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Abstract

Several strands of research in the fields of linguistics, speech perception,
and neuroethology suggest that durational modelling of a acoustic event
landmark-based representation is a scientifically plausible approach to the
automatic speech recognition (ASR) problem. Adopting a point process
representation of the speech signal opens up ASR to a large class of statisti-
cal models that have seen wide application in the neuroscience community.
In this paper, we formulate several point process models for application to
speech recognition, designed to operate on sparse detector-based represen-
tations of the speech signal. We find that even with a noisy and extremely
sparse phone-based point process representation, obstruent phones can be
decoded at accuracy levels comparable to a basic hidden Markov model
baseline and with improved robustness. We conclude by outlining various
avenues for future development of our methodology.

1 Introduction

In this paper, we investigate statistical point process models in the context of
automatic speech recognition. Such models arise naturally if one wishes to
explicitly engage the following facts regarding speech production and percep-
tion:

1. Speech is generated by the movement of independent articulators that
produce acoustic signatures at specific points in time. Some examples are
the point of greatest sonority at the center of a syllabic nucleus, the points
of closure and release associated with various articulatory movements
such as closure-burst transitions for stop consonants; obstruent-sonorant
transitions; and onsets and offsets of nasal coupling, frication, or voic-
ing. Phonetic information is coded both in terms of which events occur
as well as the durations between these events (e.g. voice onset time).
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Stevens (2002) refers to such points in time as acoustic event landmarks
and assigns them a central status in lexical decoding.

2. Perceptual and neurophysiological studies of speech perception (see Poep-
pel et al., 2007 for an account) suggest that there are two fundamental
time scales at which information is processed. The first is the time scale
at which various segmental and subsegmental units occur (25-80 ms).
The second is the time scale at which suprasegmental or syllabic integra-
tion occurs (150-300 ms). This suggests that phonetic information is inte-
grated at syllabic timescales and syllable sized units are perceptual prim-
itives that are central to phonetic decoding (see Greenberg et al., 2003, for
a related treatment).

3. A series of neuroethological studies has identified neurons that fire se-
lectively when a certain constellation of acoustic properties are present
in the stimulus. For example, the existence of such combination-sensitive
neurons in the auditory cortex of several animal species has been demon-
strated (birds byMargoliash and Fortune (1992), bats by Esser et al. (1997),
and frogs by Fuzessery and Feng (1983)). These findings led to the for-
mulation of the detector hypothesis (see Suga, 2006), which states that a
biologically important acoustic signal is represented by the excitation of
detector (or, more generally, information-bearing parameter filter) neu-
rons selectively responsive to its presence. The related synchronization
hypothesis suggests that auditory information is further encoded in the
temporal pattern of such neural activity, i.e., temporal coding. There is
evidence that such principles are instantiated in auditory systems more
generally (Suga, 2006).

Taken together, these observations suggest that speech may be (i) adequately
represented as an asynchronous collection of acoustic or perceptual events that
need not be tied to a common clock or constant frame rate, and (ii) decoded according
to the temporal statistics of such events. The need therefore arises to formulate
and evaluate recognition strategies that can operate on representations based
on the firing patterns of nonlinear detectors specialized for various acoustic
events or properties.
Thus we consider a sparse detector-based representation of the speech sig-

nal that should efficiently encode the underlying linguistic content. In general,
the detector set may include detectors for any setF of linguistic properties (e.g.
phones or distinctive features) or acoustic signatures (e.g. band energy inflec-
tion points or periodicity maxima).1 The linguistic information is a sequence

1The design of a suitable family of detectors is itself the subject of an interesting program of
research (see Stevens and Blumstein, 1981; Stevens, 2002; Niyogi and Sondhi, 2002; Pruthi and
Espy-Wilson, 2004; Amit et al., 2005; Xie and Niyogi, 2006)). However, we will not explore this
question in any detail here. Rather, we will assume that a detector based representation is made
available to us and models for recognition will have to be constructed from such representations.
In our own experiments in this paper, we choose a simple phone-based detector set, which we
define in Section 3.1.
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Figure 1: Architecture of our event-based framework. In general, we construct
one signal processor Si for each acoustic property of interest (F = |F|), which
produces a specialized representation Xi. Each representation is input to a
detector Di for the property, producing a point process Ni. The combined set
of point processes for all of the detectors (R) is probabilistically integrated to
predict a phonological sequence.

over some alphabet P , which may, for example, be the set of phones, broad
classes, distinctive features, articulatory variables, or even syllables or words.
Figure 1 shows a schematic of our architecture.
In this paper, we assume one has a detector for each phonological unit p ∈

P (i.e. F = P), each producing a point process Np = {t1, . . . , tnp
}, where

each ti ∈ R+. Arrivals of each process, which may be viewed as acoustic
event landmarks, should ideally occur when and only when the corresponding
phonological unit is maximally articulated and/or most perceptually salient.
Furthermore, asynchronous detectors imply that the quantization of arrivals
of each phonological unit’s process may vary. In practice, creating an ideal
detector is of course unachievable, so we may generalize this notion to marked
point processes, {Np,Mp}, where the marksMp = {f1, . . . , fnp

} are interpreted
as the strengths (e.g. probabilities) of the corresponding landmarks.
In Section 2, we consider several statistical models that are natural choices

when presented with such a marked point process representation of the speech
signal. In order to evaluate the potential merits of each model, we consider
the problem of phonetic recognition in obstruent regions, a speech recognition
subtask that is consistent with the multi-scale analysis hypothesis of Poeppel
et al. (2007). In particular, this subtask comprises one module in our previous
hierarchical approach to recognition in which one first chunks the signal into
sonorant and obstruent regions and decodes each separately (see Jansen and
Niyogi, 2007). While decoding these constrained-length obstruent sequences
may be viewed as a large multi-class classification task, we evaluate perfor-
mance in the context of a recognition problem, tabulating phone-level inser-
tion, deletion, and substitution errors.
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Given the linguistic and neuroscientific motivation described above, we
view the investigation of point process models for speech recognition as a nat-
ural research question. Yet to the best of our knowledge, there has been no
prior study of the potential use of suchmodels in automatic speech recognition.
For related investigations in the context of neuroscience, see Brown (2005), Chi
et al. (2007), Truccolo et al. (2005), and references therein. From our experi-
ments, we find that by adopting a suitable statistical model, it is possible to re-
cover the linguistic content of the speech signal from an extremely sparse point
process representation. In addition to the information-theoretic efficiency that
such sparse coding provides, we believe that sparse representations are more
invariant and thus may lead to greater robustness in the resulting recognition
systems. While this assertion has not been previously explored for speech, it
certainly has merit in context of visual processing (see Olhausen, 2003; Geiger
et al., 1999; Serre et al., 2007).

2 Statistical Models

In this section, we present several statistical models to recover the phonological
sequence generating a segment of speech given the point process representa-
tion defined above. The naive and hidden Markov model-based approaches
can be applied globally to an entire utterance. However, for the explicit time-
mark and Poisson process models, wemust first process the utterance into rela-
tively short segments whose space of possible underlying sequences is limited
by phonological constraints.

2.1 Naive Approach

The simplest method of converting a set of point processes {Np} to a label
sequence S is to sort the landmarks and read off the labels. Formally, given a
set of landmarks {tpi

i } over phonological units pi ∈ P where tpi

i < t
pj

j for i < j,
the sequence is determined by

S = p1p2 . . . pN .

The problemwith this approach is that integrating insertion-prone detectors in
this manner quickly leads to a significant deterioration in performance. For ex-
ample, integrating 20 detectors, each with a mere 5% false positive rate, could
theoretically combine to a 100% overall insertion rate. It follows that success-
ful decoding of a noisy point process representation will require a probabilistic
detector integration strategy.

2.2 Point Process Hidden Markov Model (PPHMM)

A hidden Markov model can not be directly applied to an asynchronous set of
point processes R = {Np,Mp}p∈P , where each t ∈ Np may be any real number
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for all p ∈ P . However, if our point processes are synchronous (i.e. for all
tp ∈ Np and tp′ ∈ Np′ , there exists n,m ∈ Z

+ and ∆t ∈ R
+ such that tp = n∆t

and tp′ = m∆t), we may construct a sparse vector time series representation
V = ~v1~v2 . . . ~vT defined by

~vl[j] =

{

fk ∈ Mpj
if ∃k s.t. tk ∈ Npj

and tk = l∆t
0 o/w

(1)

We can then proceed to applying a continuous density HMMmodel to recover
the hidden state sequence S = s1s2 . . . sT for st ∈ P by maximizing the joint
probability over S and V . Under the Markov assumption, this term takes the
form

log P (V, S) =

T
∑

t=1

[log P (~vt|st) + log P (st|st−1)]. (2)

The transition probabilitiesP (st|st−1) can be determined by counting the frame-
level transitions according to the transcription. For modelling the distributions
P (~vt|st) over new input vector space, which tends to have sparse support, ap-
plying a Gaussian mixture model (GMM) is not a natural choice, nor does it
work in practice. We instead consider two more appropriate models: (i) bino-
mial mixture models (BMM) for the unmarked point process representation,
and (ii) histogram method estimation for the marked representation.
For the case of an unmarked point process representation, where the vec-

tor time series V is binary-valued, we model the emission densities using B-
component multivariate binomial mixture models of the form

P (vt|pt = p) =
B

∑

b=1

ωpbB(~qpb)(~vt). (3)

where
∑C

b=1 ωpb = 1(ωpb > 0) for each p ∈ P . Here, the function B(~qpb) is the
bth binomial mixture component in the context of phonological unit p, given by

B(~qpb)(~v) =
∏

i

(qpb[i])
v[i]

(1 − qpb[i])
(1−v[i])

, (4)

where qpbi ∈ [0, 1] is the bth component probability of a detection in the ith

component in the context of p. A maximum likelihood estimate of the BMM
parameters may be found using the expectation-maximization (EM) algorithm.
If we consider a marked point process representation, the vector time series

is no longer binary-valued and the BMM is no longer applicable. Instead, we
consider a histogram estimate of the vector space with a common bin width∆v
for all coordinates. Assuming the coordinates are conditionally independent,
we may write

P (vt|pt = p) =

|P|
∏

j=1

Hpj(~vt[j]), (5)
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whereHpj is the histogram estimate of the distribution of the jth coordinate in
the context of phonological unit p.
Finally, it is important to note that the sparse nature of the point process

representation can produce a significant amount of zero vectors (i.e., ~vt = ~0)
at times when no landmarks occurred. The emission probability distributions

estimated for each state will each yield a constant value Kp = P (~0|p) when
the zero vector is encountered. If we set aside the transition probabilities for

a moment, it follows that for all t such that ~vt = ~0, the optimal state is always
pt = arg maxp Kp, which could conceivably lead to serious insertion problems.
Therefore, it is vital that the transition probabilities be able to prevent falling
into this default state every time the zero vectors occur. If not, a possible solu-
tion is to define an augmented state space P ′ ≡ {P, ǫ}, where ǫ is a null state
to model the zero vectors. Then, occurrences of this null state in the decoding
can simply be omitted.

2.3 Explicit Time-Mark Model

Consider a maximum a posteriori (MAP) estimate of the phonetic sequence S
given the observed point process representation R = {Np,Mp}p∈P and the
duration of the segment T = T2 − T1, given by

S∗ = arg max
S∈P∗

log P (S|R, T ) = arg max
S∈P∗

P (R|S)P (T |S)P (S), (6)

where we have assumed conditional independence between the point process
and the segment duration. We would like to deal with the term P (R|S) by
explicitly modelling the times and strengths of landmarks observed. Since all
landmarks within a given segment lie in the interval [T1, T2], we begin by nor-
malizing the segment length and landmark times to the interval [0, 1]. Wemake
the simplifying assumption that all landmarks are independent, allowing us to
factor P (R|S) into

P (R|S) =
∏

p∈P

np
∏

i=1

P (tpi , f
p
i |S). (7)

Training requires the estimation of the distribution over (t, f) ∈ [0, 1]2 for each
S. Given a sets of training segments for each possible S, these distributions can
be found using standard techniques such as histogram or kernel smoothing
methods once given the observed landmarks in the segments.
In our experiments, we employ a uniform kernel density estimator forP (T |S)

and P (tp, fp|S). For the univariate P (T |S) distributions, this takes the form

P (T |S) =
1

N∆T

N
∑

i=1

K

(

T − Ti

∆T

)

,
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where K(x) = 1[|x| < 1], ∆T is the smoothing bandwidth, and {Ti}
N
i=1 are

the durations of N training segments containing S. For the bivariate kernel
density estimates of P (tp, fp|S), we write

P (t, f |S) =
1

L∆t∆f

L
∑

i=1

K

(

t − tpi
∆t

)

K

(

f − fp
i

∆f

)

,

for time and strength bandwidths∆t and∆f , respectively, andwhere {tpi , f
p
i }

L
i=1

are the time-strength pairs for all landmarks of class p observed in segments
containing S.

2.4 Poisson Process Model

The marked point process representation makes a Poisson process model a
natural choice for the P (R|S) term of Equation 6. This model comes in two
varieties: homogeneous and inhomogeneous. A homogeneous Poisson pro-
cess assumes that in any differential time interval dt the probability of an ar-
rival is λdt, where λ ∈ R

+ is the process rate parameter. This probability is
independent of spiking history, resulting in a memoryless point process. For
the inhomogeneous case, the constant rate parameter is generalized to a time-
dependent function λ(t), but the memoryless property still holds. Finally to
handle a marked point process, we can consider a rate parameter λ(t, f), which
depends on both the time t and the strength f of the landmark. As done for
the explicit time-mark model, we must normalize the landmark times in each
obstruent segment to the interval [0, 1] for each Poisson process model variant
discussed below.

2.4.1 Homogeneous Poisson Process

Consider a collection of independent point processes Np = {t1, . . . , tnp
}, one

for each p ∈ P , contained in the interval (0, T ]. If Np(t) ≡ |{ti|ti ≤ t}| is the
number of landmarks in the interval (0, t], then for a homogeneous Poisson
process, we may write

Pa,b(k) ≡ P [Np(b) − Np(a) = k] =
(λτ)ke−λτ

k!
,

where τ = b − a. It follows the probability that the first arrival occurs after
time t is P [t1 > t] = P0,t(0) = e−λt. Therefore, the probability that the first
landmark lies in the interval (t, t + dt] is P [t1 ∈ (t, t + dt]] = λe−λtdt, which
leads to a corresponding density function

f(t) = λe−λt.

Since the process is memoryless, the probability of the whole point process
becomes
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P (Np) ∝ Ptnp ,T (0) × f(t1)

np
∏

i=2

f(ti − ti−1) = λnpe−λT .

It follows that the probability of the whole representation R = {Np}, given the
phonological sequence S, takes the form

P (R|S) ∝
∏

p

[λ(p, S)]npe−λ(p,S)T , (8)

where λ(p, S) depends both on the generating phonological sequence and the
phonological unit of the point process being evaluated.
Training this model, then, amounts to estimating λ(p, S) for each (p, S) pair.

In particular, if we are given N normalized-length training segments contain-
ing the sequence S, and the total number K of landmarks of type p observed
in those segments, the maximum likelihood estimate of λ(p, S) is

λ∗(p, S) = arg max
λ

K log λ − λNT = K/NT. (9)

2.4.2 Inhomogeneous Poisson Process

For the inhomogeneous case, we consider a piecewise continuous rate pa-
rameter over D divisions of the interval (0, T ] given by λ(t) = λd for d =
ceiling(t/∆T ), where ∆T = T/D. In this case, the Poisson process can be fac-
tored into D independent processes operating in each piece of the segment.
That is, if

Np,d ≡ Np|I(d)

where I(d) = ((d − 1)∆T, d∆T ] and |Np,d| = np,d, then the probability of an
individual process are determined by

P (Np) =
D
∏

d=1

P (Np,d)

where

P (Np,d) ∝ (λd)
np,de−λd∆T .

It follows that the maximum likelihood estimation of the rate parameter of the
dth segment piece for phonological unit p and generating sequence S is given
by

λ∗
d(p, S) = KdD/NT, (10)

assuming we have been provided with N training segments containing a total
of Kd landmarks in the dth segment piece. Finally, the conditional probability
of the whole representation given a generating sequence S can be computed as
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P (R|S) ∝
∏

p∈P

D
∏

d=1

[λd(p, S)]np,de−λd(p,S)∆T (11)

2.4.3 Marked Poisson Process

The generalization of either the homogeneous or inhomogeneous Poisson pro-
cess model to handle marked point processes is straightforward if we consider
spatially dependent rate parameter. In this case, the sole spatial dimension cor-
responds to the mark space [0, 1], resulting in a mark-dependent rate parame-
ters λ(t, f) (λ(f) for the homogeneous case). We again implement a piecewise
continuous approximation by splitting the mark space into M divisions with
λ(f) = λm for m = ceiling(fM). As before, the Poisson process factors into
M independent processes operating in each division of the mark space. For a
homogeneous marked Poisson process, we can define

Np,m ≡ {ti ∈ Np|fi ∈ Mp|I(m)},

where I(m) = ((m − 1)/M,m/M ] and |Np,m| = np,m. It follows that the prob-
ability of an individual process for a particular phonological unit p is given
by

P (Np) =

M
∏

m=1

P (Np,m).

where

P (Np,m) ∝ (λm)np,me−λmT .

The maximum likelihood estimation of the rate parameter of the mth mark
space division for phonological unit p and generating sequence S is given by

λ∗
m(p, S) = Km/NT, (12)

assuming we have been provided withN training segments of sequence S con-
taining a total of Km landmarks in the mth mark space division. The condi-
tional probability of the whole representation given a generating sequence S
can be computed as

P (R|S) ∝
∏

p∈P

M
∏

m=1

[λm(p, S)]np,me−λm(p,S)T (13)

The marked Poisson process generalizes to the inhomogeneous case in exactly
the same way described for the unmarked case.
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3 Experiments in Obstruent Segment Decoding

In this section, we consider the speech recognition subtask of decoding con-
sonants in obstruent segments of the speech signal. This speech recognition
subtask, while not typically performed in isolation, arises naturally if one first
segments the speech signal into sonorant and obstruent regions and decodes
each independently. Our previous work (see Jansen and Niyogi, 2007) has
demonstrated the computational viability of this approach. Furthermore, per-
ceptual studies (see Parker, 2002) and computation models of speech percep-
tion (see Poeppel et al., 2007) provide scientific motivation for a central role of
the sonorant-obstruent distinction.
Given an obstruent segment (T1, T2) of duration T = T2 − T1 and the point

process representation restricted to the segment, R′ = R|(T1,T2), we would like
to find the most likely sequence S = p1 . . . pn, where pi ∈ O = the set of obstru-
ent phones and P is the set of all phones. This amounts to finding the S that
maximizes log P (S, V ) for the PPHMMmethod presented in Section 2.2 or that
maximizes P (S|R) for the explicit time-mark and Poisson process models of
Sections 2.3 and 2.4, respectively. Given the linguistic constraints on the length
of obstruent sequences, there are only 385 possible obstruent sequences in the
TIMIT corpus2 This limit facilitates the feasibility of direct P (S|R) computation
for each possible sequence.
All experiments were conducted using the TIMIT speech corpus, consisting

of a total 3696 training and 1344 test sentences, read by both males and females
spanning the continental United States. We held out 100 randomly chosen
training sentences for any required nuisance parameter tuning, and trained
all models using the remaining 3596 sentences. All performance evaluations
were conducted using all test sentences. We defined our phonological unit set
P to be the standard 48 phone set defined by Lee and Hon (1989) and used in
later work by Sha and Saul (2007). The definition of this set in terms of TIMIT
labels is shown in Table 3.

3.1 Constructing the Point Process Representation

We require a map from the speech signal s(t) to a collection of point processes
R = {Nφ,Mφ}φ∈F , where F is some set acoustic or linguistic properties that is
adequate to differentiate the phonological units in P . This mapping is accom-
plished using the following three components:

1. GivenW windows of the signal collected every∆φ seconds, construct for
each φ ∈ F an acoustic front end that produces a kφ-dimensional vector
representation Xφ = x1, . . . , xW , where xi ∈ R

kφ . Each representation
Xφ should be capable of isolating frames in which feature φ is expressed
and, to that end, the window and step sizes may be varied accordingly.

2While TIMIT only contains a subset of the possible sequences present in the English language,
we believe longer sequences remain sufficiently rare in natural settings to ignore for our purposes.
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Table 1: The list of 48 phones used in our experiments and the corresponding
TIMIT labels included for each (reproduced from Lee and Hon (1989)).

Phone Example Incl Phone Example Incl

iy beat en button
ih bit ng sing eng
eh bet ch church
ae bat jh judge
ix roses dh they
ax the b bob
ah butt d dad
uw boot ux dx butter
uh book g gag
ao about p pop
aa cot t tot
ey bait k kick
ay bite z zoo
oy boy zh measure
aw bough v very
ow boat f f ief
l led th thief
el bottle s sis
r red sh shoe
y yet hh hay hv
w wet cl (sil) (unvoiced closure) {p,t,k}cl
er bird axr vcl (sil (voiced closure) {b,d,g}cl
m mom em epi (sil) (epenthetic closure) epi
n non nx sil (silence) h#, pau
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2. Construct a detector function gφ : R
kφ → R for each φ ∈ F that takes high

values when feature φ is expressed and low values otherwise. Each detec-
tor may be used tomapXφ to a detector time series {gφ(x1), . . . , gφ(xW )}.

3. Given a threshold δ, we can compute the point process (Nφ,Mφ) for fea-
ture φ according to

Nφ = {i∆φ|gφ(xi) > δ and gφ(xi) > gφ(xi±1)}

Mφ = {gφ(xi)|i∆φ ∈ Nφ}.

Here, we assume Nφ = {t1, . . . , tnφ
} andMφ = {f1, . . . , fnφ

} are ordered
such that ti+1 > ti and fi = gφ(xj), where j = ti/∆φ.

In our experiments presented in this paper, we take our feature set F to be the
set of phones P (i.e., there is a one-to-one correspondence between features
φ ∈ F and phones p ∈ P). While the point process representation can theoret-
ically (and perhaps, ideally) be constructed from multiple acoustic representa-
tions tuned for each phonetic detector, we implemented a single shared front
end for all of the phone detectors. In particular, we employed the rastamat
package (Ellis, 2005) to compute a traditional 39-dimensional Mel-frequency
cepstral coefficient (MFCC) feature set for 25 ms windows sampled every 10
ms. This included 13 cepstral coefficients computed over the full frequency
range (0-8 kHz), as well as 13 delta and 13 delta-delta (acceleration) coeffi-
cients. Cepstral mean subtraction was applied on the 13 original coefficients,
and principal component diagonalization was subsequently performed for the
resulting 39 dimensional vectors.
In general, the simplest approach to constructing the detector functions is

to independently train a one-vs-all regressor for each phonological unit using
any suitablemachine learningmethod. That is, givenL labelledMFCC training
examples {(xl, pl}

L
l=1, where each xl ∈ R

39 is contained in an segment of phone
pl ∈ P , we would like to compute a set of detector functions gp : R

39 → [0, 1]
such that gp(x) = P (p|x). In our implementation, we used the normalized
MFCC vectors for each phone to estimate the P (x|p) distributions assuming a
C-component GMM for each p ∈ P , given by

P (x|p) =

C
∑

c=1

ωpcN (~µpc,Σpc)(x), (14)

where ωpc > 0 and
∑C

c=1 ωpc = 1 for each p ∈ P ; and N (~µ,Σ) is a normal
distribution with mean ~µ and full covariance matrix Σ. The maximum like-
lihood estimate of these GMM parameters are found using the expectation-
maximization (EM) algorithm on the training data {(xl, pl)}

L
l=1. These distri-

butions determine the family of detector functions, {gp}, as

gp(x) = P (p|x) =
P (x|p)P (p)

∑

p∈P P (x|p)P (p)
, (15)
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where P (p) is the frame-level probability of phone p as computed from the
training data. Note that for each model presented below, we measured per-
formance for C ∈ {1, 2, 4, 8} to study the performance for various detector
reliabilities.
Figure 2 shows for an example sentence the evaluation of log P (x|p) and the

corresponding point process representation after applying a threshold of δ =
0.5 (the threshold that results in optimal Poisson process model performance).
The drastic reduction of information resulting from the conversion produces
an exceedingly sparse point process representation.

3.2 Evaluation Procedure

From each test sentence, we used the accompanying transcription to produce
a set of obstruent segments for independent decoding. With the transcription-
provided truth and model prediction in hand, the set of 48 phones were col-
lapsed into the standard 39 units according to the equivalence sets {cl,vcl,epi,sil},
{l,el}, {n,en}, {sh,sh}, {ao,aa}, {ix,ih}, and {ax,ah}. To facilitate comparison with
HMMmethods, which cannot predict repeated phones, we also collapsed such
occurrences.
We proceeded by scoring the predicted sequences using minimum string

edit distance alignment with the truth sequence in each obstruent segment.
This results not only in a measurement of the recognition accuracy/error rates,
but also a breakdown of the errors into insertion, deletion, and substitution
types, which we provide in the discussion of each model.

3.3 Results

3.3.1 Naive Baseline Results

Since we are interested in decoding obstruent regions, the naive baseline ap-
proach requires only the subset of the point process representation produced
by obstruent phone detectors (i.e., {Np,Mp}p∈O). To determine an operating
threshold, we varied the value from 0 to 1 in increments of 0.05 and chose the
setting that maximizes the recognition accuracy on the holdout set. It is im-
portant to note that the optimal value for this naive approach is not necessarily
the optimal value when implementing other methods. In particular, since this
naive approach is primarily susceptible to insertion errors, achieving maximal
accuracy necessitates a comparatively high threshold setting. The probabilistic
models we consider allow us to consider lower probability landmarks without
such high insertion rates.
Table 2 shows the obstruent recognition accuracy using this naive approach

for several values of C, the number of GMM components used to construct the
feature detectors. The increasing detector reliability with higher values of C
results in accuracy gains, as expected. However, we also find that for the lower
two values of C, a lower threshold value is required to achieve optimal accu-
racy. Note that if we set the threshold to achieve correctness rates in line with
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Figure 2: (a) The lattice of log P (x|p) values for the utterance “she is thinner
than I am,” where higher probability is lighter. (b) The corresponding (un-
marked) point process representation, R = {Np}p∈P for δ = 0.5.
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Table 2: Obstruent phone recognition performance for the naive (baseline)
method.

C δ Accuracy % Corr % Ins % Del % Sub
1 0.90 34.0 43.9 9.9 37.3 18.8
2 0.90 38.4 54.4 16.0 25.7 19.9
4 0.95 41.4 53.5 12.1 30.8 15.7
8 0.95 44.4 56.9 12.5 27.7 15.4

Table 3: Obstruent phone recognition performance for an HMMwith binomial
mixture models applied to the unmarked point process representation.

C δ Accuracy % Corr % Ins % Del % Sub
1 0.5 47.6 49.9 2.3 22.3 27.3
2 0.5 54.8 57.2 2.4 18.1 24.7
4 0.5 58.9 61.4 2.5 15.5 23.1
8 0.5 60.7 63.7 3.1 14.5 21.8

the other methods, the resulting accuracies become negative (i.e., the insertion
rate exceeds the correctness rate). This fact illustrates the necessity of a suitable
probabilistic model to clean spurious firings of the noisy detectors.

3.3.2 Point Process HMM Results

To apply HMMmethods, we constructed vector time series from the point pro-
cess representations as described in Section 2.2. We attempted to model the
sparse marked point process vector time series data with a Gaussian mixture
model (the standard density model for HMM systems), which resulted in per-
formance below the naive baseline. We performed experiments using both the
binomial mixture model for the unmarked point process representation and
the explicit model using the histogram method for the marked representation.
Table 3 shows the obstruent recognition accuracy for various detector reliabil-
ities, where we have employed a 2-component BMM to model the vector time
series constructed from the unmarked point process representation. For each
value of C, a detector threshold of δ = 0.5 and no null state produced optimal
results. We find a steep increase in the deletion and substitution rates as the
detector set becomes less reliable, while low insertion rates are achieved across
the board.
Table 4 lists the obstruent recognition accuracy for a applying the histogram

estimate observation densities given a marked point process representation. A
detector threshold of δ = 0.5, no null state, and a coordinate bin width of∆v =
0.05 produced optimal results for all detector reliabilities. Low insertion rates
coupled with a significant reduction in substitution errors result in accuracy
improvements over the unmarked representation using BMMs.
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Table 4: Obstruent phone recognition performance for an HMM with his-
togram estimates of the observation densities, as applied to a marked point
process representation.

C δ Accuracy % Corr % Ins % Del % Sub
1 0.5 51.1 53.1 2.0 22.2 24.7
2 0.5 58.1 60.4 2.3 17.1 22.4
4 0.5 61.6 64.0 2.4 14.9 21.0
8 0.5 63.6 66.2 2.6 14.0 19.8

Table 5: Obstruent phone recognition performance for the explicit time-mark
model.

C δ Accuracy % Corr % Ins % Del % Sub
1 0.0 51.7 63.0 11.3 5.2 31.8
2 0.0 57.8 66.5 8.6 5.0 28.5
4 0.0 60.4 68.4 8.0 5.0 26.6
8 0.0 61.4 69.3 7.9 5.3 25.4

3.3.3 Explicit Time-Mark Model Results

For the explicit time-markmodel, we solved the optimization problem of Equa-
tions 6 and 7 over the 385 possible obstruent phone sequences. In our imple-
mentation, we performed uniform kernel density estimation of the distribu-
tions P (T |S) and P (t, f |S). As described in Section 2.3, this introduces three
kernel bandwidth parameters with optimal values (∆t = 0.3,∆T = 0.05,∆f =
0.2) determined using holdout validation (maximizing accuracy on the hold-
out set). Finally, the distribution P (S)was measured using normalized counts.
Table 5 shows the obstruent recognition accuracy resulting from the explicit

time-mark model. We observe the expected increase in system accuracy as the
detector set improves with increasing numbers of GMM components. This
improvement results from a simultaneous decrease in both insertion and sub-
stitution errors. However, we observe a fairly stable deletion rate, indicating
the importance of the segment duration T in the probabilistic model. That is,
the dependence on segment duration can give precedence to longer sequences
in the face of missed detections, reducing deletions errors in favor of a mixture
of additional correct phones and substitution errors.
One major drawback to this approach is the substantial training data re-

quired to accurately estimate the 385× 48 distributions of the form P (tp, fp|S),
which is especially troublesome for the rare sequences. Interestingly, we found
that using no threshold (δ = 0) led to optimal performance in all cases, a setting
produces a point process representation that contains a large abundance of low
probability landmarks. We believe such low probability landmarks in the dis-
tribution estimation procedure bulks up the statistics for rare sequences, alle-
viating training data shortfalls and resulting in overall performance gains. For
this reason, our intuition suggests that the optimal threshold would increase as
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Table 6: Obstruent phone recognition performance for the inhomogeneous un-
marked Poisson process model.

C δ Accuracy % Corr % Ins % Del % Sub
1 0.5 56.6 61.6 5.0 5.6 32.8
2 0.5 60.3 65.6 5.4 5.2 29.2
4 0.5 62.5 67.6 5.1 5.0 27.4
8 0.5 63.2 68.7 5.5 5.2 26.2

we provide more training data or use distribution estimation techniques better
suited to small sample sizes. Such investigation lies outside the scope of this
paper.

3.3.4 Poisson Process Model Results

The Poisson process model requires the evaluation of Equation 6 and 11 over
the 385 possible obstruent phone sequences. We again used uniform kernel
density estimation of the distributions P (T |S) (optimal bandwidth∆T = 0.05)
and determined P (S) using normalized counts. To estimate P (R|S), we must
compute the family of rate parameters required by the model assumption. In
the most general case (inhomogeneous, marked), we can completely define the
model architecture by selecting the number of time andmark interval divisions
(D andK, respectively), as well as the optimal detector threshold.
Table 6 shows the obstruent recognition accuracy for an inhomogeneous

unmarked Poisson process model. We divide the time interval into three ho-
mogeneous regions to roughly correspond with the typical maximum obstru-
ent sequence length of three phones3 (in the model presentation above, this
corresponds to D = 3). With this model architecture, we found the optimal
threshold to be δ = 0.5. This is also an intuitive choice, as it corresponds to an
optimal Bayes binary classification for each landmark (i.e., is the phone more
likely present than not). We find that the performance gain from increasing de-
tector reliability arises from a decrease in substitution errors, while the inser-
tion and deletion rates remains roughly constant. We believe the low insertion
rate across the board is primarily a result of the threshold imposed. As in the
explicit time-mark model results, the stable deletion rate is maintained by the
explicit modelling of segment duration T .
As might be expected, a homogeneous architecture (i.e. D = 1) led to poor

performance, both for marked and unmarked representations. More surpris-
ingly, we found that includingmarks in the inhomogeneousmodel architecture
led to a consistent decrease in accuracy as we increased the number of mark di-
visions (i.e. K > 1). This may point to the validity of the optimal Bayes classifi-
cation threshold or may simply be a consequence of limited training data. Due
to the inferior performance, we omit the listing for these model configurations.

3In the TIMIT database, the 378 of the 385 possible obstruent phone sequences have length less
than or equal to 3 (not including closure silences).
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Table 7: Obstruent phone recognition performance for a baseline HMM.
C Accuracy % Corr % Ins % Del % Sub
1 51.1 63.6 12.6 7.8 28.6
2 57.5 68.9 11.4 6.5 24.6
4 61.3 72.1 10.8 6.0 21.9
8 63.3 74.1 10.8 5.9 20.0

3.3.5 Baseline HMM Results

Finally, to provide a reference point from the mainstream speech recognition
community, we implemented the vanilla HMM baseline defined by Sha and
Saul (2007) (i.e., the maximum likelihood variant in their study). Not coin-
cidentally, our front end prescription (see Section 3.1) is identical to Sha and
Saul’s. This means the distributions P (x|p) used as their emit probabilities are
equivalent to those used to construct our point process representation. There-
fore, comparison of their system and ours functions isolate the adequacy of our
point process representation and models relative to a basic HMM approach.
Our implementation of this HMMbaselinematched the full phonetic recog-

nition performance published by Sha and Saul. The corresponding obstruent
segment recognition performance is listed in Table 7. We observe the usual
improvement in recognition accuracy as we increase the number of mixture
components, but with stable insertion and deletion rates.

3.4 Discussion

Table 8 summarizes the best obstruent recognition accuracy obtained from each
of the methods presented in this paper. Several trends emerge from this com-
parison table:

1. All probabilistic point process models perform significantly better than
the naive method. While this may not be a surprising fact, the nearly 20
point margins demonstrate how noisy the detector set is and how effec-
tive each probabilistic model is at cleaning up false positives. To illustrate
this fact further, we can consider the naive performance when setting the
threshold to result in similar correctness levels as the probabilistic mod-
els. If, for example, we threshold the C = 8 detector set to produce a
comparable 70% correctness rate, the naive method produces a dismal
23% accuracy. Furthermore, if we apply the Poisson process threshold of
0.5, we observe an insertion rate of 149%.

2. The inhomogeneous unmarked Poisson process model outperforms the
explicit time-mark model for all detector set reliabilities. This represents
significant progress relative to our previous work (Jansen and Niyogi,
2007), which employed a variant of ETMM. The Poisson process model
has lower complexity (in terms of the number of parameters) and is thus
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better estimated with limited training data. Also, we believe the Poisson
process model is better suited to a unreliable detector set, as it factors in
inactivity of detectors that had fired in the training data for a candidate
generating sequence. The explicit model, on the other hand, directly eval-
uates the active detectors only, so a missed detection is not penalized in
computing the overall probability of the candidate generating sequence.
This provides an explanation for the optimal zero threshold for ETMM:
low probability landmarks allow otherwise inactive detectors to have a
say.

3. The inhomogeneous unmarked Poisson process model is the best overall
approach studied in this paper, statistically equivalent or outperforming
the othermethods at all detector reliabilities. More surprisingly, this Pois-
son process model, operating only on the sparse point process represen-
tation, matches or outperforms the standard HMM using the complete
vector time series representation. As detector reliabilities decrease, the
Poisson process model exhibits significantly improved robustness. We
again believe this to be a consequence of appropriate built-in penalties
for detector inactivity.

4. The point process HMMmethod accuracy is statistically equivalent to an
HMM for all detector reliabilities. This somewhat surprising fact illus-
trates the sufficiency of the sparse point process representation for pho-
netic decoding of obstruent regions. It is important to note that while
PPHMM is statistically to the Poisson process model atC = 8, anyHMM-
based method requires a vector time series representation. In the context
of this paper, this does not pose a problem, as we construct the point
process representation from a vector time series, and thus a synchronous
clock rate is automatically provided. However, the ultimate utility of a
point process representation for speech will arise when we construct a
linguistically or neurobiologically motivated asynchronous front end.

To illustrate this point, we performed an experiment where the stop con-
sonant detectors were constructed with a MFCC front-end, but sampled
every 7.5 ms as opposed to the 10 ms step size used for the other detec-
tors. In this case, the Poisson process model resulted in the same perfor-
mance. However, this small degree of asynchrony precluded application
of the point process HMMmethod, at least without interpolation.

4 Conclusions and Future Work

We have presented several statistical speech recognition models applicable to
a landmark-based point process representation of speech. From our experi-
ments in obstruent phone recognition, we have found that these methods are
capable of recovering the underlying linguistic content from an exceedingly
sparse set of landmarks with accuracy comparable to a basic HMM operating
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Table 8: Best obstruent phone recognition accuracies for each method.
C Naive PPHMM ETMM Poisson HMM
1 34.0 51.1 51.7 56.6 51.1
2 38.4 58.1 57.9 60.3 57.5
4 41.4 61.6 60.4 62.5 61.3
8 44.4 63.6 61.4 63.2 63.3

on a complete frame-based representation. We find the most promising and
robust approach to be a standard inhomogeneous Poisson process model.
There are several directions for further research that follow naturally from

the findings presented in this paper:

1. Ultimately, we would like to extend this detector-based approach to stan-
dard recognition tasks. One possibility is keyword spotting or small vo-
cabulary recognition, achievable by building a point process model for
each word of interest (in much the same way we build a model for each
obstruent phone sequence). To build a large vocabulary recognition en-
gine, we may extend our previously developed framework (see Jansen
and Niyogi, 2007) to full phonetic recognition by integrating the findings
presented here. Preliminary experiments in these directions have been
promising.

2. In this paper, we constructed our point process representation by piggy-
backing off a standard MFCC and GMM frame-based front end. While
this choice facilitated performance comparison with the HMM baseline,
it is not necessarily the most scientifically plausible. A complete explo-
ration of point process representation construction strategies remains,
an endeavor for which significant progress has already been made (see
Stevens and Blumstein, 1981; Stevens, 2002; Niyogi and Sondhi, 2002;
Pruthi and Espy-Wilson, 2004; Amit et al., 2005; Xie and Niyogi, 2006).
The ideal point process representationwill require a linguistically and/or
neurobiologically motivated design to maximize the benefits of applying
coding models proposed by the cognitive neuroscience community.

3. We have only scratched the surface of the set of possible statistical mod-
els applicable to a point process representation of speech. In particular,
implementing and testing models designed to work on limited training
examples will prove vital to creating robust landmark-based recognition
systems with human-comparable performance. For example, the Poisson
process model may be improved with more sophisticated rate parameter
(intensity) estimation techniques, such as kernel smoothing or paramet-
ric modelling (see Willett, 2007, for an example in a different context).
Additional models arising from the computational neuroscience commu-
nity may also be considered (see Legenstein et al., 2005; Gütig and Som-
polinksy, 2006, for examples).
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4. Further interface of the automatic speech recognition (ASR) community
with cognitive neuroscience researchers may prove fruitful. The results
presented in this paper demonstrate that looking to research in those
fields can lead to insights in the design and development of ASR systems.
Moreover, evaluation of the efficacy of scientifically-motivatedASR strate-
gies can also quantify the plausibility of current models of auditory per-
ception. For example, recent statistical analysis of neuronal activity in the
visual cortex of monkeys has suggested that a slowly varying inhomoge-
neous Poisson process model is not ideal (Amarasingham et al., 2006).
Similar hypotheses for speech perception could be tested in the context
of ASR by implementing them in the framework presented in this paper.
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