42

WEARABLE COMPUTING

Designing a New Form
Factor for Wearable
Computing

Despite significant improvements in underlying technologies, the
wearable computing field is still in its youth. This article offers several

methods that can help accelerate the process from vision to product.

earable computers have more to
do with form factor and usabil-
ity than with computing.!?
Aside from a few early adopters
who might be eager to experi-

ment, most potential users are primarily interested
in what a wearable device can do for them. These
potential users must be convinced that the benefits
of wearing the device outweigh the difficulty
involved in carrying or caring for it.

You can measure a wearable device’s usefulness by
its form factor, usability, and applications. A device’s

Chandra Narayanaswami and
M.T. Raghunath

IBM T] Watson Research Center
|

form factor defines its size, its
shape, and how users wear or
carry it. Usability entails not only
how intuitive and easy the device
is to use but also how it is used—
with one hand, for example, or

through an audio-visual interface. Ultimately, a
device’s applications will determine whether con-
sumers will buy and use it. A device’s applications
might let users perform some tasks more easily than
without the device. Or they might let users perform
tasks not possible without the device.

On the other hand, the primary factors hindering
the adoption of wearable devices include weight,
size, price, and battery life. As technology improves
the ability to miniaturize circuits, designers can
reduce the weight, size, and price of wearable
devices. And efficient energy use? and better energy
technologies can help prolong battery life.*3

However, despite significant improvements in

PERVASIVE computing

underlying technologies, the wearable computing
field is still in its youth. While researchers constantly
come up with new visions and ideas,®” the path
from vision to product is often difficult to navigate.
For example, it is hard to justify the investment in
building a product unless you can be reasonably sure
that the product will make money. This problem is
even more acute in the current investment climate,
in which funding for experimental projects is
extremely limited. Even after a company develops
a marketable product, many products fail to get past
the early-adopter phase.®

This article—Dbased on our experience in building
the Linux Wristwatch at IBM—offers several ideas
that can help accelerate the process from vision to
product.

Rapid prototyping

Although many of the ideas presented here are
tailored to wearable form factors, these ideas are
similar to other approaches for rapid prototyping.
For instance, rapid mechanical design prototyping
is a mature methodology. Several technologies, such
as stereolithography, were created specifically to aid
in rapid prototyping. Paul Kenneth Wright exam-
ines the uses of rapid design, development, and man-
ufacture of complete systems in a recent book.!?
Other efforts address rapid prototyping of integrated
circuits, physical models, mechanical assemblies,
and other technologies.!!

Developers have used similar ideas in object-ori-
ented software!? to speed the process of developing

1536-1268/02/$17.00 © 2002 IEEE

Go/no-go decision points

Marketable product

Demonstrable prototype

Expenditure/effort required

Vision articulation

Preliminary
vision embodiment

Business case

° Pictures

e Animations model

e On-screen simulation e Demo programs
 Representative 1/0

devices and
applications

e User interaction

o Software
infrastructure

e Preliminary power
management

e Limited CPU/memory

e Limited deployment
¢ End-user studies

o Market analysis

e Cost—profit analysis

e Application development
environment and tools

e Actual end-user applications
e Aggressive power management

Figure 1. The steps from vision to product include vision articulation, vision embodiment, demonstrable prototype, business case,

and marketable product.

complex software systems with design pat-
terns. Processor designers have used soft-
ware simulators to see how increasing the
number of arithmetic units, adding new
instructions, and changing cache sizes
affects performance. Other researchers
have shared their pioneering experience in
building and deploying several generations
of wearable computers.!3

Clearly, we can use existing rapid-
prototyping approaches to speed the indi-
vidual steps of our process, but our
approach augments prior work by exam-
ining the overall system design. It starts
with a tailored user-interaction client and
a general-purpose server that executes the
functions, then progresses to a complete
prototype and shows the interactions
between the phases. Although we empha-
size wearable devices, lessons from this
research apply to other mobile-computing
devices, which present similar challenges.!*

Steps along the path

Figure 1 shows the steps involved in
building a new wearable device. We orga-
nize the steps into five phases (similar to

OCTOBER-DECEMBER 2002

those Asim Smailagic and Daniel P.
Siewiorek describe!®). Although presented
sequentially, we often iterate through each
phase. We might have to revisit decisions
from earlier phases on the basis of what
we learn from later phases.

Vision articulation

A new device typically begins as a vision,
which might come from thinking about the
problem in isolation or from interacting
with users who provide the inventor with
insights about user needs. The inventors
have to develop the idea until they are con-
vinced it is workable. This phase’s objec-
tive is to motivate a small core team to take
the idea to the next phase.

The team must be able to provide
answers to several basic questions: What
is the product and what will it do? Is it
feasible to build it? Who are the potential
users? How will they use it? How much
will it cost? How will it look? At this early
stage, it might be hard to have clear
answers to all these questions, and the
answers might change as the project pro-
gresses. However, it is important to col-

lect and validate the answers with a target
audience.!®

Getting support for the vision is crucial
before moving to the next phase. It is also
important at this stage to study several
related, commercially available devices to
learn from other people’s experience and
to be able to present the advances in vision
clearly.

Preliminary vision embodiment

The next phase in the journey is to build
a preliminary embodiment of the vision that
will be close to the final look and feel pre-
sented to the end user. This helps clarify the
vision to make important design decisions.
Developers can build multiple embodi-
ments of the prototype that consist of plas-
tic or paper mock-ups, or even something
that can actually model user interaction.

Embodiments should be as close as pos-
sible to the final device in terms of its user-
visible elements, such as display screens,
buttons, and dimensions. It is not critical to
build the actual device or the complete
applications that will run on the device
because doing so is more expensive and

PERVASIVE computing

43

[EIAIRA]] ol U KN |

Powerpoint |,/ ‘
Freelance |
1 Vision
Flash V2 Paper anicqlalion
Animation prototype :
T T !
= ;
Application logic | E1 Wood/plastic
- mock-up
_T-
- Application logic | gp Mock-up Preliminary
-~ with some 1/0 embodiment
— Cable ¢
- E3 1/0 core
- with all 1/0
— Cable
r R\
1/0 core
with all 1/0
Application logic
P2 1/0 core
Hardware reference with all I/0
board + 0S Cable
inati ; 1/0 + device
Application logic P3 drivers
Hardware reference Prototype Prototype
board + 0S Cable | _hardware + 0S
Application logic
P4 1/0 core
Prototype with all 1/0
hardware + 0S
Cable
Application logic
P5
Prototype
HW + 0S +
device driver

will typically happen much later in the
process.

Demonstrable prototype
If the preliminary embodiment is con-

PERVASIVE computing

vincing and there is agreement to take the
process further, the next phase entails
building a working prototype. At this
stage, a design team validates the assump-
tion that the product is feasible. Another

Figure 2. This detailed breakdown of the
path to the prototype shows the
iterations within each step of the process.

objective is to create demonstrations that
show the device’s capabilities. The demon-
strations should allow an outsider, who
has no prior knowledge of the device, to
wear it and quickly understand its purpose
and how to use it.

The prototype helps refine several key
usability aspects of the device. Although
the design team can try to visualize how a
device will be used and can try to verify it
through the preliminary embodiments, the
prototype provides real validation of
device usability. As the project progresses
through these stages, new ideas will con-
tinue to emerge. It is important to incor-
porate some level of flexibility in the pro-
totype and to address the usability issues
that might emerge during demonstrations.

Business case and marketable product

Out of many ideas that make it to the
prototype phase, some of them do evolve
into a marketable product. More effort is
required to go from a prototype to a prod-
uct than from an idea to a prototype—and
doing so requires a different skill set from
the first three phases.

It is often difficult to analyze a business
case without a working prototype. Build-
ing a business case is also easier after the
design team deploys a limited number of
prototypes among a friendly audience to
assess the responses. This exercise, which
is similar to software beta testing, can help
find some of the prototype’s shortcomings
that the team overlooked in the design
process. Phases four and five are outside
the scope of this article but are addressed
by several books.!7-18

Accelerating the path to
prototype

Figure 2 shows our suggested approach
to breaking down the first three phases. We
designed our approach to ensure the max-
imum use of existing tools, including using
general-purpose computer hardware and
software to reduce time and cost. Several

http://computer.org/pervasive

tools and methods can help build story-
boards and physical mockups to speed up
the early phases. The rapid growth of pro-
cessing power in general-purpose personal
computers and the availability of wireless
connectivity can help speed the preliminary
embodiment and prototyping phases.

Design teams can study and improve sev-
eral important features of the target device
by first building simpler user-interaction
cores that embody the target device’s key
I/O characteristics. These interaction cores
connect to general-purpose computers that
actually run the software intelligence. Our
approach uses a client-server model to
speed the prototyping process. The inter-
action core helps evaluate the usability and
interaction issues. Using lessons from these
activities, a design team can build the first
functional prototype while software devel-
opment continues on the user interaction
cores and general-purpose computers or
other development systems.

We describe the three phases sequentially,
with iterations between the phases to sim-
plify the presentation. In practice, however,
the design cycles are more complex and iter-
ative. The exact nature of design iterations
will depend on which generation of prod-
uct is being built, how the market condi-
tions change along the phases, and so on.
To facilitate understanding, we divide the
three phases into smaller steps, labeled
V1-V2, E1-E3, and P1-PS.

Vision articulation

Graphical animations and paper proto-
types (step V2) should show how the
device looks in 3D. In conjunction with
storyboards,'” these mockups should also
articulate how users will wear the device,
in what contexts it will be used, and by
what kind of users. Fortunately, many soft-
ware tools make it possible to create
detailed and visually appealing presenta-
tions without a great deal of effort. Inex-
pensive digital cameras and camcorders
can also help the designers with story-
boards and can help present the user’s envi-
ronment.

In addition, designers can simulate user
environments.2 For example, if a device is
going to be used by a ticket conductor on a

OCTOBER-DECEMBER 2002

train, it would be useful to know how
crowded the trains are, whether people are
sitting or standing, how long the average
ride is, and what the lighting conditions are.
The development team can make several
design decisions even at this early stage. For
instance, the team can select fonts to
improve the readability of information pre-
sented on the device and can estimate the
wireless bandwidth requirements.
Multiple iterations at this stage are easy,
cost effective, and useful in refining the
vision and explaining that vision to others.
The team must resist the temptation to move
on to the subsequent phases too quickly.

Accelerating the embodiment

The first and simplest embodiment to
build is a plastic or wood mockup (E1) of
the actual device. Having something that
you can touch will help refine many aspects
of the device, such as the shape and posi-
tioning of its controls.

Along with the physical mock-up, it is
also useful to model the actual user inter-
action with an on-screen visual simulation
model of the device on a desktop computer.
The computer presents the device’s actual
user interface elements?! on the screen,
while the computer’s keyboard and mouse
simulate the device’s Ul elements. If the tar-
get device will have I/O devices—such as
an accelerometer or a GPS receiver—that
are hard to simulate using the keyboard
and mouse, you can connect these /0
devices directly to the desktop computer.

The visual simulation model should
react in the manner the actual device is
expected to react, displaying the appro-
priate screens. To keep the on-screen model
flexible enough to add new ideas, the team
should build the application logic for the
on-screen model using high-level pro-
gramming tools. The team should also
keep the on-screen model simple and
should avoid modeling the internals of the
target device.

You can create simplistic on-screen mod-
els by tweaking existing emulators for other
devices. For instance, if an emulator for a
handheld device or a cell phone is available,
you could consider replacing its back-
ground image with that of the target device.

If you cannot modify an existing emulator
to emulate the target device’s main aspects,
you will have to build a custom emulator.
We initially considered modifying a cell-
phone emulator, capable of displaying
WML (Wireless Markup Language) con-
tent, to build the first on-screen model for
our Linux Wristwatch. However, because
such emulators could not generate graphics
required to display a clock face, we devel-
oped a more custom on-screen prototype
using Tcl and Tk scripts.

The next step (E2) is to bring these two
separate embodiments together into one
embodiment that is comparable to the
actual device in dimensions and also reacts
to user input the way the actual device
would. The best way to accomplish this
difficult step is to think of the embodiment
as a thin client containing just the I/O
devices, with the desktop computer as the
server that runs the application logic. Alter-
natively, you can use a small but powerful
portable system such as the IBM Meta-
Pad?? as the server.

In step E2, we add a few of the crucial
I/O devices to the mock-up and connect
these /O devices to the application logic
that continues to run on the desktop com-
puter. In many cases, you can use standard
connectors to interface the I/O devices to
the desktop computer. For example, we put
a small VGA display into our wristwatch
mock-up. A module that accepted a stan-
dard monitor cable served as the driver.
Likewise, you can connect input buttons
to the parallel port. In some cases, the /O
device might connect to the embodiment
using a different interface than the one the
prototype uses. For example, the finger-
print sensor in our watch was also avail-
able as a USB attachment. We used the USB
attachment for the embodiment and a
direct connection for the prototype.

At this time, the design team should cre-
ate a software and hardware specification
so that the detailed hardware design can
get started and the team can initiate contact
with hardware vendors to get quotes on
cost and schedule. It is important to under-
stand when making these decisions that
limited volumes could mean a slower
schedule. To the extent that it is possible,

PERVASIVE computing

45

46

RIAE] oM W FN G|

TABLE 1
Matching embodiment to prototype.

Constrained feature How to handicap the embodiment

Display pixel pitch
Display brightness
CPU speed

Floating point
Memory size
Memory latency
Network bandwidth
Touch screen resolution
Speaker
Microphone
Weight

itis preferable at this stage to select the final
I/O components and sensors and use these
components in the core. Doing so can help
establish a lower bound on the prototype
device’s size and can also help with its
power estimates.

As the team adds more /O devices to the
mockup (step E3), it is advantageous to
add a small I/O controller to manage these
devices. As a result, the mockup becomes
an I/O core, and the team must define a
more complex cable connection and a pro-
tocol for data exchange over the connec-
tion. Designing this protocol can be chal-
lenging. Although the protocol must be
simple enough to execute on the small I/O
controller managing the I/O devices in the
core, it must be able to handle bidirectional
information flow and also multiplexing
data from multiple I/O devices. Depend-
ing on the level of complexity, it might be
necessary to subdivide the I/O devices into
multiple classes, with each class having its
own I/O control logic.

Instead of building custom circuitry in
this step, it might be possible to leverage
other small form-factor prototypes that the
design team might have built in the past and
then replace the I/O devices with the ones
for the target device. For instance, you
could take apart a prior generation hand-
held prototype and replace its I/O devices to
create the I/O core. The handheld processor
could then control the new I/O devices. The
interface connector in this case might be as
simple as a serial or USB connector.

At the end of the embodiment phase, the
team should have a thin-client embodiment
that does most of what the target device

PERVASIVE computing

Use pixel blocking
View under bright ambient light

Add delay loops or run on a slower processor

Avoid using floating point
Monitor or limit the memory usage

Modify the compiler output, adding a delay loop before each load

Add some overhead to the network stack
Use blocking

Feed some noise into the speaker

Add noise to the prototype microphone.
Add some weight to the 1/O core

will do but is driven by application logic
running on a standard desktop computer.
To make sure the embodiment sets realis-
tic expectations, it is a good idea to model
some of the resource constraints that are
likely to be present in the prototype or the
final product. In general, if the desktop
computer or the I/O core is more capable
than the target device, these capabilities
should be handicapped in the embodiment.

Table 1 discusses how we might match
the capabilities of the I/O core to that of
the target device. For instance, if the dis-
play in the embodiment has a much finer
pixel pitch, you can group the pixels so that
a square area corresponding to four or nine
pixels in the embodiment will emulate one
pixel in the target device.

Although unlikely, the target device might
have better capabilities than the embodi-
ment. In this case, the design team must
either improve the embodiment’s capabili-
ties or appeal to the user’s imagination to
fill in the gaps. For example, you can emu-
late a bright display on the target device by
viewing the display in a dark room.

Accelerating the prototype

Assuming the results from the embodi-
ment are encouraging, the team must make
several fundamental decisions before build-
ing the prototype. What processor will
power the prototype, how much memory
will it have, and what operating system will
it run? In our project, we deferred these
decisions to this stage so we could make
these choices according to a just-in-time
development model, which is important
because these decisions do not affect the

user’s perception of the device’s functional-
ity. Also, deferring these decisions until later
lets us take advantage of newer hardware
components that are likely to be less expen-
sive and more efficient.

The experience and tests with the embod-
iment can provide valuable input into the
amount of memory required, how much
processing power is needed, and so forth.
Once the team makes these decisions, it can
then begin the hardware design for the pro-
totype. As the hardware design progresses,
the application logic should be modified so
that it can run on the target operating sys-
tem (step P1) with the target operating sys-
tem running on a desktop computer. The
modified application logic should prefer-
ably use the same source-level APIs on the
desktop computer as it will on the proto-
type. The desktop computer’s CPU archi-
tecture might differ from that of the proto-
type, but that is not of concern at this stage.
Some embedded real-time operating sys-
tems might not be easy to simulate on a
desktop computer. If so, you might want to
skip ahead to step P2.

Vendors that design processors suitable
for wearable computers usually provide
reference or development boards. They
might also provide an operating system to
run on such boards. The next step (P2) is
to bring up the desired operating system
on the development board if the board ven-
dor has not already done it. The team fol-
lows this step by migrating the application
logic to the development board. The devel-
opment board from the processor vendor
should be more stable than the prototype
hardware that we build, and it typically

http://computer.org/pervasive

has other interfaces and tools that can aid
in bringing up the system. If the develop-
ment board is not capable of interfacing to
the /O core directly, the team might have
to build special interface hardware and
software.

Once the prototype hardware is avail-
able, the first step is to bring up the OS and
drivers that handle the I/O devices on the
prototype. As shown in step P3, a good
way to test the I/O devices is to treat the
prototype hardware as if it were the I/O
core used in step P2 and interface with the
same server-side code. The server still runs
all the application logic, but the actual pro-
totype handles the interaction. Depending
on the kind of communication interfaces
supported by the prototype, any one of the
server-side pieces from steps E2 to P2 could
drive it.

Another way of checking the prototype
hardware is to use it as a replacement for
the development board. You would run the
application logic on it and present the user
interface on the I/O core (step P4). How-
ever, this step requires the ability to con-
nect the server side of the cable connection
to the prototype, but you can also do this
without developing all the device drivers
on the prototype. Depending on which is
easier, you might need only one of the
steps, P3 or P4.

The final step in the prototype is to have
all the I/O code and the application logic
execute on the prototype hardware. At step
P3, the hardware development board
might have more resources than the pro-
totype, which means that moving from P3
to P4 or PS5 might require that the design
team address resource constraints. If the
team addressed resource constraints ear-
lier in the process, there should be fewer
surprises at this stage. Depending on the
device being prototyped, it might be pos-
sible to replace the cable in steps P1 to P4
with a wireless connection. For example,
if a team were prototyping a new glove for
user input, using a wireless link might be
feasible because the glove would likely only
require a small amount bandwidth.

If some of the prototype’s features do not
work because of hardware bugs, the team
can connect prototype P5 to P1 and simu-

OCTOBER-DECEMBER 2002

late the defective feature in software. Alter-
natively, the team can simulate features
that it dropped from this version of the
prototype. Teams can also use this method
to determine how much more processing
power must be added to the prototype for
any new function.

Although we described the steps sequen-
tially, there is considerable overlap between
the development activities associated with
the different steps. For instance, the hard-
ware design for the prototype hardware of
step P3 will typically begin early, perhaps
around step E2 or E3, given the turn-
around time for building the hardware.
It is important to leverage existing rapid-
prototyping methods to reduce the hard-
ware design cycle.

The amount of time spent in each stage
depends on several factors. For example,
with the first version of the Linux Watch
prototype, the total time from the vision
stage to the working prototype stage was
about two years. We spent roughly 5 per-
cent of the total time on vision articulation,
40 percent on preliminary embodiment, 30
percent on prototype hardware building
and testing, and 25 percent on moving the
software from the embodiment to the pro-
totype. We spent about 5 percent of the
total effort in the vision articulation stage,
30 percent on the preliminary embodiment
hardware and software, 40 percent on
building and testing the hardware proto-
type, and 25 percent on the software
(including applications for demonstration).
For the most recent version of the Linux
Wristwatch prototype, we added a fin-
gerprint sensor, a two-axis accelerometer,
a battery that has five times the capacity, a
battery gauge, three small dedicated but-
tons, and twice the memory capacity.
Refinements in software included power
management, networking, mobility, and
security.

Beyond the first prototype

As designers move to the first prototype,
they gain clarity on several aspects of the
targeted wearable device. Typically, they
expose the prototype to several people in
the target audience to get a better idea
about whether the proposed form factor

would be suitable to deliver the applica-
tions to the end user. The team would also
be in a position to assess the target device’s
usability, comfort, power consumption,
and functionality.

At this point, the design team faces a
decision as to what the next steps ought to
be. One possibility is that the prototype
might have been well received, which could
lead to deciding to build a product based
on the prototype. There are different trade-
offs in building a prototype versus build-
ing a product. The cost of each unit is a
critical aspect of the product. The design
team might also need to build robust ver-
sions of the applications for the product
device. Application developers might be
able to use the prototype devices to develop
and debug the applications. And at this
point, the team might also use instruction-
level and functional simulators in place of
actual prototype hardware to enable a
larger team of developers. Using such a
strategy might help reduce the debugging
effort, but this approach won’t work too
well if the simulator is too slow. The team
will need to expend additional effort to
optimize various aspects of the device, such
as power management, code efficiency, and
code size.

Another potential option at this stage
entails the team deciding that the basic idea
is not really workable and will not result
in a product that can be taken to market.
Hopefully, the design team will arrive at
this decision earlier in the development
process.

Other decisions include determining
whether to go through another iteration
and build an improved prototype. In this
case, instead of starting afresh, the team
might be able to use the first prototype as
the initial I/O core for the second proto-
type. If the team engineered the first pro-
totype with flexibility in mind, it might be
able to transform the first prototype into
an I/O core for the second prototype by
replacing the requisite I/O.

Reusing the first prototype to build the
second prototype’s /O core might not
work if the second prototype’s form factor
will be substantially smaller than the first
one. If the decision to build a second pro-

PERVASIVE computing

47

48

[EIAIRA]] ol U KN |

totype is largely motivated by the need to
build something smaller, the team should
keep in mind that any prototype it builds
will likely be larger and less elegant than
the product version, largely because the
product comes later and the available tech-
nology will likely make further miniatur-
ization possible.

The design team can limit the impact of
the size difference between the prototype
and the final product by using more expen-
sive and advanced packaging technologies
for the prototype.

he stepwise-refinement ap-

proach we’ve discussed can

help innovators make in-

formed design decisions on

the basis of actual user
experiences obtained early in the design
process. Design teams can defer decisions
that do not affect user perception until later
stages in the process. This staged approach
has the potential to reduce the required
resources and accelerate the prototyping
process.

We also discussed ways in which the
product development team can leverage
the intermediate systems to get a head start
on efforts to develop a marketable prod-
uct. We hope innovators will use our
approach to convert more of their visions
to working prototypes and put them in the
hands of business development teams,
resulting in better-designed products. I

ACKNOWLEDGMENTS

We thank all the members of the Linux Watch team
at IBM for their work on creating two generations
of wristwatch computer prototypes. We also thank
the anonymous reviewers for their comments and
suggestions on earlier versions of this article.

REFERENCES

1. T. Starner, “The Challenges of Wearable
Computing: Parts 1 and 2,” IEEE Micro,
vol. 21, no. 4, July 2001, pp. 44-52 and
54-67.

2. D.P. Siewiorek, “Wearable Computing
Comes of Age,” Computer, vol. 32, no. 5,
1999, pp. 82-83.

PERVASIVE computing

10.

11.

12.

13.

14.

15.

16.

17.

. M. Weiser et al., “Scheduling for Reduced
CPU Energy,” Usenix Symp. on Operating
Systems Design and Implementation, Nov.
1994, pp. 13-23.

. T. Starner, “Human Powered Wearable
Computing,” IBM Systems]., vol. 35, no.
3,1996, pp. 618-629.

. N. Kamijoh et al., “Energy Trade-Offs in
the IBM Wristwatch Computer,” Proc. 5th
IEEE Int’l Symp. Wearable Computers,
IEEE CS Press, Los Alamitos, Calif., 2001,
pp 133-140.

. R.Want et al., “An Overview of the Parctab
Ubiquitous Computing Experiment,” I[EEE
Personal Communications, vol. 2., no. 6,
Dec. 1995, pp 28-43.

. W.R. Hamburgen et al., “Itsy: Stretching
the Bounds of Mobile Computing,” Com-
puter, vol. 34, no. 4, 2001, pp. 28-36.

. G. Moore and R. McKenna, Crossing the
Chasm: Marketing and Selling High-Tech
Products to Mainstream Customers,
Harper Business, New York, 1999.

. C. Narayanaswami et al., “IBM’s Linux
Watch: The Challenge of Miniaturization,”
Computer, vol. 33, no. 1, Jan. 2002, pp
33-41.

PK. Wright, 21st Century Manufacturing,
Prentice Hall, Upper Saddle River, N.]J.,
2001.

“Shortening the Path from Specification to
Prototype,” Proc. 7th IEEE Int’l Workshop
on Rapid System Prototyping, IEEE CS
Press, Los Alamitos, Calif., 1996.

E. Gamma, Design Patterns: Elements of
Reusable Object-Oriented Software, Addi-
son-Wesley, Boston, 1995.

S. Finger et al., “Rapid Design and Manu-
facture of Wearable Computers,” Comm.
ACM, vol. 39,n0. 2, Feb. 1996, pp. 63-70.

M. Satyanarayanan, “Pervasive Comput-
ing: Vision and Challenges,” IEEE Personal
Comm.,vol. 8, no. 4, Aug. 2001, pp 10-17.

A. Smailagic and D.P. Siewiorek, “System
Level Design as Applied to CMU Wearable
Computers,” J. VLSI Signal Processing Sys-
tems, vol. 21, no. 3, 1999, pp. 251-263.

A. Smailagic and D. Siewiorek, “User-Cen-
tered Interdisciplinary Design of Wearable
Computers,” ACM Mobile Computing and
Comm. Rev., vol. 3,n0. 3,1999, pp 43-52.

B. Bysinger and K. Knight, Investing in
Information Technology: A Decision-
Making Guide for Business and Technol-
ogy Managers, John Wiley & Sons, New
York, 1996.

18. D.Remenyi, IT Investment: Making a Busi-
ness Case, Digital Press, 1999.

19. S. J. Andriole, Rapid Application Proto-
typing: The Storyboard Approach to User
Requirements Analysis, John Wiley & Sons,
New York, 1993.

20. John Barton et al., “Ubiwise Simulator for
Ubiquitous Computing,” 2002; www.
hpl.hp.com/personal/John_Barton/ur/
ubiwise/index.htm.

21. J. Wilson and D. Rosenberg, “Rapid Pro-
totyping for User Interface Design,” Hand-
book of Human-Computer Interaction, M.
Helander, ed., North-Holland, New York,
1993, pp. 859-875.

22. IBM, “IBM Research Demonstrates 9-
Ounce Prototype Portable Computer to
Explore Future Devices,” IBM Research
News, 2002, www.research.ibm.com/
resources/news/20020206_metapad.shtml.

For more information on this or any other comput-
ing topic, please visit our Digital Library at http://
computer.org/publications/dlib.

Chandra Narayanaswami
is a manager leading a wear-
able computing group at
the IBM T.J. Watson Research
Center. His current interests
include wearable comput-
ing, energy management,

= applications, and user inter-
faces for pervasive devices. He received a PhD
in computer and systems engineering from
Rensselaer Polytechnic Institute. You can reach
Narayanaswami at IBM T.]. Watson Research
Center, 19 Skyline Dr., Hawthorne, NY 10532;
chandras@us.ibm.com.

M.T. Raghunath is a
research staff member at the
IBM T.J. Watson Research
Center. His current interests
include wearable comput-
ing, embedded operating
systems, applications, mid-

h d dleware, and user interfaces
for small form-factor devices. He received a
PhD in computer science from the University of
California, Berkeley. You can reach Raghunath at
IBM T.J. Watson Research Center, 19 Skyline
Dr., Hawthorne, NY 10532; mtr@us.ibm.com.

=

http://computer.org/pervasive

