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Opinion
Inhibiting unwanted thoughts, actions and emotions
figures centrally in daily life, and the prefrontal cortex
(PFC) is widely viewed as a source of this inhibitory
control. We argue that the function of the PFC is best
understood in terms of representing and actively main-
taining abstract information, such as goals, which pro-
duces two types of inhibitory effects on other brain
regions. Inhibition of some subcortical regions takes a
directed global form, with prefrontal regions providing
contextual information relevant to when to inhibit all
processing in a region. Inhibition within neocortical (and
some subcortical) regions takes an indirect competitive
form, with prefrontal regions providing excitation of
goal-relevant options. These distinctions are crucial for
understanding the mechanisms of inhibition and how
they can be impaired or improved.

Executive control over inhibition
We constantly need to inhibit: whether it is our critical
thoughts about a partner, our reaching for seconds at
dinner, or our fear while boarding a plane. Failures to
inhibit are observed in a variety of clinical disorders [1], in
children [2] and in the elderly [3], and are associated with
learning difficulties [4] and behavioral problems [5]. Un-
derstanding how we inhibit and how variations in under-
lying mechanisms contribute to inhibitory deficits is
essential for advancing training, remediation and clinical
intervention. Although the concept of inhibition has had a
long and controversial history in cognitive science [6,7], we
believe that emerging research across a variety of disci-
plines supports a unifying framework for understanding
the cognitive and neural mechanisms that support this
fundamental process.

It is widely believed that the prefrontal cortex (PFC)
serves as a source of inhibitory control over other brain
areas. In this article we focus on specifying more precisely
its role in inhibition. A prevalent view is that certain PFC
regions are specialized for inhibitory control per se, sug-
gesting, for example, that the right inferior frontal gyrus
(rIFG) is a specialized response inhibition area [8]. We
argue instead for a more unified framework for under-
standing inhibitory control in the broader context of
PFC function. We take as a point of departure the charac-
terization of PFC areas as primarily specialized for actively
representing and maintaining abstract information (such
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as goals, contexts and task sets) relevant for cognitive
control over behavior [9,10], with inhibitory control as
one of many downstream effects of this specialization
[11–14]. Supporting such a perspective, a recent factor
analysis of executive function (EF) [15] reveals that there
is no inhibition-specific factor. Instead, tasks thought to
tap inhibitory function, such as the antisaccade task, load
on a common EF factor, observed across all EF tasks, which
is separable from two more specific EF factors: shifting and
working memory updating. A parsimonious interpretation
is that this common EF factor reflects active goal mainte-
nance in PFC [15], which supports inhibition among other
processes.

We argue that this specialization for actively represent-
ing and maintaining abstract information in the PFC
produces two distinct types of inhibitory effects on other
brain regions (Figure 1). First, some instances of PFC
projections to subcortical and archicortical areas support
directed global inhibition, where PFC projections activate
GABAergic interneurons in the target area, and inhibit its
overall function. In this case, the role of PFC areas in
inhibition is to maintain the abstract information that is
relevant to when to inhibit the function of the target region.
By contrast, we argue that within the neocortex and some
subcortical regions a more indirect competitive inhibition
dynamic provides a better way of capturing the nature of
PFC inhibitory control. In this case, PFC neurons directly
excite goal-relevant processing areas. This allows them to
compete better with other possible processing pathways,
yielding a collateral effect of inhibiting competitors. This
competitive dynamic helps a winner to emerge, rather than
leading to a global shutdown.

Distinguishing between these two types of inhibition
has important implications for understanding differences
in how we inhibit across a range of situations. By consid-
ering the well-established role of the PFC in representing
and maintaining abstract information, our approach
allows for a unifying framework for understanding these
two distinct types of inhibition in the broader context of
PFC function.

Directed global inhibition of subcortical and
archicortical regions by PFC
We consider three examples of directed global inhibition
of subcortical and archicortical systems: coping with
stressors, inhibiting responses and suppressing memory
retrieval. These examples span several regions of the PFC
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Figure 1. Prefrontal control over directed global and competitive inhibition. We

argue that two distinct forms of inhibition – directed global versus indirect

competitive – can be understood within a unified framework that builds upon the

well-accepted characterization of prefrontal areas as specialized for actively

representing and maintaining abstract goal-related information, rather than for

inhibition per se. Although the specific type of content represented across each of

the various prefrontal regions is still debated, we argue that inhibitory control

arises as one downstream effect of these goal representations. The PFC provides

targeted global inhibition of some subcortical and archicortical regions (e.g. those

related to fear, motor and memory processing), and supports indirect competitive

inhibition in neocortical and subcortical regions by enhancing relevant regions or

representations (e.g. for processing colors), whose increased activity then causes

reduced activation of competing areas or representations (e.g. for processing

words or shapes). Targeted global inhibition thus leads to a global shutdown of

associated regions, whereas competitive inhibition helps a winner to emerge from

among a variety of competitors. To support basic survival processes (e.g. avoiding

harm), subcortical regions are relatively ‘dumb’ and inflexible, in the sense that

they merely turn on responses that can be adaptive (e.g. a fear response) but are

physiologically and psychologically costly. Prefrontal regions support decisions

about such responses, and globally inhibit subcortical circuitry and associated

responses when the context indicates it is appropriate to do so (e.g. when

stressors are controllable). Compared to subcortical processing systems, cortical

processing systems are more flexible (changing more over the course of

development and learning), and are less clearly linked to the physiological and

psychological benefits from being globally inhibited. These characteristics may

explain why the PFC excites the relevant cortical regions for a given goal

rather than globally inhibiting irrelevant cortical regions. Regions whose activity

is increased or enhanced are shown in green, whereas those whose activity is

inhibited (globally or competitively) are shown in red; neocortical regions are

labeled in ovals, whereas non-neocortical regions are labeled in rectangles.
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(medial and lateral, dorsal and ventral) and highlight two
neural mechanisms that support directed global inhibition.
First, PFC excitatory projections can synapse directly onto
GABAergic interneurons in the target area, as occurs in
coping with stressors. Second, PFC excitatory projections
can synapse onto excitatory neurons in a region, which in
turn synapse preferentially onto GABAergic interneurons
in the target area, as occurs in response inhibition.

Ventromedial prefrontal cortex, dorsal raphe nucleus,

and coping

Compelling evidence from research with animals demon-
strates that the ventromedial prefrontal cortex (vmPFC)
supports coping with controllable stressors, by directly
inhibiting the fear-related dorsal raphe nucleus (DRN):
for a review, see [16]. Specifically, controllable stress (e.g.
an escapable shock) activates neurons in the vmPFC that
project to the DRN [17]. These excitatory projections from
the vmPFC synapse preferentially onto inhibitory inter-
neurons, which then inhibit the serotonergic cells of the
DRN [18]. Activation of these DRN serotonergic cells
increases fear behavior and decreases coping responses
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(e.g. fight or flight), via projections to other brain regions.
Thus, behavioral control over stressors is viewed as acti-
vating the inhibitory control of the vmPFC over the fear-
related DRN. Stimulating the vmPFC inhibits the DRN,
and leads animals to treat uncontrollable stressors (such
as inescapable shock, which does not tend to activate the
vmPFC) as if they were controllable [19]. Conversely,
inactivating the vmPFC leads animals to treat controllable
stressors as if they were uncontrollable [20]. A similar,
well-established circuit operates with prefrontal connec-
tivity to the amygdala, and provides inhibitory control over
fear conditioning [21] and emotion regulation [22–24].

This inhibitory control of the vmPFC over the DRN is
global in nature; it inhibits the whole area, not specific
neurons/representations within it. (This is true of all of the
examples in this section; Box 1 considers mixed evidence
for the idea that directed inhibition can be more selective.)
Thus, this vmPFC–DRN account of coping serves as a clear
example of directed global inhibition. However, rather
than being specialized for inhibition per se, the vmPFC
represents abstract information (e.g. outcome expectations
[25]; in this case, regarding behavioral control) which
triggers inhibition specifically of fear responses.

The subthalamic nucleus and response inhibition

The subthalamic nucleus (STN) provides global inhibition
over the output of the basal ganglia (BG), and is thought to
be important for pausing motor output until a satisfactory
motor plan has been settled upon by frontal motor control
areas [6,26]. Thus, PFC excitatory projections to excitatory
neurons of the STN support directed global inhibition of all
motor output. Many prefrontal areas project to the STN,
with anterior cingulate cortex (ACC) and presupplemen-
tary motor area (pre-SMA) providing strong innervation
[27,28]. A compelling directed inhibition account is that
signals of conflict, difficulty and uncertainty, which have
been widely associated with the ACC ([29,30], compare
[31]) and pre-SMA [30], drive activation of the STN, which
then globally inhibits all motor output until these signals
are resolved.

Another prefrontal area – the rIFG – also projects to the
STN (although less strongly than other prefrontal regions
[27,28]), and is also reliably engaged by tasks in which
motor responses are interrupted in the middle of prepara-
tion (e.g. the Stop Signal task). This evidence has been used
to argue that response inhibition is the defining function of
the rIFG [8]. However, recent data suggest that the role of
the rIFG in directed inhibition may actually be more
associated with monitoring the environment for task-
relevant stimuli, such as those that indicate a stop signal
trial (Box 2). For example, the rIFG is also recruited when
the environment must be monitored for stimuli that indi-
cate a response must be initiated [32–36]. In fact, the
information content of neural activity within the rIFG is
so highly similar across response initiation and response
inhibition that the identity of individual subjects can be
decoded using a multivariate analysis of neural activity
patterns in rIFG (but not in other brain regions) across
these conditions [34]. Thus, rather than being specialized
for inhibition per se, rIFG (similar to the rest of PFC) may
be defined more by its ability to maintain task-relevant



Box 1. Selective inhibition via the BG?

We have argued that directed inhibition of subcortical regions takes a

global form but some researchers have suggested that more selective

directed inhibition is possible via the BG [66,67]. The BG is a major

subcortical system with extensive connectivity to the frontal cortex,

composed almost entirely of inhibitory GABAergic neurons, with

competing Go and NoGo pathways that control the initiation of motor

and cognitive actions at a relatively selective fine-grained level

[68,69]. Although NoGo signals might seem to represent a highly

specific form of direct inhibition, evidence for their importance to

common behavioral measures of inhibition is lacking or inconclusive.

The output of the BG exclusively causes disinhibition of excitatory

loops through the cortex. Thus, the NoGo signal can only block the

disinhibition (i.e. net excitation) that would have otherwise come

from a Go signal: it does not directly inhibit the cortex, and thus has a

relatively weak effect on controlling cognitive states. This character-

istic may explain why individuals with altered function of BG do not

show impairments on classical inhibition tasks such as Stroop and

Stop Signal. For example, patients with Parkinson’s disease on

medication that impairs NoGo pathway function perform the same as

age-matched controls on these tasks [70]. Thus, the selectivity of the

NoGo pathway does not seem relevant to standard inhibitory control

tasks, perhaps because the blocking of BG disinhibition (which

translates into blocking a boost from a Go Signal to word reading

in the Stroop task, for example) is too weak to overcome the strong

prepotent associations that are typically tested in such tasks.

Recently it has been proposed that rIFG may support selective

motor inhibition via the slower and more selective NoGo pathway (as

opposed to faster global inhibition via STN). This proposal is based

on evidence that response inhibition for one hand is slower and

exerts less interference on responses of the other hand when subjects

have foreknowledge about what response may need to be stopped

[66]. This foreknowledge is thought to support the use of a slower but

more selective response inhibition circuit. (Additional evidence is

considered in Box 2.) However, other evidence suggests that the two

effects taken as diagnostic of selective inhibitory control may arise

from more domain-general features of motor function, rather than

reflecting inhibitory control per se. First, bimanual interference is also

observed in tasks lacking inhibitory demands, as long as different

actions must be performed by each hand. This interference is

decreased when the assignment of response rules to effectors is

simplified [71]. Simplification of such effector rules is clearly afforded

by foreknowledge, so that the reduction in interference with

foreknowledge on response inhibition tasks may reflect something

much more general than an act of inhibitory control. Second,

response inhibition can be prolonged by manipulations that are not

thought to involve the use of the NoGo pathway [72].

Therefore, the evidence on selective direct inhibition through BG

influences is inconclusive or ambiguous, even for motor actions. One

possibility is that the NoGo pathway serves to delay, not suppress,

motor actions.
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information (e.g. the environmental context required for
responses). Multiple such PFC regions (including ACC and
pre-SMA), each representing different types of task-rele-
vant information (e.g. sets of appropriate motoric actions),
may lead to the pausing of motor output (Box 2) as well as
supporting other functions. This interpretation is consis-
tent with findings showing that, in other contexts, the rIFG
provides top-down excitation to task-relevant posterior
cortical regions [37–39].

Right middle frontal gyrus, hippocampus, and memory

suppression

The right middle frontal gyrus (rMFG) seems to exert
inhibitory control over memory-related areas, such as
the hippocampus, to support suppression of memory re-
trieval in the Think/No-Think (TNT) paradigm [40–42].
Box 2. Challenges in studying inhibition: the case of transcranial

Even with advances in cognitive neuroscience methods, differentiating

the roles of brain regions in inhibition is challenging. For example,

evidence from transcranial magnetic stimulation (TMS) has been

interpreted as supporting a specifically inhibitory role of rIFG. Although

disrupting function of a region (e.g. rIFG) via TMS can indicate whether

that region is involved in a task (e.g. Stop Signal), it does not necessarily

provide evidence on how a region supports normal task performance

(e.g. monitoring for task-relevant signals vs inhibition per se).

However, some patterns of TMS results can allow for solid

inferences. For example, if disruption of a region leads to similar

deficits across multiple tasks, it can be inferred that the region’s

function is nonspecific to the individual tasks. Similarly, if disruption

of multiple regions leads to similar loss of function, those functions

may be general across those regions. These informative data patterns

have been obtained, as outlined below, and challenge the view of rIFG

as a single area specialized for inhibition.

Classical ‘virtual lesion’ repetitive TMS protocols are used to inhibit

the function of an area. They have demonstrated rIFG is involved not

only in tasks with stimuli indicating a response must be ‘stopped’ [73]

but also in tasks with stimuli indicating a response must be

‘committed’ [74].
After subjects learn pairs of stimuli (cue–target), they
are presented with only the cues, and are instructed
repeatedly for certain items to ‘think’ (T) about the associ-
ated target, and for other items to ‘not think’ (NT) of
the associated target. Recall of NT items is worse than
both T items and baseline items [43–45]. Moreover, mid-
lateral PFC areas (particularly rMFG), which are anatom-
ically connected to the hippocampal memory system
[46,47] (although preferential synapsing onto inhibitory
interneurons has not been established), get more active
as participants get practice in inhibiting NT items,
whereas hippocampal activation gets correspondingly
decreased [41].

These patterns are compatible with the idea that the
rMFG provides directed global inhibition of the hippocam-
pus and associated memory retrieval processes [41,42].
 magnetic stimulation and response inhibition

Single-pulse TMS protocols are used to probe motor excitability, in

terms of the motor potential evoked by a single excitatory pulse to

motor cortex. They have demonstrated a lateralized decrease in

motor excitability following cues indicating that a response may soon

need to be stopped [67], which has been interpreted in terms of

selective inhibition (Box 1). However, a lateralized decrease in motor

excitability is also observed following cues indicating that a response

may soon need to be ‘committed’ [75].

Paired-pulse TMS procedures provide an additional excitatory

TMS pulse to a different neural locus, to probe regional interactions.

These studies demonstrate reduced motor excitability following

rIFG stimulation [76] but also following dorsolateral PFC stimulation

[77].

Together, these studies suggest that the role of rIFG is a more

general attentional one related to monitoring for task-relevant signals.

The reduced motor excitability that is observed after TMS to this

region occurs while motor plans are being developed and as a

relatively general effect of frontal lobe stimulation. Such an inter-

pretation is consistent with PFC regions being specialized for

maintaining task-relevant information, with multiple regions contri-

buting to pausing motor output until a plan is resolved.
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Box 3. Clinical implications

The unifying model proposed here has implications for psychopathol-

ogy. A variety of externalizing disorders, all of which begin to

manifest during childhood and adolescence, including attention

deficit hyperactivity disorder (ADHD), substance use disorders,

oppositional defiant disorder and conduct disorder, are thought to

be characterized by behavioral disinhibition (e.g. [1]): the inability to

inhibit impulses and to forego attractive potential rewards when they

are socially inappropriate and/or may result in negative conse-

quences. Deficits in response inhibition are often observed in

individuals with externalizing disorders, and more so than deficits

in working memory updating or set shifting [78]. With regard to the

neural substrates of such difficulties, abnormalities in prefrontal brain

activation, most notably in mid- and inferior prefrontal areas, are

observed in individuals with these disorders when performing tasks

related to response inhibition (e.g. ADHD [42,79]; substance use

disorders [80] and conduct disorder [79]).

The current framework suggests that these disruptions in response

inhibition reflect problems in using environmental cues to activate

and maintain information in PFC about which actions are most

appropriate in a given context, rather than problems in downstream

inhibitory effects (e.g. in the STN global inhibition of the outputs of

the BG). As such, it is unlikely that the problem in a child with conduct

disorder is solely one of inhibiting the motor movement of hitting

another child, or that the child with ADHD has a specific problem in

inhibiting their vocalizations. Rather, these children may have

difficulties maintaining a task set such as gaining social acceptance.

Consistent with this perspective, the deficits in response inhibition

observed in externalizing disorders are attributable to deficits in a

common EF factor, which is tapped across EF tasks and is interpreted

in terms of goal maintenance (Friedman et al., unpublished data; see

also [81]).

These considerations lead to the prediction that effective therapeu-

tic interventions for these disorders will have somewhat similar

characteristics (e.g. as observed for ADHD and conduct disorder [82]),

and should be geared toward supporting PFC maintenance of the

appropriate contextual information. Effective pharmacological inter-

ventions are likely to be ones that affect prefrontal and BG activity in

neurologically normal individuals (e.g. [83]) and normalize the activity

of PFC in individuals with clinical disorders (e.g. [84]). Effective

behavioral approaches are likely to be those that emphasize what

behaviors are appropriate in which contexts, including positive

reinforcement, token economies and time outs.
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Repeated inhibition of the entire hippocampal system in
response to NT cues may lead these cues (and correspond-
ing targets) to become associated with the rMFG repre-
sentations that trigger inhibition of the hippocampus. As a
result, the global inhibition process is triggered in response
to NT cues (or other cues associated with the targets). This
account is compatible with the idea that rather than being
specialized for inhibition per se, rMFG (similar to other
areas of PFC) maintains relevant abstract information, in
this case about the relevance of the cue for a specific goal,
which ultimately leads to reduced activity in the hippo-
campus and inhibition of memory retrieval.

Computational models have also demonstrated how
transient activation of specific items in memory can lead
to learning effects that mimic inhibitory processes [48,49].
For example, if a NT target is activated by a cue, then de-
activated through directed inhibition, this results in a long-
term depression for the synaptic connections for the NT
target item, making it more difficult to activate. This
learning account opens an important new dimension in
thinking about inhibition as occurring via long-term
changes to the strength of the representation itself.

Indirect competitive inhibition within cortical and
subcortical regions
In contrast to the direct inhibition of subcortical and archi-
cortical areas, data from neuroscience and computational
models suggest that inhibition within neocortical regions
takes an indirect competitive form. In this type of inhibition,
rather than representing ‘Do not do X’, prefrontal regions
provide top-down support for the representations related to
‘Do Y’ [37]. As a result, alternative representations are
inhibited, via diffuse lateral inhibitory connectivity, which
serves to amplify activity in the most active representations
(e.g. those receiving the most top-down, lateral and bottom-
up support) and suppress competitors. This type of indirect
competitive mechanism is commonly discussed in theories of
selection and attention [50–53].

Evidence that inhibition within neocortical regions
takes a competitive form comes from several sources.
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First, the vast majority of long-range interregional con-
nectivity is mediated through excitatory pyramidal cells
(99.9% by some estimates [54]). Although these excitatory
projections can synapse on local inhibitory interneurons,
there is no evidence of preferential connectivity onto in-
hibitory neurons as would be required to create the kind of
directed inhibition observed in non-neocortical regions
(e.g. in the vmPFC!DRN pathway). Moreover, relative
to excitatory neurons, inhibitory interneurons have
broader and more diffuse patterns of connectivity, and
considerably coarser tuning functions, such that they
represent and transmit information with less specificity
than excitatory neurons [55–57]. These data are consis-
tent with inhibitory interneurons serving to regulate
overall levels of activity, so that only the most competitive
(active) neurons rise above the inhibition, rather than
directly targeting specific cortical representations or
areas. Such local competitive inhibition occurs throughout
the brain, from sensory visual areas [50] to multimodal
parietal areas [51], and within PFC itself [52], as well as
within some subcortical regions (e.g. the thalamic reticu-
lar nucleus [53]), which can thus be subject to both com-
petitive and global inhibition.

At a broader level, cortical areas also compete with one
another (e.g. [58]) potentially via competitive inhibition
within associated subcortical regions and via excitatory
top-down and lateral biases [12]. For example, activation of
a given cortical region can act to reduce support for proces-
sing in other cortical regions. One potential mechanism
underlying this effect is competition within the thalamic
reticular nucleus, a region that allows for competition
among thalamic regions connecting to nearly all areas of
cortex [53]. This type of competition among regions may
suggest alternatives to some directed global inhibition
accounts. For example, although this account is not favored
by researchers working in this domain, one might ask
whether increased rMFG activation in the TNT paradigm
may reflect people strategically directing their thoughts to
something other than the target, with hippocampal activa-
tions decreasing as a result of competitive inhibitory



Box 4. Questions for future research

� Our framework emphasizes commonalities across prefrontal

regions in representing and maintaining abstract information,

with regions varying in the content of this information and in

connectivity with other brain regions that are biased or inhibited

by prefrontal regions. Are there differences in neural mechanisms

that distinguish prefrontal regions to create gradations or

diversity in this overall framework?

� What is the best way to characterize the content of prefrontal

representations in individual regions? This question has been

debated extensively [85–88] but how do the answers about

functional role change when viewed with the emphasis on

information content we use here?

� What is the relationship between prefrontal areas that lead to

directed global inhibition versus those that support competitive

inhibition? (Identical, overlapping or mutually exclusive?)

� Could the PFC also support directed global inhibition of cortical

regions but researchers have not discovered it yet? We believe

this possibility is unlikely (e.g. given the adaptive arguments in

Figure 1) but it would be convincingly demonstrated by: (i) the

existence of prefrontal regions synapsing preferentially onto

inhibitory neurons in a cortical region, with activation of the

prefrontal neurons leading to inhibition of the excitatory neurons

in the other cortical region or (ii) a similar functional role for the

tiny minority of long-range projections that are inhibitory

(currently these projections are thought to primarily serve to

synchronize excitatory firing) [54].

� What is the relationship between delaying a response and

preventing a response altogether? Do they tap the same neural

mechanisms? In the case of working memory, the BG is thought

to signal when information should be maintained in PFC (via

activation of the NoGo pathway) and when the PFC should update

to encode new information (via activation of the Go pathway [89]).

Applying this idea to motor control, the NoGo pathway could

delay the initiation of a motor action, rather than inhibit it outright.

What kinds of targeted experiments could test this account?

� Can indirect competitive and directed global inhibitory dynamics

themselves be inhibited, or might they fall beyond the scope of

cognitive control?
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dynamics among regions, in the context of a focus on
cognitive processes other than retrieval.

Finally, computational models have demonstrated how
competitive inhibition can explain behaviors thought to
require direct inhibitory processes [11,59]. On inhibitory
tasks, actively maintained PFC representations (e.g. sim-
ulating a maintained ‘color’ representation in dorsolateral
PFC during the Stroop task) provide an excitatory top-
down bias to enhance associated representations (e.g. of
color information in posterior cortical regions); those en-
hanced representations then competitively inhibit alterna-
tive representations (e.g. of word meaning) [12]. When the
models cannot sufficiently maintain goal information, they
mimic the apparent inhibitory deficits (such as persevera-
tive behavior) that occur after prefrontal damage or during
childhood when the frontal lobes are not fully developed.
However, the deficits occur not because of problems with
directed global inhibition but because prepotent responses
win over task-relevant ones in the competitive inhibitory
dynamic.

Concluding remarks
We have argued that what is commonly called ‘inhibition’
at the functional level is actually subserved by at least two
distinct types of neural mechanisms: targeted global inhi-
bition and indirect competitive inhibition. There are many
facets to prefrontal function and many contributions to
executive function from distributed networks extending
beyond the PFC [60,61]; we have focused on the PFC given
its specialization for the most robust maintenance of goal-
relevant information [62,63] and given the centrality of
this function in inhibitory processes[15]. What distin-
guishes different prefrontal regions and their roles in
distinct types of inhibition is the nature of their connectiv-
ity with other brain regions and the content of the abstract
information represented.

We have emphasized the distinction between directed
global inhibition and competitive inhibition but we note
that they are not mutually exclusive and can work in
concert. For instance, should competitive inhibition fail
to focus processing on the ink color in the Stroop task,
global inhibition of the response (through conflict signals
activating the STN) could prevent an erroneous response
[64,65]. For both types of inhibition, the contribution from
prefrontal cortical regions can be understood in terms of
actively representing and maintaining abstract goal-relat-
ed information (e.g. to identify the ink color, and conflict
associated with this task), rather than representing what
should be inhibited (e.g. ‘Do not attend to or read the
word’). This unifying framework suggests that prefrontally
mediated inhibitory deficits can reflect problems in know-
ing or maintaining the context that signals when to inhibit
or in activating alternative behaviors to reach a goal,
rather than problems in inhibition per se, and that treat-
ments should be tailored accordingly (Box 3).

Inhibitory phenomena clearly do not share one common
neural substrate. As such, the important psychological
construct of inhibition becomes more nuanced when
viewed through the lens of neuroscience (Box 4).
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