
cm
p-

lg
/9

50
40

13

23
 A

pr
 9

5

NLG vs. Templates�Ehud ReiteryCoGenTex, Inc840 Hanshaw RdIthaca, NY 14850 USAemail: ehud@cogentex.comAbstractOne of the most important questions in applied NLG is what bene�ts (or `value-added', in business-speak) NLG technology o�ers over template-based approaches.Despite the importance of this question to the applied NLG community, however,it has not been discussed much in the research NLG community, which I think isa pity. In this paper, I try to summarize the issues involved and recap currentthinking on this topic. My goal is not to answer this question (I don't think weknow enough to be able to do so), but rather to increase the visibility of this issuein the research community, in the hope of getting some input and ideas on this veryimportant question. I conclude with a list of speci�c research areas I would like tosee more work in, because I think they would increase the `value-added' of NLGover templates.1 IntroductionThere are thousands, if not millions, of application programs in everyday use that auto-matically generate texts; but probably fewer than ten of these programs use the linguisticand knowledge-based techniques that have been studied by the Natural-Language Genera-tion (NLG) community. The other 99.9% of systems use programs that simply manipulatecharacter strings, in a way that uses little, if any, linguistic knowledge. For lack of a bettername, I will call this the `template' approach.In order for NLG technology to make it out of the lab and into everyday �elded appli-cation systems, the NLG community will need to prove that there are at least some nicheswhere using linguistic/AI approaches in a text-generation system provides real commer-cial advantages, such as reducing the e�ort required to build (or maintain) the system,or improving the e�ectiveness of the generated texts. Determining under what conditionsand in what aspects NLG techniques are `better' than character-string manipulation isof utmost importance to the applied NLG community, and should also be of interest to�This research has been partially supported by Rome Laboratory (US Air Force) under contractF30602-94-C-012.yAfter 1 August 1995, Dr. Reiter's address will be Department of Computing Science, Uni-versity of Aberdeen, King's College, Aberdeen AB9 2UE, BRITAIN. His email address will beereiter@csd.abdn.ac.uk 1

the research community; if nothing else, research funding for NLG is likely to increase ifthere are a large number of successful �elded systems that use NLG technology.In this paper, I will use the term automatic text generation (ATG) to refer to anycomputer program that automatically produces texts from some input data, regardlessof whether NLG or template technology is used internally. The topic of this paper isthus when is NLG `appropriate technology' for building ATG systems, and when shouldsimpler approaches be used. My goal is not to provide a de�nitive answer to this question,because I don't think we (currently) know enough to be able to do this, but rather topresent the issues, summarize commentsmade by other people, and present some opinionsof my own. Hopefully this will help start a discussion within the community about thisvery important but (so far) somewhat ignored issue.2 Template systemsAll ATG systems are, of course, simply computer programs that run on some inputdata and produce an output (the text) from this data. Non-linguistic (`template') text-generation is done via manipulating character strings; the user writes a program whichincludes statements such as `include XXXXX if condition Y is true, and YYYYY oth-erwise.' This program can be written directly in a programming language such as Lispor C++, or it can be speci�ed via a `mail-merge' system which allows conditional texts(eg, Microsoft Word). The key di�erence between this approach and NLG is that allmanipulation is done at the character string level; there is no attempt to represent thetext in any deeper way, at either the syntactic or `text-planning' level.To the best of my knowledge, most programming languages and mail-merge environ-ments provide very little, if any, support for manipulating texts in even the simplest`linguistic' manner. For programming languages, the most sophisticated feature that Iam aware of is the ~P construct in the Lisp format function, which will do some sim-ple pluralizations (eg, win vs. wins, or try vs. tries) depending on whether a numericparameter is one or not.Mail-merge systems can have slightly more sophisticated capabilities, such as auto-matically capitalizing an inserted word if it is the �rst word of a sentence. However, evensomething as simple as changing pronouns according to gender needs to be explicitly pro-grammed. Some mail-merge systems are integrated with grammar checkers that might intheory be able to handle some low-level syntactic problems such as verb agreement, a vs.an, and elimination of multiple commas; however, current grammar checkers may not berobust enough to be able to do this in a reliable fashion.2.1 Example: Apple Balloon HelpA simple example of template-based generation is the Apple Macintosh Balloon Helpsystem. It can produce texts such asThis is the kind of item displayed at left. This shows that test data is a(n)Microsoft Word document.and This is a folder | a place to store related �les. Folders can contain �les andother folders.The icon is dimmed because the folder is open.

In the �rst text, test data and Microsoft Word were inserted into template slots for `�le-name' and `application program.' Note the use of a(n); even this simple type of agreementis not done in the Balloon Help system. In the second text, the last sentence (The iconis dimmed because the folder is open) only appears when the mouse is positioned overan open folder; just the �rst two sentences will appear if the mouse is positioned over aclosed folder. This is an example of conditional text.2.2 Example: Employee Appraiser and Performance NowTwo more sophisticated `non-linguistic' automatic text-generation systems are Austin-Haynes Employee Appraiser and KnowledgePoint's Performance Now. Both of thesesystems help managers write appraisals of employees (eg, for justifying salary increases).Each system provides a set of general evaluation topics, such as Communication, which arebroken up into more speci�c subtopics, such as Communicates ideas verbally. Managersgive employees rankings on each of these subtopics, and the system then composes acomplete appraisal, which the manager can edit in a word processor.In Employee Appraiser, when the manager chooses a subtopic rating, the systemretrieves an appropriate paragraph from a library and does some simple linguistic pro-cessing. In particular, the manager can specify whether the employee is male or female,and whether the report should be written in second or third person. This a�ects thepronouns used in the text (eg, he, she, or you), and also verb conjugation (eg, you dovs. he does). This is the most sophisticated syntactic processing that I am aware of in a`template' system.Performance Now does less syntactic processing (it does not allow the manager tochoose between second and third person; only third-person is possible), but it does do somesimple sentence planning. In particular, Performance Now combines all the informationabout a particular high-level topic (such as Communication) into a single paragraph, andthis requires the system to use conjunctions and pronouns, and to add initial conjuncts(eg, Furthermore) to sentences.An example output of Performance Now isBert does not display the verbal communication skills required, and his writ-ten communications fall short of the quality needed. Additionally, he doesnot exhibit the listening and comprehension skills necessary for satisfactoryperformance of his job.The system has composed this from three separate phrases retrieved from its library. The�rst two phrases are combined with and to produce the �rst sentence above. The thirdphrase is left as a separate sentence, but the conjunct Additionally is added to it, and thesubject is pronominalized. The system also orders phrases by putting the most positiveones �rst, and most negative ones last (this is not shown in the above example).Performance Now performs the most sophisticated sentence-planning of any `template'system that I am aware of; indeed, one might argue that Performance Now is doingenough linguistic processing that it really should be regarded as a (simple) NLG system.KnowledgePoint's marketing literature in fact stresses their `IntelliTextTM' technology,which \generates clear, logical sentences and modi�es them to work together as if youwrote them yourself". This is the only mass-market system I am aware of which advertisesNLG-like abilities as part of its competitive advantage.

3 Advantages of NLGMany advantages of NLG over templates have been described in the literature. In thissection, I try to summarize these arguments, paying special attention to those argumentsthat seem important to the success of current applied NLG systems.3.1 MaintainabilityOne reason for using NLG is maintainability; template-based generators can be di�cultto modify according to changing user needs. This has been a real factor in the success ofthe FoG weather-report generation system, for example. To quote [Goldberg et al., 1994,page 53]Experience has shown that [template-based weather report generators are]di�cult to maintain. This has hampered the testing and implementation ofthe software and has made it di�cult to update the program for changinguser requirements. This is a critical factor. Although the Canadian textualforecast products fall into several common broad categories (marine forecasts,public forecasts, and so on), each category contains many regional variations.Also, content, structure, and terminology tend to vary with time, albeit slowly.To succeed, a system must address variations between forecast types, varia-tions between geographical regions in a forecast type, and gradually changingrequirements.Making even a slight-change to the output of a template-based generator may require alarge amount of recoding (of programs) and rewriting (of templates); in contrast, sucha change may be straightforward to make in linguistically-based system. To take onesimple example, if a user wishes to change a text-generation system so that dates arealways at the beginning of sentences (eg, In 1995, a severe winter is expected instead of Asevere winter is expected in 1995), this can easily be done with almost any linguistically-based NLG system. With a template system, in contrast, making this change may requirerewriting a large number of template fragments.1There is an interesting analogy with expert systems here. Early expert systems, suchas the R1/XCON system used to con�gure computers at Digital Equipment Corpora-tion [McDermott, 1982], were partially justi�ed on the grounds that they were easierto maintain and modify than `conventional' programs that performed the same task. Itsubsequently became clear, however (eg, [Soloway et al., 1987]), that maintaining expertsystems, although still perhaps easier than maintaining conventional programs that per-formed similar tasks, was not as simple as the initial enthusiasts had thought it wouldbe. We as yet have little data on how easy/di�cult it really is to maintain �elded NLGsystems; [Kittredge et al., 1994] is the only paper I am aware of that discusses the main-tenance of �elded NLG systems.3.2 Improved Text QualityAnother advantage of NLG-based systems is that they can produce higher-quality output.It is useful when discussing output quality to distinguish between aspects of quality thatarise from the three di�erent processing stages used in most applied NLG systems [Reiter,1994]: content/text planning, sentence planning, and syntactic realization.1This assumes that the system uses a large number of templates. If only a small set of templates isneeded to generate the system's texts, maintaining them is unlikely to be a problem.

3.2.1 Content PlanningThe ability to vary the information content of a text in a �ne-grained and exible waymay be the most important `quality' enhancement of all; it allows NLG-based systemsto include whatever information is deemed important in a text, and leave out unimpor-tant information. This has been especially important in letter-generation systems (eg,[Springer et al., 1991; Coch and David, 1994]) which have been one of the most popularNLG applications to date. To quote [Springer et al., 1991, page 68]An automated form-letter system originally formed the core of this organi-zation's correspondence facility. Because its letters must speci�cally discussdi�erent kinds of �nancial transactions, the system has grown to include closeto 1,000 di�erent form letters to address the simplest divisions of commonproblems. However, in practice most of these letters are never used: Cus-tomer service representatives, working under pressure to handle as many casesas quickly as possible, tend to use 10 to 20 letters that are close enough todescribing the client's situation rather than take the time to discriminate be-tween slight variations within the form library. When a client's situation evenslightly varies from these forms or encompasses a combination of topics ad-dressed in separate form letters, a new letter must be composed by hand if theclient is to be convinced that s/he has received individual attention. Form-letter systems might come cheap, but they don't always stay that way, andthe quality of output for any particular situation can never be very high.In other words, if a text-generation system has to be able to generate texts that areappropriate for many di�erent kinds of situations, it may be di�cult to use as well asbuild; and there may be a strong argument for building a system which uses knowledge-based techniques to represent the desired content of the output, and then generates anappropriate textual presentation of this context.3.2.2 Sentence PlanningMost applied NLG systems have a sentence planning module that handles aggregation,referring-expression generation, sentence formation, and lexicalization [Reiter, 1994]. Per-forming these tasks well can greatly enhance the readability of a text. Consider, forexample, the di�erence betweenThe house is white. The house is large. The house is owned by John. Thehouse is on Sullivan Street. The house is next to the elementary schooland John owns a large white house on Sullivan Street. It is next to the school.This is an example of aggregation [Dalianis and Hovy, 1993]. Aggregation is mentionedas one of the most important bene�ts provided by the PLANDOC system [McKeown etal., 1994]. PLANDOC summarizes the history of an engineer using a simulation package,and generates text such asThis re�nement activated DLC for CSA 2111 in 1995 Q3, for CSAs 2112 and2113 in 1995 Q4, and for CSAs 2114, 2115, and 2116 in 1996 Q1.If each of the activations was expressed by a separate sentence, the above message wouldrequire six separate sentences, and would be much longer.

An interesting open question is how much sentence planning can be done without hav-ing a `proper' syntactic representation of the text. The Performance Now (Section 2.2)system demonstrates that some simple aggregation can be done even if phrases are repre-sented as character strings, but it seems doubtful whether more sophisticated aggregation(eg, ellipsis or relative-clause introduction) is possible without a syntactic representationof phrases.3.2.3 Syntactic RealizationTexts that are comprehensible but ungrammatical can be annoying to readers, and it maybe expensive (in terms of programming e�ort) to set up a template system to correctlyhandle agreement, morphology, punctuation reduction, and other `low-level' phenomena.It is straightforward, in contrast, for an NLG system to handle such phenomena.Interestingly enough, however, I am not aware of any applied NLG system whosesuccess is primarily based on better syntactic (or morphological) processing. Systemssuch as FoG [Goldberg et al., 1994] and PLANDOC [McKeown et al., 1994] do possesssophisticated syntactic realization systems, but I do not believe that their success derivesfrom the fact that they can get agreement or morphology right. Template systems suchas Employee Appraiser are, after all, able to handle some agreement phenomena. Par-ticularly if a developer is only concerned with relatively straightforward phenomena (eg,noun pluralization, or noun-verb agreement), it may be easier for him or her to `hack'something together that appropriately manipulates character strings, instead of trying tobuild explicit syntactic structures that can be processed by an NLG system.Also, in many cases texts can be phrased in a manner which minimizes the need forsyntactic adjustment. For example, problems will occur with the template N iterationswere run when N is 1; these problems can be avoided, however, by changing the text toNumber of iterations run: N.A good syntactic module may of course be needed to support a sophisticated contentdetermination or sentence planning module. For example, as mentioned in the previoussection, proper syntactic representation is probably needed for many kinds of aggrega-tion. By itself, however, good syntactic processing may not provide much `competitiveadvantage' to an NLG system.3.3 Other advantagesTwo other advantages of NLG that may be important in some cases are multilingualoutput and guaranteed conformance to standards. Multilingual output can of course beachieved with templates; many error-message systems, for example, are localized to otherlanguages simply by inserting a new set of format strings. The quality of texts generatedby this approach is not high, but this may be acceptable in some circumstances.At the other extreme, multilingual output could also be achieved by building severalseparate systems, one for each target language. Such a system would be expensive toconstruct and might prove di�cult to maintain, however.The FoG weather-report generation system [Goldberg et al., 1994] probably owes someof its success to the fact that it can produce texts in both French and English. Weatherreports in Canada must be produced in both French and English, and if reports are �rstwritten in one language and than translated into the other, there may be a signi�cantdelay before the translated reports are available (even a one-hour delay can be signi�cantfor a 24-hour weather forecast). The FoG system enables the forecaster to simultaneouslyproduce both English and French versions of the forecast, thus eliminating this delay.22Also, a forecaster who uses FoG is not dependent on a third-party to translate his or her forecasts;

The �nal advantage of NLG I'd like to mention is guaranteed conformance to documentstandards, including writing standards such as AECMA Simpli�ed English [AECMA,1986], and content standards such as DoD-2167A [DoD88, 1988]. In many domains it isessential that documents conform to such standards, and rules such as `sentences shouldnot be longer than 20 words' or `sentences should not contain more than three sequentialnouns' (from AECMA Simpli�ed English) may be easier to enforce in an NLG system,which can paraphrase or reword texts to meet such constraints. An NLG system could,for example, take sentence-length constraints into account when making aggregation deci-sions. I do not know of any current applied NLG system for which standards conformanceis an issue, but this may become important in future applications.4 Advantages of TemplatesTemplates, of course, also have advantages over NLG. The most basic of these is probablythat NLG systems cannot generate text unless they have a representation of the infor-mation that the text is supposed to communicate; and in the great majority of today'sapplication systems, such representations do not exist.For instance, suppose a scienti�c program wishes to inform the user that N iterationsof an algorithm were performed. In principle, NLG techniques could be used to improvethe handling of special cases such as N=0 and N=1, so that the system could produceNo iterations were performed1 iteration was performed2 iterations were performedHowever, doing this with NLG techniques would require the system to have either adeclarative representation of concepts such as algorithms and iterations; or a syntacticrepresentation of the sentence N iterations were performed. Neither of these is likely toexist in a scienti�c program, and few scienti�c programmers would bother putting themin. Instead, such programmers would either accept low-level syntactic problems (eg, theoutput 1 iteration were performed); use an alternate formulation that did not su�er fromthis problem (eg, number of iterations performed: 1); or write special code to produce theappropriate output when N is 0 or 1.This is perhaps an extreme case, but it illustrates the point that switching to NLGwill be expensive if the application does not already have a declarative domain knowledgebase and/or syntactic representations of output text, and no one is going to pay this costif the resultant improvement in text quality (or system maintainability) is not perceivedas signi�cantly enhancing the usefulness of the application. Since knowledge-based ap-plication systems are still rare, and even the ones that do exist often do not have all theinformation that an NLG system would need, it may be the case that NLG is not themost appropriate technology for many current text-generation applications.Besides the above problem, NLG also su�ers from generic problems that are commonto all new technologies. There are very few people who can build NLG systems, com-pared to the millions of programmers who can build template systems; there is also verylittle awareness of what NLG can (and cannot) do among most developers of applicationsystems. Additionally, there is very little in the way of reusable NLG resources (software,grammars, lexicons, etc), which means that most NLG developers still have to more or lessstart from scratch. Finally, the fact that NLG is an experimental technology means thatconservative developers may want to avoid using it. As mentioned above, these problemsare common to all new technologies, and will evaporate with time if NLG proves to be atruly useful and valuable technology.this feeling of `more control' may be a signi�cant plus to some users.

5 Hybrid SystemsIt is of course possible to build ATG systems that use both NLG and template techniques.To date, two variants of this have been particularly common:� Systems that embed NLG-generated fragments into a template slot, or that insertcanned phrases into an NLG-generated matrix sentence. The IDAS system [Reiter etal., 1995], for example, could insert generated referring expressions into templatessuch as Carefully remove the wrapping material from X, and also could insert cannedphrasal modi�ers such as using both hands into an otherwise generated sentence.� Systems that use NLG techniques for `high-level' operations such as content plan-ning, but templates for low-level realization (eg, [Buchanan et al., 1994]).The basic goal of such systems is to use NLG where it really `adds value', and to usesimpler approaches where NLG is not needed or would be too expensive. The decisionon where NLG should be used can be based on cost-bene�t analysis [Reiter and Mellish,1993].Real-world decisions about where NLG should be used in a hybrid system are likelyto be based on practical criteria as well as theoretical ones. NLG modules that are slow,error-prone, written in unusual programming languages, and/or di�cult to maintain willof course not get used much in real applications. But also, even a well-engineered moduleis unlikely to get used if it does not �t into the way the developer wishes to build his orher system, or give the developer su�cient control over the system's output. For example,a system that reserves the right to reorder sentences based on some rhetorical model maybe unacceptable to a developer who insists that the sentences must appear in a speci�corder that he or she thinks is best.Another way of saying this is that NLG shouldn't `get in the way'. Developers willuse NLG modules and techniques if NLG helps them produce the kind of texts they wantto produce; if an NLG system is seen not as a helpful tool but as something that needsto be worked around, it will not be used. NLG should also only be used when it clearlyincreases maintainability, text readability, or some other important attribute of the targetapplication system. If a certain portion of the output text never varies, for example, itwould be silly to generate it with NLG, and much more sensible to simply use cannedtext for this portion of the document.I believe, by the way, that most current hybrid systems use `real NLG' in content-determination and perhaps sentence-planning, and use template techniques mainly insyntactic realization. This may simply be a coincidence, but it may also suggest thatmuch of the real `value-added' of many NLG systems may be in the high-level processing,not in ensuring correct syntax.6 Making NLG More UsefulThere are several areas where I think more academic research could help improve theadvantages of NLG-based text generators over template-based systems.3Aggregation: As mentioned in Section 3.2.2, aggregation (eg, clause combining, ellipsis,conjunction reduction) is something that seems to signi�cantly add to text qualityin many circumstances. Yet, there has been surprisingly little research on this veryimportant and interesting topic.3This list has been heavily inuenced by discussions with Chris Mellish.

Standards Conformance: Being able to generate text that is guaranteed to conform toa writing or content standard could be a big selling point of NLG in some circum-stances (Section 3.3). Currently, however, it is only possible to enforce `low-level'syntactic and lexical standards; I think it would be very interesting to examine howhigher level standards, such as `only one topic per paragraph', might be enforced.Multilinguality: Multilingual output is another feature that could be a strong sellingpoint for NLG in many circumstances (Section 3.3). But although manymultilingualNLG systems have been built, surprisingly little research has been done on theprinciples underlying multilinguality. For example, where can language independentmodules be used in a multilingual system, and where is this impossible?Multimodality: Real-world documents include diagrams, tables, and other graphics aswell as text; and real-world documents also use visual formatting, such as fontchanges and bulletized lists, within texts. Additionally, on-line documents ofteninclude hypertext links. A system that generates documents is going to be muchmore useful if it can combine text and graphics, use appropriate visual formatting,and insert hypertext links into online documents.Hybrid Systems: It seems safe to predict that many �elded NLG systems, at least inthe near term, will use a hybrid approach, ie, they will use both template and NLGtechnology. But little is known about how this should best be done; if we wantto insert a generated referring expression into a template slot, for example, whatconstraints does the template need to satisfy in order for this to produce correctoutput? And how should `templates' used by an NLG system be authored; can wedevelop a nice authoring environment which enforces any necessary constraints inan intuitive manner?Modifying Generated Text: All real-world NLG systems that I am aware of allow thehuman user to modify the generated texts. But there are many ways of doing this,and it is unclear which is best. Should the generated text simply be dumped into aconventional word-processor, as done in ICG [Springer et al., 1991]? Or should usersmake changes with a structured editor, perhaps using the `linguistic spreadsheet'idea proposed by [Kempen et al., 1986]? Or is it best to ask the user to edit aconceptual representation, as done in FoG [Goldberg et al., 1994]?Examples: In many cases, adding examples to a text can greatly increase its usefulness.But this is another research topic that has been barely scratched; Mittal's thesis[Mittal, 1993] and subsequent work is the only research in this area that I am awareof. What principles govern the creation of good examples, and how can a systemgenerate examples that not only communicate the target information, but also areconsistent with the user's general world knowledge?Knowledge acquisition: This is not really an `NLG' topic, but it is very important tothe success of NLG systems, which usually are knowledge intensive. Anything thatmakes it easier to build knowledge bases will probably make it easier to build NLGsystems.

7 ConclusionAs NLG technology begins to move out of the lab and into real applications, the NLGcommunity needs to begin thinking not just about how to generally improve our under-standing of this research area, but also about questions such as (a) what advantages NLGo�ers over simpler approaches; (b) under what circumstances using NLG `adds value' toreal-world systems; and (c) where further advances in NLG could really increase the use-fulness of applied NLG systems. It will probably be many years before we can con�dentlyprovide answers to these questions, but an important step on this path would be to startmore explicitly discussing and exploring these issues within the community; I can onlyhope that the presentation in this paper will at least in a small way encourage people tostart thinking more about these issues.References[AECMA, 1986] AECMA. A guide for the preparation of aircraft maintenance documen-tation in the international aerospace maintenance language, 1986. Available from BDCPublishing Services, Slack Lane, Derby, UK.[Buchanan et al., 1994] B. Buchanan, J. Moore, D. Forsythe, G. Carenini, and S. Ohlsson.Using medical informatics for explanation in a clinical setting. Technical Report 93-16,Intelligent Systems Laboratory, University of Pittsburgh, 1994.[Coch and David, 1994] Jose Coch and Raphael David. Representing knowledge for plan-ning multisentential text. In Proceedings of the Fourth Conference on Applied NaturalLanguage Processing (ANLP-1994), pages 203{204, 1994.[Dalianis and Hovy, 1993] Hercules Dalianis and Eduard Hovy. Aggregation in naturallanguage generation. In Proceedings of the Fourth European Workshop on NaturalLanguage Generation, pages 67{78, 1993.[DoD88, 1988] Military Standard DoD-Std-2167A: Defense System Software Develop-ment, 1988.[Goldberg et al., 1994] Eli Goldberg, Norbert Driedger, and Richard Kittredge. Usingnatural-language processing to produce weather forecasts. IEEE Expert, 9(2):45{53,1994.[Kempen et al., 1986] Gerard Kempen, Gert Anbeek, Peter Desain, Leo Konst, and Koen-raad DeSmedt. Author environments: Fifth generation text processors. In DirectorateGeneral XIII, European Commission, editor, ESPRIT'86 Results and Achievements,pages 365{372. Elsevier, 1986.[Kittredge et al., 1994] Richard Kittredge, Eli Goldberg, Myunghee Kim, and AlainPolgu�ere. Sublanguage engineering in the FOG system. In Proceedings of the FourthConference on Applied Natural Language Processing (ANLP-1994), pages 215{216,1994.[McDermott, 1982] John McDermott. R1: A rule-based con�gurer of computer systems.Arti�cial Intelligence, 19:39{88, 1982.[McKeown et al., 1994] Kathleen McKeown, Karen Kukich, and James Shaw. Practicalissues in automatic document generation. In Proceedings of the Fourth Conference onApplied Natural-Language Processing (ANLP-1994), pages 7{14, 1994.

[Mittal, 1993] Vibhu Mittal. Generating natural language descriptions with integratedtext and examples. Research Report ISI/RR-93-392, Information Sciences Institute,University of Southern California, Marina del Rey, California, 1993.[Reiter, 1994] Ehud Reiter. Has a consensus NL Generation architecture appeared, and isit psycholinguistically plausible? In Proceedings of the Seventh International Workshopon Natural Language Generation (INLGW-1994), pages 163{170, 1994.[Reiter and Mellish, 1993] Ehud Reiter and Chris Mellish. Optimising the costs and ben-e�ts of natural language generation. In Proceedings of the 13th International JointConference on Arti�cial Intelligence (IJCAI-1993), volume 2, pages 1164{1169, 1993.[Reiter et al., 1995] Ehud Reiter, Chris Mellish, and John Levine. Automatic generationof technical documentation. Applied Arti�cial Intelligence, 9, 1995. Forthcoming.[Soloway et al., 1987] Elliot Soloway, Judy Bachant, and Keith Jensen. Assessing themaintainability of XCON-in-RIME: Coping with the problems of a very large rule-base.In Proceedings of the Sixth National Conference on Arti�cial Intelligence (AAAI-1987),volume 2, pages 824{829, 1987.[Springer et al., 1991] Stephen Springer, Paul Buta, and Thomas Wolf. Automatic lettercomposition for customer service. In Reid Smith and Carlisle Scott, editors, InnovativeApplications of Arti�cial Intelligence 3 (Proceedings of CAIA-1991). AAAI Press, 1991.

