
Towards Network Triangle Inequality Violation Aware
Distributed Systems∗

Guohui Wang Bo Zhang T. S. Eugene Ng
Dept. of Computer Science, Rice University

Houston, TX 77005, USA

ABSTRACT
Many distributed systems rely on neighbor selection mechanisms
to create overlay structures that have good network performance.
These neighbor selection mechanisms often assume the triangle
inequality holds for Internet delays. However, the reality is that
the triangle inequality is violated by Internet delays. This phe-
nomenon creates a strange environment that confuses neighbor se-
lection mechanisms. This paper investigates the properties of tri-
angle inequality violation (TIV) in Internet delays, the impacts of
TIV on representative neighbor selection mechanisms, specifically
Vivaldi and Meridian, and avenues to reduce these impacts. We
propose a TIV alert mechanism that can inform neighbor selection
mechanisms to avoid the pitfalls caused by TIVs and improve their
effectiveness.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms
Measurement, Performance, Experimentation

Keywords
Internet delay space, triangle inequality violations, analysis, neigh-
bor selection, distributed system

1. INTRODUCTION
The Internet is an interesting environment where delay1 mea-

surements do not always “make sense”. Often, even if node A is
close to node B and node B is close to node C, node A can be very
far from node C. That is, Internet delays often violate the triangle

∗This research was sponsored by the NSF under CAREER Award
CNS-0448546. Views and conclusions contained in this document
are those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of NSF or the
U.S. government.
1For simplicity, we will use “delay” in place of “round-trip delay.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’07, October 24-26, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-908-1/07/0010 ...$5.00.

inequality. Numerous studies have reported the existence of trian-
gle inequality violations (TIV) in the Internet delay space (e.g. [25,
4, 17, 39, 11, 35]). As discussed in [39], delay space TIV is a con-
sequence of the Internet’s structure and routing policies and thus
will remain a property of the Internet for the foreseeable future.

In what ways does this property matter? Of course this property
does not break the basic best-effort datagram delivery service pro-
vided by the Internet. However, this property can degrade the per-
formance of distributed systems that assume the triangle inequality
holds for Internet delays. Investigating such impacts and avenues
to reduce them is the subject of this study.

For distributed systems whose performance is dominated by the
efficiency of network communications, it is important that commu-
nication neighbors are selected to minimize delays. For example, in
a tree-based overlay multicast system, a joining node needs to find
an existing group member who is nearby to serve as its parent in
the tree. This neighbor selection operation is crucial for many dis-
tributed systems including those that are based on structured over-
lays (e.g. [31, 23, 38, 22]) and unstructured overlays (e.g. [1, 6,
24]).

When neighbor selection is based on brute-force network mea-
surements, the quality of the selected neighbor cannot be affected
by delay TIVs. However, as the number of nodes in the system
scales up, brute-force measurements become unattractive due to the
communication overhead and the time it takes to collect the mea-
surements. In order to perform neighbor selection without brute-
force measurements, it is often useful to make certain assumptions
about the properties of the delay space. Many existing solutions to
this problem assume the triangle inequality holds for Internet de-
lays in order to infer delays between nodes (e.g. [3, 34, 24, 8, 33,
7]).

Two representative solutions are Vivaldi [3], which is based on
the network embedding approach, and Meridian [34], which is based
on the recursive probing approach. Both solutions require a small
amount of offline network delay measurements that help guide the
selection of a nearby neighbor. Vivaldi is expected to be less ac-
curate, but requires no online network measurements. On the other
hand, Meridian requires online network measurements and is ex-
pected to be highly accurate. Both solutions rely on the triangle
inequality assumption to infer the delays between nodes in the sys-
tem.

How do TIVs impact the performance of these neighbor selec-
tion solutions? Is it possible to reduce the problems caused by
TIVs? To shed light on these questions, we first analyze the sever-
ity of TIVs in several available delay data sets. This leads to the
following observations. First, although it makes intuitive sense that
the larger the delay of an edge (i.e. a path between two nodes), the
more severe the TIV it causes, such generalization is not reliable

175

because the TIV severities of edges of similar delays are highly
variable. Thus, it is not accurate to predict the TIV severity of an
edge simply by considering its delay. Secondly, even if two edges
AB and CD have very nearby end-nodes (i.e. A has small delay
to C and B has small delay to D), the difference between their
TIV severities is no smaller than the difference between two ran-
domly chosen edges. Therefore, it is also not accurate to predict
the TIV severity of an edge by simply considering the TIV severity
of another nearby edge.

Even though these observations highlight complex and irregular
characteristics in TIV that we cannot yet explain completely, we
can identify the impact of TIV on Vivaldi and Meridian by studying
their behavior under TIV. When faced with TIV, Vivaldi resolves
the TIV by forcing edges to shrink or stretch in the embedding
space. This results in oscillations in the embedding. Moreover, the
magnitude of such oscillation is so large that the predicted delay
for a 10ms edge can vary by as much as 175ms. This behavior
hurts the neighbor selection performance of Vivaldi. For Merid-
ian, the online recursive probing approach is expected to yield very
good neighbor selection accuracy. Under ideal conditions where
probing overhead is unrestricted and without TIV, the Meridian ap-
proach is expected to find the correct nearest neighbor. However,
due to TIV, the ring structures created by Meridian contain incon-
sistencies. The result is that, even under ideal conditions, Meridian
cannot find the nearest neighbor for 13% of the cases.

We continue the investigation by testing several strawman strate-
gies for coping with TIVs. We test existing models for network co-
ordinates that accommodate TIV [16, 11] but find that these meth-
ods do not benefit the neighbor selection problem. We also test the
naive approach of removing edges that cause the most severe TIVs
given the global information. What we learn is that Vivaldi and
Meridian fail on this strategy for different reasons and thus even
with full knowledge of TIVs, fine-grained strategies are needed to
avoid the impact of TIVs in different neighbor selection mecha-
nisms.

Finally, we propose a TIV alert mechanism. This TIV alert
mechanism does not predict the severity of TIV of an edge. Rather,
it simply identifies edges that are likely to cause severe TIVs. The
design of this TIV alert mechanism stems from our basic obser-
vation that when a delay space with TIV is embedded into an Eu-
clidean space, the edges that have severe TIVs tend to be shrunk in
the resulting embedding. We explain this mechanism and show that
it can help identify edges with severe TIVs. Furthermore, by incor-
porating this mechanism into Vivaldi and Meridian, it is possible
to reduce the impact of TIV and improve their neighbor selection
performance. We believe these findings serve as a first step towards
building robust TIV-aware distributed systems.

The rest of this paper is organized as follows. Section 2 evalu-
ates the TIV characteristics of measured Internet delays. Section 3
explains how TIVs impact the performance of Vivaldi and Merid-
ian. Section 4 explores several strawman strategies that deal with
TIVs. Unfortunately, the benefits of these strategies are quite lim-
ited. Section 5 introduces a TIV alert mechanism, and evaluates the
application of this mechanism in Vivaldi and Meridian. The related
work is presented in Section 6 and Section 7 concludes this paper.

2. ANALYZING TIVS IN INTERNET
DELAYS

We begin the discussion by analyzing the characteristics of TIVs
in several available Internet delay data sets.

Figure 1: Illustration of the TIV severity metric

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

TIV Severity
C

um
ul

at
iv

e
D

is
tr

ib
ut

io
n

DS2−4000−data

Meridian−2500−data

p2psim−1740−data

PlanetLab−229−data

Figure 2: Cumulative distribution of TIV severity

2.1 Evaluation Metric for TIV Severity
Given any three nodes A, B and C in the Internet, they form a

triangle ABC. Edge AC is considered to cause a triangle inequal-
ity violation if d(A, B) + d(B, C) < d(A,C), where d(X, Y)
is the measured delay between X and Y . The triangulation ra-
tio of the violation caused by AC in triangle ABC is defined as
d(A,C)/(d(A, B) + d(B, C)). Previous studies (e.g. [25, 4, 39,
11, 35]) have reported characteristics of TIVs in the Internet delay
space by triangulation ratio distribution and the fraction of triangles
that suffer from TIV. However, to achieve a better understanding on
the TIV properties, we would like to define a numeric metric that
captures the severity of TIV for any particular edge.

The fraction of triangles that suffer from TIV is not the right met-
ric to use when evaluating the TIV severity of an edge because the
triangulation ratios of these violations were not considered. In the
DS2 data, among the top 10% edges causing the highest fraction
of triangles suffer from TIV, 16% of them do indeed have the aver-
age triangulation ratio belonging to the lowest 10%. Similarly, the
average triangulation ratio is not the right metric to use neither, be-
cause it does not take the number of TIVs caused by the edge into
account. In the DS2 data, among the top 10% edges with the high-
est average triangulation ratio, 64% of them only cause less than
3 TIVs. Hereby we define the TIV severity metric as following:
Given a delay space where the set of all nodes is S, for two nodes
A, C ∈ S, the TIV severity of the edge AC is:

P
d(A, C)/(d(A,B) + d(B,C))

|S|
where B ∈ S and d(A, C) > d(A, B) + d(B, C).

176

To illustrate this metric, Figure 1 shows the cumulative distribu-
tion of triangulation ratios for an hypothetical edge AC. The TIV
severity of the edge AC is then proportional to the area of the shad-
owed region. Note that the intersection between the dotted vertical
line and the curve indicates the fraction of triangles that cause TIV.
In the rest of this paper, we use this TIV severity metric to evaluate
the TIVs caused by an edge. A TIV severity value of 0 means the
edge does not cause any violation and larger TIV severity means
more violations.

2.2 Analysis of TIV Characteristics
Figure 2 shows the extent of TIVs found in 4 different measured

Internet delay data sets: p2psim data (1740 nodes) [19], Meridian
data (2500 nodes) [34], DS2 data (4000 nodes) [35], and PlanetLab
data. Here, the PlanetLab data is the measured delay matrix among
229 PlanetLab nodes we collected. Clearly, TIVs are present in all
datasets. For all the data sets, most of the edges only cause slight
violations, but a small fraction of edges do cause severe violations
and all the curves have long tails.

Our previous study [35] classified nodes in a delay space into
major clusters that correspond to major continents and showed that
edges within the same major cluster cause fewer violations while
edges across different clusters cause more violations. We study the
TIV severity of the edges using the same clustering method.

The experiment is based on the DS2 data matrix. We use the
same clustering algorithm as presented in [35] to classify nodes
into three major clusters and the nodes that did not get classified
into any of the three major clusters form the noise cluster. To show
how the TIV severities are distributed over the major clusters, we
present a matrix in Figure 3. To produce this figure, we first reor-
ganize the original matrix by grouping nodes in the same cluster
together. The top left corner has index (0,0). The matrix indices
of the nodes in the largest cluster are the smallest, the indices for
nodes in the second largest cluster are next, then the indices for
nodes in the third largest cluster, followed by indices for nodes in
the noise cluster. Each point (i, j) in the plot represents the TIV
severity of the edge ij as a shade of gray. A black point indicates
least severe violation and a white point indicates most severe vi-
olation encountered for any edge in the analysis. Missing values
in the matrix are drawn as black points. This result confirms that
clustering is also useful for classifying TIV severity. It can be seen
that edges within the same cluster (i.e. the 3 blocks along the diag-
onal) tend to have less severe TIVs (darker) than edges that cross
clusters (lighter) 2. This is because when restrained in one cluster,
most edges are relatively short, and would cause violations mainly
with the nodes in the same cluster, thus limits the number of TIVs.
While for crossing cluster edges, although they can not cause very
high ratio violations since their end nodes are far apart, they can
still induce a large number of violations with nodes existed in any
clusters, due to the fact that intercontinental routing usually have
many alternative paths . This trend could be observed in the DS2
data, the average number of TIVs caused by edges within the same
cluster is 80, while the average number of TIVs caused by crossing
cluster edges is 206.

In order to understand what kind of edges cause severe TIVs,
we first study the relationship between TIV severity and the length
of edges. All edges in the delay matrix are first grouped into 10-
millisecond bins based on their lengths, then we plot the TIV sever-
ity of edges within each bin. Figure 4 shows the median TIV sever-
ity versus lengths of edges based on the DS2 data. The error bars
show the 90th and 10th percentile TIV severity. The general trend

2Note that [11] uses a different definition for TIV and thus the re-
sults are different

Figure 3: TIV severity by cluster (a white point represents the
most severe TIV).

is that longer edges cause more severe violations. For example,
the edges shorter than 200 ms usually only cause slight violations
and edges longer than 300 ms cause increasingly more severe vio-
lations. The other observation from Figure 4 is that edges of very
different lengths can cause violations of the same severity level. For
example, a 600 ms edge may have violations of the same severity
level as both a 300 ms edge and a 800 ms edge. Moreover, the TIV
severity of edges has an irregular relationship with their lengths.
For example in Figure 4 the median TIV severity has a peak for the
edges around 500-600 ms. Similar irregular behavior can be ob-
served in Figure 5, Figure 6 and Figure 7 that show the relationship
between length of edges and TIV severities for p2psim data, Merid-
ian data and PlanetLab data respectively. Since no traceroute data
is available to completely understand this irregular behavior, our
surmise is that it is caused by the irregular routing inefficiency. In
Figure 8, The top graph shows in the DS2 data, the fraction of edges
that are within the same cluster as the edge length is increased. The
bottom graph shows in the DS2 data, the distribution of the short-
est path lengths for all edges at different edge lengths. The error
bars represent the 10th and 90th percentile values. As illustrated,
most edges longer than 200ms are crossing cluster edges, and gen-
erally, longer edges have longer shortest paths. However, when the
edge lengths increase from 300ms to 550ms, the lengths of their
shortest paths do not reveal a very clear increment, which means
most of these edges can find short alternative paths, and they would
also cause severe TIVs. When the edges are longer than 550ms,
the lengths of their shortest paths make a significant jump, which
indicates for many edges in this area, even their shortest path are
still very long, therefore they are not possible to cause severe TIVs.
From the above results, we can see that although long edges tend
to cause more severe violation, the relationship between TIV sever-
ity and edge length is unclear, which indicates that it is very hard to
determine whether one edge is causing severe violations only based
on its length.

Next, we study whether TIVs can be predicted based on proxim-
ity. The hypothesis is that two close-by nodes may have similar TIV
characteristics because they are more likely to share similar Inter-
net routes. Obviously, if nodes A and Al belong to the same local
area network, and nodes B and Bl belong to the same local area
network, then AB and AlBl should have very similar TIV sever-
ity. However, we are more interested in whether a more general
proximity based relationship exists for nodes that do not belong to
the same local area network. To test this hypothesis, for each data
set, we randomly choose 10,000 edges. Each edge is assigned with

177

0 200 400 600 800 1000
0

2

4

6

8

10

Delay (ms)

T
IV

 s
ev

er
ity

Median TIV severity

Figure 4: Relation between delay and TIV severity for DS2

data. Error bar shows the 10%, median and 90%.

a nearest pair edge by the following method: For an edge AB with
end nodes A and B, An and Bn are the nearest neighbors of A
and B respectively, then the edge AnBn is the nearest pair edge
of AB. For comparison, each edge is also assigned with a ran-
dom pair edge. We calculate the TIV severity differences of each
edge and its pair edges to evaluate their similarity. Figure 9 shows
the cumulative distributions of the TIV severity differences of the
nearest-pair edges and random-pair edges for four data sets. For all
the four data sets, the nearest-pair edges are just slightly more sim-
ilar to each other than the random-pair edges in terms of TIV sever-
ity. This means that close-by nodes do not necessarily have similar
TIV severity characteristic. Note that the methodology used to col-
lect the four data sets actually tend to avoid nodes that belong to the
same local area network. In these data sets, the nearest neighbor of
a node is typically a few milliseconds away and may belong to a
different ISP. This result indicates that, in general, it is not possible
to predict the TIV severity of edges based on their proximity.

In summary, our results show that TIV is a complex phenomenon
in the Internet. Most edges only cause slight TIVs but some edges
do cause very severe TIVs. The relationship between TIV severity
and edge length is irregular in all data sets, which means we cannot
determine whether an edge will cause severe violations only based
on its length. In addition, it is hard to predict the TIV severity of an
edge by simply considering the TIV severity of some nearby edges
because they can have very different TIV severities.

Since the results in this section show that the 4 data sets have
similar TIV properties, for simplicity, in the rest of this paper, the
experiments are performed on the DS2 4000-node delay data set
unless otherwise noted.

3. UNDERSTANDING THE PROBLEMS
CAUSED BY TIVS

Many distributed systems rely on neighbor selection mechanisms
to create overlay structures with good network performance. Vi-
valdi and Meridian are two representative solutions to the near-
est neighbor selection problem. They represent two interesting
but very different design points. Vivaldi is based on network em-
bedding techniques. The benefit of Vivaldi is that it only requires
very few offline measurement probes. However, Vivaldi is not very
accurate at finding the nearest neighbor. On the other hand, al-
though Meridian can find the nearest neighbor much more accu-
rately, Meridian requires online measurement probes. Although the
basic principles of Vivaldi and Meridian are quite different, they
both make the assumption that, the underlying Internet delay space
is a metric space in which triangle inequality holds among all the

0 200 400 600 800
0

0.5

1

1.5

2

2.5

3

Delay (ms)

T
IV

 s
ev

er
ity

Median TIV severity

Figure 5: Relation between delay and TIV severity for p2psim
data. Error bar shows the 10%, median and 90%.

0 200 400 600 800 1000
0

5

10

15

20

Delay (ms)
T

IV
 s

ev
er

ity

Median TIV severity

Figure 6: Relation between delay and TIV severity for Merid-
ian data. Error bar shows the 10%, median and 90%.

delays. A recent study [11] has shown that TIV among the Inter-
net delays causes inaccuracies in network coordinate systems like
Vivaldi, however, it remains unclear in what ways does TIV im-
pact Vivaldi. Moreover, to our knowledge, the impact of TIV on
Meridian has not been previously studied. In this section, we try
to understand how TIVs impact the performance of Vivaldi and
Meridian.

3.1 Principles Underlying Vivaldi and
Meridian

Vivaldi is a distributed network coordinate system that aims to
embed the network delays into a low dimension metric space. While
any metric space can potentially be used, this paper uses a 5D Eu-
clidean space for simplicity. Regardless of what metric space is
used, it is important to note that all metric spaces obey the triangle
inequality and are therefore incompatible with delay TIV. In Vi-
valdi, each node is assigned a virtual coordinate and the network
delay between a pair of nodes is estimated by the Euclidean dis-
tance given by their coordinates. To compute the coordinates for
each node, Vivaldi simulates a physical spring system. Each pair
of nodes (i, j) corresponds to a spring with a rest length set to the
measured delay between i and j. The current length of the spring is
the estimated Euclidean distance between the nodes. The potential
energy of the spring is proportional to the square of the displace-
ment from its rest length, which is actually the square of the esti-
mation error. Vivaldi uses an adaptive procedure to minimize the
spring energy. Each node has several neighbors in the Vivaldi sys-
tem. At each step, when a node measures the delay between itself

178

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

Delay (ms)

T
IV

 s
ev

er
ity

Median TIV severity

Figure 7: Relation between delay and TIV severity for Planet-
Lab data. Error bar shows the 10%, median and 90%.

200 400 600 800 1000
0

0.5

1

Delay(ms)

F
ra

ct
io

n
of

 w
ith

in
 c

lu
st

er

200 400 600 800 1000
0

100

200

300

Delay(ms)

S
ho

rt
es

t p
at

h
le

ng
th

(m
s)

Figure 8: Shortest path length for edges of DS2 data at differ-
ent delays

and one of its neighbors, the node will be pulled toward or pushed
away from that neighbor to a new position that decreases the energy
of the corresponding spring. The system evolves so that the nodes
move to the positions that minimize the squared error of the mea-
sured delays. Ideally, if network delays are perfectly embeddable in
the Euclidean space, Vivaldi can generate a set of coordinates that
predict all network delays very well. However, real network delays
are not Euclidean and violate the triangle inequality. Thus, in gen-
eral, it is not possible to predict all the network delays accurately.
Many edges will still have high prediction error in Vivaldi.

Wong et al. proposed another system, Meridian, which is based
on active online probing and recursive query. Meridian forms a
loosely-structured overlay network and uses online measurements
to solve neighbor selection problems. Each Meridian node keeps
track of a fixed number of other nodes in the system as its members.
Then a Meridian node organizes all its members into a finite num-
ber of concentric, non-overlapping rings based on the measured
delays between itself and these members. The rings have exponen-
tially increasing radii. The i-th ring has inner radius ri = αsi−1

and the outer radius Ri = αsi, where α is a constant and s is
the multiplicative factor. One Meridian node needs to keep up to
k members for each of its rings. To find the closest neighbor to a
target node, a random Meridian node N is chosen to start a recur-
sive query. Node N first measures the delay d between itself and
the target. Then N simultaneously queries all of its ring members
whose delays are within (1−β)×d to (1+β)×d from N , where
β < 1 is an acceptance threshold. The idea is that, if the triangle
inequality holds, then any ring member that is within β × d from

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

TIV severity difference

C
um

ul
at

iv
e

di
st

rib
ut

io
n

p2psim

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

TIV severity difference

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Meridian

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

TIV severity difference

C
um

ul
at

iv
e

di
st

rib
ut

io
n

PlanetLab

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
DS2

TIV severity difference

C
um

ul
at

iv
e

di
st

rib
ut

io
n

nearest−pair−edges

random−pair−edges

nearest−pair−edges

random−pair−edges

nearest−pair−edges

random−pair−edges
nearest−pair−edges

random−pair−edges

Figure 9: Proximity property of TIVs

0 20 40 60 80 100
−100

−50

0

50

100

Simulation Time(second)

E
rr

or
(m

s)

Edge A−B
Edge B−C
Edge C−A

Figure 10: Vivaldi error trace for a simple 3-node network with
TIV

the target node should be among this set of ring members. These
ring members measure their delays to the target online and then
report back to N . The query is then forwarded to the ring mem-
ber who is closest to the target. This process repeats so that the
query is gradually forwarded to the node that is closest to the tar-
get, or until the termination condition is satisfied. The termination
condition is if next Meridian node’s delay to the target is longer
than β × d. TIV can reduce the effectiveness of Meridian. This
is because TIV makes the ring membership information unreliable.
Two nearby nodes should be placed in the same ring or very close
rings of a Meridian node. However, TIVs can make the two nearby
nodes have very different delays to the Meridian node and thus be
misplaced. Such placement mistakes hurt performance because the
true closest node to the target may be misplaced and never be con-
sidered during the query forwarding process.

3.2 Illustrating the TIV Problems
In the following, we use concrete scenarios to show how Vivaldi

and Meridian may behave when there are triangle inequality viola-
tions.

3.2.1 Vivaldi
Suppose we have a network with 3 nodes A, B and C, where

the delay of edge AB, d(A,B), is 5ms, d(B,C) is 5ms, and
d(C, A) is 100ms because of inefficient routing or routing policy.

179

0 200 400 600 800 1000
0

100

200

300

400

500

Delay(ms)

O
sc

ill
at

io
n

ra
ng

e(
m

s)

Median oscillation range

Figure 11: Distribution of the oscillation range of all the edges

Obviously, the triangle inequality is violated because d(A,B) +
d(B, C) < d(C, A). We run Vivaldi over this 3-node network,
and Figure 10 shows the error trace of edge AB, BC, and CA
over 100 second simulation time. Here the error is defined to be
(euclidean_distance − measured_delay).

As we can see from Figure 10, Vivaldi cannot find perfect po-
sitions for the nodes and it is stuck in endless oscillations. If we
look into the detailed behavior of a node A, what is happening here
is, every time A probes a neighbor B, node A will adjust its coor-
dinates based on this probe to decrease the prediction error of the
edge AB. However, because of triangle inequality violation among
ABC, there does not exist good positions for nodes A, B, C in the
Euclidean space to preserve the delays AB, AC and BC perfectly.
So, the result is, every movement A makes to decrease the error of
edge AB will increase the error of edge AC and the overall error
of node A remains high. For the whole network, the effect is, all
the nodes are adjusting their coordinates to decrease the error for
the currently probed edges, but it does not help to increase the over-
all prediction accuracy. All the nodes in the system are wandering
rapidly and the error of edges fluctuates. This result shows that, the
existence of TIV can hurt the embedding of the whole network and
introduce large prediction errors on edges.

Let’s extend our analysis from the simple scenario to real Inter-
net measurements. Among all the triangles constructed by any 3
nodes in the DS2 data set, around 12% of them violate triangle in-
equality. It turns out that, these violations in the measured data have
a significant impact on Vivaldi’s performance. When Vivaldi is run
on the DS2 data, the median absolute error is 20ms and the 90th
percentile absolute error is 140ms. Moreover, the nodes are moving
rapidly. The median movement speed is 1.61 ms per step and the
90th percentile movement speed is 6.18 ms per step. To get a sense
of the ranges the predicted distances are oscillating in, we define the
oscillation range of an edge to be (max(prediction_distance)−
min(prediction_distance)) and collect the oscillation range for
all the edges during a 500s simulation period. In Figure 11, we di-
vide all the edges into 100 bins with the width of 10ms, and use the
error bar to plot the distribution of the oscillation range of the edges
in each bin. The ceiling of the error bar is the 90th percentile, the
bottom is the 10th percentile, and the marked line is the median. As
can be seen, the prediction values are oscillating over large ranges,
and the range is large even for edges that are very short.

3.2.2 Meridian
Meridian assumes that the triangle inequality property holds in

the underlying delay space. So, intuitively, if two close-by nodes
are both selected as ring members of another node, then they should
be placed in the same or very close rings of that node. This assump-

1 4

11
12 25

2

Client node

Initial server A

Ring member of A

Target node T

Second server B

Ring member of B

Closest node N Latency probe

A

N

BT

N

T

A

B

N

BT

A

Figure 12: A client node sends a “closest neighbor to target T ”
request to a Meridian node A, which determines its delay d to
T and asks its ring members within (1−β)×d and (1+β)×d to
probe T (β is the constant acceptance threshold). The request
then is forwarded to another Meridian node B, which is the
closest to T among A’s eligible ring members. Similarly B also
asks its relevant ring members to probe T and finally finds out
that B itself is closest to T . B is returned to the client as the
found closest neighbor even though the real closest neighbor is
N . Meridian fails to find N due to incorrect ring membership
caused by triangle inequality violations.

tion is no longer true with TIVs, and thus Meridian’s performance
is inevitably affected.

In Figure 12, a simple example is presented to show how TIV
can affect Meridian’s performance. A client node issues a request
for the closest neighbor to target T . Meridian performs a recur-
sive query and ends up with the chosen neighbor B while the real
closest neighbor is N . The left picture in Figure 12 explains why
Meridian fails to find the real closest neighbor. As can be seen from
the picture, four nodes form four triangles, three of which violate
the triangle inequality property. For example,AT is 12 and TN is
only 1, but AN is 25. In this example, N and B will be placed in
different rings of A although they are close to each other. So when
A is chosen as the initial node to start the query, A will not ask N to
probe T because N is too far. What is worse, after node B is deter-
mined as the second node to continue the query, B still cannot ask
N to probe T since it is still relatively far from N due to a triangle
inequality violation. So in this example, the Meridian system fails
to find the real closest neighbor mainly because of the two triangle
inequality violations. Note that the fact that N is involved in trian-
gle inequality violations does not mean that N will never be found
as the closest neighbor to T . If the client chooses another Meridian
node as the initial node to start the recursive query, it is still possi-
ble for the Meridian system to find the real closest neighbor N , but
the existence of TIV increases the difficulty for Meridian to find the
closest neighbor.

Meridian uses active online probings during the recursive query,
so Meridian is not as sensitive to TIVs as Vivaldi. In addition,
Meridian already can tolerate some TIVs. For example, if β is set
to a large value, then more ring members are allowed to probe the
target. This can mask the TIV-induced placement errors in the ring
membership. In the above example, a large β (though unrealistic)
may allow N to be selected to probe the target and thus Meridian
will find the correct closest neighbor to T . The downside of using
a large β is increased probing overhead. This simple mechanism
however is not sufficient to handle severe TIVs.

The following experiment is used to quantitatively show how of-

180

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Delay (ms)

P
er

ce
nt

ag
e

beta = 0.1

beta = 0.5

beta = 0.9

Figure 13: Percentage of Meridian ring members misplaced

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Meridian−Euclidean−4k−data

Meridian−DS2−4k−data

Figure 14: Neighbor selection performance of Meridian with
ideal settings

ten Meridian will make a mistake due to TIVs. For the DS2 data
set, given any node Ni, for any other node Nj that has delay of dij

to Ni, we find the set of nodes that are within the delay of β×dij to
Nj and then we count the number of nodes in the set whose delays
to Ni are not in the range from (1 − β) × dij to (1 + β) × dij .
This condition indicates that such nodes will cause placement er-
rors in the ring membership. Figure 13 shows the result for dif-
ferent β values. The x-axis organizes the results for all node pairs
Ni and Nj by the delay dij . The y-axis shows the percentage of
nodes that will cause placement errors. As we can observe, larger β
gives Meridian better tolerance to TIVs but larger β also increases
the probing overhead significantly. If we set β to 0.5 just as rec-
ommended in [34], we can see that placement errors are frequent
especially with respect to dij larger than 400 ms. Even for dij less
than 400 ms, placement mistakes occur 10% to 30% of the times.

Next, we run Meridian simulations to study how TIVs will affect
its performance in practice. Simulations are run with two differ-
ent data sets, one is an artificial Euclidean matrix and the other is
the DS2 delay matrix. We use β = 0.5 for both simulations. For
each data set, we randomly pick 200 nodes as Meridian nodes and
use the other 3800 nodes as clients. In order to filter out all the
factors that can potentially degrade Meridian’s performance, we let
each Meridian node to use all other 199 Meridian nodes as its ring
members, then we turn off the termination condition, i.e., we allow
Meridian to continue to search even when the new Meridian node’s
delay to the target is longer than β × d. This provides an idealized
setting for Meridian. Note that in reality, we usually do not use all
other Meridian nodes as ring members and we have to use the ter-
mination condition to limit overhead. Thus, this experiment tries to
show an upper bound of Meridian’s performance. Figure 14 shows

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty

C
um

ul
at

iv
e

di
st

rib
ut

io
n

IDES

Vivaldi−original

Figure 15: Neighbor selection performance for IDES

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Vivaldi−with−LAT

Vivaldi−original

Figure 16: Neighbor selection performance for Vivaldi-LAT

the results. Meridian nearly always finds the closest neighbor when
run over the artificial Euclidean data set where the triangle inequal-
ity is satisfied. The reason that the performance of the Meridian
on Euclidean data is not perfect is, given the target T , occasion-
ally the distance between the closest server R and current chosen
Meridian node M is not within the range between (1− β) × dMT

and (1 + β) × dMT and M has no other ring members within that
range at all, so M has to stop. For the measured delay data, as
can be seen, severe TIVs can clearly affect Meridian’s performance
even it is run under idealized settings.

4. STRAWMAN SOLUTIONS TO DEAL
WITH TIVS IN NEIGHBOR SELECTION

Recent studies have reported the inaccuracy of network embed-
ding caused by TIVs and several techniques have been proposed
to accommodate TIVs [16, 11]. Thus, we would like to determine
how much these techniques can help improve the performance of
neighbor selection. Furthermore, we would also like to determine
whether removing edges that have large TIV severity can help re-
duce the impact of TIVs on the neighbor selection mechanisms.

4.1 Neighbor Selection Experiment
Methodology

For the rest of this paper, unless otherwise noted, the method-
ology for the closest neighbor selection experiments is as follows.
All experiments are performed using the DS2 4000-node measured
Internet delay data set [35].

For Vivaldi, each node picks 32 random nodes as Vivaldi prob-
ing neighbors and iteratively perform Vivaldi embedding computa-
tions for 100 seconds (simulation time). The metric space used is

181

a 5-dimensional Euclidean space. A random subset of 200 nodes
are selected as candidates for the closest neighbor selection experi-
ment, the remaining 3800 nodes act as clients. This is done so that
the chance that a candidate is a Vivaldi probing neighbor of a client
is small. One closest neighbor selection test is performed for each
client based on the delay predictions given by Vivaldi coordinates.
We record the percentage penalty for each test, where percentage
penalty is defined as

(delay_to_selected − delay_to_optimal) × 100

delay_to_optimal

We run the experiment 5 times using 5 different random subsets
of 200 nodes as candidates. Results reported are cumulative over
the 5 runs.

For Meridian, we set the parameters as follows: k = 16 nodes
per ring at most, 11 rings per node, multiplicative increase fac-
tor s = 2, β = 0.5, α = 1. We select a random subset of
2000 nodes as Meridian nodes and build Meridian rings among
them. This is done so that there are enough Meridian nodes to con-
struct reasonable Meridian rings. The remaining 2000 nodes act as
clients. One closest neighbor selection test is performed per client.
A client sends its closest neighbor request to a random Meridian
node. Again, we record the percentage penalty for each test. The
experiment is run 5 times using 5 different random subsets of 2000
nodes as Meridian nodes. Results reported are cumulative over the
5 runs.

4.2 Existing Models for Accommodating TIV
in Network Embedding

Several existing proposals for improving network embedding sys-
tems attempt to accommodate TIVs. In this section, we focus on
these existing proposals. IDES [16] is a network coordinates sys-
tem designed to allow for triangle inequality violations and delay
asymmetry in the delay space. It is not based on embedding into a
metric space. Instead, in IDES, each node is assigned an incoming
and an outgoing vector by matrix factorization techniques, such as
Singular Value Decomposition (SVD) or Non-negative Matrix Fac-
torization (NMF). The distance between node i and j is estimated
by the inner product of i’s outgoing vector and j’s incoming vector.

On the other hand, Lee et al. [11] proposed to add a localized ad-
justment term (LAT) to Euclidean coordinates to account for TIVs.
In this method, each node x has a d dimension Euclidean coordi-
nate cx and a non-Euclidean adjustment ex, and (cx; ex) is used to
denote the final coordinates of node x. The distance dxy between
two nodes x and y is estimated by d̂xy = d(cx, cy)+ex+ey, where
d(cx, cy) is the Euclidean distance between cx and cy . The ex is set
to half of the average error for all the measurements from node x to
a set of sampled nodes. Let S denote the set of randomly sampled

nodes measured from node x, then ex =
P

y∈S (dxy−d̂xy)

2|S| .
Both IDES and LAT have been shown to provide better aggregate

prediction accuracy for Internet delays than the basic Euclidean
network embedding approach. But it remains to be seen whether
they can successfully improve performance with respect to the neigh-
bor selection problem. Figure 15 and Figure 16 show the neighbor
selection results of IDES and Vivaldi with LAT on the DS2 data
set. We can see that, neighbor selection performance of IDES is
actually worse than that of Vivaldi, and Vivaldi with LAT is only
slightly better than the original Vivaldi. For IDES, although it does
not constrain predicted delays to satisfy the triangle inequality as
in an Euclidean model, it is hard to find vectors that simultaneously
approximate TIVs and estimate network delays accurately for all
nodes. For the LAT technique, although the localized adjustment

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Vivaldi−original

Vivaldi−TIV−severity−filter

Figure 17: Neighbor selection performance for Vivaldi with
TIV severity filter

term can introduce the non-Euclidean effects with respect to a set
of sampled nodes, it is still very hard to predict the triangle in-
equality violations over the entire network accurately. Ultimately,
increase in aggregate prediction accuracy does not always translate
into increased neighbor selection performance.

4.3 Naive avoidance of TIVs
In this section, we consider another high level strategy based on

removing edges that cause TIVs. If we assume we have global
information about the delay space, then all the TIVs can be easily
calculated and identified. In this case, a straight forward strategy
is to clean up the delay matrix by removing the edges that cause
severe TIVs.

To test this strategy, we identify 20% of the edges in the delay
matrix that have the largest TIV severity. These edges are sim-
ply not used by Vivaldi probing neighbors or by Meridian ring
construction. Neighbor selection performance of this approach is
shown in Figure 17 and Figure 18.

From Figure 17, we can see that simply excluding some high vi-
olation edges only marginally improve the neighbor selection per-
formance of Vivaldi. The reason for this result is that TIV is a wide
spread feature of Internet delays. Thus, naively removing some out-
liers in the delay matrix cannot remove the fundamental problems
caused by TIVs in Vivaldi.

For Meridian, as can be seen from Figure 18, the TIV outlier re-
moval approach actually degrades Meridian’s performance. Merid-
ian relies on recursive routing to find the closest servers, but the
TIV filter approach may inevitably remove some edges that are
needed for Meridian to route queries to the closest nodes. We ob-
serve that, certain rings of a Meridian node may become under-
populated by upto 50%. When a query needs to be routed through
a member of that ring, the under-population of that ring may cause
Meridian to fail to route the query further, resulting in sub-par per-
formance.

In summary, given the global information, simply excluding some
TIV outliers to clean the delay matrix does not help to improve any
of the two neighbor selection mechanisms mentioned above. Hence
even with full knowledge of TIVs, we still need specifically refined
strategies for different applications to avoid the impact of TIVs.

5. TIV ALERT MECHANISM
In this section, we propose a TIV alert mechanism and show that

it can be used to introduce TIV awareness into systems like Vivaldi
and Meridian and improve their performance.

182

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Meridian−original

Meridian−TIV−severity−filter

Figure 18: Neighbor selection performance for Meridian with
TIV severity filter

0 1 2 3 4 5
0

2

4

6

8

10

12

14

Euclidean distance/Measured distance

T
IV

 s
ev

er
ity

Median TIV severity

Figure 19: TIV severity for edges with different prediction ra-
tios

5.1 Alerting Severe TIVs by Metric
Embedding Error

Based on our findings so far, it seems difficult to derive a simple
model that can predict the TIV severity of an edge accurately. In-
stead, we ask, is it possible to at least identify edges that are likely
to cause severe TIV based on a small random sample of delays from
the network? In other words, if we measure a small number of ran-
dom edges in the network, can we infer information about whether
a given edge causes severe TIVs? An interesting observation of
network embedding mechanisms can help in this case.

In network embedding mechanisms, each node can measure the
delays to a small number of random nodes and the measured delays
are embedded into a metric space. Because of the TIVs among the
network delays, it is impossible to predict all the delays accurately
by fitting all the nodes into a metric space. However, an interesting
observation is, if an edge causes severe TIVs with other edges, it is
highly likely that this edge will be shrunk significantly in the metric
space. The reason behind this is that, if an edge between node A
and B causes a lot of TIVs with other edges, there must be many
alternate paths between A and B that are shorter than the measured
delay. Thus, the optimization procedures in network embedding
mechanisms will tend to sacrifice the accuracy of the edge AB in
order to preserve the many other short edges to minimize the overall
prediction error.

To demonstrate this observation, we embed the DS2 data into
a 5D Euclidean space using the Vivaldi algorithm, take a snapshot
of the produced steady state coordinates, and study the relation-
ship between the prediction error of edges and the TIV severity
caused by them. We defined the prediction ratio euclidean_distance

measured_distance

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Alert ratio threshold

A
cc

ur
ac

y

Worst 1%

Worst 5%

Worst 10%

Worst 20%

Figure 20: Accuracy of TIV alert mechanism

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Alert ratio threshold

R
ec

al
l

Worst 1%

Worst 5%

Worst 10%

Worst 20%

Figure 21: Recall rate of TIV alert mechanism

to measure the Vivaldi prediction error. For the prediction ratio be-
tween 0 and 5, we set up 50 bins each with the range of 0.1. For
each bin, we collect all the edges whose prediction ratio falling in
this bin. We use an error bar to demonstrate the distribution of the
TIV severity of all the edges in this bin. The ceiling of the error
bar indicates the 90th percentile, the bottom is the 10th percentile,
and the marked line shows the median value. Figure 19 shows the
TIV severity of the edges with different prediction ratios. For those
edges whose prediction ratio is very small, i.e. those edges that
are shrunk a lot in the Euclidean space, their TIV severity tends
to be very high. As the prediction ratios of edges increase, their
TIV severities decrease. For those edges whose prediction ratios
are larger than 2, their TIV severity is almost 0. Although the TIV
severity is highly variable within each prediction ratio bin, there is
a clear trend that as the prediction ratio becomes smaller, the dis-
tribution of TIV severity shifts towards higher values. This trend
is consistently observed for any snapshot of Vivaldi’s steady state
coordinates.

Based on the result in Figure 19, it is not possible to exactly pre-
dict the TIV severity of an edge based on its prediction ratio. But
the result inspires our idea to use the prediction ratio in network
embedding as a heuristic indicator for the TIV severity of a given
edge. The question is, how effective can the prediction ratio be
used as a TIV alert mechanism? To answer this question, we eval-
uate the accuracy of using different prediction ratio thresholds to
alert the worst 1%, 5%, 10% and 20% of edges with the highest
TIV severity. The accuracy and recall rate are shown in Figure 20
and Figure 21. As can be seen, if we use a tight threshold to raise
alerts, the alerting accuracy is very high. For example, if we use a
0.1 threshold, we can report the top 1% worst edges with the accu-
racy of 92%, and report the top 5% worst edges with the accuracy

183

of 98%. However, the problem of a tight threshold is that the recall
rate is very low, which means we can only report few edges among
all the ones with severe TIV. For example, as shown in Figure 21,
if we use a 0.1 threshold, we can only report 1% of the worst 10%
edges. As we relax the alert threshold, the recall rate is increased
but the accuracy is decreased. Thus, there is a trade-off between the
recall rate and the alert accuracy. To use this TIV alert mechanism
in practice, we can choose a threshold to provide enough number
of alerts while preserving reasonable accuracy. For example, with
a 0.6 threshold, the TIV alert mechanism raises alert on around 4%
of the edges. Among those edges, 70% of the worst 1% edges are
reported, and 65% of them belong to the worst 20% edges. The
recall rate for the worst 20% edges is relatively low, this is sim-
ply because the TIV alert mechanism raises alert on only 4% of
the edges. What is more important is that the edges identified are
highly probable to cause severe TIVs.

In summary, we have shown that the prediction ratio of an edge
in network embedding has a useful relationship with its TIV sever-
ity. The prediction ratio can thus be used to provide a TIV alert
mechanism. This makes it possible to introduce TIV awareness
into the design of distributed systems. In the following sections,
we demonstrate how the TIV alert mechanism can be used in Vi-
valdi and Meridian.

5.2 Using TIV Alert Mechanism in Vivaldi
Since Vivaldi is itself a distributed network embedding mecha-

nism, it is easy to determine the prediction ratio for the edges that
have been measured. So it does not require any additional over-
head to use the TIV alert mechanism in Vivaldi. A convenient way
to use the TIV alert mechanism in Vivaldi is to use the prediction
ratio to identify those edges with high TIV severities, and refine the
neighbor set for each node.

In particular, the enhanced system we call dynamic neighbor Vi-
valdi can be explained as follows: Vivaldi is started normally, with
each node having 32 random neighbors. After Vivaldi runs for a
period T, all the nodes begin to update their neighbors. To update
the neighbor set, each node samples another 32 random neighbors.
Combined with the original 32 neighbors, each node now has 64
neighbor candidates. The 64 neighbor candidates are ranked by
their prediction ratio based on the current Vivaldi coordinates. The
prediction ratio here is defined to be euclidean_distance

measured_delay
. If the pre-

diction ratio of an edge is very small, it means this edge is shrunk a
lot and it is more likely to cause severe TIV. So we remove the 32
nodes with smallest prediction ratios among the 64 neighbor can-
didates, and the remaining 32 nodes are used as the neighbors in
the next iteration. This procedure is performed iteratively, and the
neighbor set is updated every T time. Currently, T is set to 100
second simulation time to make sure that Vivaldi coordinates are
converged in each iteration.

To evaluate dynamic neighbor Vivaldi, we first want to show how
effectively the TIV alert mechanism can remove edges that cause
severe TIV in the neighbor update procedure. Figure 22 shows the
TIV severity of all the neighbor edges when we update neighbor
set from iteration 0 (original random 32 neighbors) to iteration 10.
From this figure, we can clearly see that the TIV severity of neigh-
bor edges become smaller and smaller when we iteratively update
neighbor set for each node, which means we effectively remove
those edges with high TIV severities.

Figure 23 shows the neighbor selection performance of dynamic
neighbor Vivaldi. We can see that, our technique can effectively
improve the neighbor selection performance of Vivaldi when we it-
eratively update Vivaldi neighbor sets. After only 10 iterations, the
performance is clearly better than that of original Vivaldi. In previ-

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

TIV severity

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Vivaldi−original

Vivaldi−dyn−neigh−iter1

Vivaldi−dyn−neigh−iter2

Vivaldi−dyn−neigh−iter5

Vivaldi−dyn−neigh−iter10

Figure 22: TIV severity of Vivaldi neighbor edges

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Vivaldi−original

Vivaldi−dyn−neigh−iter1

Vivaldi−dyn−neigh−iter2

Vivaldi−dyn−neigh−iter5

Vivaldi−dyn−neigh−iter10

Figure 23: Neighbor selection performance of dynamic neigh-
bor Vivaldi

ous sections, we have shown that just removing TIV outliers does
not help to improve Vivaldi’s performance. The reason why dy-
namic neighbor Vivaldi can perform better is that, instead of trying
to remove outliers, dynamic neighbor Vivaldi refines the neighbor
set to eliminate TIVs among Vivaldi neighbors. Furthermore, the
dynamic neighbor technique does not add much overhead. The TIV
alert mechanism is effective at making Vivaldi TIV aware.

5.3 Using TIV Alert Mechanism in Meridian
The operations of Meridian can be separated into two stages:

ring construction and online recursive query. In the ring construc-
tion stage, each Meridian node needs to select O(logN) other Merid-
ian nodes as its ring members and then organizes them into concen-
tric rings of exponentially increasing radii. After the ring construc-
tion stage, participating Meridian nodes form a loosely-structured
overlay, on which we can perform the second stage operations, on-
line recursive query. The second stage performs recursive query
routing and active probing to search for the nearest neighbor.

The goal is to show that even straight-forward application of
the TIV alert mechanism to ring construction and recursive query
stages can reduce the impact of TIV on Meridian’s performance.
More sophisticated ways to use the TIV alert mechanism than those
presented here may exist.
Ring Construction - In the ring construction stage, each Merid-
ian node needs to sample a set of other Meridian nodes as its ring
members, measures the delays between itself to all its ring mem-
bers and then puts all ring members into appropriate rings based on
the measured delays. As we have shown in Figure 13, this simple
ring construction procedure cannot handle all TIVs. Severe TIVs
can mislead a Meridian node to put two close-by nodes that ought

184

to be placed in the same or very close rings in two very different
rings. So the idea here is to use the TIV alert mechanism to help
adjust the ring memberships in order to accommodate those severe
TIVs. We can either bring the node placed in the far ring back to
the close ring or push the node placed in the close ring to the far
ring. We assume an independent network embedding mechanism,
say, Vivaldi, provides the prediction ratios for the TIV alerts.

The membership adjustment algorithm works as follows: for any
Meridian node M , we need to check each of its ring members Mi

to see whether the prediction ratio of the edge between M and Mi

is within a safe range. That is, if the prediction ratio of the edge is
smaller than certain threshold ts or larger than another threshold tl,
we need to place that corresponding node into rings not only based
on the real measured delay but also based on the predicted delay.
So, in the worst case, a ring member will be placed into two rings.
In this section, we always use ts = 0.6 and tl = 2. These threshold
values by no means represent the optimal setting and we have not
yet determined the optimal setting. The goal is simply to show that
using reasonable thresholds can already provide benefits.
Online Recursive Query - During the recursive query stage, the
Meridian system recursively hands off the query to a node that is
closer to the target. In order to limit the number of iterations and
the corresponding probing overheads, [34] suggests to use an ac-
ceptance threshold β to determine when to stop the recursive query.
If, in one iteration, the chosen Meridian node cannot find at least
one node that is closer than β times the distance to the target, it
will stop searching. We believe that TIVs in the underlying delay
space often misguide Meridian to prematurely stop at a suboptimal
node. The idea here is: when the chosen Meridian node cannot find
one node that is closer than β times its distance to the target, it will
check the prediction ratio of the edge between itself and the target,
if the prediction ratio is smaller than certain threshold ts, then the
chosen Meridian node will select another set of its ring members
to restart the query based on the predicted delay to the target. The
goal is that if the edge between the current Meridian node and the
target causes severe TIVs, then we may have a better chance to
find a node that is closer to the target by using the predicted delay
to choose a subset of ring members to query. Again, we set the
threshold ts to 0.6.

We evaluate the effectiveness of applying the TIV alert mecha-
nism to Meridian using the normal setting, where there are 2000
Meridian nodes out of 4000 nodes and β = 0.5, α = 1, s = 2,
k = 16 and l = 4. Figure 24 shows the neighbor selection results
of Meridian after using the TIV alert mechanism. As we can see,
the TIV alert mechanism does improve Meridian’s performance.
Because some ring members are placed into 2 rings and because
we need to restart query based on the predicted delay occasionally,
the online probing overhead increases by about 6%. For compari-
son, allowing the same additional probing overhead by increasing
the value of β in regular Meridian provides less performance im-
provement.

We also evaluate our techniques under another setting where
there are only 200 Meridian nodes out of 4000 nodes and each
Meridian node uses all other 199 Meridian nodes as its ring mem-
bers. Figure 25 shows the result. There are three sets of results.
“Meridian original” uses the acceptance threshold β = 0.5. “Merid-
ian TIV alert” stands for Meridian with the TIV alert mechanism
used. “Meridian no termination” uses the idealized settings that is
the same as what we used in Section 3.2.2. As can be seen, if all
Meridian nodes are used as ring members, Meridian’s performance
is already very good. But after applying the TIV alert mechanism,
we can still improve its performance with only about 5% more on-
line probing overhead. Note that the performance of Meridian after

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Meridian−original

Meridian−TIV−alert

Figure 24: Neighbor selection result of Meridian using TIV
alert mechanism. This technique causes 6% more on-demand
probes.

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Percentage penalty
C

um
ul

at
iv

e
di

st
rib

ut
io

n

Meridian−original

Meridian−TIV−alert

Meridian−no−termination

Figure 25: Neighbor selection result of Meridian using TIV
alert mechanism. This technique causes 5% more on-demand
probes.

applying the TIV alert mechanism is even better than the idealized
Meridian which disables the termination condition and also causes
about 5% more online probing overhead. This improvement is be-
cause Meridian is made aware of TIVs and cope with TIVs directly.

In summary, a simple application of the TIV alert mechanism
can improve Meridian. Although the magnitude of improvement
is modest, more effective ways to apply the TIV alert mechanism
may exist.

6. RELATED WORK
Our work on the impact of triangle inequality violations on neigh-

bor selection mechanisms is closely related to many previous stud-
ies on performance analysis of network coordinate systems.

Network coordinate systems are regarded as a promising ap-
proach for neighbor selection because of its simplicity and scala-
bility to predict O(N2) pair-wise delays by a constant number of
measurement on each node. The basic idea of this method is to
embed the Internet delay space into a geometric space. Following
the basic idea of network embedding, several schemes have been
proposed to set up an efficient and scalable network coordinate
systems. Centralized methods such as GNP [17], Big-Bang [27],
PCA [32, 12] and Hyperbolic [28] require a fixed set of landmarks
which could be a bottleneck of the system. Therefore, some decen-
tralized methods such as NPS [18], Vivaldi [3], PIC [2] and Light-
houses [20] were proposed to improve the scalability of network
coordinate systems. We choose Vivaldi as a typical network coor-
dinate system in our study. The findings and techniques we studied

185

in this paper can potentially be applied to other network coordinate
systems.

While relative error evaluations and theoretical analysis [30, 29]
demonstrate the remarkable accuracy of network coordinate sys-
tems, some recent studies explore the limitations of these schemes
in applications. Lua et al. [13] evaluate the network coordinate
schemes by application oriented metrics such as relative rank loss
and closest neighbors loss, and show that, these schemes perform
poorly under the new metrics. Zhang et al. [37] study the perfor-
mance of these network coordinate algorithms under overlay multi-
cast, server selection and overlay construction. The major findings
are that network coordinate schemes are inadequate for the appli-
cations in terms of the prediction accuracy, and the high error on
short links has a big impact on application performance. In par-
allel, many Internet measurement studies repeatedly confirm the
wide-spread TIVs found in the Internet delays [39, 11, 35]. In [39],
Zheng et al. argue that, TIV is a natural feature of Internet struc-
ture and routing policies and it poses a big problem on network
coordinate systems. Lee et al. [11] analyze the error of network
coordinate schemes and claim that the inaccuracy of Euclidean em-
bedding is caused by a large degree of TIVs in the Internet delays.
Furthermore, some recent studies [21, 10, 9] report the stability
problems of Vivaldi in practical deployment, but this problem is
out of the scope of this paper.

Several techniques have been tried to deal with TIVs in network
coordinate systems by introducing TIVs to the delay prediction.
IDES [16] assigns an incoming and an outgoing vector to each node
by matrix factorization techniques, such as Singular Value Decom-
position (SVD) or Non-negative Matrix Factorization(NMF). The
distance between node i and j is estimated by the inner product
of i’s outgoing vector and j’s incoming vector. This method re-
moves the constraint of triangle inequality. Lee et al. [11] proposes
to add a localized adjustment term (LAT) to Euclidean coordinates
to account for the non-Euclidean effect. However the evaluation
results in this paper have shown that, these techniques do not im-
prove the neighbor selection performance of network coordinate
system. In [36], a hierarchical approach is proposed to improve the
performance of network coordinate system. The idea of this ap-
proach is, each node is assigned with multiple coordinates and the
network delays in different scales are predicted by different set of
coordinates. The difficulty of this approach is, it is very hard to
predict which scale an edge belongs to without measuring it. All
the above results inspire our work to understand the impact of TIVs
on network coordinate systems.

Faced with the inaccuracy problem of network coordinate sys-
tems, Wong et al. [34] proposes a totally different neighbor selec-
tion mechanism, Meridian, which is based on recursive searching.
The Meridian system still assumes triangle inequality in the Inter-
net delays. To the best of our knowledges, this paper is the first
work to study the impact of TIVs on the Meridian system and to
propose techniques to deal with TIVs in the Meridian system.

In addition to network coordinates and the Meridian system, some
other location techniques requiring information beyond end-to-end
delay have also been proposed. The OASIS system [5] selects
closest servers using geographical locations. iPlane [14, 15] and
S3 [26] propose to predict network delays with network topology
map information gathered by traceroute measurements. Although
these techniques are quite different from Vivaldi and Meridian,
iPlane and S3 are still based on the triangle inequality assumption
for network delays. Thus, the findings of this paper can potentially
be helpful for improving the performance of iPlane and S3 in face
of TIVs in the future.

7. CONCLUSIONS
TIV in Internet delays can degrade the performance of distributed

systems that neglect TIV when choosing overlay neighbors. We
have investigated the severity of TIV in several delay data sets and
highlighted the irregular behavior of TIV. We have also investi-
gated the problems caused by TIV in two representative neighbor
selection mechanisms (Vivaldi and Meridian) and the feasibility
of several strawman solutions. Finally, we have proposed a TIV
alert mechanism that can help identify edges with severe TIVs and
shown that it can enhance Vivaldi and Meridian to become TIV-
aware. We believe these findings serve as a first step towards build-
ing robust TIV-aware distributed systems.

Acknowledgment
We would like to thank our shepherd Albert Greenberg and the
anonymous reviewers for their valuable feedback on earlier ver-
sions of this paper.

8. REFERENCES
[1] Y. Chu, S. G. Rao, and H. Zhang. A case for end system

multicast. In Proceedings of ACM SIGMETRICS, June 2000.
[2] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practical

Internet coordinates for distance estimation. Technical
Report MSR-TR-2003-53, Microsoft Research, September
2003.

[3] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
decentralized network coordinate system. In Proceeding of
ACM SIGCOMM, August 2004.

[4] P. Francis, S. Jamin, V. Paxson, L. Zhang, D.F. Gryniewicz,
and Y. Jin. An architecture for a global Internet host distance
estimation service. In Proceedings of IEEE INFOCOM ’99,
New York, NY, March 1999.

[5] Michael J. Freedman, Karthik Lakshminarayanan, and David
Mazieres. Oasis: Anycast for any service. In Proceedings of
ACM NSDI, May 2006.

[6] J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and
J. W. O’Toole Jr. Overcast: Reliable multicasting with an
overlay network. In Proceedings of the Fourth Symposium on
Operating System Design and Implementation (OSDI),
October 2000.

[7] David R. Karger and Matthias Ruhl. Finding nearest
neighbors in growth restricted metrics. In Proccedings of
ACM Symposium on Theory of Computing, 2002.

[8] C. Kommareddy and B.Bhattacharjee. Finding close friends
on the internet. In Proceedings of the Ninth International
Conference on Network Protocols(ICNP), November 2001.

[9] J. Ledlie, P. Gardner, , and M. Seltzer. Network coordinates
in the wild. In Proceeding of USENIX NSDI’07, April 2007.

[10] J. Ledlie, P. Pietzuch, and M. Seltzer. Stable and accurate
network coordinates. In Proceeding of International
Conference on Distributed Computing Systems, 2006.

[11] Sanghwan Lee, Zhi-Li Zhang, Sambit Sahu, and Debanjan
Saha. On suitability of Euclidean embedding of Internet
hosts. In Proc. SIGMETRICS 2006, June 2006.

[12] H. Lim, J. Hou, and C.-H. Choi. Constructing internet
coordinate system based on delay measurement. In
Proceedings of IMC, Miami, FL, October 2003.

[13] Eng Keong Lua, Timothy Griffin, Marcelo Pias, Han Zheng,
and Jon Crowcroft. On the accuracy of embeddings for
internet coordinate systems. In Proceedings of IMC,
Berkeley, CA, October 2005.

[14] H. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring,
and A. Venkataramani. A structural approach to latency
prediction. In Proceedings of Internet Measurement
Conference, Rio de Janeiro, Brazil, 2006.

186

[15] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin
Dixon, Thomas Anderson, Arvind Krishnamurthy, and Arun
Venkataramani. iPlane: an information plane for distributed
services. In Proc. OSDI 2006, November 2006.

[16] Y. Mao and L. K. Saul. Modeling distances in large-scale
networks by matrix factorization. In Proceedings of Internet
Measurement Conference, Sicily, Italy, October 2004.

[17] T. S. E. Ng and H. Zhang. Predicting Internet networking
distance with coordinates-based approaches. In Proceedings
of IEEE INFOCOM, June 2002.

[18] T. S. E. Ng and H. Zhang. A network positioning system for
the internet. In Proceedings of USENIX Annual Technical
Conference, 2004.

[19] p2psim. http://www.pdos.lcs.mit.edu/p2psim/.
[20] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.

Lighthouses for scalable distributed location. In Proceedings
of IPTPS, 2003.

[21] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network
coordinates on planetlab. In Proceeding of the Second
Workshop on Real Large Distributed Systems (WORLDS’05),
2005.

[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, 2001.

[23] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.
large-scale peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware),
2001.

[24] B. Bhattacharjee S. Banerjee and C. Kommareddy. Scalable
Application Layer Multicast. In Proceedings of ACM
SIGCOMM, August 2002.

[25] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson.
The End-to-end Effects of Internet Path Selection. In
Proceedings of ACM Sigcomm, August 1999.

[26] P. Sharma, Z. Xu, S. Banerjee, and S. Lee. Estimating
network proximity and latency. ACM Computer
Communication Review, pages 39–50, 2006.

[27] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in Euclidean space. In Proceedings of
IEEE INFOCOM, San Francisco, CA, March 2003.

[28] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
Proceedings of IEEE INFOCOM, April 2004.

[29] A. Slivkins. Distributed Approaches to Triangulation and
Embedding. In Proceedings 16th ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2004.

[30] A. Slivkins, J. Kleinberg, and T. Wexler. Triangulation and
Embedding using Small Sets of Beacons. In Proceedings of
FOCS, 2004.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of ACM
SIGCOMM, 2001.

[32] L. Tang and M. Crovella. Virtual landmarks for the internet.
In Proceedings of IMC, Miami, FL, October 2003.

[33] Marcel Waldvogel and Roberto Rinaldi. Efficient
Topology-Aware Overlay Network. In First Workshop on
Hot Topics in networks (HotNets-I), October 2002.

[34] Bernard Wong, Aleksandrs Slivkins, and Emin Gun Sirer.
Meridian: A lightweight network location service without
virtual coordinates. In Proceedings of ACM SIGCOMM,
August 2005.

[35] B. Zhang, T.S.Eugene Ng, A.Nandi, R.Riedi, P.Druschel, and
G.Wang. Measurement-based analysis, modeling, and
synthesis of the internet delay space. In Proceedings of ACM
SIGCOMM/USENIX Internet Measurement Conference
(IMC), October 2006.

[36] R. Zhang, Y. Hu, X. Lin, and S. Fahmy. A hierarchical
approach to internet distance prediction. In Proceedings of
IEEE ICDCS, Lisboa, Portugal, 2006.

[37] R. Zhang, C. Tang, Y. Hu, S. Fahmy, and X. Lin. Impact of
the inaccuracy of distance prediction algorithms on internet
applications: an analytical and comparative study. In
Proceedings of IEEE INFOCOM, Barcelona, Spain, April
2006.

[38] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
infrastructure for wide-area fault-tolerant location and
routing. U.C. Berkeley Technical Report
UCB//CSD-01-1141, 2001.

[39] Han Zheng, Eng Keong Lua, Marcelo Pias, and Timothy
Griffin. Internet routing policies and round-trip times. In the
6th anual Passive and Active Measurement Workshop,
Boston, MA, 2005.

187

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

