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ABSTRACT

We present an experimental characterization of the phlyaiva
MAC layers in CDMA 1xEV-DO and their impact on transport
layer performance. The 1XEV-DO network is currently thadas
mobile broadband cellular network, offering data rates pfto
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General Terms

3.1 Mbps for both stationary and mobile users. These rates are Measurement, Performance, Experimentation

achieved by using novel capacity enhancement techniqutee at
lower layers. Specifically, 1XEV-DO incorporates rapid romel
rate adaptation in response to signal conditions, and typier
tic scheduling to exploit channel fluctuations. Althouglowsh to
perform well in isolation, there is no comprehensive litara that
examines the impact of these features on transport layeapic
cation performance in real networks.

Keywords

3G, Cellular, CDMA, 1xXEV-DO, TCP, SINR, Mobility, DRC, Pro-
portional Fair (PF), Measurement, Cross-layer

1. INTRODUCTION

We take the first step in addressing this issue through a large Over the last three years, mobile high-speed networkinghen

set of experiments conducted on a commercial 1XEV-DO nétwor

Our evaluation includes both stationary and mobile scesavherein
we transferred data using four popular transport protocbGP-

form of CDMA 1xEV-DO [5], has taken a quantum leap from field
trials to nationwide availability in the United States. Qumamed to
peak rates of aroundlo0 kbps that were offered on GSM EDGE

Reno, TCP-Vegas, TCP-Westwood, and TCP-Cubic, and logged and CDMA 1xRTT networks a few years ago, 1XEV-DO offers

detailed measurements about wireless channel level dbarsiics

as well as transport layer performance. We analyzed datagey-

eral days of experiments and inferred the properties of fiysipal,

MAC and transport layers, as well as potential interactlmetsveen
them. We find that the wireless channel data rate shows signtfi
variability over long time scales on the order of hours, latains

high memory and predictability over small time scales ondhe
der of milliseconds. We also find that loss-based TCP vegiarg

largely unaffected by channel variations due to the presehiarge

buffers, and hence able to achieve in excess06t of the system
capacity.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
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peak rates of more thah Mbps on the downlink and.8 Mbps
on the uplink even when users are traveling at high speeds. It
worthwhile noting that these rates compare favorably t@é¢haof-
fered by current-day DSL with the added incentives of mopdnd
significantly larger areas of coverage.

1XEV-DO was designed to meet stringent objectives of high-
speed data, wide geographical range of coverage, and tyobili
This was achieved not through a single technological intiordut
rather with the help of several physical and MAC layer optiani
tions that are unique in commercial wireless networks. Wotéhy
in the context of this paper is thiepid channel rate-adaptation (at
time-scales of around one millisecond) at the physicalrlape the
opportunistic scheduling at the MAC layer to exploit wireless chan-
nel fluctuations. These technologies are relatively wetlanstood
in isolation and have been shown to provide impressive tiiyput
gains [4] in simulations and controlled trials.

However, a decade of researctsitR.11 wireless networks (see
for example [19] ) has shown that physical and MAC layer opti-
mizations do not always translate into desired higher thinputs in
practice. This is because tiransport layer plays an important role
in determining application performance. Indeed, this i®agrar-
ching fact in all types of networks, and has motivated redeas
to develop and evaluate the performance of a number of toansp
layer protocols tuned to the properties of specific netwoifksr-
thermore, throughput gains observed in isolation for anyiqdar



optimization during simulations and trials often disappesprac-
tice due to complex real-world interactions that are notlyasod-
eled.

The above arguments drive the core objective of this papes. T
1xEV-DO network has been commercially available only inltss
three years. The novel lower layer enhancements have beamsh
to optimize MAC layer data throughputs. However, they paslu
a unique environment of rapidly changing channel rates et
mission times that current implementations of transpgeii@roto-
cols do not specifically cater to. In particular, TCP protleatevel-
oped in the past for wireless links [7, 18] assunohdnnel errors
as the primary source of performance degradation. With powe
ful Turbo Codes and adaptive rates, channel error is nbigign
3G networks (verified in our study) and replaced with highaglel
as well as rate variability, as more likely causes of permoe
degradation. Although certain aspects of TCP degradatien3G
networks have been observed in simulations, it is unclearthe
combination of link layer optimizations and present-dansport
protocols perform in an actual 3G network.

Motivated by this, we carried out a measurement-based chara
terization of the physical, MAC and transport layer perfaroe in
a commercially deployed 3G network. Our goals were, braaa)ly
to understand thieehavior of these layers in a real environment and
more importantly, b) to determine if the physical and MACday
enhancements aid in transport layer performance. Moreifspec
cally, we identified the following key questions and soughab-
swer them:

1. How does the channel rate in 1XEV-DO vary ? Does it change
rapidly, is it different for mobile users, and can we predigt

2. Does the MAC layer opportunistic scheduler provide any
throughput gains in practice?

3. How well do current state-of-the-art transport protedspecif-
ically, different TCP variants) perform on 1xEV-DO? Can
they cope with a varying channel?

To answer these questions, we conducted extensive expgsime
that involved data transfer over 1XEV-DO in the downlinkedir
tion, in multiple locations as well as mobile environment initi-
ated data transfers using TCP-Reno, TCP-Vegas [6], TCRvWled
[7] or TCP-Cubic [21] as transport layer protocols. We chibese
as our candidate protocols since they capture a varietyn$port
layer mechanisms and have readily available implememstitn
each experiment, we collected detailed wireless charalated in-
formation including instantaneous channel rate, SINR, zacket
loss. We also collected information related to the behaofdhe
transport layer protocols. We cross-analyzed these twasids to
study dynamics atach layer. We summarize our findings below:

1. The observed channel data rate varied significantly longr
time scales on the order of an hour or a day, as well as with
location. This is largely in agreement with prior research
[23].

. Short-term behavior of channel data rate (withirs0 ms)
was surprisingly predictable and exhibited significant mem
ory for both stationaryand mobile users. In particular, we
found that a one-step Markov chain can adequately model
channel evolution over short-time scales. This indicates t
short-term predictors utilized in transport protocols ¢en
effective.

. Stationary users typically retained one value of chadat
rate for more thant0% of the time and transitioned to a

different rate only after a few hundred milliseconds. Mo-
bile channels were much more variable, often changing rate
within hundred milliseconds and experiencing sector hand-
offs® every20 — 30 secs on average when the user was travel-
ing at speeds 050 — 60 mph. However, rather surprisingly,
we found that theaverage channel rates for stationary and
mobile users was comparable.

. The opportunistic channel-aware scheduler typicaléldg
higher gains for mobile users:(20%) as opposed to station-
ary users4 5%) when compared to a simple Round Robin
scheduler.

. TCP performance was, in general, not significantly influ-
enced by wireless channel characteristics primarily due to
the presence of large buffers. TCP-Cubic, TCP-Reno and
TCP-Westwood could generally utilize 85% of channel
capacity under good channel conditions and low propagation
delays by creating large backlogs. TCP-Vegas, a delaydbase
variant that controls queue size fared poorer, with a channe
utilization of around75%. The large buffer however incurs
a penalty in that delay-sensitive applications were found t
fare more poorly in the presence of TCP-Cubic, TCP-Reno
or TCP-Westwood as compared to TCP-Vegas. Somewhat
surprisingly, we found that under excellent channel condi-
tions utilization dropped to arourth% due to reasons that
are as yet unclear.

Our hope with this study is to shed light on the performancenef
1XEV-DO network in the context of commonly used applicasion
and spur further research on this topic.

The rest of this paper is organized as follows. Section 2sgive
the reader a quick primer on the 1XEV-DO system. Section 3 sur
veys prior work related to this paper’s area of study. Sectiae-
scribes our measurement methodology in detail. Sectiondiest
the 1XEV-DO physical layer characteristics and detailsfioglings
thereof. Section 6 describes our study and findings on tHerper
mance of the PF scheduler, while Section 7 investigates @n ho
TCP performance is affected by the wireless channel. Se&io
concludes the paper.

2. 1xEV-DO

The 1xEV-DO mobile broadband cellular network offers peak
speeds of3.1 Mbps on the downlink (base-station to user) and
1.8 Mbps on the uplink (user to base-station) for both mobile and
stationary users. The network incorporates several istiegefea-
tures at the physical and MAC layer in order to achieve thpeeds.

Of these, we primarily focus on two relatively unique and elov
aspects, which have the potential to impact transport |pgéfor-
mance: 1) The variable transmission rates on the downlimé 23
The opportunistic Proportional Fair (PF) Scheduler. Nb& the
1XEV-DO network also incorporates uplink optimizationsit Bour
primary focus in this paper is on the characterization ofdtvn-
link channel and performance.

Thedownlink channel from a base station to the user is a TDMA
slotted system, with each slot duration equallt67 ms. At the
beginning of each slot, the mobile device computes the pede
signal-to-noise ratio (SINR) with the help of a pilot sigriedns-
mitted by the base-station. It then maps this SINR to a cHanne

A hand-off is a phenomenon where a user with decreasinglsigna
quality (for example, due to mobility) shifts from the cumtly used
base-station to another base-station with better sigrexigth.



data rate (called Data Rate Cover or DRC) based on a certain ta
get Frame Error Rate (usually%). The DRC is sent to the base-
station, indicating the rate at which the device wishes teike
data in the current slot.

In 1XEV-DO, the channel rate requested by the deviee DRC,
can take 15 potential values (states), each indicating a modu-
lation and coding scheme, that translates into a specificedes
channel rate in that slot. These rates range fB&w kbps up to
3.072 Mbps. We refer the reader to [5] for more details on the ex-
act rates. As mentioned above, in each slot, the compute® SIN
is mapped to the highest DRC that achieves the target Fraroe Er
Rate. This mapping relation gynamic in that it may be changed
on-the-fly based on actual observed FER. The mapping als® int
duces quantization since it maps a continuous variableRptbl a
discrete DRC (which can take one of 15 values).

At the base-statione user is selected for transmission in the
current slot based on the received DRCs. The base-statén th
transmits to the user in the slot withll power at the requested
rate. Given the potential dynamic nature of the channel ghea
slot, the base station utilizes the Proportional Fair (R§Qrithm,
an opportunistic scheduling scheme, to decide which usseeree
in a particular slot. The PF scheduling decision is basedhen t
past history of users as well as current requested DRCs iscdar
exploit the variability of the channel to increase capacitite PF
scheduler is explained in more detail in Section 6.

In order to handle mobility, 1XEV-DO utilizefast cell-switching
or 'hand-off’. Each device monitors several sectors andefderv-
ing sector falls below a threshold, it can rapidly requeswiach to
the next strongest one.

3. RELATED WORK

Today, wireless data networks fall predominantly into tvatee
gories: IEEES02.11 standard based Wi-Fi WLANSs,which repre-
sents the significant majority and the recent 3G mobile dvaad
networks that are rapidly proliferating. There is a verg&body
of work in literature characterizing the channel and perfance of
the former type of networks (for example, [1, 20]).

However the two networks differ significantly enough in abje
tives, and, consequently, design principles as well asifeatat
the physical and MAC layer802.11 networks aim to offer high
data rates, but within limited coverage for only reasonaitéyion-
ary users. The 3G network is geared to offer high data rates ov
large areas and support mobility. To achieve this, as adlin the
previous section, itincorporates several unique featiasare ab-
sent in 802.11 Wi-Fi. The significant differences betweenttio
networks and the relative novelty of 3G networks, createkearc
rationale for the need to characterize and understand fica®f of
these unique features in commercial 3G networks.

A few recent studies have addressed various issues rega&@in
cellular networks. [9, 10] have studied the performance GPT
over a variable rate wireless channel via simulations anggsed

(compared to posted peak speeds), and the channel refatiable

but with high latencies. [17] conducted similar studies3][@on-
ducted TCP and video tests to determine the capacity of a 8G ne
work (they do not specify the type/technology). Their cosabns
included the presence of high unpredictability in such ek due

to customized engineering of each cell site. [8] was mosity$ed

on 2.5G networks (such as GPRS and CDMA2000) in terms of
application performance with a light-weight evaluationUTS-
based 3G technology. The authors evaluated various ojtiioiz
technigues and designed and implemented performanceiajotg
proxies.

Our work differs from these previous works in that none ohthe
characterize the underlying channelroobility. In this paper, we
undertake a detailed study of the physical channel forestaty and
mobile users and try to gauge the extent of its impact on p@ms
layer performance. Furthermore, our work also takes a clos&
at the performance of popular transport protocols on a bjged
variable-rate channel in stationary and mobile scenarios.

4. EXPERIMENTAL SET-UP

We carried out our evaluations on a commercial 1XEV-DO net-
work as well as a fully functional test-bed. All our experime
were carried out using Lenovo T-60 Thinkpad laptops runiifig-
dows XP and equipped with Sierra Wireless 1xEV-DO data casds
clients and, when required, Dell Edge Servers running Likax
nel2.6.21 as TCP and UDP servers. The servers were dedicated to
our experiments and had high-bandwidth network connégtivi

Given the objectives of this work, our measurement proaess i
volved collection of detailed channel information as wallteans-
port layer information. For the former, in each experimertasl-
lected the SINR and DRC valueséach slot as well as other rele-
vant radio informatione.g., packet error rate and hand-offs, using a
proprietary CDMA measurement tool running on the clientsisT
allowed us to generate time-series that traced variouseaetch
as DRC, SINR, and packet loss. At the transport layer, wectt
standard Windump and Tcpdump logs at the client and server re
spectively. The logs were parsed and packet/ack pairs edi@h
each end in order to generate packet loss and round trip 8ness
at the transport layer.

In order to study the effect of wireless channel charadtesi®n
transport layer protocols, we compared the performancéffei-d
ent variants of TCP. Four Linux servers were configured tdeac
use TCP-Reno, TCP-Vegas, TCP-Westwood or TCP-Cubic. We
downloaded large files from either a single server or all fmrvers
concurrently, depending on the scenario. Our experimerise
broadly classified as stationary or mobile.

For stationary experiments, in order to study the physigi,
we passively monitored the 1XEV-DO channel at three differe
locations (periodic 3 second pings were sent to ensure #fectr
channel was not relinquished). At each locati@d, contiguous
hours worth of channel rate and SINR (broken into hour-loages

ack and buffer management schemes at the MAC layer in order for reporting) were logged at the granularity bfslot (1.67 ms).

to overcome potential limitations of TCP. [13, 14] proposesiv
TCP-aware scheduling mechanisms to replace the Propalrair
scheduler. Simulations were used to show that these newanech
nisms improve TCP throughput. It is however unclear as totwha
extent, if any, the performance degradation of TCP obseanvsith-
ulations actual occurs in a commercial 1XEV-DO network.

Due to equipment constraints, the logging took place oredfit
days. Our three locations covered a large metropolitaronegns
of kilometers in diameter and henceforth are referred to@s=at
tions 1, 2, and 3. The distance from the nearest cell towernvast
400, 1000 and600 meters for Location 1, 2 and 3 respectively.
In addition, we collected traces f@d contiguous hours from

Measurements of performance in actual 3G networks have re- three co-located laptops at Location 1 so as to infer chdvetev-

cently appeared in [11, 17, 23, 8]. The authors of [11] cotefilic
several TCP downloads and probing experiments to chaiaeter
the latency, TCP throughput and stability of the 1XEV-DOruel.
They observed that TCP throughputs are reasonably satisfac

ior of closely spaced devices. We also collect@eminute wireless
traces in the morning and evening at Location 1 over a perfod o
25 non-contiguous (due to holidays) week-days to study-tenan
trends.
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Figure 1: Average DRC (Left) and Modal Fraction (Middle), over 24 hours at Locations 1,2, and 3; average DRC ove25 days at

Location 1 (Right).

When studying transport layer behavior on stationary deyic
clients placed in one of the above locations downloazigdMbyte
files from each Linux server configured with a particular aati
We conducted experiments to study each TCP variant in ieolat
as well as concurrent downloads by co-located laptops atathe
location to study how the variants share base-station reessuOur
experiments were performed on the commercial 1XEV-DO ne¢wo
and a laboratory testbed. The latter comprised of a 1XEV-B&&b
station and the four linux servers connected to an intdi®@Mbps
network which had no commercial traffic and a minimum rour tr
time (RTT) of40 ms. The per-user buffer at the base station was
configured to b&4 Kbytes, the same as the maximum default TCP
window size in Windows XP. In all testbed experiments, thentb
were placed at Location 1.

The mobile experiments were conducted in the San Francisco
Bay Area. The typical vehicular speed waé — 60] mph and the
drive-test experiments lasted at least 30 minutes (it cealy due
to traffic conditions). During each experiment, the clietnd ini-
tiate download of a Gbyte file and simultaneously log transport
and physical layer information. Similar to stationary $este con-
ducted tests where a single laptop connected to a partisetger,
which was running one of the TCP variants, as well as expetisne
involving multiple laptops in the vehicle, each connectammcur-
rently to a server running a different TCP variant. The erpieriod
of mobile trace collection lasted over 2 months, and eachas@e
was repeated several times to get dependable results. |decdis
details about the data-sets are covered in the appropeat®iss
that analyze the data.

5. CHANNEL CHARACTERISTICS

This section presents our findings regarding the nature ef th
wireless channel observed in 1XEV-DO networks. The objecti
of the characterization is threefold: first, to explore tiféecences
in channel behavior at different locations; second, toysthe im-
pact of mobility on the wireless channel; and third, to chgaze
the temporal behavior of the channel.

5.1 Location

We first consider the impact of location on the wireless cleinn

characteristics of stationary users. Though the effecocétion

on thelong-term signal quality (SINR) of stationary users has been
comprehensively documented in literature [23], it is the@Rat
ultimately dictates the channel rate in 1XEV-DO network$ve@

the dynamic mapping of SINR to DRC, and the associated quan-
tization, it is useful to characterize the behavior of theMiine-
series at different locations, and examine whether it iddescks

the behavior of the SINR. Towards this end, we conductedrexpe
ments to address the following two questions:

e How does location impact DRC over long time scales? In
this context, we consider measures of DRC aggregated over
periods of 30 minutes or 60 minutes, and study the evolution
of such measures.

e How does location affect the DRC time series at short time
scales? In this case, we consider the values of DRC measured
during each slot (recall that a slotliss7 milliseconds).

5.1.1 Longtime-scale analysis

We now consider the behavior of DRC when averaged over an
hour, and observed for 24 hours, at Locations 1, 2 and 3; shis i
plotted in Fig. 1Left). The impact of location is clearly evident on
perceived channel rate. Location 1 enjoyed far higher meR@ D
channel rates2(— 3 Mbps) compared to Locations 2 and 3 both
of which experienced average channel rates of abddbps. We
also verified that at this time scale, in spite of dynamic niragp
and quantization, SINR and DRC were strongly correlateth @i
cross-correlation coefficient abo0ed8 at each location.

The spatial variation of mean DRC across our locations is not
unexpected, given that these locations are separated éaskiio-
meters. However, we notice from Fig.LK{ft) that even when con-
sidering one particular location, the mean DRC varies §icamtly
over time. For example, the mean DRC at Location 1 varies from
2 Mbps, at the beginning of the4-hour measurement period, to
3 Mbps at the end of the measurement period. This property is
further illustrated in Fig. Right), which plots the DRC (averaged
over 30 minutes), over 25 days, for Location 1. The mean DRC
varies significantly over time, ranging frof90 kbps to3 Mbps,
even at a single location.

5.1.2 Short time-scale analysis

We now investigate the nature of DRC behavior over shontee ti
scales, specifically, at every slot? We start our analysisdngid-
ering the fraction of time spent by the channel in differelR®
states. In particular, we identify the most frequently otasd DRC
state, and focus on the fraction of time spent in that state tanm
this quantity theModal Fraction. Fig. 1(Middle) shows the Modal
Fraction over each hour, f@t hours at Locations 1, 2, and 3.

Several interesting observations can be made from Rigidt{e).
At all locations, the channel retained a particular DRCestpeater
than40% of the time, indicating the presence of a dominant DRC
value. To further study this property, we plot the Cumulatidis-
tribution Function (CDF) of the Modal Fraction values fol @lir
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laptops over 24 hours.

experiments, in Fig. 2ft). The curve for stationary users shows
that the Modal Fraction was at lea®% in more than60% of
our experiments. This further confirms that stationary sibewve a
DRC state that is frequently experienced.

Prior work has shown the unpredictability of SINR in wiredes
channels over long time scales [23]. Our findings indicad this
is true of DRC as well. In contrast, our observation of a danitn
DRC state is an indication that DRC evolution might indeegitee
dictableat short time scales. We explore this further in Section 5.3.
We note, however, that this does not give us any evidencengf lo
term predictability. The actual value of the dominant DR&test
also varies with location. And as we shall see next, evemaitasi
locations, there can be significant differences over time.

We noticed earlier, from Fig. Léft), that Locations 2 and 3 had
roughly the same DRC values, when aggregated over longer tim
periods. However, Fig. Middle) indicates that Location 2 had a
much more ‘stable’ DRC, with the most frequent DRC state be-
ing retained betwee60 — 80% of the time. The wireless channel
at Location 3 was far more variable, visiting any DRC stathy on
40 — 60% of the time. Thus, even if two locations exhibit simi-
lar long time scale behavior, short time scale analysis dantify
significant differences between them.

Finally, dynammic mapping and quantization were found teeha
a more pronounced efect at smaller time-scales. The ctaelzo-
efficient between SINR and DRC within each hour of measurémen
was much lower, albeit covering a wide ran¢@05 — 0.711] - in-
dicating that quantization hides away small SINR variaifnom
higher layers.

5.1.3 Co-located Users

5.2 Mobility

A key feature of cellular networks is their ability to supporo-
bility, which is achieved at the physical layer by accougtior
Doppler shifts, and at the MAC layer through fast hand-offs.
tuitively, one expects this to significantly affect chanaeéracter-
istics. For example, as a user’s position relative to thetoeler
changes, the perceived signal quality could change. Ourigoa
this section is to understand this effect; we compare antrasin
the properties of the wireless channel for mobile usersugesta-
tionary users. In this subsection, we focus mainly on DRQater
sections, we report results pertaining to the TCP downlatahe
during these experiments.

Fig. 3(Left) plots the average DRC achieved owach mobile
experiment and compares it against 24-hour traces frontatiers-
ary experiments at Locations 1 and 3. The mobile laptop &llyic
experienced channel rates arounbps, similar to Locations 2
and 3, but less than tlie— 3 Mbps obtained at Location 1. Over-
all, our experience with mobile experiments indicates #vatrage
DRC channel rates were quite reasonable compared to station
users, in contrast to common perception that channels dtioat
ary users are necessarily better. In retrospect, the aeihgtwork
design plays a key role in mitigating the difference betwéen
two, at least over long time scales.

We next look at how variable the channel was, consideringtsho
time scales (on the order of a few slots). FigM&idle) plots
the standard deviation of the channel while FiRight) plots the
Modal Fraction for each experiment. Both metrics captueevtri-
ability of the channel; unlike average channel rates, tHegrty
highlight differences between stationary and mobile userke
mobile channel had a far higher standard deviation of DRE, rat
more than600 kbps, when compared to the stationary channels’

Another unusual observation from our measurements was thatstandard deviation, which was always bel¢9® kbps. In addition,

even co-located laptops can have different channel charatiteris
Fig. 2(Middle) plots the average DRC, measured at 1 hour in-
tervals, over a 24-hour period for three-located laptops sepa-
rated by less than 50 centimeters at Location 1. All threeolap

the mobile channel occupied a particular DRC state less2b%hn
of the time. This is in significant contrast to our observat{m
Section 5.1.2) that stationary channels’ Modal Fractios afove
40% and often higher. We explore the differences between statio

were verified to be connected to the same network sector. As is ary and mobile channels in more detail in the next section.

clearly evident, all three laptops have markedly differantrage
DRC evolution. This difference also extends to the shoretitale
behavior in Fig. 2Right), which plots the Modal Fraction on an
hourly basis.

This indicates that even nominal separation between laptwop
sufficient to provide significantly different data rates. tdlohow-
ever, that all three laptops always show a significantlydadvipdal
Fraction, reinforcing our earlier observation that stadiy users
have a dominant DRC state.

5.3 Channel Variability

The previous two sub-sections compared long term average DR
channel rates that arise when users are stationary or naotulpro-
vided an initial look at short-term behavior. The main okagon
regarding the latter aspect was that mobile users have avadre
able channel. There remain several pertinent questionst ahe
nature of the variability: what is the range of variability? how fas
does the channel vary? and how much memory does it retain?
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Figure 3: Mean(Left), Standard Deviation(Middle) and Modal Fraction (Right) of DRC for Stationary and Mobile Traces.
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While interesting on their own account, these questiorsizse
implications for transport layer performance. For exampiaP
applications require low jitter and analytical models of A @&di-
cate that channel variability and rate of variation affelctsughput
[2, 3]). In this subsection, we answer these questions biogrg
the temporal properties of the channel in more detail.

To begin with, we study the entropy of the DRC distributidmst

provides a simple summary of the range and frequency of eann

rates observed by a user. Larger entropy values indicatetba

channel experiences a larger set of DRC values more frelguent
The entropy for the DRC distribution of each trace is comgute

empirically as:

H(X) = -

(i)

iEDRC samples

2

5 NéF(i) log

Nsamples

@

wherei represents one of the potential 15 DRC values Atid)
the frequency with which DRC valuewas observed. Fig. 4éft)
plots the cumulative distribution function (CDF) of entyogalues
for all mobile and stationary experiments. We see that mitteo
stationary user experiments exhibited entropy valuestlessone,
whereas all the mobile user experiments showed entropézgegr
than two. This shows, as expected, that a mobile user expese
a larger range of channel rates compared to a stationary user
To provide a more complete picture, we next characterize the variableX is defined as:

rate at which users transition between the various DRC values and
thetime spent in each state. Fig.M{ddle) plots the average num-

ber of contiguous slots spent in any state across both séati@and
mobile traces, in other words the sojourn time in a state.e®les
that the stationary traces have large sojourn times, onriher of
a few hundred or more slots. The mobile channel, clearly more itively, the conditional entropy quantifies the amount dbima-

rapidly changing, has a typical sojourn time on the order feva
tens of slots (the Y axis is plotted on a logarithmic scale).

5.3.1 Memory in the Wireless Channel

We now quantify the amount ahemory in the 1XEV-DO wire-
less channel. Intuitively, we wish to determine the cotietabe-
tween DRCs at different time-slots in the wireless chanfiélis
is useful in developing models of data rates and determithieg
efficacy of prediction.

More formally, we attempt to model the observed data rates as
discrete-time Markov chain [22]. A Markov chain with deptihas
the property that the evolution of state at any time slot depen-
dent of the entire pastgjiven the state of the past time slots. Let
X, denote the random variable determining the DRC value (rang-
ing from O to 14) in time slot, and P(X;) the probability of the
DRC being a particular value at time sfotThen the Markov prop-
erty implies that:

P(Xiy1]Xi, ..o, Xo) = P(Xita]| X, ., Xin) . (2)

To model our observations as a Markov chain, we need to deter-
mine how many past slots:] are required to satisfy the Markov
property. For this purpose, we follow the approach used 1), [1
and use conditional entropy as our primary metric. The dardil
entropy of a random variabl& as a function of a given random

HY[X)= > p) Y pylz)logpylz) (3)

z€DRC yeEDRC

wherep(z) is the probability that X takes the value x. These prob-
abilities are computed empirically from our observationstu-
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tion the random variableX provides about the random variable
Y. If they are highly correlated’ (Y| X) ~ 0. If they are un-
correlated thef (Y| X) ~ H(Y'). Normalizing the conditional

entropy byH ('), ie, £ allows us to verify if the two vari-
ables are strongly correlated (close to zero) or uncogeélétlose
to one).

To identify the best value of depth to use in our Markov chain
model of DRC, we evaluated the conditional entropy of théesta
in slot ¢, given history of past: slots X;_1, X;_2,..., Xi—n, OF
in other words,H (X;|X;—1, Xi—2, ..., Xi—n). By increasingn,
we increase the amount of past history incorporated. Catiogl
the reduction in conditional entropy as a functiomadllows us to
determine the significance of this increase in history, &edefore
the channel memory. If the reduction in conditional entrgpy
normalized conditional entropy) is significant when we @asen
from k to k+1, then a Markov chain of depth+1 is a significantly
better model than one of depkfthe converse is also true.

Fig. 5(Left) traces thenormalized conditional entropy when con-
sidering Markov chain models of depth= 1, 2, ...,4 slots , for
traces collected from stationary hosts. FigM&ldle) plots the
same for traces collected from mobile hosts. Note that we hav

whereS?, - was the empirically computed state duration for siate
ands:,, obtained analytically. Low values of RMSE imply that the
analytical model is in close agreement with the observed. dat

Fig. 4Right) plots the values of RMSE between the analytically
derived and empirically computed state durations, acribsmees.
We observe low values of RMSE (typically 10~2), providing
further evidence in support of a one-step Markov model.

We now examine the correlation between DRC values at time
slots separated by much larger time lags, for example, tehsro
dreds of milliseconds. This is useful in a practical contesikice
real world applications typically make observations (ofwerk
characteristics) separated by such time lags. Therefaask the
question: how correlated is the DRC value in sl@say X;) with
the DRC in aslot at lag (X;4), as a function of the lag ? Again,
we utilize the normalized conditional entroﬁ% to quan-
tify this correlation. Fig. SRight) plots the normalized condition
entropy for both stationary and mobile traces, as a funaifdag.
For each scenario, we average the normalized conditionedmn
across all traces. In both cases, the plot shows that thetmoad
entropy is less thafi0% of the original entropy up to a lag of al-
most 100 slots. This indicates that slots separated by ageidean

added some randomness to the X axis values to make it easier tastill retain significant correlation. Note that this does contradict

distinguish between the large number of points, many of whic
would be nearly coincident otherwise.

Our first observation, from both plots, is a low value of nokma
ized conditional entropy (less th&0%), for all values ofn. This
indicates that the history of past states (of even just &psagnifi-
cantly determines the current state. Next, we observe im jblots
that the reduction in normalized conditional entropy asneedase
n is negligible. For example, the maximum percentage reducti
of normalized conditional entropy from = 1 to n = 4 is around
10%.

These results indicate that one-step Markov models areaiypi
sufficient to characterize 1XEV-DO data rates for both nmeohitd
stationary users. We verify these results by analyticaipputing
the average duration spent in any state using our Markov mode
and comparing it to the empirically derived results from titeee.
The analytical method assumes a one-step Markov model and ut
lizes a transition matrix with 15 rows and columns. We them-<o
pute the relative mean squared error (RMSE) between these tw
methods, for each tracg, as:

15

RMSEr — % 3 [SI’T;S‘”‘T

1=1

4)

the one-step Markovian nature demonstrated previously.

5.4 Summary

We now summarize our main findings regarding the 1xEV-DO
wireless data rates. We first note that mobile users exparigand-
widths comparable to stationary users, although the viiitials
higher. Similar to prior studies, we found that there is Bigant
variability of channel conditions over long time scales {lo@ order
of hours), depending on location and time, and even for catkxl
laptops.

In contrast, short term behavior (on the order of a few slots
much more predictable. In particular:

e All our experiments with stationary laptops showed that a
large fraction (more tha#0%) of time was spent in one DRC
state, indicating the presence of a dominant channel condi-
tion.

e The time spent in any particular DRC state is on the order of
ten to a hundred slots (on average) and, as a result, channel
conditions are highly correlated across time lags of tens of
slots. This is favorable news for techniques like channei pr
diction and rate-estimation that are utilized in transayer
protocols.



e We find that the short term evolution of the DRC time series
can be effectively modeled by a one-step Markov chain, for
both stationary and mobile users.

Having characterized the physical layer, we now proceetlittys
the impact of the 1XEV-DO scheduling mechanism on end user pe
formance.

6. PROPORTIONAL FAIR SCHEDULER

The Proportional Fair (PF) scheduler is an opportunistiedal-
ing mechanism that aims to increase channel capacity bydgirey
channel fluctuations and at the same time be ‘fair’ to all sigethe
same sector. Broadly speaking, it is based on the philosthatiyn
an environment with variable channels, not all users willhbad
channels all the time. Hence, if delay is not critical (asigtfor
data), then one can improve system throughput by serving@a us
only when their channel is ‘relatively’ good.

We make this notion more precise below. Let us assume in a
given sector, there ate users. For a particulare Z, let R;[n] be
the DRC observed in slot. Let A;[n] be its current exponentially
averaged throughput which is computed in the following ifash

Ailn] = (1 — a)Ai[n — 1] + ali[n — 1JRin —1]  (5)

wherel;[n — 1] € {0, 1} depending on whether uséwas served
(1) or not (0) in slotn. — 1. In slotn, the PF scheduler picks the
useri* such that

R;[n)

The PF scheduler possesses some useful properties: it pdesim
to implement, as the name suggests it shares the wireless cha
nel among users in a proportionally fair manner, and it isasho
to maximize the log utility functiodim,, . > log A;[n], under

€L
fairly general conditions [16]. However, these propertiase only
been explored in simulations.

To the best of our knowledge, it is unclear as to the extent to
which the PF scheduler actually provides throughput beniefite-
alistic environments compared to simple channel-unaweheds
ulers. In this section, we quantify potential gains that barob-
tained with the PF scheduler when compared to the simplest bl
mechanism, Round Robin, with traces of data rates collefcbeal
the 1XEV-DO network. For purposes of simplicity, in this far
ular comparison, we assumed that the user data queue alaays h
‘data’ to sendj.e., presence of perfect transport protocol.

Our comparison was carried out using up to fooi ocated lap-
tops at Location 1 as well as when mobile. Note that in thedatt
case, users do not actuabtay in a single sector. From that per-
spective, this comparison is biased in favor of the PF sdeedu
since the PF requires a certain amount of time to convergairto f
sharing and the maxima of the utility function. We shall adr
this aspect in more detail at the end of this section.

In each experiment, we collected RF traces from all fourdppt
and used the DRC from one million slots for comparisenwvas set
to 1/1000 which is the recommended value in practice [12]. Fig. 6
plots the system gain as a function of the number of usersen th
system. We ran ten simulations with random start slots fersus
and found negligible difference in results. Hence errasizae not
shown. The system gain is defined@sr /Trr, WhereTs is the
total system throughput under scheduling disciphénterpreting
the figure, gains for stationary users is minimal (less #%ah This
can be attributed to the low variability of the channel oledrin
practice. In the case of mobile channels which have highralvia
ity, the opportunistic nature of PF comes into play, allagvithpost

* = argmax
€T
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Figure 6: System Throughput Gain of PF over Round Robin as
a function of number of users.

higher gains of aroun#0% compared to Round Robin scheduling.
We can see that the gain also increases with number of users. W
also evaluated the Jain’s fairness index for all scenamosfaund

no discernible difference between PF or RR across all stenar
Both had values 0§.99 indicating excellent fairness.

For the mobile experiments, the above comparison implieish
sumed that the same PF scheduler was serving all users. dn pra
tice, since the mobile users experience hand-offs, thiddvoat
be the case. At each hand-off, the new serving sector s&ms s
ing the hand-off user as a new user. To explore this scenago,
determined the average time a mobile spends in a sbetaren
hand-offs and re-computed the throughput gains using itmis-t
frame. In our experiments, a mobile typically experiencbdia
40 hand-offs. The maximum time spent between hand-offs varied
from 114 to 140 secs (around0, 000 1xEV-DO slots) while the
average time was arourdd) — 30 secs (aroun@0, 000 1XEV-DO
slots). Within this framework, the throughput gains wererfd to
reduce dramatically t6% and8% respectively. The results indi-
cate that during hand-off, it is beneficial to retain the UBErstate
(A;[n]) in order to retain advantages of the PF scheduler.

7. TCP OVER 1xEV-DO

We next consider the impact of the 1XEV-DO wireless channel
and network characteristics on TCP, since it is the most confyn
used end-user transport protocol. Our goal is to gain itsigito
which factors affect transport-layer performance over\L-xO.
Therefore we perform experiments with a variety of différé@P
variants and compare their performance. Specifically, veduave
TCP-Reno, TCP-Cubic, TCP-Vegas and TCP-Westwood [21, 6, 7]
in this study. Our choice of these four variants is motivaigdhe
fact that they capture a variety of different TCP algorithrogti-
mized towards different goals - loss-based and delay-beseges-
tion control, high-speed and shared-medium variants. bae
these four variants are available as free open-source Lkatnel
modules and facilitate easy experimentation.

Our experiments involved download of large files for each TCP
variant to obtain sufficient physical layer and transpoyéfestatis-
tics. Details of the experimental set up are presented iticed.
The metrics used for judging TCP performance, are the TCE-goo
put, and the mean and standard deviation of the excess deglay e
rienced by the TCP traffic. (We define excess one-way delayeas t
residual delay after subtracting the smallest delay sampteuse
it to minimize problems with clock synchronization).
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Figure 7: EXsinare: (Left) TCP goodput and mean DRC achieved with 4 different TGP variants in 3 experiments each. The total
height of the bars is the mean goodput (and mean DRC). The shad portion is the standard deviation observed. (Middle) Mea
delay versus the TCP goodput (as a fraction of the mean DRC)R(ght) Identifiers of base stations connected to by differenmobile
users on the same route, different days. The base stations reassigned identifiers in the same order that they were seeiNote the
similarity of hand-offs. The difference in speeds on both dgs accounts for an increasing clock skew.

We performed experiments with these TCP variants in various performance of different TCP variants. We address the isfue

different settings: mobile and stationary; all four vat&simul- mitigating cross-traffic effects in the subsequent sestiamd also
taneously, or separately. We report our findings in each @eh  discuss the role of the queue size.
scenarios. In order to reduce the impact of cross-traffic, we performed m
bile experiments with four laptops downloading files at thene
7.1 Preliminaries time, each from a server configured with a different TCP vadria
Our first set of results focus on each TCP variant in isolatien If all four laptops are connected to the same base statien, ttiey
a single laptop downloading a file from a single server viectma- share the same cross traffic effects. In order to test whettssron-
mercial 1XEV-DO network. While we performed this experiren dition would be met, we conducted experiments with diffetep-
in both stationary and mobile scenarios, our findings warg!a, tops driving along the same routes at different times. Higight)
and we report the TCP performance only for the mobile scenari shoyvs the resylt of one such trial, plotting the identifietraf base
here. stations to which the two laptops were connected. We seelthat
We shall henceforth refer to this set of experiment®a&s ;v a Lz . ing almos_t all time instants, both laptops are connectebdsame
Fig. 7(Left) shows the TCP goodput from three experiments run Pase station. . . .
with each variant of TCP Recall from Section 5 that the DRC, Therefore we proceed with the assumption that four laptéps s

which represents a limit on TCP performance, can vary widely Multaneously downloading files, in close proximity or in g@me
across these time scales. Therefore, we also plot the megh DR Vehicle, will share the same cross traffic effects. While we-p
for the experiments corresponding to each of these variants formed such experiments in both stationary and mobilerggstton
We observe that TCP-Vegas achieves a much lower throughputthe commercial 1xEV-DO network, we only describe the mobile
than the other variants. Since this could be either due ferdifice scenario in this paper. These experiments are describeédn S
in wireless channel rates or lower channel utilization inisre use- ~ tion 7.2. However, these experiments still do not isolageefiect
ful to examine the TCP goodput as a fraction of the mean DRC ©f bottlenecks and congestion in the wired network from ¢hok
and also as a function of the end-to-end observed excesg dela the wireless channel. Hence we also performed experimens o
Fig. 7(Middle) presents such a scatter plot for each experiment. dedicated 1xEV-DO testbed that was isolated from the corvialer
The experiments with TCP-Vegas lie in the lower left cornbich network. This is described in more detail in Section 7.3.
indeed indicates that the low throughput is due to poorzatiion of .
the channel rather than the wireless channel rates. TCRs\&go 7.2 Co-located Mobile Laptops

has the lowest packet delays in keeping with its nature speads In this section, we describe results for four mobile useraifa-

to increasing delays by reducing queue sizes, a possibée cdthe neously downloading a large file from servers configured with

low utilization. The other variants generally have higheodput ferent TCP variants. Each experimental drive-test was wcted

fractions at the expense of higher packet delays (indigdtigher four times and henceforth shall be referred toFa&coro. We

queue build-ups) with TCP-Cubic having the largest latertzyw- plot the results from the four experiments in Fig. 8.

ever, we note that across all variants, the maximum chanitiebu Fig. 8(Left) shows the TCP goodput and average excess packet

tion is only 70%. delay for each variant, as well as the mean DRC during the ex-
This experiment highlights two important factors which kcbu periments. Note that this plot is normalized so that the maxn

significantly affect our TCP experiments. First, there dobe value of each metric shown is one. We see that the mean DRC is

cross-traffic and wired network bottlenecks inside the cenunal generally the same for all variants, but TCP-Vegas hasf&igntly

1XEV-DO network that varies across experiments, makingfit d  lower throughput and TCP-Cubic the highest throughput aysbn
ficult to compare the TCP variants and the role of the channel. the variants. The packet delays exhibit a similar relation.

Second, the queue sizes in the 1XEV-DO network could affext t Given the varying nature of the wireless channel conditiexen
though the co-located laptops had the same mean DRC, we ex-

2The height of the unshaded bar represents the average and th@lore if differences in channel dynamics between the laptmuld
shaded portion represents the standard deviation. be responsible for the relative performance results. Toereve
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exploits, for each TCP variant.

look at delays and losses of the individual experiments c@np

TCP-Reno, TCP-Westwood and TCP-Cubic have a more aggres-

ing EXcoro. Note that these metrics are measured end-to-end sive algorithm that can lead to larger queues with highelenae,

between the laptop and server, since we were constrainddda-p
ment of measurement points.

Fig. 8(Middle) plots the standard deviation of average end-to-
end excess delay versus the TCP goodput for each individual e
periment. We observe that the standard deviation of del@-is
ways much lower for TCP-Vegas, when compared to the other vari-
ants. This indicates that the delay behaviors we observaddal
different queuing properties for the different TCP vargmather
than wireless channel variations. Similarly, we plot thd-em+end
loss rate for each experiment, in FigR3ght), and observe little
correlation between the loss rate and throughput. Furiheex-
tracted the frame error rates (FERS) foX co .o from the CDMA
measurement logs and show them in Fig.e3{). We observe
FERs consistently less thaffo. This is well within the target FER
that 1xEV-DO was designed for, implying that built-in litgkyer
mechanisms involving turbo-coding and hybrid ARQ [5] reeluc
the packet error rates to negligible values. We verified ithia
separate, but extensive set of experiments which indidaetdhe
channel loss rate in 1XEV-DO was consistently lower than %.

Thus, our investigations lead us to conclude that diffeseimc
channel conditions anaot responsible for the relative performance
of the TCP variants. Instead, this reinforces our earlidications
(from Section 7.1) that queueing effects govern the diffees in
the performance of the algorithms. The delay-based alguritsed
by TCP-Vegas yields smaller and more stable queue sizesgbut
sults in lower goodputs in the context of a varying wireldsammel.

but yields higher goodputs. Though queueing dominates,ate n
that the varying nature of the wireless channel rate has tteseib
fect: itleads to larger configured limits on queue sizes audes a
wider range of delay variation. TCP-Vegas, by virtue of nteiim
ing smaller, more stable queue sizes has a less variablg déla
other variants, TCP-Cubic in particular, obtain higheotighputs
by sending traffic more aggressively, and exhibit largess ktable
queue sizes as a by-product. In passing we make a note negardi
fairness. Even though the average channel rates are sim&-
Cubic typically gets a higher fraction-(30%) of the system band-
width, while TCP-Vegas gets the least (20%) with TCP-Reno
and TCP-Westwood getting aroud% of bandwidth.

7.3 TCP variants on the Testbed

In our previous experiments, it is still conceivable thateslinet-
work congestion and bottlenecks affected our observationg
further mitigate this factor by performing experiments be tab-
oratory testbed described in Section 4. Furthermore, weeran
periments only at night to minimize any possibility of banokgnd
traffic causing wired-network bottlenecks.

Our goal was to evaluate TCP efficiency, verify our earlied{in
ings, and further examine whether the relative performanficbe
TCP variants was caused by difference in experienced cheone
ditions or algorithmic behavior, as we hypothesize. Foffitts¢ob-
jective, we conducted four file downloads with each TCP vdria
Across these experiments, TCP-Reno, TCP-Cubic, TCP-Vdestw



g
o

0.05

0.25

| Reno -+ Reno -+ Reno
14 B Cubic O- | % cubic < % Cubic
Hl Vegas 0.041 O Vegas O Vegas
1.2 [ Westwood || ’ Westwood T 02 Westwood
g g +~ Q e X
g >
3 1 Eo.ogD -+ s X
= 2 X a X
gos 3 -+ + ‘ 20.15 ‘ Oy
o £ I o ﬂf
€06 § 002 T % @ + 4+
s 8 % X O g 0.1 J «)247
0.4 0.01f + =" d)
ok b o’ O
81 0.15 5 0.3 035 %1 0.15 0.3 0.35

Mean DRC Goodput Retransmissions

0.2 0.2! .
TCP Goodput [DRC Fraction]

0.2 0.25 .
TCP Goodput [DRC Fraction]

Figure 10: For EXrgep: (Left) TCP Goodput, Mean DRC and the average fraction of pa&ets that were retransmissions (height of
the bars normalized w.r.t the maximum in the group). The colaed portions show the magnitude of the standard deviations(Middle)

End-to-end loss rate, and (Right) Mean delay.

and TCP-Vegas were found to yield average channel utitinati
(ratio of TCP throughput and mean DRC) @86, 0.89, 0.85 and
0.75 respectively Although this indicates that the former thaee
reasonably efficient (given protocol overhead ), it is somevex-
pected given the small propagation delays, large bufferraimd
imal cross-traffic on the testbed. A closer examination atac
that the high efficiency was present only for lower averagenokl
rates around.5 Mbps, which occurred in a majority of the exper-
iments. Surprisingly, in excellent channel conditionsefage rate
> 2.4 Mbps), the efficiency dropped to arousd% for all three
variants. Analysis of tcpdump logs indicate the presencriofer-
ous re-transmissions when channel rates were higher. Wethsp
size that these are spurious time-outs induced due to tekgieve
rate fluctuations for large channel rates (the large bufiéigates
congestion loss and analysis of wireless logs reveals noneha
losses) that prevent TCP from efficiently utilizing the chehn We
plan to conduct a more detailed analysis of this aspect itnéur
work.

Next, in order to determine relative performance of thearas,
we conducted experiments where 4 laptops connected todtiete
base station simultaneously downloaded a large file, each &
server configured with a different TCP variant. We refer tis th
set of experiments a8 Xrgrp and summarize the results from
eight experiments below. In Fig.ld{ddle andRight), we plot the
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Delay of Stream (ms)
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TCP Throughput (Kbytes/s)

200
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Figure 11: Performance of Simultaneous VolP and TCP ses-

sions for different TCP variants.

the wireless channel, although the latter introduces bditia In
other words, the experiments point to a scenario where the-ba
station possesses a langs-user buffer that absorbs and mitigates
the impact of channel fluctuations, allowing high channéizat
tion with little congestion losses. This is indeed the caseated
in Section 4. The reasoning behind large buffers stemslyefacin

performance for each TCP variant (in terms of the goodput as a the nature of the 1xEV-DO channel. Given that channel raes c
fraction of the mean DRC) versus channel conditions expeeieé vary from 38.4 kbps to3.1 Mbps, it represents a wide range of
by each variant (mean and standard deviation of DRC). Frem th Bandwidth-Delay Product (BDP). For example, an RTT of (say)
Middle plot we observe numerous data points for all variants with 100 Ms and1500 byte packets translates into a BDP that ranges
the same mean DRC but significantly different performance, a from 1 to 25 packets. As shown in Section 5.1.2, the channel state
theRight plot shows that the variations in DRC have little correla- ¢an fluctuate over a few tens of milli-seconds. By having depuf

tion on relative performance. larger than the peak BDP, the system potentially allows hitth
Similarly, Fig. 10 plots the performance of the TCP varidfis

EXrpep) as a function of other possible indicators that differ-

ence in channel conditions could be responsible for perdoca:
loss rate iiddle), and delay Right). In both these plots, we no-
tice no significant correlation between the plotted metrid ¢he
TCP goodput. Fig. 1Qeft) shows the average number of TC
retransmissions for the different TCP variants. Again, wé&oe
TCP-Vegas shows few retransmissions while TCP-Cubic sltiosvs
most, indicating that TCP-Cubic is far more aggressive anfti®

therefore fewer retransmissions.

to hypothesize that the difference in observed performafiche
congestion control algorithms is dominated by queueirigerahan

p 7.4

lization without incurring congestion loss. Analytical dels in
[3] have been shown to support a similar hypothesis. Thoagjel
buffers help mitigate congestion loss via channel vaiiighjlthey
also have negative side-effects as shown next with a cadg-st

Impact on Applications : A Case Study

Our finding that behavior in commercial 1XEV-DO systems is
dominated by the buffer have important ramifications for-aadr
applications. Consider the following scenario: an end-leggtop
up larger queues, whereas TCP-Vegas favors smaller quedes a with two simultaneous applications, one large FTP downlaad
one Voice-over-IP session (VoIP), or some other delayiseasp-

All the above results from Section 7.2 and Section 7.3 lead us plication. Now recall that all traffic from an end-user devghares
the same queue at the base station. Then, if the TCP variant wa
aggressive in order to improve throughput (e.g., TCP-Quloice
could expect the VolP session to suffer degraded perforenaimc



comparison, TCP-Vegas would receive lower throughputabotv
the VoIP session to receive better performance.

We verified this conjecture via an experiment on the testbed,

where a client downloaded250 Mbyte file using each TCP vari-
ant and simultaneously received a low raté kbps stream. The
end-to-end stream delay and TCP throughput with each vaaien

reported in Fig. 11. The stream delay is least with TCP-Vegas
as would be expected, but at the expense of low TCP through-

put. The other variants yield higher throughput at the ezpesf
longer stream-delay. TCP-Cubic is at the end of this specti:
fering high throughput but significantly higher latency tHBCP-
Vegas. This is clearly an impact of the large bufied the aggres-
sive congestion control of TCP-Cubic. Note that TCP-Wesidyo
which incorporates rate estimation in its congestion abmirech-
anism yields a reasonable trade-off in terms of a slighttyeased
stream delay compared to TCP-Vegas and reasonably higingino

put (abouB0% of TCP-Cubic). Indeed, this aspect of TCP-Westwood

is noticeable across other experiments too.

8. CONCLUSIONS

We performed a detailed characterization of the physic#iCM
and transport layer performance in the 1XEV-DO network. Our
scope covered both stationary as well as mobile channelslaad
involved evaluation of various state-of-the-art transgootocols.
The analysis was carried out by cross-analyzing detaileahrogl
level information: rate, packet loss, SIN&¢. as well as tcpdump
logs. The physical channel was found to be highly variabler ov
long time scales of hours and days. However, at short timesca
on the order of a few milli-seconds it shows significant megmor
This translated into the channel retaining the same rate e
range of a few tens to few hundreds of milli-seconds. Thraigh
ulations using physical rate traces we found that the oppistic
Proportional Fair scheduling scheme is beneficial compgrede
Round-Robin schedule in mobile scenarios (gains of arQxi)
but has minimal gain4 — 5%) for stationary scenarios. Somewhat
surprisingly, the performance of all TCP variants was dated by
queueing effects rather than channel fluctuations. Thisbeaat-
tributed to the presence of large buffers that mitigatedapannel
fluctuations allowing high#& 85%) channel utilization in moder-
ate channel conditions and low propagation delays. Theyehew
can also induce large delay in the presence of loss-basegtson
tion control mechanisms (TCP-Cubic) that seek to fill theuguas
opposed to delay-based mechanisms that control queueTSRe (
Vegas), though the latter offer smaller throughput.
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