
delays incurred by method executions. These considera-
tions finally lead to the following definition:

DEFINITION 3: COMPUTATIONAL DISTANCE

Let OS be an objectspace with the connectivity rela-

tion CON and let SETCP − be the set of computa-

tional paths in OS . Then, the computational distance is
defined as a function

{ } { }{ }∞∪ℜ×ℜ→− ++
00: SETCPcd

with the meaning that if

() () ()
niii oooCPulCPcd ,...,, with ,, 21==

then a computation initiated by a message sent from

1i
o over CP at real-time t, will result in a message ar-

riving at
ni

o that does not arrive before real time lt + ,

and that will be handled in
ni

o no later than at real time

ut + , if ∞≠u . In this case, we say that the computa-
tional distance is finite. If ∞=u , then no such upper
bound exists. n

Hence the computational distance between to objects
depends on the computational path that is chosen to con-
nect these objects. As the computational path depends on
the choice of a distributed programming model, the com-
putational distance can be used in the evaluation of such
models. In this sense, it differs significantly from routing
cost considerations for wide are networks [7], where the
communication costs are determined by the topology of
the network infrastructure, only.

Precision Distance
The purpose of this subsection is to introduce the for-

mal means for expressing real-time requirements between
without referring to a specific programming model. In-
formally, the system designer should be able to express
consistency relationships between objects that have to be
fulfilled under temporal constraints. For instance, in in-
dustrial automation, if temperature increases about a
critical level at three different places, then a cooling pro-
cess should start within a certain amount of time. Hence,
the model must provide for a formalization of the notions

of “relevant events”, “consistent reaction”, and “staying
in a consistent state”, even if multiple objects are in-
volved. To this end, we extend the notion of states and
observations as defined in [2, 9] to object state variables
and object histories that reflect the changes of the vari-
ables over the time. More precisely, we assume that each
object of the object space contains a number of state
variables that reflect the relevant changes of the object
state. An object can change the state of a variable to re-
flect changes in the physical environment, in which case
it acts as “rt-entitiy” as explained in [9], or in course of a
method execution, which can be triggered either by in-
coming messages or by the progress of time. We assume
that non-relevant or inconsistent intermediate states of a
variable do not appear in the model (in practice, further
internal variables can used for this purpose when pro-
gramming an object), such that each state assignment to
the object variable represents a relevant event and is
considered as an observation in terms of the model of [2,
9]. These considerations lead to the following definition:

DEFINITION 4: OBJECT HISTORIES

Let OS be an objectspace and let { }K,, 21 vvV =
be a set of variable identifiers. Without loss of generality,
we assume that all variables have values in the same

domain VD . The mapping ()VPOTOSOV →:
associates set of object variables to each object. All sets
of object variables are pair wise disjoint. Then, an obser-
vation

VDvaluetoOVvOSovaluetvoos ∈ℜ∈∈∈= + ,),(,),,,,(
describes that the object o has assigned the value
value to its state variable v at real time t , denoted
as point of observation. The history of an object
variable is then defined as:

()

K

),,,,(

),,,,(

),,,,(

22

11

++

++

=

ii

ii

iiv

valuetvo

valuetvo

valuetvooHS

with K<<< ++ 21 iii ttt
The history of a variable v at the object o is the se-

quence of observations of that variable where the points
of observations are ordered in time. Let

ululul tttttt <ℜ∈ + ,,],,[denote a time interval. The

history projection on an time interval is defined as:

()[]

),,,(

 ,

),,,,(

),,,,(,

2

11

++

++

=

ini

ii

iiulv

valuetvo

valuetvo

valuetvottoHS

K

with those observations of v whose points of obser-

vations are in []ul tt , .n

Based on the notion of the history, we can now intro-
duce the precision distance as means to describe the rela-
tionships between objects.

DEFINITION 5: PRECISION DISTANCE

Let OS be an objectspace and let

{ } Ν∈=⊂ noooPGOSPG n ,,,,, 21 K be a finite

subset of objects, denoted as precision group, and let

nvvv ,,. 21 K be variables of nooo ,,, 21 K , respectively.

Let nVDPCR ⊂ , the precision consistency relation,
denote a relation that describes the application semantics,

i.e., a tuple of variable values ()nvalvalval ,,, 21 K is

consistent if and only if () PCRvalvalval n ∈,,, 21 K .

Let +ℜ∈pd denote the length of a time interval. We

say, the object histories fulfill PCR with the precision
distance pd , if and only if:

()[]

() ,,,

:,),,,(

21

0

00

PCRvalvalval

pdttoHSvaltvo

n

lll

j

iii

lviill
PGot

∈

+∈∃∀∀
∈ℜ∈ +

K

this is, for each point in time 0t , there are observa-

tions in the time interval []pdtt +00 , in the histo-

ries of the object variables such that the variable
values fulfill the precision consistency rela-
tion PCR .n

3. Industrial application example

In this section, the formal notions introduced in sec-
tion 2 are applied to a (simple) industrial automation
example. In the scenario described in Figure 1, let object
q on the PLC encapsulate some sensor data from a ma-
chine and let object p on the controller node reflect the
status of q, which is finally displayed by the operator
object o. Then, the direct communication distance be-
tween p and q, and between between q and o, are deter-
mined by and capture the communication characteristics
of the field-bus, and the local are network, respectively.

Lets now consider the programming structure. Nested
RPC calls from o to p to q are modeled as

()opqpoRPCCP ,,,,=− . A program based on
publisher/subscriber communication would be modeled

by the computational path ()oecpqPSCP ,,,=− ,
reflecting that the controller object p receives messages
containing events from the object q, and publishes these
events by sending messages to (an additional) event
channel object ec, which finally forwards them to the
controller object o.

Node N1

Object o

Ethernet

Operator

Node N2

Object p

Controller

Local Area Network
with multiple routers, switches,
and hubs

Node N3

Object q

PLC

Ethernet

Field Bus

Node N1

Object o

Ethernet

Operator

Node N2

Object p

Controller

Local Area Network
with multiple routers, switches,
and hubs

Node N3

Object q

PLC

Ethernet

Field Bus

Figure 1: Example for the direct
communication distance function.

Although the existence of the event channel object is
hidden from the programmer by the implementation of
the of the distributed publisher/subscriber programming
model, its existence and the structural effects of that
model are properly reflected in the formal model using
the notion of the computational path. Finally, the tempo-
ral gap between the sensor object and the operator object
is modeled with the precision distance using the “iden-
tity” relation as precision consistency relation on the
respective variables.

References

[1] M. Mock, "An Architecture Supporting Loose and Close Coopera-
tion of Distributed Autonomous Systems," presented at 4th IEEE
International Symposium on Object-Oriented Real-Time Distrib-
uted Computing (ISORC 2001), Magdeburg, Germany, 2001.

[2] H. Kopetz and K. H. Kim, "Temporal Uncertainties in Interactions
among Real-Time Objects," presented at 9th IEEE Symposium on
Reliable Distributed Systems, Huntsville, AL, 1990.

[3] H. F. Korth, N. Soparkar, and A. Silberschatz, "Triggered Real-
Time Databases with Consistency Constraints," presented at 16th
Conference on Very Large Database Systems, Brisbane, Australia,
1990.

[4] H. R. Callison, "A Time-Sensitive Object Model for Real-Time
Systems," ACM Transactions on Software Engineering and Meth-
odology, vol. 4, pp. 287-317, 1995.

[5] M. Törngren, "Fundamentals of Implementing Real-Time Control
Applications in Distributed Computer Systems," Real Time Sys-
tems, vol. 14, pp. 219-250, 1998.

[6] B. P. Douglass, Doing Hard Time. Reading, MA: Addison-Wesley,
1999.

[7] A. Tannenbaum, Computer Networks: Prentice Hall, 1981.
[8] L. R. Welch, B. Ravindram, B. A. Shirazi, and C. Bruggemann,

"Specification and Modeling of Dynamic, Distributed Real-Time
Systems," presented at 19th IEEE Real-Time Systems Symposium,
Madrid, Spain, 1998.

[9] H. Kopetz, Real-Time Systems. Boston: Kluwer Academic Publish-
ers, 1997.

