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Abstract 

We introduce saliency-enhancing operators capable of 
highlighting features which are considered perceptually 
relevant. We are able to extract salient curves and junc- 
tions ana' generate a description ranking these features by 
their likelihood of coming from the original scene. We sug- 
gest the global extenswnjleld as means of describing the 
behavior of a curve segment, in terms of its continuation. 
We show that a directional convolution of an edge image 
with the above field can produce useful descriptions. 

Other fields are also used in the same manner to pro- 
duce similar results for domain-specifrc applications. The 
scheme is particularly usejid and robust as a gap filler and 
in the presence of noise. 

It is interesting to note that all operations are parame- 
ter-free, non-iterative and the processing is linear in the 
number of edges in the input image. 

1 Introduction 
An area which is likely to improve results in computer 

vision is the one of perceptual grouping. Perceptual 
Grouping can be classified as a mid-level field directed to- 
ward closing the gap between what is produced by state- 
of-the-art low-level algorithms (such as edge detectors) 
and what is desired as input to high level algorithms (per- 
fect contours, no noise, no fragmentation, etc.). Many re- 
searchers resort to using synthetic data as their input 
because of these weaknesses. 

It is clear that humans are able to group objects into 
higher level entities, and that such skill is helpful (if not a 
must) in reaching intelligent decisions about a given 
scene, as well as reducing the complexity of later process- 
ing. 
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Figure 1 (a) depicts an example of perceptual groupings 
easily experienced by the humzn visual system. The geo- 
metric shapes are easily distinguishable from the noisy 
background. Furthermore, we tend to fill the gaps and ac- 
cept the fragmented curves as complete ones. A more 
striking example of illusory contours is found in the 
Kanizsa illusion[4] shown in figure I@). Here we perceive 
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Figure I (a) Two instances ofperceptual arrangements. (&) The 
Kanizsa square illusion. 

edges which have no physical support whatsoever in the 
original signal. The process is known to be pre-attentive 
and hence domain-free. 

It is obvious that extracting these structures is an expo- 
nentially problem, since in theory all possible subsets of 
the features need to be checked. Also, there is no easy way 
to define a consistent (and constant) metric with which to 
evaluate the possible groupings. Some methods to over- 
come these difficulties have been suggested over the years. 

Lowe [5] discusses the Gestalt notions of co-linearity, 
co-curvilinearity and simplicity as important in perceptual 
grouping. Ahuja et al. [l] suggest methods for clustering 
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and grouping sets of points having an underlying percep- 
tual pattern. 

Dolan and Weiss [2] demonstrate a hierarchical ap- 
proach to grouping relying on compatibility measures 
such as proximity and good continuation. 

Mohan and Nevatia [6] assume a-priori knowledge of 
the contents of the scene (i.e. aerial images). A model of 
the desired features is then defined, and groupings are per- 
formed according to that model. In a later work [7], group- 
ings based explicitly on symmetries are suggested, but the 
first connectivity steps are performed locally. 

Ullman et al. [ 101 suggest the use of a saliency measure 
to guide the grouping process, and to eliminate erroneous 
features in the image. The scheme prefers long curves with 
low total curvature, and does so by using an incremental 
optimization scheme (similar to dynamic programming). 
Others (like [ 111) have also looked at similar problems. All 
of the above methods rely on some local operator to ‘re- 
veal’ global structure and thus cannot perform well on 
noisy images. 

2 Our approach 
2.1 Overview 

As was demonstrated before, the physical evidence ex- 
tracted locally from images (through edge detectors) does 
not fully correspond to human perception of the image. It 
is thus desirable, we claim, to introduce global perceptual 
considerations at the low-level process. 

In our method, each site (pixel or other cell) collects 
votes from every segment in the image. These votes con- 
tain orientation and strength information preferred by the 
voting segment. A measure of ‘agreement’ (in terms of 
orientation) is now computed, and sites which have high 
agreement values are considered salient. 

Our voting scheme is somewhat related to the Hough 
transform approach [3], but can also detect shapes defined 
by their properties (smoothness, ...) rather than by their ex- 
act shape (lines, circles,...). 

The proposed approach is capable of ‘highlighting’ 
structures which are salient, as well as interpolating gaps 
in a smooth manner, while removing noisy edgels in a giv- 
en image, all in a unified non-iterative andparameter-jke 
scheme. 

The process is likely to produce features more similar 
to what we perceive, both in terms of saliency and connec- 
tivity. Also, since noise is not likely to produce high agree- 
ment values by the above considerations, we expect to 
attenuate it and thus reduce the complcxity of the image 
(e.g. in terms of the number of uscful edges). The samc 
process can also be used as a focus of attention mechanism 
to aid higher level processes in setting their priorities. 

2.2 Model of the input 
We would like to associate with each site of an image a 

direction, strength and a degree of uncertainty for that di- 

rection. So, in principle, one site could be classified as be- 
ing a part of a curve with known orientation and no 
uncertainty, while another being a point with uncertain ori- 
entation. In practice, such input data is rarely available, 
and when an edge image is given, all segments are consid- 
ered to have the same amount of uncertainty. 

We can thus use as input either a thresholded output of 
any edge detector (with no linking) or even an un-thresh- 
olded version of the edge detector output. It can be shown 
that our system will yield almost the same results with dif- 
ferent choices of this threshold, as long as a sufficient 
number of useful features are present. 

2.3 Output description 
Our model of the output is closely related to Ullman 

and Sha’ashua’s[lO] in the sense that a saliency map is first 
constructed from an edge image, and higher-level features 
are inferred later. The saliency map assigns a value and a 
direction to every position in the image. 

Ideally, such saliency map should assign large values 
of likelihood along illusory lines (as well as along physical 
curves), and also specify a direction of most probable con- 
tinuation of any given segment. This will enable us, at a 
later stage, to group features by following the salient con- 
nections between the primitives, 

2.4 Perceptual constraints 
Our underlying goal is to keep the interpretation as sim- 

ple as possible in the ‘Gestalt’ sense. This translates into 
four major constraints: 
1) CO-curvilinearity - In the lack of other cues, smooth 

continuation is the only interpretation, and so is co- 
curvilinearity. 

2) Constancy of curvature - We tend to extend a curve of 
some constant curvature with the same curvature, 
keeping the interpretation as simple and regular as 
possible, yet consistent with our sensory information. 
This principle is called Prugnanz by Gestaltists (see 
figure 2). 

(4 (b) (e)  (4 
Figure 2 An obscuredfigure (a) triggers the perception of simple 

shapes (b), instead of the more complex (c) or (d).  (From [9]) 

3 )  Favoring low curvatures over large ones - Humans 
seem to connect fragmented line segments in a way 
that the increase in total curvature is minimum (see 
Ullman et al. [IO]). 

4) Proximity - Influence decays over distance. Closer 
features will tend to influence each other more than 
distant ones. 
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With that in mind, we have devised a technique that im- 
plicitly imposes the above constrains in the form of an 
Extension Field emanating from each edge segment, as 
described next. 

2.5 Extension Fields 
An Extension Field is a non-normalized probability di- 

rectional field describing the conmbution of a single edge 
element to its environment in term of length and direction. 
In other words, it votes on the preferred direction and the 
likelihood of existence of every point in space to share a 
curve with the original segment. The field is of injinite ex- 
tent, although in practice it disappears at a predefined dis- 
tance from the edge. Figure 3 depicts such a field. 

(a)  (b) 
Figure 3 The busic Extension Field. 

(a) Direction, and (b) Strength. 

2.5.1 Assignment of strengths and orientations 

Since we favor small and constant curvature, field di- 
rection at a given point in space is chosen to be tangent to 
the osculating circle passing through the edge segment and 
that point, while its strength is proportional to the radius of 
that circle. Also, the strength decays exponentially with 
the distance from the origin (the edge segment). 

The assignment of actual probabilities to the field is 
performed as follows. We consider two short edge seg- 
ments, perpendicular to each other and apart.We assign 
probabilities to the field elements in such a way that all 
paths connecting these points are assigned roughly the 
same saliency, such that there does not exist any one best 
path between the two. Such a scenario removes most de- 
grees of freedom as to the choice of values for the field. It 
is also in agreement with human perception. 

2.6 Computation of the saliency map 
The process of computing the saliency map can be 

thought of as a directional convolution with the above field 
(mask). The resulting map is then a function of a collection 
of fields, each oriented along a corresponding short seg- 
ment. Each site accumulates the 'votes' for its own pre- 
ferred direction and strength from every other site in the 
image. These values are combined at a site as described 
next. 

Note that, although the process is local in essence, the 
fields impose some global order, and one line segment can 
implicitly 'vote' for a large curve without any explicit glo- 
bal reasoning involved. 

2.6.1 Combining individual field elements 

Ideally, we would want an averaged majority vote re- 
garding the preferred orientation of a given position. We 
treat the contributions to a site as being vector weights, 
and compute moments of the resulting system. Such a 
physical model behaves in the desired way, giving both the 
preferred direction and some measure of the agreement. In 
practice, we use the direction of the principal axis 
(EVmin)  of that physical model as the chosen orientation 
(See (1)). 

This acts as an approximation to the desired majority 
vote, without the need to consider the individual votes, but 
rather the statistics of the ensemble. 

Principal Axis 

Figure 4 The principal axis of the votes collected at a site is tak- 
en us an approximation of the preferred direction. 

The saliency map strength values are taken as the val- 
ues of the corresponding hmax at each site. So, large val- 
ues would indicate that a curve is likely to pass through 
this point. This map can be further enhanced by consider- 
ing the eccentricity, or 1 - ( h m i d h m a x )  . When that val- 
ue is multiplied by the previous saliency map we achieve 
better selectivity, and only curves are highlighted. This re- 
sults in a map defined by hmax - hmin. 

2.7 Detection of junctions 
A junction is defined as a salient point having low ec- 

centricity value. Regular (non-junction) points along a 
curve are expected to have high eccentricity values. On the 
other hand, junction points are expected to have low ec- 
centricity, since votes were accumulated from many dif- 
ferent directions. By combining the eccentricity and the 
eigenvalue at a point, we acquire a continuous measure of 
the likelihood of that site being a junction. This process 
creates a Junction Saliency map. Interestingly enough, this 
map evaluates to just hmin at every site, which simply 
means that the largest non-eccentric sites are good candi- 
dates for junctions. By finding all local maxima of the 
junction map we localize junctions. 

2.8 The presence of noise 
The addition of random noise to an image is expected 

to create a distributed map of votes (with low eccentricity 
values), and thus not to interfere with truly salient pattems. 
When an accidental formation of random segments does 
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give rise to high values in the map, that formation is per- 
ceived as significant by humans as well. 

3 Other fields 
So far, we have considered the input to be of maximum 

certainty in terms of the orientation of edges. Our input 
model allows for uncertainty in the input. 

3.1 The Point field 
Maximum uncertainty is modeled as a point without a 

direction. Thus, a suitable field will have circular symme- 
try, and in practice is constructed by convolving our orig- 
inal extension field with a multi-directional edge segment 
(Figure 5(a)). Other uncertainty pattems are also generated 

Figure 5 (a) A multi-directional edge and the resulting point 
field. (b) An uncertain edge element, with which to convolve the 

original field (Figure 3) .  

by the same method (Figure 5@)). Atypical input is shown 
in figure 9, where a sine wave and a random set of points 
on a circle are embedded in noise. Obviously, perception 
is weakened by the loss of orientation data, and we are 
only able to handle (using the field in figure 5(a)) cases 
with a moderate amount of noise. 

3.2 Special purpose fields 
So far the fields described are meant to perform on any 

scene regardless of domain. When some knowledge is 
available about the domain of the input, special fields can 
be constructed to better enhance the specific features of 
that domain, A simple example would be a world of poly- 
gons, where only (approximate) straight lines are possible. 
The construction of the field is similar to what has been de- 
scribed for the point field (basically, a convolution with a 
long line). 

4 High-level feature extraction 
Once a saliency map (and a junction saliency map) is 

acquired, a process that actually groups salient shapes is 
started. 

Grouping of features is done by a directional ‘rooftop’ 
following and linking algorithm cn the saliency map. The 
linking process starts at the point of largest saliency and 
advances in the general direction dictated by a function of 
the orientation of the current position and the strength of 
neighboring points. 

This process first removes the most salient curve, recal- 
culates the saliency map, and then procecds to remove the 
next most salient feature. The process complexity is thus 

proportional to the number of curves in the image. It is 
guaranteed to terminate since at each iteration the overall 
power of the field is strictly reduced by removing a fea- 
ture. Each feature extracted is assigned a saliency value 
which can be used in later processing. 

The output thus consists of a list of salient features, 
each with its own saliency measure. Since no thresholds 
are used throughout the process, all possible groupings are 
recorded. It is up to a specific application to prune that list 
according to its own constraints. 

5 Complexity issues 
A naive way to implement the algorithm requires 

0 ( n2k) operations, where n is the side size of the image, 
and k is the number of edge elements in the input image. 
In practice, the local density of edgels restricts the useful 
scope of the field. This means that a smallerfinite field can 
be used. The complexity becomes now 0 (k) . This last 
modification has the disadvantage of not being able to 
bridge gaps larger then the size of the field. Alternatively, 
instead of computing a dense saliency map, we can com- 
pute the saliency of existing edgels only. This results in 
complexity of 0 (3) , and can be useful as a focus of at- 
tention map. 

6 Results 
We tested our approach with the synthetic data shown 

before. Figure l(a) Shows a fragmented circle embedded 

Figure 6 The Saliency maps of images in figure 1. 

in a noisy environment. The saliency map produced is 
shown (strength only) as grey-level image in figure 6 and 
the result of following the path of highest saliency produc- 
es a “clean” circle. Figure 6 also shows the result of the 
same procedure for the other scenes. Figure 7 shows an ex- 
ample of the steps involved in producing a high-level de- 
scription of a given image, using the junction map in 
conjunction with the saliency map 

6.1 Real images 
In figure 8 we show a real image example. The original 

image was processed with a simple edge detector (5x5 step 
masks), without any linking. Note that the edge image is 
fragmented and has a lot of noisy segments. Figure 8(c) 
shows the resulting Saliency map. 

6.2 Using the Point Filed 
We tested our system on the image in figure 6. Initially, 

the system was run using the Point field. This resulted in a 
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(4 
Figure 7 Extracting the most salient features. (a) Largest 

eigenvalue strength map. (b) Eccentricity enhanced map.  (c )  
Junction saliency map, and ( d )  linking. 

(4 fb) fc) 
Figure 8 Example of a real image. (a) A tape dispenser image. 

(b)  All edges, (c) Eccentricity enhanced saliency map. 

saliency map with orientation data. A second phase of 
computation was performed now, using the directional Ex- 
tension field (Figure 3). That stage produced the final sa- 
liency map as shown in figure 9@). Note the quality of the 

.. . .  . .  . .  
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Figure 9 (a) A nowdirectional input image. (b) Saliency 

map, afer applying the Point field and the directional exten- 
sion field 

saliency map is worse than one generated from a direction- 
al image with comparable noise level. 

7 Summary and conclusion 
We have introduced a unified way to extract perceptual 

fealures in edge images. By ‘unified’ we mean that all low- 
level features (edgels, points) are treated in a uniform way, 
and no special cases exist. The scheme is threshold-free 

and non-iterative. It is especially suitable for parallel im- 
plementation, since computations of the saliency maps are 
independent for each site, and parallel algorithms for line 
following are known and can easily be adapted. Also, cal- 
culations are simple and stable, as no curvatures or any 
other derivatives need to be computed on the digital 
curves. 

The system can rank features based on their perceptual 
importance. This allows a real-time application to process 
as many features as time permits. 

Some of the issues which have not been addressed are 
the resolution dependency of the description. At this time, 
only a one-level description is possible. Also, we have not 
tried to localize end-points of curves ending abruptly (e.g. 
in Figure 9). 

Since all computations are performed on a discrete grid, 
quantization and rounding errors restrict the selectivity 
and amount of clutter the system can handle. 

In the future we intend to incorporate additional types 
of fields capable of highlighting perpendicular end-point 
relations and symmetries (see [8] for a symmetry enhanc- 
ing operator). 
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