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ABSTRACT
We present an experimental characterization of the physical and
MAC layers in CDMA 1xEV-DO and their impact on transport
layer performance. The 1xEV-DO network is currently the fastest
mobile broadband cellular network, offering data rates of up to
3.1 Mbps for both stationary and mobile users. These rates are
achieved by using novel capacity enhancement techniques atthe
lower layers. Specifically, 1xEV-DO incorporates rapid channel
rate adaptation in response to signal conditions, and opportunis-
tic scheduling to exploit channel fluctuations. Although shown to
perform well in isolation, there is no comprehensive literature that
examines the impact of these features on transport layer andappli-
cation performance in real networks.

We take the first step in addressing this issue through a large
set of experiments conducted on a commercial 1xEV-DO network.
Our evaluation includes both stationary and mobile scenarios wherein
we transferred data using four popular transport protocols: TCP-
Reno, TCP-Vegas, TCP-Westwood, and TCP-Cubic, and logged
detailed measurements about wireless channel level characteristics
as well as transport layer performance. We analyzed data from sev-
eral days of experiments and inferred the properties of the physical,
MAC and transport layers, as well as potential interactionsbetween
them. We find that the wireless channel data rate shows significant
variability over long time scales on the order of hours, but retains
high memory and predictability over small time scales on theor-
der of milliseconds. We also find that loss-based TCP variants are
largely unaffected by channel variations due to the presence of large
buffers, and hence able to achieve in excess of80% of the system
capacity.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
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cols; C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks; C.4 [Performance of Systems]: Measure-
ment techniques

General Terms
Measurement, Performance, Experimentation

Keywords
3G, Cellular, CDMA, 1xEV-DO, TCP, SINR, Mobility, DRC, Pro-
portional Fair (PF), Measurement, Cross-layer

1. INTRODUCTION
Over the last three years, mobile high-speed networking, inthe

form of CDMA 1xEV-DO [5], has taken a quantum leap from field
trials to nationwide availability in the United States. Compared to
peak rates of around100 kbps that were offered on GSM EDGE
and CDMA 1xRTT networks a few years ago, 1xEV-DO offers
peak rates of more than3 Mbps on the downlink and1.8 Mbps
on the uplink even when users are traveling at high speeds. Itis
worthwhile noting that these rates compare favorably to those of-
fered by current-day DSL with the added incentives of mobility and
significantly larger areas of coverage.

1xEV-DO was designed to meet stringent objectives of high-
speed data, wide geographical range of coverage, and mobility.
This was achieved not through a single technological innovation but
rather with the help of several physical and MAC layer optimiza-
tions that are unique in commercial wireless networks. Noteworthy
in the context of this paper is therapid channel rate-adaptation (at
time-scales of around one millisecond) at the physical layer and the
opportunistic scheduling at the MAC layer to exploit wireless chan-
nel fluctuations. These technologies are relatively well understood
in isolation and have been shown to provide impressive throughput
gains [4] in simulations and controlled trials.

However, a decade of research in802.11 wireless networks (see
for example [19] ) has shown that physical and MAC layer opti-
mizations do not always translate into desired higher throughputs in
practice. This is because thetransport layer plays an important role
in determining application performance. Indeed, this is anoverar-
ching fact in all types of networks, and has motivated researchers
to develop and evaluate the performance of a number of transport
layer protocols tuned to the properties of specific networks. Fur-
thermore, throughput gains observed in isolation for any particular



optimization during simulations and trials often disappear in prac-
tice due to complex real-world interactions that are not easily mod-
eled.

The above arguments drive the core objective of this paper. The
1xEV-DO network has been commercially available only in thelast
three years. The novel lower layer enhancements have been shown
to optimize MAC layer data throughputs. However, they produce
a unique environment of rapidly changing channel rates and trans-
mission times that current implementations of transport layer proto-
cols do not specifically cater to. In particular, TCP protocols devel-
oped in the past for wireless links [7, 18] assumedchannel errors
as the primary source of performance degradation. With power-
ful Turbo Codes and adaptive rates, channel error is negligible in
3G networks (verified in our study) and replaced with high delay
as well as rate variability, as more likely causes of performance
degradation. Although certain aspects of TCP degradation over 3G
networks have been observed in simulations, it is unclear how the
combination of link layer optimizations and present-day transport
protocols perform in an actual 3G network.

Motivated by this, we carried out a measurement-based charac-
terization of the physical, MAC and transport layer performance in
a commercially deployed 3G network. Our goals were, broadly: a)
to understand thebehavior of these layers in a real environment and
more importantly, b) to determine if the physical and MAC layer
enhancements aid in transport layer performance. More specifi-
cally, we identified the following key questions and sought to an-
swer them:

1. How does the channel rate in 1xEV-DO vary ? Does it change
rapidly, is it different for mobile users, and can we predictit?

2. Does the MAC layer opportunistic scheduler provide any
throughput gains in practice?

3. How well do current state-of-the-art transport protocols (specif-
ically, different TCP variants) perform on 1xEV-DO? Can
they cope with a varying channel?

To answer these questions, we conducted extensive experiments
that involved data transfer over 1xEV-DO in the downlink direc-
tion, in multiple locations as well as mobile environments.We initi-
ated data transfers using TCP-Reno, TCP-Vegas [6], TCP-Westwood
[7] or TCP-Cubic [21] as transport layer protocols. We chosethese
as our candidate protocols since they capture a variety of transport
layer mechanisms and have readily available implementations. In
each experiment, we collected detailed wireless channel-related in-
formation including instantaneous channel rate, SINR, andpacket
loss. We also collected information related to the behaviorof the
transport layer protocols. We cross-analyzed these two data sets to
study dynamics ateach layer. We summarize our findings below:

1. The observed channel data rate varied significantly overlong
time scales on the order of an hour or a day, as well as with
location. This is largely in agreement with prior research
[23].

2. Short-term behavior of channel data rate (within150 ms)
was surprisingly predictable and exhibited significant mem-
ory for both stationaryand mobile users. In particular, we
found that a one-step Markov chain can adequately model
channel evolution over short-time scales. This indicates that
short-term predictors utilized in transport protocols canbe
effective.

3. Stationary users typically retained one value of channeldata
rate for more than40% of the time and transitioned to a

different rate only after a few hundred milliseconds. Mo-
bile channels were much more variable, often changing rate
within hundred milliseconds and experiencing sector hand-
offs1 every20−30 secs on average when the user was travel-
ing at speeds of50 − 60 mph. However, rather surprisingly,
we found that theaverage channel rates for stationary and
mobile users was comparable.

4. The opportunistic channel-aware scheduler typically yields
higher gains for mobile users (≈ 20%) as opposed to station-
ary users (≈ 5%) when compared to a simple Round Robin
scheduler.

5. TCP performance was, in general, not significantly influ-
enced by wireless channel characteristics primarily due to
the presence of large buffers. TCP-Cubic, TCP-Reno and
TCP-Westwood could generally utilize≈ 85% of channel
capacity under good channel conditions and low propagation
delays by creating large backlogs. TCP-Vegas, a delay-based
variant that controls queue size fared poorer, with a channel
utilization of around75%. The large buffer however incurs
a penalty in that delay-sensitive applications were found to
fare more poorly in the presence of TCP-Cubic, TCP-Reno
or TCP-Westwood as compared to TCP-Vegas. Somewhat
surprisingly, we found that under excellent channel condi-
tions utilization dropped to around80% due to reasons that
are as yet unclear.

Our hope with this study is to shed light on the performance ofthe
1xEV-DO network in the context of commonly used applications,
and spur further research on this topic.

The rest of this paper is organized as follows. Section 2 gives
the reader a quick primer on the 1xEV-DO system. Section 3 sur-
veys prior work related to this paper’s area of study. Section 4 de-
scribes our measurement methodology in detail. Section 5 studies
the 1xEV-DO physical layer characteristics and details ourfindings
thereof. Section 6 describes our study and findings on the perfor-
mance of the PF scheduler, while Section 7 investigates on how
TCP performance is affected by the wireless channel. Section 8
concludes the paper.

2. 1xEV-DO
The 1xEV-DO mobile broadband cellular network offers peak

speeds of3.1 Mbps on the downlink (base-station to user) and
1.8 Mbps on the uplink (user to base-station) for both mobile and
stationary users. The network incorporates several interesting fea-
tures at the physical and MAC layer in order to achieve these speeds.
Of these, we primarily focus on two relatively unique and novel
aspects, which have the potential to impact transport layerperfor-
mance: 1) The variable transmission rates on the downlink, and 2)
The opportunistic Proportional Fair (PF) Scheduler. Note that the
1xEV-DO network also incorporates uplink optimizations. But, our
primary focus in this paper is on the characterization of thedown-
link channel and performance.

Thedownlink channel from a base station to the user is a TDMA
slotted system, with each slot duration equal to1.67 ms. At the
beginning of each slot, the mobile device computes the perceived
signal-to-noise ratio (SINR) with the help of a pilot signaltrans-
mitted by the base-station. It then maps this SINR to a channel

1A hand-off is a phenomenon where a user with decreasing signal
quality (for example, due to mobility) shifts from the currently used
base-station to another base-station with better signal strength.



data rate (called Data Rate Cover or DRC) based on a certain tar-
get Frame Error Rate (usually1%). The DRC is sent to the base-
station, indicating the rate at which the device wishes to receive
data in the current slot.

In 1xEV-DO, the channel rate requested by the device,i.e., DRC,
can take 15 potential values (orstates), each indicating a modu-
lation and coding scheme, that translates into a specific desired
channel rate in that slot. These rates range from38.4 kbps up to
3.072 Mbps. We refer the reader to [5] for more details on the ex-
act rates. As mentioned above, in each slot, the computed SINR
is mapped to the highest DRC that achieves the target Frame Error
Rate. This mapping relation isdynamic in that it may be changed
on-the-fly based on actual observed FER. The mapping also intro-
duces quantization since it maps a continuous variable (SINR) to a
discrete DRC (which can take one of 15 values).

At the base-stationone user is selected for transmission in the
current slot based on the received DRCs. The base-station then
transmits to the user in the slot withfull power at the requested
rate. Given the potential dynamic nature of the channel in each
slot, the base station utilizes the Proportional Fair (PF) algorithm,
an opportunistic scheduling scheme, to decide which user toserve
in a particular slot. The PF scheduling decision is based on the
past history of users as well as current requested DRCs and tries to
exploit the variability of the channel to increase capacity. The PF
scheduler is explained in more detail in Section 6.

In order to handle mobility, 1xEV-DO utilizesfast cell-switching
or ’hand-off’. Each device monitors several sectors and if the serv-
ing sector falls below a threshold, it can rapidly request a switch to
the next strongest one.

3. RELATED WORK
Today, wireless data networks fall predominantly into two cate-

gories: IEEE802.11 standard based Wi-Fi WLANs,which repre-
sents the significant majority and the recent 3G mobile broadband
networks that are rapidly proliferating. There is a very large body
of work in literature characterizing the channel and performance of
the former type of networks (for example, [1, 20]).

However the two networks differ significantly enough in objec-
tives, and, consequently, design principles as well as features at
the physical and MAC layer.802.11 networks aim to offer high
data rates, but within limited coverage for only reasonablystation-
ary users. The 3G network is geared to offer high data rates over
large areas and support mobility. To achieve this, as outlined in the
previous section, it incorporates several unique featuresthat are ab-
sent in 802.11 Wi-Fi. The significant differences between the two
networks and the relative novelty of 3G networks, creates a clear
rationale for the need to characterize and understand the efficacy of
these unique features in commercial 3G networks.

A few recent studies have addressed various issues regarding 3G
cellular networks. [9, 10] have studied the performance of TCP
over a variable rate wireless channel via simulations and proposed
ack and buffer management schemes at the MAC layer in order
to overcome potential limitations of TCP. [13, 14] proposednew
TCP-aware scheduling mechanisms to replace the Proportional Fair
scheduler. Simulations were used to show that these new mecha-
nisms improve TCP throughput. It is however unclear as to what
extent, if any, the performance degradation of TCP observedin sim-
ulations actual occurs in a commercial 1xEV-DO network.

Measurements of performance in actual 3G networks have re-
cently appeared in [11, 17, 23, 8]. The authors of [11] conducted
several TCP downloads and probing experiments to characterize
the latency, TCP throughput and stability of the 1xEV-DO channel.
They observed that TCP throughputs are reasonably satisfactory

(compared to posted peak speeds), and the channel relatively stable
but with high latencies. [17] conducted similar studies. [23] con-
ducted TCP and video tests to determine the capacity of a 3G net-
work (they do not specify the type/technology). Their conclusions
included the presence of high unpredictability in such networks due
to customized engineering of each cell site. [8] was mostly focused
on 2.5G networks (such as GPRS and CDMA2000) in terms of
application performance with a light-weight evaluation ofUMTS-
based 3G technology. The authors evaluated various optimization
techniques and designed and implemented performance-optimizing
proxies.

Our work differs from these previous works in that none of them
characterize the underlying channel ormobility. In this paper, we
undertake a detailed study of the physical channel for stationary and
mobile users and try to gauge the extent of its impact on transport
layer performance. Furthermore, our work also takes a closer look
at the performance of popular transport protocols on a high-speed
variable-rate channel in stationary and mobile scenarios.

4. EXPERIMENTAL SET-UP
We carried out our evaluations on a commercial 1xEV-DO net-

work as well as a fully functional test-bed. All our experiments
were carried out using Lenovo T-60 Thinkpad laptops runningWin-
dows XP and equipped with Sierra Wireless 1xEV-DO data cardsas
clients and, when required, Dell Edge Servers running LinuxKer-
nel2.6.21 as TCP and UDP servers. The servers were dedicated to
our experiments and had high-bandwidth network connectivity.

Given the objectives of this work, our measurement process in-
volved collection of detailed channel information as well as trans-
port layer information. For the former, in each experiment we col-
lected the SINR and DRC values ineach slot as well as other rele-
vant radio information,e.g., packet error rate and hand-offs, using a
proprietary CDMA measurement tool running on the clients. This
allowed us to generate time-series that traced various metrics such
as DRC, SINR, and packet loss. At the transport layer, we collected
standard Windump and Tcpdump logs at the client and server re-
spectively. The logs were parsed and packet/ack pairs matched at
each end in order to generate packet loss and round trip time series
at the transport layer.

In order to study the effect of wireless channel characteristics on
transport layer protocols, we compared the performance of differ-
ent variants of TCP. Four Linux servers were configured to each
use TCP-Reno, TCP-Vegas, TCP-Westwood or TCP-Cubic. We
downloaded large files from either a single server or all fourservers
concurrently, depending on the scenario. Our experiments can be
broadly classified as stationary or mobile.

For stationary experiments, in order to study the physical layer,
we passively monitored the 1xEV-DO channel at three different
locations (periodic 3 second pings were sent to ensure the traffic
channel was not relinquished). At each location,24 contiguous
hours worth of channel rate and SINR (broken into hour-long traces
for reporting) were logged at the granularity of1 slot (1.67 ms).
Due to equipment constraints, the logging took place on different
days. Our three locations covered a large metropolitan region tens
of kilometers in diameter and henceforth are referred to as Loca-
tions 1, 2, and 3. The distance from the nearest cell tower wasabout
400, 1000 and600 meters for Location 1, 2 and 3 respectively.

In addition, we collected traces for24 contiguous hours from
three co-located laptops at Location 1 so as to infer channelbehav-
ior of closely spaced devices. We also collected30-minute wireless
traces in the morning and evening at Location 1 over a period of
25 non-contiguous (due to holidays) week-days to study long-term
trends.
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Figure 1: Average DRC (Left) and Modal Fraction (Middle), over 24 hours at Locations 1,2, and 3; average DRC over25 days at
Location 1 (Right).

When studying transport layer behavior on stationary devices,
clients placed in one of the above locations downloaded250 Mbyte
files from each Linux server configured with a particular variant.
We conducted experiments to study each TCP variant in isolation
as well as concurrent downloads by co-located laptops at thesame
location to study how the variants share base-station resources. Our
experiments were performed on the commercial 1xEV-DO network
and a laboratory testbed. The latter comprised of a 1xEV-DO base-
station and the four linux servers connected to an internal100 Mbps
network which had no commercial traffic and a minimum round trip
time (RTT) of 40 ms. The per-user buffer at the base station was
configured to be64 Kbytes, the same as the maximum default TCP
window size in Windows XP. In all testbed experiments, the clients
were placed at Location 1.

The mobile experiments were conducted in the San Francisco
Bay Area. The typical vehicular speed was[50 − 60] mph and the
drive-test experiments lasted at least 30 minutes (it couldvary due
to traffic conditions). During each experiment, the client would ini-
tiate download of a1 Gbyte file and simultaneously log transport
and physical layer information. Similar to stationary tests, we con-
ducted tests where a single laptop connected to a particularserver,
which was running one of the TCP variants, as well as experiments
involving multiple laptops in the vehicle, each connectingconcur-
rently to a server running a different TCP variant. The entire period
of mobile trace collection lasted over 2 months, and each scenario
was repeated several times to get dependable results. More specific
details about the data-sets are covered in the appropriate sections
that analyze the data.

5. CHANNEL CHARACTERISTICS
This section presents our findings regarding the nature of the

wireless channel observed in 1xEV-DO networks. The objective
of the characterization is threefold: first, to explore the differences
in channel behavior at different locations; second, to study the im-
pact of mobility on the wireless channel; and third, to characterize
the temporal behavior of the channel.

5.1 Location
We first consider the impact of location on the wireless channel

characteristics of stationary users. Though the effect of location
on thelong-term signal quality (SINR) of stationary users has been
comprehensively documented in literature [23], it is the DRC that
ultimately dictates the channel rate in 1xEV-DO networks. Given
the dynamic mapping of SINR to DRC, and the associated quan-
tization, it is useful to characterize the behavior of the DRC time-
series at different locations, and examine whether it indeed tracks

the behavior of the SINR. Towards this end, we conducted experi-
ments to address the following two questions:

• How does location impact DRC over long time scales? In
this context, we consider measures of DRC aggregated over
periods of 30 minutes or 60 minutes, and study the evolution
of such measures.

• How does location affect the DRC time series at short time
scales? In this case, we consider the values of DRC measured
during each slot (recall that a slot is1.67 milliseconds).

5.1.1 Long time-scale analysis
We now consider the behavior of DRC when averaged over an

hour, and observed for 24 hours, at Locations 1, 2 and 3; this is
plotted in Fig. 1(Left ). The impact of location is clearly evident on
perceived channel rate. Location 1 enjoyed far higher mean DRC
channel rates (2 − 3 Mbps) compared to Locations 2 and 3 both
of which experienced average channel rates of about1 Mbps. We
also verified that at this time scale, in spite of dynamic mapping
and quantization, SINR and DRC were strongly correlated, with a
cross-correlation coefficient above0.98 at each location.

The spatial variation of mean DRC across our locations is not
unexpected, given that these locations are separated by several kilo-
meters. However, we notice from Fig. 1(Left ) that even when con-
sidering one particular location, the mean DRC varies significantly
over time. For example, the mean DRC at Location 1 varies from
2 Mbps, at the beginning of the24-hour measurement period, to
3 Mbps at the end of the measurement period. This property is
further illustrated in Fig. 1(Right), which plots the DRC (averaged
over 30 minutes), over 25 days, for Location 1. The mean DRC
varies significantly over time, ranging from500 kbps to3 Mbps,
even at a single location.

5.1.2 Short time-scale analysis
We now investigate the nature of DRC behavior over shorter time

scales, specifically, at every slot? We start our analysis byconsid-
ering the fraction of time spent by the channel in different DRC
states. In particular, we identify the most frequently observed DRC
state, and focus on the fraction of time spent in that state - we term
this quantity theModal Fraction. Fig. 1(Middle ) shows the Modal
Fraction over each hour, for24 hours at Locations 1, 2, and 3.

Several interesting observations can be made from Fig. 1(Middle ).
At all locations, the channel retained a particular DRC state greater
than40% of the time, indicating the presence of a dominant DRC
value. To further study this property, we plot the Cumulative Dis-
tribution Function (CDF) of the Modal Fraction values for all our
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Figure 2: CDF of Modal Fraction for all experiments (Left); A verage DRC (Middle) and Modal Fraction (Right), for co-located
laptops over 24 hours.

experiments, in Fig. 2(Left ). The curve for stationary users shows
that the Modal Fraction was at least60% in more than60% of
our experiments. This further confirms that stationary users have a
DRC state that is frequently experienced.

Prior work has shown the unpredictability of SINR in wireless
channels over long time scales [23]. Our findings indicate that this
is true of DRC as well. In contrast, our observation of a dominant
DRC state is an indication that DRC evolution might indeed bepre-
dictableat short time scales. We explore this further in Section 5.3.
We note, however, that this does not give us any evidence of long-
term predictability. The actual value of the dominant DRC state
also varies with location. And as we shall see next, even at similar
locations, there can be significant differences over time.

We noticed earlier, from Fig. 1(Left ), that Locations 2 and 3 had
roughly the same DRC values, when aggregated over longer time
periods. However, Fig. 1(Middle ) indicates that Location 2 had a
much more ‘stable’ DRC, with the most frequent DRC state be-
ing retained between60 − 80% of the time. The wireless channel
at Location 3 was far more variable, visiting any DRC state only
40 − 60% of the time. Thus, even if two locations exhibit simi-
lar long time scale behavior, short time scale analysis can identify
significant differences between them.

Finally, dynammic mapping and quantization were found to have
a more pronounced efect at smaller time-scales. The correlation co-
efficient between SINR and DRC within each hour of measurement
was much lower, albeit covering a wide range:[0.05− 0.711] - in-
dicating that quantization hides away small SINR variations from
higher layers.

5.1.3 Co-located Users
Another unusual observation from our measurements was that

even co-located laptops can have different channel characteristics.
Fig. 2(Middle ) plots the average DRC, measured at 1 hour in-
tervals, over a 24-hour period for threeco-located laptops sepa-
rated by less than 50 centimeters at Location 1. All three laptops
were verified to be connected to the same network sector. As is
clearly evident, all three laptops have markedly differentaverage
DRC evolution. This difference also extends to the short time scale
behavior in Fig. 2(Right), which plots the Modal Fraction on an
hourly basis.

This indicates that even nominal separation between laptops is
sufficient to provide significantly different data rates. Note, how-
ever, that all three laptops always show a significantly large Modal
Fraction, reinforcing our earlier observation that stationary users
have a dominant DRC state.

5.2 Mobility
A key feature of cellular networks is their ability to support mo-

bility, which is achieved at the physical layer by accounting for
Doppler shifts, and at the MAC layer through fast hand-offs.In-
tuitively, one expects this to significantly affect channelcharacter-
istics. For example, as a user’s position relative to the cell tower
changes, the perceived signal quality could change. Our goal in
this section is to understand this effect; we compare and contrast
the properties of the wireless channel for mobile users versus sta-
tionary users. In this subsection, we focus mainly on DRC; inlater
sections, we report results pertaining to the TCP downloadsdone
during these experiments.

Fig. 3(Left ) plots the average DRC achieved overeach mobile
experiment and compares it against 24-hour traces from the station-
ary experiments at Locations 1 and 3. The mobile laptop typically
experienced channel rates around1 Mbps, similar to Locations 2
and 3, but less than the2 − 3 Mbps obtained at Location 1. Over-
all, our experience with mobile experiments indicates thataverage
DRC channel rates were quite reasonable compared to stationary
users, in contrast to common perception that channels for station-
ary users are necessarily better. In retrospect, the cellular network
design plays a key role in mitigating the difference betweenthe
two, at least over long time scales.

We next look at how variable the channel was, considering short
time scales (on the order of a few slots). Fig. 3(Middle ) plots
the standard deviation of the channel while Fig. 3(Right) plots the
Modal Fraction for each experiment. Both metrics capture the vari-
ability of the channel; unlike average channel rates, they clearly
highlight differences between stationary and mobile users. The
mobile channel had a far higher standard deviation of DRC rate,
more than600 kbps, when compared to the stationary channels’
standard deviation, which was always below400 kbps. In addition,
the mobile channel occupied a particular DRC state less than20%
of the time. This is in significant contrast to our observation (in
Section 5.1.2) that stationary channels’ Modal Fraction was above
40% and often higher. We explore the differences between station-
ary and mobile channels in more detail in the next section.

5.3 Channel Variability
The previous two sub-sections compared long term average DRC

channel rates that arise when users are stationary or mobileand pro-
vided an initial look at short-term behavior. The main observation
regarding the latter aspect was that mobile users have a morevari-
able channel. There remain several pertinent questions about the
nature of the variability: what is the range of variability? how fast
does the channel vary? and how much memory does it retain?
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Figure 3: Mean(Left), Standard Deviation(Middle) and Modal Fraction (Right) of DRC for Stationary and Mobile Traces.
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Figure 4: CDF of Entropy values for all experiments (Left); Average Time (in slots) spent in any state (Middle); RMSE between
observed Sojourn Times and analytically computed Sojourn Times with a one-step Markov Model (Right).

While interesting on their own account, these questions also have
implications for transport layer performance. For example, VoIP
applications require low jitter and analytical models of TCP indi-
cate that channel variability and rate of variation affectsthroughput
[2, 3]). In this subsection, we answer these questions by exploring
the temporal properties of the channel in more detail.

To begin with, we study the entropy of the DRC distribution: this
provides a simple summary of the range and frequency of channel
rates observed by a user. Larger entropy values indicate that the
channel experiences a larger set of DRC values more frequently.
The entropy for the DRC distribution of each trace is computed
empirically as:

H(X) = −
X

i∈DRC

F (i)

Nsamples

log2

F (i)

Nsamples

(1)

wherei represents one of the potential 15 DRC values andF (i)
the frequency with which DRC valuei was observed. Fig. 4(Left )
plots the cumulative distribution function (CDF) of entropy values
for all mobile and stationary experiments. We see that most of the
stationary user experiments exhibited entropy values lessthan one,
whereas all the mobile user experiments showed entropies greater
than two. This shows, as expected, that a mobile user experiences
a larger range of channel rates compared to a stationary user.

To provide a more complete picture, we next characterize the
rate at which users transition between the various DRC values and
the time spent in each state. Fig. 4(Middle ) plots the average num-
ber of contiguous slots spent in any state across both stationary and
mobile traces, in other words the sojourn time in a state. Observe
that the stationary traces have large sojourn times, on the order of
a few hundred or more slots. The mobile channel, clearly more

rapidly changing, has a typical sojourn time on the order of afew
tens of slots (the Y axis is plotted on a logarithmic scale).

5.3.1 Memory in the Wireless Channel
We now quantify the amount ofmemory in the 1xEV-DO wire-

less channel. Intuitively, we wish to determine the correlation be-
tween DRCs at different time-slots in the wireless channel.This
is useful in developing models of data rates and determiningtheir
efficacy of prediction.

More formally, we attempt to model the observed data rates asa
discrete-time Markov chain [22]. A Markov chain with depthn has
the property that the evolution of state at any time slot is indepen-
dent of the entire past,given the state of the pastn time slots. Let
Xi denote the random variable determining the DRC value (rang-
ing from 0 to 14) in time sloti, andP (Xi) the probability of the
DRC being a particular value at time sloti. Then the Markov prop-
erty implies that:

P (Xi+1|Xi, . . . , X0) = P (Xi+1|Xi, . . . , Xi−n) . (2)

To model our observations as a Markov chain, we need to deter-
mine how many past slots (n) are required to satisfy the Markov
property. For this purpose, we follow the approach used in [15],
and use conditional entropy as our primary metric. The conditional
entropy of a random variableY as a function of a given random
variableX is defined as:

H(Y |X) =
X

x∈DRC

p(x)
X

y∈DRC

p(y|x) log2 p(y|x) (3)

wherep(x) is the probability that X takes the value x. These prob-
abilities are computed empirically from our observations.Intu-
itively, the conditional entropy quantifies the amount of informa-
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tion the random variableX provides about the random variable
Y . If they are highly correlatedH(Y |X) ≈ 0. If they are un-
correlated thenH(Y |X) ≈ H(Y ). Normalizing the conditional
entropy byH(Y ), ie., H(Y |X)

H(Y )
allows us to verify if the two vari-

ables are strongly correlated (close to zero) or uncorrelated (close
to one).

To identify the best value of depth to use in our Markov chain
model of DRC, we evaluated the conditional entropy of the state
in slot i, given history of pastn slotsXi−1, Xi−2, . . . , Xi−n, or
in other words,H(Xi|Xi−1, Xi−2, . . . , Xi−n). By increasingn,
we increase the amount of past history incorporated. Calculating
the reduction in conditional entropy as a function ofn allows us to
determine the significance of this increase in history, and therefore
the channel memory. If the reduction in conditional entropy(or
normalized conditional entropy) is significant when we increasen
from k tok+1, then a Markov chain of depthk+1 is a significantly
better model than one of depthk; the converse is also true.

Fig. 5(Left ) traces thenormalized conditional entropy when con-
sidering Markov chain models of depthn = 1, 2, . . . , 4 slots , for
traces collected from stationary hosts. Fig. 5(Middle ) plots the
same for traces collected from mobile hosts. Note that we have
added some randomness to the X axis values to make it easier to
distinguish between the large number of points, many of which
would be nearly coincident otherwise.

Our first observation, from both plots, is a low value of normal-
ized conditional entropy (less than20%), for all values ofn. This
indicates that the history of past states (of even just 1 state) signifi-
cantly determines the current state. Next, we observe in both plots
that the reduction in normalized conditional entropy as we increase
n is negligible. For example, the maximum percentage reduction
of normalized conditional entropy fromn = 1 to n = 4 is around
10%.

These results indicate that one-step Markov models are typically
sufficient to characterize 1xEV-DO data rates for both mobile and
stationary users. We verify these results by analytically computing
the average duration spent in any state using our Markov model,
and comparing it to the empirically derived results from thetrace.
The analytical method assumes a one-step Markov model and uti-
lizes a transition matrix with 15 rows and columns. We then com-
pute the relative mean squared error (RMSE) between these two
methods, for each traceT , as:

RMSET =
1

15

15
X

i=1

s

hSi
obs − Si

an

Si
an

i2

(4)

whereSi
obs was the empirically computed state duration for statei

andSi
an obtained analytically. Low values of RMSE imply that the

analytical model is in close agreement with the observed data.
Fig. 4(Right) plots the values of RMSE between the analytically

derived and empirically computed state durations, across all traces.
We observe low values of RMSE (typically< 10−2), providing
further evidence in support of a one-step Markov model.

We now examine the correlation between DRC values at time
slots separated by much larger time lags, for example, tens or hun-
dreds of milliseconds. This is useful in a practical context, since
real world applications typically make observations (of network
characteristics) separated by such time lags. Therefore, we ask the
question: how correlated is the DRC value in sloti (sayXi) with
the DRC in a slot at lagd (Xi+d), as a function of the lagd ? Again,
we utilize the normalized conditional entropy

H(Xi+d|Xi)

H(Xi+d)
to quan-

tify this correlation. Fig. 5(Right) plots the normalized condition
entropy for both stationary and mobile traces, as a functionof lag.
For each scenario, we average the normalized conditional entropy
across all traces. In both cases, the plot shows that the conditional
entropy is less than50% of the original entropy up to a lag of al-
most 100 slots. This indicates that slots separated by a widegap can
still retain significant correlation. Note that this does not contradict
the one-step Markovian nature demonstrated previously.

5.4 Summary
We now summarize our main findings regarding the 1xEV-DO

wireless data rates. We first note that mobile users experience band-
widths comparable to stationary users, although the variability is
higher. Similar to prior studies, we found that there is significant
variability of channel conditions over long time scales (onthe order
of hours), depending on location and time, and even for co-located
laptops.

In contrast, short term behavior (on the order of a few slots)was
much more predictable. In particular:

• All our experiments with stationary laptops showed that a
large fraction (more than40%) of time was spent in one DRC
state, indicating the presence of a dominant channel condi-
tion.

• The time spent in any particular DRC state is on the order of
ten to a hundred slots (on average) and, as a result, channel
conditions are highly correlated across time lags of tens of
slots. This is favorable news for techniques like channel pre-
diction and rate-estimation that are utilized in transport-layer
protocols.



• We find that the short term evolution of the DRC time series
can be effectively modeled by a one-step Markov chain, for
both stationary and mobile users.

Having characterized the physical layer, we now proceed to study
the impact of the 1xEV-DO scheduling mechanism on end user per-
formance.

6. PROPORTIONAL FAIR SCHEDULER
The Proportional Fair (PF) scheduler is an opportunistic schedul-

ing mechanism that aims to increase channel capacity by leveraging
channel fluctuations and at the same time be ‘fair’ to all users in the
same sector. Broadly speaking, it is based on the philosophythat in
an environment with variable channels, not all users will have bad
channels all the time. Hence, if delay is not critical (as is true for
data), then one can improve system throughput by serving a user
only when their channel is ‘relatively’ good.

We make this notion more precise below. Let us assume in a
given sector, there areI users. For a particulari ∈ I, let Ri[n] be
the DRC observed in slotn. Let Ai[n] be its current exponentially
averaged throughput which is computed in the following fashion:

Ai[n] = (1 − α)Ai[n − 1] + αIi[n − 1]Ri[n − 1] (5)

whereIi[n − 1] ∈ {0, 1} depending on whether useri was served
(1) or not (0) in slotn − 1. In slot n, the PF scheduler picks the
useri∗ such that

i∗ = argmax
i∈I

Ri[n]

Ai[n]
. (6)

The PF scheduler possesses some useful properties: it is simple
to implement, as the name suggests it shares the wireless chan-
nel among users in a proportionally fair manner, and it is shown
to maximize the log utility functionlimn→∞

P

i∈I

log Ai[n], under

fairly general conditions [16]. However, these propertieshave only
been explored in simulations.

To the best of our knowledge, it is unclear as to the extent to
which the PF scheduler actually provides throughput benefits in re-
alistic environments compared to simple channel-unaware sched-
ulers. In this section, we quantify potential gains that canbe ob-
tained with the PF scheduler when compared to the simplest blind
mechanism, Round Robin, with traces of data rates collectedfrom
the 1xEV-DO network. For purposes of simplicity, in this partic-
ular comparison, we assumed that the user data queue always has
‘data’ to send,i.e., presence of aperfect transport protocol.

Our comparison was carried out using up to fourco-located lap-
tops at Location 1 as well as when mobile. Note that in the latter
case, users do not actuallystay in a single sector. From that per-
spective, this comparison is biased in favor of the PF scheduler
since the PF requires a certain amount of time to converge to fair
sharing and the maxima of the utility function. We shall address
this aspect in more detail at the end of this section.

In each experiment, we collected RF traces from all four laptops
and used the DRC from one million slots for comparison.α was set
to 1/1000 which is the recommended value in practice [12]. Fig. 6
plots the system gain as a function of the number of users in the
system. We ran ten simulations with random start slots for users
and found negligible difference in results. Hence error-bars are not
shown. The system gain is defined asTPF /TRR, whereTS is the
total system throughput under scheduling disciplineS. Interpreting
the figure, gains for stationary users is minimal (less than5%). This
can be attributed to the low variability of the channel observed in
practice. In the case of mobile channels which have higher variabil-
ity, the opportunistic nature of PF comes into play, allowing it post
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Figure 6: System Throughput Gain of PF over Round Robin as
a function of number of users.

higher gains of around20% compared to Round Robin scheduling.
We can see that the gain also increases with number of users. We
also evaluated the Jain’s fairness index for all scenarios and found
no discernible difference between PF or RR across all scenarios.
Both had values of0.99 indicating excellent fairness.

For the mobile experiments, the above comparison implicitly as-
sumed that the same PF scheduler was serving all users. In prac-
tice, since the mobile users experience hand-offs, this would not
be the case. At each hand-off, the new serving sector starts serv-
ing the hand-off user as a new user. To explore this scenario,we
determined the average time a mobile spends in a sectorbetween
hand-offs and re-computed the throughput gains using this time-
frame. In our experiments, a mobile typically experienced about
40 hand-offs. The maximum time spent between hand-offs varied
from 114 to 140 secs (around70, 000 1xEV-DO slots) while the
average time was around20 − 30 secs (around20, 000 1xEV-DO
slots). Within this framework, the throughput gains were found to
reduce dramatically to5% and8% respectively. The results indi-
cate that during hand-off, it is beneficial to retain the userPF state
(Ai[n]) in order to retain advantages of the PF scheduler.

7. TCP OVER 1xEV-DO
We next consider the impact of the 1xEV-DO wireless channel

and network characteristics on TCP, since it is the most commonly
used end-user transport protocol. Our goal is to gain insights into
which factors affect transport-layer performance over 1xEV-DO.
Therefore we perform experiments with a variety of different TCP
variants and compare their performance. Specifically, we evaluate
TCP-Reno, TCP-Cubic, TCP-Vegas and TCP-Westwood [21, 6, 7]
in this study. Our choice of these four variants is motivatedby the
fact that they capture a variety of different TCP algorithms, opti-
mized towards different goals - loss-based and delay-basedconges-
tion control, high-speed and shared-medium variants. Moreover,
these four variants are available as free open-source Linuxkernel
modules and facilitate easy experimentation.

Our experiments involved download of large files for each TCP
variant to obtain sufficient physical layer and transport layer statis-
tics. Details of the experimental set up are presented in Section 4.
The metrics used for judging TCP performance, are the TCP good-
put, and the mean and standard deviation of the excess delay expe-
rienced by the TCP traffic. (We define excess one-way delay as the
residual delay after subtracting the smallest delay sampleand use
it to minimize problems with clock synchronization).
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Figure 7: EXSINGLE : (Left) TCP goodput and mean DRC achieved with 4 different TCP variants in 3 experiments each. The total
height of the bars is the mean goodput (and mean DRC). The shaded portion is the standard deviation observed. (Middle) Mean
delay versus the TCP goodput (as a fraction of the mean DRC). (Right) Identifiers of base stations connected to by different mobile
users on the same route, different days. The base stations were assigned identifiers in the same order that they were seen.Note the
similarity of hand-offs. The difference in speeds on both days accounts for an increasing clock skew.

We performed experiments with these TCP variants in various
different settings: mobile and stationary; all four variants simul-
taneously, or separately. We report our findings in each of these
scenarios.

7.1 Preliminaries
Our first set of results focus on each TCP variant in isolation, i.e.,

a single laptop downloading a file from a single server via thecom-
mercial 1xEV-DO network. While we performed this experiment
in both stationary and mobile scenarios, our findings were similar,
and we report the TCP performance only for the mobile scenario
here.

We shall henceforth refer to this set of experiments asEXSINGLE .
Fig. 7(Left ) shows the TCP goodput from three experiments run
with each variant of TCP2. Recall from Section 5 that the DRC,
which represents a limit on TCP performance, can vary widely
across these time scales. Therefore, we also plot the mean DRC
for the experiments corresponding to each of these variants.

We observe that TCP-Vegas achieves a much lower throughput
than the other variants. Since this could be either due to difference
in wireless channel rates or lower channel utilization it ismore use-
ful to examine the TCP goodput as a fraction of the mean DRC
and also as a function of the end-to-end observed excess delay.
Fig. 7(Middle ) presents such a scatter plot for each experiment.
The experiments with TCP-Vegas lie in the lower left corner which
indeed indicates that the low throughput is due to poor utilization of
the channel rather than the wireless channel rates. TCP-Vegas also
has the lowest packet delays in keeping with its nature : it responds
to increasing delays by reducing queue sizes, a possible cause of the
low utilization. The other variants generally have higher goodput
fractions at the expense of higher packet delays (indicating higher
queue build-ups) with TCP-Cubic having the largest latency. How-
ever, we note that across all variants, the maximum channel utiliza-
tion is only70%.

This experiment highlights two important factors which could
significantly affect our TCP experiments. First, there could be
cross-traffic and wired network bottlenecks inside the commercial
1xEV-DO network that varies across experiments, making it dif-
ficult to compare the TCP variants and the role of the channel.
Second, the queue sizes in the 1xEV-DO network could affect the

2The height of the unshaded bar represents the average and the
shaded portion represents the standard deviation.

performance of different TCP variants. We address the issueof
mitigating cross-traffic effects in the subsequent sections and also
discuss the role of the queue size.

In order to reduce the impact of cross-traffic, we performed mo-
bile experiments with four laptops downloading files at the same
time, each from a server configured with a different TCP variant.
If all four laptops are connected to the same base station, then they
share the same cross traffic effects. In order to test whetherthis con-
dition would be met, we conducted experiments with different lap-
tops driving along the same routes at different times. Fig. 7(Right)
shows the result of one such trial, plotting the identifier ofthe base
stations to which the two laptops were connected. We see thatdur-
ing almost all time instants, both laptops are connected to the same
base station.

Therefore we proceed with the assumption that four laptops si-
multaneously downloading files, in close proximity or in thesame
vehicle, will share the same cross traffic effects. While we per-
formed such experiments in both stationary and mobile settings on
the commercial 1xEV-DO network, we only describe the mobile
scenario in this paper. These experiments are described in Sec-
tion 7.2. However, these experiments still do not isolate the effect
of bottlenecks and congestion in the wired network from those of
the wireless channel. Hence we also performed experiments on a
dedicated 1xEV-DO testbed that was isolated from the commercial
network. This is described in more detail in Section 7.3.

7.2 Co-located Mobile Laptops
In this section, we describe results for four mobile users simulta-

neously downloading a large file from servers configured withdif-
ferent TCP variants. Each experimental drive-test was conducted
four times and henceforth shall be referred to asEXCOLO. We
plot the results from the four experiments in Fig. 8.

Fig. 8(Left ) shows the TCP goodput and average excess packet
delay for each variant, as well as the mean DRC during the ex-
periments. Note that this plot is normalized so that the maximum
value of each metric shown is one. We see that the mean DRC is
generally the same for all variants, but TCP-Vegas has significantly
lower throughput and TCP-Cubic the highest throughput amongst
the variants. The packet delays exhibit a similar relation.

Given the varying nature of the wireless channel conditions, even
though the co-located laptops had the same mean DRC, we ex-
plore if differences in channel dynamics between the laptops could
be responsible for the relative performance results. Therefore we
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Figure 8: EXCOLO: (Left) Performance and network conditions (Middle) Standard deviation of the delay vs. TCP goodput. (Right)
Downlink loss rate vs. TCP goodput.
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Figure 9: Overall mean and a few individual per-experiment sample Frame Error Rates for EXCOLO (Left); and for EXTBED :
Mean DRC versus the TCP goodput (Middle), and Standard deviation (Right) of DRC versus fraction of the mean DRC that TCP
exploits, for each TCP variant.

look at delays and losses of the individual experiments compris-
ing EXCOLO . Note that these metrics are measured end-to-end
between the laptop and server, since we were constrained in place-
ment of measurement points.

Fig. 8(Middle ) plots the standard deviation of average end-to-
end excess delay versus the TCP goodput for each individual ex-
periment. We observe that the standard deviation of delay isal-
ways much lower for TCP-Vegas, when compared to the other vari-
ants. This indicates that the delay behaviors we observe is due to
different queuing properties for the different TCP variants, rather
than wireless channel variations. Similarly, we plot the end-to-end
loss rate for each experiment, in Fig. 8(Right), and observe little
correlation between the loss rate and throughput. Further,we ex-
tracted the frame error rates (FERs) forEXCOLO from the CDMA
measurement logs and show them in Fig. 9(Left ). We observe
FERs consistently less than1%. This is well within the target FER
that 1xEV-DO was designed for, implying that built-in link-layer
mechanisms involving turbo-coding and hybrid ARQ [5] reduce
the packet error rates to negligible values. We verified thisin a
separate, but extensive set of experiments which indicatedthat the
channel loss rate in 1xEV-DO was consistently lower than0.01%.

Thus, our investigations lead us to conclude that difference in
channel conditions arenot responsible for the relative performance
of the TCP variants. Instead, this reinforces our earlier indications
(from Section 7.1) that queueing effects govern the differences in
the performance of the algorithms. The delay-based algorithm used
by TCP-Vegas yields smaller and more stable queue sizes, butre-
sults in lower goodputs in the context of a varying wireless channel.

TCP-Reno, TCP-Westwood and TCP-Cubic have a more aggres-
sive algorithm that can lead to larger queues with higher variance,
but yields higher goodputs. Though queueing dominates, we note
that the varying nature of the wireless channel rate has a subtle ef-
fect : it leads to larger configured limits on queue sizes and causes a
wider range of delay variation. TCP-Vegas, by virtue of maintain-
ing smaller, more stable queue sizes has a less variable delay. The
other variants, TCP-Cubic in particular, obtain higher throughputs
by sending traffic more aggressively, and exhibit larger, less stable
queue sizes as a by-product. In passing we make a note regarding
fairness. Even though the average channel rates are similar, TCP-
Cubic typically gets a higher fraction (> 30%) of the system band-
width, while TCP-Vegas gets the least (< 20%) with TCP-Reno
and TCP-Westwood getting around25% of bandwidth.

7.3 TCP variants on the Testbed
In our previous experiments, it is still conceivable that wired net-

work congestion and bottlenecks affected our observations. We
further mitigate this factor by performing experiments on the lab-
oratory testbed described in Section 4. Furthermore, we ranex-
periments only at night to minimize any possibility of background
traffic causing wired-network bottlenecks.

Our goal was to evaluate TCP efficiency, verify our earlier find-
ings, and further examine whether the relative performanceof the
TCP variants was caused by difference in experienced channel con-
ditions or algorithmic behavior, as we hypothesize. For thefirst ob-
jective, we conducted four file downloads with each TCP variant.
Across these experiments, TCP-Reno,TCP-Cubic, TCP-Westwood
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Figure 10: For EXTBED : (Left) TCP Goodput, Mean DRC and the average fraction of packets that were retransmissions (height of
the bars normalized w.r.t the maximum in the group). The colored portions show the magnitude of the standard deviations.(Middle)
End-to-end loss rate, and (Right) Mean delay.

and TCP-Vegas were found to yield average channel utilizations
(ratio of TCP throughput and mean DRC) of0.86, 0.89, 0.85 and
0.75 respectively Although this indicates that the former threeare
reasonably efficient (given protocol overhead ), it is somewhat ex-
pected given the small propagation delays, large buffer andmin-
imal cross-traffic on the testbed. A closer examination revealed
that the high efficiency was present only for lower average channel
rates around1.5 Mbps, which occurred in a majority of the exper-
iments. Surprisingly, in excellent channel conditions (average rate
> 2.4 Mbps), the efficiency dropped to around80% for all three
variants. Analysis of tcpdump logs indicate the presence ofnumer-
ous re-transmissions when channel rates were higher. We hypothe-
size that these are spurious time-outs induced due to largerelative
rate fluctuations for large channel rates (the large buffer mitigates
congestion loss and analysis of wireless logs reveals no channel
losses) that prevent TCP from efficiently utilizing the channel. We
plan to conduct a more detailed analysis of this aspect in further
work.

Next, in order to determine relative performance of the variants,
we conducted experiments where 4 laptops connected to the testbed
base station simultaneously downloaded a large file, each from a
server configured with a different TCP variant. We refer to this
set of experiments asEXTBED and summarize the results from
eight experiments below. In Fig. 9(Middle andRight), we plot the
performance for each TCP variant (in terms of the goodput as a
fraction of the mean DRC) versus channel conditions experienced
by each variant (mean and standard deviation of DRC). From the
Middle plot we observe numerous data points for all variants with
the same mean DRC but significantly different performance, and
theRight plot shows that the variations in DRC have little correla-
tion on relative performance.

Similarly, Fig. 10 plots the performance of the TCP variants(for
EXTBED) as a function of other possible indicators that differ-
ence in channel conditions could be responsible for performance:
loss rate (Middle ), and delay (Right). In both these plots, we no-
tice no significant correlation between the plotted metric and the
TCP goodput. Fig. 10(Left ) shows the average number of TCP
retransmissions for the different TCP variants. Again, we notice
TCP-Vegas shows few retransmissions while TCP-Cubic showsthe
most, indicating that TCP-Cubic is far more aggressive and builds
up larger queues, whereas TCP-Vegas favors smaller queues and
therefore fewer retransmissions.

All the above results from Section 7.2 and Section 7.3 lead us
to hypothesize that the difference in observed performanceof the
congestion control algorithms is dominated by queueing rather than
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Figure 11: Performance of Simultaneous VoIP and TCP ses-
sions for different TCP variants.

the wireless channel, although the latter introduces variability. In
other words, the experiments point to a scenario where the base-
station possesses a largeper-user buffer that absorbs and mitigates
the impact of channel fluctuations, allowing high channel utiliza-
tion with little congestion losses. This is indeed the case as noted
in Section 4. The reasoning behind large buffers stems readily from
the nature of the 1xEV-DO channel. Given that channel rates can
vary from 38.4 kbps to3.1 Mbps, it represents a wide range of
Bandwidth-Delay Product (BDP). For example, an RTT of (say)
100 ms and1500 byte packets translates into a BDP that ranges
from 1 to 25 packets. As shown in Section 5.1.2, the channel state
can fluctuate over a few tens of milli-seconds. By having a buffer
larger than the peak BDP, the system potentially allows highuti-
lization without incurring congestion loss. Analytical models in
[3] have been shown to support a similar hypothesis. Though large
buffers help mitigate congestion loss via channel variability , they
also have negative side-effects as shown next with a case-study.

7.4 Impact on Applications : A Case Study
Our finding that behavior in commercial 1xEV-DO systems is

dominated by the buffer have important ramifications for end-user
applications. Consider the following scenario: an end-user laptop
with two simultaneous applications, one large FTP downloadand
one Voice-over-IP session (VoIP), or some other delay-sensitive ap-
plication. Now recall that all traffic from an end-user device shares
the same queue at the base station. Then, if the TCP variant was
aggressive in order to improve throughput (e.g., TCP-Cubic), one
could expect the VoIP session to suffer degraded performance. In



comparison, TCP-Vegas would receive lower throughput, butallow
the VoIP session to receive better performance.

We verified this conjecture via an experiment on the testbed,
where a client downloaded a250 Mbyte file using each TCP vari-
ant and simultaneously received a low rate9.6 kbps stream. The
end-to-end stream delay and TCP throughput with each variant are
reported in Fig. 11. The stream delay is least with TCP-Vegas
as would be expected, but at the expense of low TCP through-
put. The other variants yield higher throughput at the expense of
longer stream-delay. TCP-Cubic is at the end of this spectrum of-
fering high throughput but significantly higher latency than TCP-
Vegas. This is clearly an impact of the large bufferand the aggres-
sive congestion control of TCP-Cubic. Note that TCP-Westwood,
which incorporates rate estimation in its congestion control mech-
anism yields a reasonable trade-off in terms of a slightly increased
stream delay compared to TCP-Vegas and reasonably high through-
put (about90% of TCP-Cubic). Indeed, this aspect of TCP-Westwood
is noticeable across other experiments too.

8. CONCLUSIONS
We performed a detailed characterization of the physical, MAC

and transport layer performance in the 1xEV-DO network. Our
scope covered both stationary as well as mobile channels andalso
involved evaluation of various state-of-the-art transport protocols.
The analysis was carried out by cross-analyzing detailed channel
level information: rate, packet loss, SINR,etc. as well as tcpdump
logs. The physical channel was found to be highly variable over
long time scales of hours and days. However, at short time scales
on the order of a few milli-seconds it shows significant memory.
This translated into the channel retaining the same rate over the
range of a few tens to few hundreds of milli-seconds. Throughsim-
ulations using physical rate traces we found that the opportunistic
Proportional Fair scheduling scheme is beneficial comparedto the
Round-Robin schedule in mobile scenarios (gains of around20%)
but has minimal gain (4− 5%) for stationary scenarios. Somewhat
surprisingly, the performance of all TCP variants was dominated by
queueing effects rather than channel fluctuations. This canbe at-
tributed to the presence of large buffers that mitigate rapid channel
fluctuations allowing high (≈ 85%) channel utilization in moder-
ate channel conditions and low propagation delays. They however
can also induce large delay in the presence of loss-based conges-
tion control mechanisms (TCP-Cubic) that seek to fill the queue as
opposed to delay-based mechanisms that control queue size (TCP-
Vegas), though the latter offer smaller throughput.
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