Transparent TCP Acceleration Through Network
Processing

Tilman Wolf, Shulin You, and Ramaswamy Ramaswamy

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003
{wolf,syou,rramaswa} @ecs.umass.edu

Abstract— Transparent TCP acceleration is an approach to
increasing TCP throughput without requiring any changes in
end-system TCP implementations. Network processing technol-
ogy is used to intercept and transparently relay TCP connections
inside the network. Due to the transparent nature of the system,
incremental deployment and opportunistic acceleration is easily
possible. The simulation results show that a single acceleration
node can improve throughput twofold. More acceleration nodes
can further increase the performance improvement, particularly
on lossy links.

I. INTRODUCTION

TCP is a commonly used transport layer protocol in the
Internet. It provides reliability, flow control, and congestion
control services on top of the lossy, best-effort network layer.
There are a number of control mechanisms that are imple-
mented in TCP that determine when a packet is considered
lost, when to retransmit, and when to sow down the rate
of transmission. Over the past decades, many components
of the TCP protocol have been fine tuned to incrementally
increase the overall TCP performance. In al these approaches,
the network itself was considered an interconnect that simply
moves data from one end-system to another. Only small
changes in the network functionality were considered (e.g.,
RED, FRED, etc.) to support TCP performance.

In our work, we make use of recently developed network
processor technology to implement TCP accelerators inside
the network. We show that this approach can significantly
improve the performance of TCP connections and it can be
incrementally deployed. The significance and potential impact
of these results is considerable since the deployment of such
TCP accelerators improves the performance that any network
user can experience.

The idea of a TCP accelerator is to use a network processor,
which is typically located on router systems, to terminate
TCP connections inside the network processor and then relay
the data to a second connection towards the end system. It
is possible to have numerous TCP accelerators in a single
end-to-end connection. The performance improvement comes
from reducing the delay in the feedback loop that can trigger
retransmissions. It is important to note that the feedback loop
is aways active and retransmissions are often necessary due to
the TCP behavior of continuoudly increasing the transmission
bandwidth until packet loss occurs. As a result, even under

ideal conditions (no packet loss due to link errors and no con-
tention for bandwidth), retransmissions happen. The shorter
the feedback loop is to trigger the retransmission, the higher
the overal performance of the connection.

In order to implement a TCP accelerator, it is necessary to
augment routers with the ability to store packets and perform
TCP-compliant processing of packets. Network processors
(NPs) are ideal systems to perform this task. NPs are usualy
implemented as embedded multiprocessor systems-on-a-chip
with considerable amounts of processing power and memory
and are software programmable.

In this paper, we discuss the practical issues of implement-
ing and deploying TCP accelerators as well as present simula-
tion results that show the potential performance improvements
given practical constraints on placement and memory capacity.
We show that it is feasible to implement a TCP accel erator that
supports hundreds to thousands of simultaneous connections
on an off-the-shelf network processor. The simulation results
show that even a single acceleration node can achieve twofold
throughput improvement. On lossy links and with more nodes,
even higher throughput speedup is possible.

Section |1l discusses related work. Section Il discusses
the operational and implementation details of an acceleration
node. Section IV discusses deployment issues and Section V
presents simulation results.

Il. RELATED WORK

There has been a large body of work on improving TCP
throughput, which has mainly focused on developing different
flavors of TCP (e.g., Vegas vs. Reno) on the end-system. We
are addressing acceleration techniques inside the network.

A. TCP Acceleration Techniques

The performance of an end-to-end transport protocol de-
grades in long-haul data transmission over lossy links. A
recent study on overlay networks by Liu et a. [1] has shown
that breaking a long end-to-end TCP connection into multiple
shorter TCP “relay” connections can improve efficiency and
fairness. The theoretical results from this study are the basis
of our work. The main difference is that we are considering a
transparent use of TCP relay nodes inside the network. This
means that the end-system does not have to be configured to
use overlay networks. From a practical point of view, this is



an important aspect as changes in end-system software are
difficult to deploy.

Other examples of work show how the use of multiple TCP
connections can improve throughput. Split TCP connections
are used to cope with differences in the communication media
that could cause the congestion control window to close.
The idea is to split the connection at the boundary in order
to isolate performance issues that are related to a particular
medium. This was implemented in [-TCP [2], [3]. Ananth and
Duchamp introduce the idea of implementing a single logical
end-to-end connection as a series of cascaded TCP connections

[4].
B. TCP Processing on Routers

In addition to theoretical work on TCP connections, there
are numerous examples where some sort of TCP processing
has been implemented inside the network (i.e., on a router).
A commonly used technique for building application layer
firewalls involves inserting a TCP proxy in the communication
path of the two communicating end points. Spatscheck et
al. show in [5] that TCP connection splicing improves TCP
forwarding performance by afactor of two to four as compared
to simple IP forwarding on the same hardware.

Layer 4 switches that provide load balancing and transport
layer caching functionality often perform TCP traffic redirec-
tion. TCP splicing of such redirected connections significantly
improves forwarding performance [6], [7] and is an example
of simple TCP-level processing of packets on a router.

C. TCP Processing on Network Processors

Network processors are embedded system-on-a-chip mul-
tiprocessors that are used to implement packet processing
functions on the input and output ports of routers. Commercial
examples of network processors are the Intel 1XP2400 [8], the
EZchip NP-1[9], and the Agere FPP [10]. Network processors
have been used in a number of scenarios to provide advanced
packet processing functions ranging from simple forwarding
[11] to complex functions like network measurement [12].

In the context of TCP processing, network processors have
been used to offload TCP processing from high-end server
systems [13]. Moving complex TCP processing from end-
systems into specialized networking hardware reduces the
system load and frees up resources. In our work, the TCP
accelerator provides similar functionality as a TCP-offloading
system. Instead of providing an interface between the network
and a host, the TCP accelerator acts as a connector between
two TCP connections inside the network. Packets are buffered
and forwarded using a modified TCP state machine.

I1l. TCP ACCELERATOR NODE
A. System Architecture

Figure 1 shows the architecture of a TCP acceleration
node. The router system implements two forwarding paths for
packets. Packets that cannot be accelerated due to resource
constraints or non-TCP protocols are forwarded without any
modification. In order to identify such packets, it is necessary

(W

Router with Network Processor
packet P
—> oR a P R ——
classification forwarding
IP input TCP IP output
processing acceleration processing
TCP TCP state
accelerator memory

Fig. 1. System Architecture of TCP Acceleration Node.

LISTEN

R1: SYN

T1: SYN+ACK

T2: SYN
R1: SYN R2: SYN+ACK

T1: SYN+ACK T2: ACK — R2: SYN+ACK
dimeout <\< NP_RCVD )—» EST 2 — T3 ACK

T2: SYN

R1: ACK R1: ACK

R1: ACK R2: SYN+ACK

<;;< EST 1 )%ESTABLISHED

—
—R1:FIN
T1: ACK
T2:FIN

timeout
T2: SYN

R1: FIN
T1: ACK
T2:FIN

R1: FIN R2: ACK

TEACK /1 0SE WAIT TL FIN CLOSED i — _RZACK
timeout - TL:FIN

T2: FIN

Fig. 2. Connection Establishment and Teardown States of TCP Accelerator
for Unidirectional Transfer. R1 indicates reception of data from incoming
connection, T2 indicates transmission of data on outgoing connection (T1
and R2 respectively).

to have a packet classification mechanism (e.g., simple 5-tuple
hash function). Packets that are accelerated require layer 3 and
layer 4 processing, which involves IP input processing, TCP
acceleration, and IP output processing. The TCP accelerator
has access to a large memory to store TCP state (connection
state as well as data buffers).

It is important to note that packets which are processed
in the TCP accelerator are not addressed to the router system
that performs the acceleration. Instead, the router transparently
intercepts these packets and performs the acceleration. The end
systems are also unaware of this processing that is performed
by the router.

B. TCP Connection Handling

The TCP connection management is illustrated by the TCP
state machine in Figure 2. It is simpler than a conventional
state machine because the possibilities for connection estab-
lishment and teardown are limited by the pipeline nature of a
TCP accelerator.



The connection setup operates as follows. When the TCP
accelerator receives a SYN segment from the requesting end
(sender), it responds with SYN/ACK containing its initial
sequence number. The accelerator then sends a SYN request
segment to the receiving end with another initial sequence
number. The connection is in the NP_RCVD state indicating
that a connection establishment is in progress. If the TCP
accelerator receives the ACK from the sender the connection
has been established with the sender and the state is EST_1.
Similarly, if the receiver responds first, then the connection
establishment is completed by sending an ACK and moving
to state EST_2. Eventualy, both connections to sender and
receiver are established and thus the TCP accelerator moves
into the established state.

To handle data packets the TCP accelerator receives a
packet, buffers it and acknowledges it to the sender. Then
it transmits the data to the receiver (changing the sequence
number and possibly even the packet size). It is important to
note that by acknowledging the packet to the sender, the TCP
accelerator has taken “responsibility” for the packet. Due to
the acknowledgement the sender will release the buffer where
the packet was stored and future retransmissions will not be
possible. The TCP accelerator on the other hand must maintain
the copy of the packet until it receives an ACK from the
receiver. If no buffer space is available (e.g., due to backlog),
the TCP accelerator must not ACK packets from the receiver,
thus causing packet loss and a reduction in the congestion
window size. Alternatively, it can also proactively advertise a
smaller window size (i.e., employing flow control).

For connection termination, the sender sends a FIN as
the result of the application issuing a close. When the TCP
accelerator receives a FIN, it sends an ACK back to the
requesting end and a FIN to the receiving end. From now on,
the connection is in CLOSE_WAIT until the TCP accelerator
receives an ACK from the receiving side. Then the TCP
accelerator sends a FIN to the sender and the connection goes
to CLOSED.

C. Processing and Memory Resources

TCP processing requires additional processing and memory
resources as compared to plain |P forwarding. The processing
consists of IP input and output processing as well as TCP
processing. The total processing requirements in terms of the
number of RISC instructions executed can be estimated to be
around 200 instructions for I P processing [14], 190 instructions
for receiving TCP segments, and 210 for transmitting TCP
segments [15].

The memory requirements are determined by the size of
the TCP connection state (tens of bytes) and the TCP buffer
size (tens of kilobytes). The buffer requirements for a TCP
accelerator are determined by the maximum window size that
is allowed on a connections. The accelerator needs to reliably
buffer all packets that have not been acknowledged by the
receiver plus all packets that can possible be sent by the sender.
Thus, the ideal buffer size is two times the maximum window
size of the connection.

Typica network processor systems are equipped with mul-
tiple processor cores (four to sixteen) and large SRAM
and DRAM memories (1-BMB SRAM, 64-256MB DRAM).
Assuming a maximum window size of 64kB, a buffer of
128kB needs to be alocated for maximum efficiency. With
this configuration a total of one thousand connections can
be supported by 128MB of memory. This is sufficient to
support most TCP connections on low-speed edge routers.
The additional processing regquirement for these connectionsis
well below 1IMIPS and thus easily achievable with any current
network processor.

IV. TCP ACCELERATED NETWORKS

When using TCP accelerators in a network, several issues
need to be considered.

A. Accelerator Placement

There is one key constraint on the placement of a TCP
accelerator. All TCP packets of an accelerated connection need
to pass through the accelerator node for it to work properly.
Due to the transparency of the accelerator, the end-system is
not aware of the placement of the node and thus cannot “force”
traffic on a certain route. It is therefore possible that packets
take different routes and thus cause incorrect behavior.

Routing changes do happen in networks, but there are
topological aspects that can guarantee proper operation if the
TCP accelerator is placed appropriately. Many end-systems
and subnetworks have only a single access link to the Internet
(e.g., hosts connected through access routers or stub-domains).
In such a case, there are no options for routing aternatives
and traversal of that router is guaranteed. These routers are
particularly suitable for TCP acceleration as they match the
performance characteristics that can be achieved by an imple-
mentation on network processors.

B. Incremental Deployment

A crucial property of any new networking technology is that
it can be deployed easily into the existing infrastructure. TCP
acceleration is a feature that can improve performance, but
is not required for correct network operation. Therefore it is
ideal to be deployed incrementally as new routers with network
processing capabilities are deployed. It could be conceivable
that Internet Service Providers (ISPs) provide acceleration
technology initialy to their premium customers (which might
not exceed the maximum number of accelerated connections
on any given router). Also, it is possible to make acceleration
available as a best-effort feature, where routers accelerate a
TCP connection if buffer memory is available at connection
time.

V. RESULTS

We show simulation results to demonstrate that TCP ac-
celeration can effectively increase the throughput of data
transfer. The experiments were carried out on the NS-2 [16]
simulator. The Full Tcp agent (with Reno congestion control)
was modified to create a new agent that is aware of the



Speedup

0.5 B

0 1 1 1 1
20 40 60 80

Delay from source [ms]

100

o

Fig. 3. Speedup of Accelerated TCP over
Regular TCP Depending of Location on Node.
The x-axis shows the distance of the accelerator
from the source with a total end-to-end delay of
100ms.

T T T T T T T
2 -
15 B
Q.
=]
=}
3
Q 1r T
%)
0.5 B
O 1 1 1 1 1 1 1
0O 20 40 60 80 100 120 140 160
Processing delay [ms]
Fig. 6. Speedup of Accelerated TCP over

Regular TCP Depending on Processing Delay of
Acceleration Node. The x-axis shows the amount
of delay introduced due to acceleration process-

N i
15 E
o
=]
o
[}
1 1r h
(2]
05 | R
O Il Il Il Il Il Il
10t 102 10° 10* 10° 10° 107 10°
Amount of data transferred [bytes]
Fig. 4. Speedup of Accelerated TCP over

Regular TCP Depending on Connection Duration.
The x-axis shows the amount of data that is
transferred.

- i
=]
el
[
(7] -
o
]
1 1 1 1 1
20K 40K 60K 80K 100K 120K
Maximum window size [bytes]
Fig. 7. Speedup of Accelerated TCP over

Regular TCP Depending on Maximum Window
Size. The x-axis shows the amount of data that
can be stored on an acceleration node.

10 4

Speedup

0 1 1 1 1
0 2 4 6 8 10

Number of relay nodes

Fig. 5.  Speedup of Accelerated TCP over Reg-
ular TCP Depending on Number of Accelerators.
The x-axis shows the number of evenly spaced
acceleration nodes with a total end-to-end delay
of 100ms.

1000 T T T T
2 hops —+—
4 hops ---x---
x
a 100 o
=]
el
(5]
[
oy
10 E
l 1 1 1 1
0.001 0.01 0.1 1 10 100
Packet loss [%)]
Fig. 8. Speedup of Accelerated TCP over

Regular TCP Depending on Packet Loss Rate.

ing.

TCP acceleration mechanism. Additionally, a new application
modul e was devel oped to pull data from the TCP receive buffer
and transfer it to the next accelerator node or the end system.
This application is used to simulate the functionality of the
TCP accelerator node.

In the following subsections, we explore different aspects
of TCP acceleration by varying accelerator node placement,
introducing packet loss, constraining available processing re-
sources and varying network topology. In each case, we
compare the throughput speedup offered by TCP acceleration
over regular TCP. By “Regular TCP” we mean a standard NS-
2 FullTcp agent on the same topology. The total end-to-end
delay for al experiments is 100ms (unless stated otherwise).
Unless explicitly specified, link bandwidths are 100Mb, and
the RED queuing discipline is used. The FTP application is
used to provide data transfer.

A. Single Relay Node

First, we explore the speedup offered over regular TCP for
different placements of a single accelerator node over a link.
The placement of the node is varied by changing the distance
(delay) of the accelerator node from the source. The results
are shown in Figure 3 and show that evenly spaced accelerator
nodes are best as they cut the link delay for both sides into half.
Unevenly split connections can still benefit from acceleration
as the speedup is always greater than 1.

B. Connection Duration

One question that is particularly important in the context of
web transfersis the connection duration. Many web documents
consist of small objects and TCP connections to download
them are often very short. We obtain Figure 4 by exploring
the connection duration with a single accelerator node in the
middle of the topology. There is some overhead in accelerated
TCP only for the initial ACK. Transfers of a few kilobytes
already achieve an overall speedup of 1.5. The maximum
speedup for for a singe accelerator node is 2 and large file
transfers converge to this value.

C. Multiple Acceleration Nodes

The maximum speedup with a single acceleration node
is 2. The question arises as to how much speedup multiple
acceleration nodes can achieve. The resultsin Figure 5 assume
evenly spaced acceleration nodes totaling an end-to-end delay
of 100ms. The maximum speedup increases linearly with the
number of nodes. Thisis due to the reduced round-trip time for
each connection, which allows faster acknowledgement of sent
data and transmission of the next window. It should be noted
that in this case the connection throughput is flow-control-
limited, not congestion-control-limited. In the latter case, the
speedup would be limited by the available bandwidth.



1Gbps
100ms
no loss

50Mbps /" 100Mbps /", ™\
10ms 3oms  \ "/

0.1% loss no loss

/A )_100Mbps
10ms
1% loss

Fig. 9. Topology with Unevenly Spaced Nodes and Different Link Properties.

D. TCP Processing Delay

The previous experiments assume that the processing delay
for TCP acceleration is negligible. As we have discussed
in Section I11-C, TCP acceleration can incur a significant
processing cost and it is important to see what impact this has
on the achievable speedup. The results for a single accelerator
node with varying processing delay are shown in Figure 6.
Even with a processing delay of 40ms (which is very large,
even for complex packet processing functionality), accelerated
TCP still performs better than regular TCP. Processing delays
in the lower millisecond range have hardly any impact on the
overal performance.

E. Acceleration with Limited Memory

In addition to processing power, TCP acceleration aso
requires a significant amount of buffer space to be maintained
per connection. In Figure 7, we vary the maximum window
size on the accelerator node and plot the speedup obtained
over regular TCP. The window size is half the amount of
data that must be stored on the node in the worst case. The
accelerator performs best if the window sizeis at least as large
as the maximum window size used by the sender and receiver.
Smaller window sizes linearly decrease the throughput. Larger
window sizes doe not improve performance, because the
sender cannot utilize the larger window.

F. Acceleration of Lossy Links

One scenario where accelerated TCP significantly outper-
forms regular TCP is on lossy links (e.g., wireless links). The
throughput is higher because local retransmissions from the
accelerator node can repair the loss locally and do not require
end-to-end retransmissions. Figure 8 shows the speedup of a
single accelerator node (“2 hops’) and three accelerator nodes
(“4 hops”) over regular TCP for different packet loss rates. For
loss rates around 1-10%, the speedup on a multihop topology
is close to tenfold. For higher loss rates (which are unlikely
to be encountered in a redlistic network) the speedup is even
higher.

G. Realistic Topology

Finally, we show the results of one setup that uses a more
realistic topology and combines the effects of placement,
processing delay, and lossy links. The topology is shown in
Figure 9 and a processing delay of 20ms is assumed for all
three acceleration nodes. Regular TCP achieves a through-
put of 19.1kbps on this topology. Accelerated TCP achieves
72.7kbps, which is egqual to a speedup of 3.8. This illustrates
that TCP acceleration can provide significant performance
improvement in a broad range of network environments, even
if acceleration nodes are not placed evenly and even if an
additional processing delay is incurred.

VI. SUMMARY

In this work, we have introduced a transparent TCP accel-
eration technique that can speedup TCP connections without
end-system support. We have discussed how such an accelera-
tion system can be implemented on a network processor. The
simulation results that we have presented show that a single
acceleration node can speedup TCP connection twofold on
lossless and more on lossy links. Multiple acceleration nodes
can further increase the attainable throughput. As a next step,
we plan to implement this system on an Intel 1XP2400 system.

ACKNOWLEDGEMENTS

The authors would like to thank Yong Liu and Yu Gu for
providing the NS-2 simulation code used in [1], which has
served as the basis for the simulations presented in this paper.

REFERENCES

[1] Y. Liu, Y. Gu, H. Zhang, W. Gong, and D. Towsley, “Application level
relay for high-bandwidth data transport,” in Proc. of First Workshop on
Networks for Grid Applications (GridNets), San Jose, CA, Oct. 2004.

[2] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for mobile hosts” in
Proc. of Fifteenth Intl. Conf. on Distributed Computing Systems, May
1995.

[3] ——, “Implementation and performance evaluation of indirect TCP,”
|EEE Transactions on Computers, pp. 260-278, Mar. 1997.

[4 A. I. Sundarargj and D. Duchamp, “Analytical characterization of
the throughput of a split TCP connection,” Department of Computer
Science, Stevens Ingtitute of Technology,” Technical Report, 2003.

[5] O. Spatscheck, J. S. Hansen, J. H. Hartman, and L. L. Peterson,
“Optimizing TCP forwarder performance,” |IEEE/ACM Transactions on
Networking, pp. 146-157, 2000.

[6] A. Cohen, S. Rangargjan, and H. Slye, “On the performance of TCP
splicing for URL-aware redirection,” in USENIX Symposium on Internet
Technologies and Systems, 1999.

[7] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D. Saha,
“Design, implementation and performance of a content-based switch,”
in Proc. of IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000, pp.
1117-1126.

[8] Intel Second Generation Network Processor, Intel Corporation, 2002,
http://www.intel.com/design/network/products/npfamily/ixp2400.htm.

[9] NP-110-Gigabit 7-Layer Network Processor, EZchip Technologies Ltd.,

Yokneam, Israel, 2002, http://www.ezchip.com/html/pr_np-1.html.

PayloadPlus”’™ Fast Pattern Processor, Lucent Technologies Inc.,

Apr. 2000, http://www.agere.com/support/non-nda/docs/FPPProduct-

Brief.pdf.

T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building a robust

software-based router using network processors,” in Proc. of the 18th

ACM Symposium on Operating Systems Principles (SOSP), Banff, AB,

Oct. 2001, pp. 216—229.

R. Ramaswamy, N. Weng, and T. Wolf, “A network processor based

passive measurement node,” in Proc. of Passive and Active Measurement

Workshop (PAM), Boston, MA, Mar. 2005, pp. 337-340, (Extended

Abstract).

Maximizing HP StorageWorks NAS Performance and Efficiency with

TCP/IP offload engine (TOE) Accelerated Adapters, Hewlett-Packard

Company, Mar. 2003, http://www.alacritech.com.

R. Ramaswamy, N. Weng, and T. Wolf, “Analysis of network processing

workloads,” in Proc. of |IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), Austin, TX, Mar. 2005, pp.

226-235.

D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An analysis of

TCP processing overhead,” |EEE Communications Magazine, vol. 27,

no. 6, pp. 23-29, June 1989.

The Network Smulator - ns-2, LBNL, Xerox PARC, UCB, and USC/1SI,

http://www.isi.edu/nsnam/ng/.

(10

(11

(12]

(13]

(14

(19]

(16]



