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Abstract. In this paper, we propose a new model called deep network
cascade (DNC) to gradually upscale low-resolution images layer by layer,
each layer with a small scale factor. DNC is a cascade of multiple stacked
collaborative local auto-encoders. In each layer of the cascade, non-local
self-similarity search is first performed to enhance high-frequency tex-
ture details of the partitioned patches in the input image. The enhanced
image patches are then input into a collaborative local auto-encoder
(CLA) to suppress the noises as well as collaborate the compatibility of
the overlapping patches. By closing the loop on non-local self-similarity
search and CLA in a cascade layer, we can refine the super-resolution
result, which is further fed into next layer until the required image scale.
Experiments on image super-resolution demonstrate that the proposed
DNC can gradually upscale a low-resolution image with the increase of
network layers and achieve more promising results in visual quality as
well as quantitative performance.
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1 Introduction

In visual information processing, high-resolution (HR) images are still desired
for more useful information [26]. However, due to the limitation of physical
devices, we can only obtain low-resolution (LR) images of the specific object in
some scenes such as a long-distance shooting. To handle this problem, the super-
resolution (SR) technique is usually employed to recover the lost information in
the source image. With increasing applications in video surveillance, medical,
remote sensing images, etc., the SR technique has been attracting more and
more attention in the computer vision community over the past decades [7, 9,
33, 10, 8].

The conventional super-resolution methods attempt to recover the source
image by solving the ill-posed inverse problem, y = Hx+ v, where x is the un-
known HR image to be estimated, y is the observed LR image, H is the degrada-
tion matrix, and v is the additional noise vector. Under the scarcity of observed
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LR images, the inverse process is a underdetermined problem, thus the solution
is not unique. To find a reasonable solution, some sophisticated statistical pri-
ors of natural images are usually incorporated into the reconstruction process
[7]. However, these reconstruction-based methods have a limit of magnification
factor [1, 21].

To address this problem, recently, example-based SR methods [33, 10, 5, 8,
32] have been proposed in succession. They use machine learning techniques to
predict the missing frequency band of upsampled image from an external dataset
[33] or the testing image itself [10, 5, 32]. Typically, in view of human visual mech-
anism, sparse representation (or sparse coding) is employed to super-resolution.
They either emphasize on the construction of more representative dictionaries,
such as learning coupled dictionaries of LR and HR counterpart patches [33]
or multi-scale dictionaries [34], or focus on the robustness of sparse coefficients
by integrating some priors, such as using centralized sparse constraints [5] and
manifold structure constraints [22]. Generally, a huge training set is required to
capture the rich characteristics of natural images for image super-resolution.

In contrary, some recent studies [3, 10, 32] indicate that local image struc-
tures tend to redundantly recur many times within and across different image
scales, and super-resolution may be conducted on those self-similarity examples
from the testing image itself. Specifically, Glasner et al. [10] utilized recurrence
of patches to generate virtual LR image patches, which are fed into the classi-
cal reconstruction-based SR scheme. Yang et al. [32] further refined the self-
similarity by in-place self-similarity. The self-similarity technique is empirically
found to work well especially for a small upscaling factor. To robustly recover a
LR image with a properly large scale, these few studies have also begun to more
or less use an iterative strategy to upscale the LR image. Even so, more efficient
gradual SR models still remain to be developed for image SR. Moreover, some
crucial problems need to be studied in the gradual unscaling models, such as the
propagation of estimated error, the collaboration of overlapping patches, etc.

In this paper, we propose a deep learning scheme called deep network cascade
(DNC) to gradually upscale low-resolution images layer by layer, which is the
first time to our knowledge. On one hand, to reasonably enhance high-frequency
texture details, we employ non-local self-similarity (NLSS) search on the input
image in multi-scale, which can bypass the assumption on the image degrada-
tion process. On the other hand, by taking the NLSS results as the input, the
collaborative local auto-encoder (CLA) is proposed to suppress the noises and
meanwhile collaborate the overlapping reconstructed patches. In CLA, to reduce
the learnable parameters and make auto-encoder easily controllable, we adopt
weight-tying on all patches and L1 sparse constraint on hidden neurons. Closing
the loop on the two steps forms a cascade layer, named stacked collaborative
local auto-encoder (stacked CLA or SCLA), which refines the super-resolution
image well.

Multiple SCLA models can be successively concatenated into the deep net-
work cascade, where the higher layer takes the output SR image of the lower
layer as input. With the increase of network layers, the magnification factor of
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the learned SR image can be enlarged gradually. Inevitably, in the deep net-
work, the synthetic “error” textures (e.g., noises, artifacts, etc.) will propagate
and even spread in next network layers, which leads to a large deviation from
the source HR image. To reduce the effects, we use the back-projected technique
[14] to contrain the super-resolved image in each layer. To train the DNC mod-
el, we adopt the greedy layer-wise optimization strategy. Extensive experiments
on single image super-resolution demonstrate the effectiveness of the proposed
method on visual quality as well as objective evaluation.

2 Related Work

Generally, existing super-resolution methods fall into three categories: interpolation-
based [35], reconstruction-based [7, 27] and example-based [9, 11, 4, 33, 10, 5, 8,
34, 25, 32] methods. Interpolation-based methods are simple and effective for S-
R, such as bilinear, bicubic or other sampling methods [35]. However, with the
increasing magnification factor, they are prone to generate overly smooth edges.
Reconstruction-based methods usually borrow a certain prior to predict the SR
image, but they are still limited to small magnification factors [21] or a scarcity
of observed LR images.

Example-based methods break the limitation. They attempt to learn the
high-frequency details from an external training dataset or the testing image
itself. Freeman et al. [9] used the nearest neighbor (NN) to estimate the high-
frequency information and a Markov network to handle the compatibility be-
tween patches. Later on, by assuming the similarity of manifold structures be-
tween LR and HR counterparts, Chang et al. [4] used locally linear embedding
(LLE) to predict the HR patches. More recently, the sparse coding based meth-
ods [6, 33] were proposed for image restoration. Typically, the coupled filters (or
dictionaries) [33] are learnt to share sparse structures on HR and LR counter-
parts, but it requires a large amount of training pairs. Aimed at this problem,
the non-local prior may be employed to enrich the textural information [10, 5,
22]. They used the non-local prior with a designed degradation process [5] or
a shallow model [22]. Specifically, the self-similarity prior of the testing image
itself is used to generate virtual observed LR examples [10, 32]. Empirically, the
self-similarity works better on small upscaling factors [36, 32]. To address this
problem, a few studies [10, 32] start to gradually upscale the LR image, but they
lack a more explicit layer-wise model. Different from previous works, here we
develop a new layer-wise model, referred to deep network cascade, to upscale
the input LR image layer by layer, each layer with a refined SR result.

Deep learning attempts to learn layered, hierarchical representations of high-
dimensional data [12, 13], and has been successfully applied in many computer
vision problems. Classical unit learning models in deep architecture include s-
parse coding [17], restricted Boltzmann machine (RBM) [12], anto-encoder [13,
2, 29], etc. Specifically, the (stacked) denoising auto-encoder (DA) [28, 31] has
shown effectiveness in image inverse problems such as denoising and inpainting.
Our method differs from DA in two ways: first, DA requires clean data (ground
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truth) in the training process, assuming that the degradation function is implic-
itly known, while the CLA relaxes the condition by feeding the model with NLSS
search results; second, our method is imposed on local patches with tied weight,
sparse and compatibility constraints, which can greatly reduce the number of
the learnable parameters when suppressing the noises.

3 The Proposed Network Cascade

Below we denote a vector/matrix by a lowercase/uppercase letter in bold. The
transposition of a vector or matrix is denoted by the superscript ᵀ. We denote
the input LR image by x ∈ R

N , and denote the extracted i-th (i = 1, 2, · · · , n)
patch from x by xi = Fix ∈ R

d, where Fi is the extracting patch operation (i.e.,
a matrix in math). Given the LR image x, the aim is to recover its HR image
with a magnification factor s.

As shown in Fig.1(a), we upscale the LR image with the deep network of l
cascade layers, each with a small scaling constant s1/l. With the super-resolved
image of the former layer as the input, we can successively stack l cascade layers
to upscale the image. By doing this, we can obtain a stable SR solution for
large scaling factors, while the reconstruction-based methods have a limit of a
upscaling factor [21], and even the example-based methods usually work well
on small upsampling factors [20, 36, 32]. However, as the mutuality only exists
in two adjacent layers, minor distortions and estimation errors might propagate
and accumulate from layer to layer, which easily leads to a large deviation from
the source HR image for the final SR result. To reduce this effect, a global “back-
projection” [14] constraint is used to make super-resolved images evolve along a
proper direction. To do super-resolution more credibly in each network unit (or
layer), we encapsulate two blocks: NLSS search and CLA. By iteratively stacking
them as a cascade layer of DNC, referred to SCLA, the super-resolved image of
each layer can be gradually refined. Below we further illustrate SCLA.

As discussed above, the image degradation process from the source image
to the observed LR image often accompanies with complicated variations (e.g.,
blur, downscaling, noise, etc.), and is always unknown in real-world problems.
Therefore, it is intractable and impractical to learn the transformation format
between HR and LR images, as many related methods do. To this end, we employ
the NLSS prior on the input image itself to enhance textural high-frequency
information. Since natural image patches recur many times within an image and
even across different scales [10], we can always find some similar patches for a
given patch. Concretely, in a network unit, we denote the input image by x,
which comes from the SR image of the former layer or the source LR image in
the first layer. Before super-resolution, the bicubic interpolation is imposed on
the input image to generate the initialized SR image (marked as x again for
simplification). For a patch xi extracted from x, we perform the non-local self-
similarity search in multi-scale images, which may come from blur and successive
downscaling (e.g., s1/l scaling factor) versions of x. Given xi, suppose the top
K nearest neighbors, x1

i , · · · ,xK
i , are chosen from these multi-scale images, we
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(a) Deep network cascade (b) Collaborative local auto-encoder

Fig. 1. Illustration of the proposed deep network cascade for image SR. Note that we
don’t plot the back-projection step in the right figure for simplification.

can roughly estimate a new enhanced patch x̂i as

x̂i =
K∑
j=1

�j
ix

j
i , (1)

where the weight �j
i may be set to Gaussian kernel with normalization. The

estimated patch x̂i usually contains more abundant texture information than
the input patch xi.

With the high-frequency details generated from the NLSS search, the struc-
ture distortions or estimation errors also often accompany in the enhanced patch-
es, and might be further propagated and even magnified in next layers of the
deep network cascade. To relieve this phenomenon, an extension of auto-encoder,
called CLA, is proposed to suppress the noises as well as collaborate the over-
lapping patches.

The CLA is adopted on the patches x̂i(i = 1, · · · , n) with constraints coming
from two sides. First, a weight-tying scheme like convolutional network [19] is
used to reduce the parameter space as well as preserve a certain flexibility to
other variances. Moreover, a few of hidden neurons should be activated for a given
stimulus (i.e., a patch here) in view of human visual mechanism, which refers to
the sparsity of codes. Second, the compatibility constraint on overlapping patches
is added into auto-encoder to induce more smooth and natural textures for the
integrated SR image. Actually, the output patch zi of CLA can be combined
into a SR image x̃ by averaging the overlapping part among patches, which is
formally computed from the following equation,

x̃ = (
n∑

i=1

Fᵀ
i Fi)

−1
n∑

i=1

(Fᵀ
i zi). (2)
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Due to the requirement of compatibility among patches, zi should be ideally
equal to Fix̃, which is regarded as the compatibility constraint presented in
Section 4.

In addition, a pre-learned (denoising) auto-encoder trained with a large
amount of patches from other external images or only the testing image may
be used to initialize CLA. Given the enhanced image patches as the output of
NLSS search, the revised auto-encoder network can be adapted to suppress the
noises or artifacts. Furthermore, to avoid a large deviation and accelerate the op-
timization, we implicitly regularize the network parameters by feeding the learnt
parameters of the former layer into the next layer. As a whole, the collaborative
local auto-encoder plays an important role in accomplishing a more natural SR
image with milder texture structures.

4 Collaborative Local Auto-encoder

In this section, we will first give the formulation of collaborative local auto-
encoder, then provide a gradient-based optimization algorithm for CLA.

4.1 Formulation

Given the patches xi(i = 1, · · · , n) sampled from the LR image x, we compute
x̂i ∈ R

d through the NLSS search (Eqn. (1)), which are then input to CLA.
As discussed in Section 3, CLA contains two constraints: the sparse constraint
and the compatibility constraint. Concretely, CLA can be formulated into the
following optimization problem,

min
W,b,c

l(x,W,b, c) + γg(U) + ηh(Z), (3)

whereW ∈ R
m×d is the tied weights of network (m is the number of maps/filters,

m � d), b, c are respectively the bias of the encoder and decoder, U,Z are the
hidden neurons on the encoder and decoder level (or Z can be considered as the
output of auto-encoder), γ and η are the balance parameters. Below we discuss
the three terms in detail.

The first term represents the reconstruct error of auto-encoder on local patch-
es. Like convolutional networks [19], each filter is tied on all patches within the
image to form one map during encoding, which sharply reduces the number of
learnable parameters while maintaining a certain flexibility by the over-complete
filter bank. Formally, the loss function can be written as,

l(x,W,b, c) = 1
2n

∑n
i=1 ‖zi − x̂i‖2, (4)

yi = σ(Wx̂i + b), (5)

ui =
yi√
yᵀ
i yi

, (6)

zi = Wᵀui + c. (7)
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Eqn.(5) represents a nonlinear encoder with a point-wise hyperbolic tangent

function σ(x) = eax−e−ax

eax+e−ax (the gain a), which is easy to implement sparsity
because its values range from -1 to 1. Eqn.(7) represents a decoder with the bias
c. In order to reduce the effect of filter scale, the L2-normalization is performed
on all hidden nodes of the encoder level as expressed in Eqn.(6).

The second term is the sparse constraint on all hidden neurons of the encoder
level. Previous sparse deep learning methods [23, 18, 28, 31] usually employ the
deviation of the expected activation (i.e., K-L divergence) to regularize the s-
parsity. However, we have to painstakingly tune the activation rate and balance
parameter to reach a certain sparsity. Differed from those works, we directly use
the L1 norm, i.e.,

g(U) =
1

n

n∑
i=1

‖ui‖1, (8)

where U = [u1,u2, · · · ,un]. The L1 norm of the hyperbolic tangent operation
can easily produce zero-value neurons and avoid tuning the extensive hyperpa-
rameters, which has been used in sparse filters with better effectiveness [24]. In
addition, the L1 norm on L2 normalized features can be implemented through
a few lines of MATLAB code.

The third term denotes the compatibility constraint on the reconstructed
patches from the decoder. The compatibility on overlapping parts of the recon-
structed patches is necessary for suppressing the artifacts. Ideally, the recon-
structed patches and the corresponding patches extracted from the estimated
image x̃ in Eqn. (2) should be as similar as possible. Formally, we can incorpo-
rate a regularization term into our model, i.e.,

h(Z) =
1

2n

n∑
i=1

‖zi −Fix̃‖2, (9)

where Z = [z1, z2, · · · , zn].

4.2 Optimization

To optimize the objective function in Eqn.(3), we employ the limited-memory
BFGS (L-BFGS) method [16], which is often used to solve nonlinear optimiza-
tion problems without any constraints. L-BFGS is particularly suitable for the
problems with a large amount of variables under the moderate memory require-
ment. To utilize L-BFGS, the gradients of the object function need to be derived.
However, the L1 norm in Eqn. (8) is not first-order differentiable at zero value.
For this, we use the soft-absolute function ‖x‖1 =

√
x2 + ε, where ε is a small

constant (e.g., 1.0E − 9). So Eqn. (8) can be rewritten as,

g(U) =
1

n

n∑
i=1

1ᵀ
m

√
ui ⊗ ui + ε1m, (10)

where ⊗ is an element-wise multiplication operation and 1m is a column vector
with m ones. Next we define some matrices to facilitate the derivation as listed
in the following,
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Algorithm 1 Image Super-resolution with DNC

Input: LR image x, patch size p, upscale factor s, stacked layer number l, neighbor
number K, balance parameters γ, η.

Output: SR image x̃,W,b, c.
1: Set t = 1. Initialize Wt,bt, ct with (denoising) auto-encoder;
2: repeat
3: Initialize x(t) by interpolating x(t−1) (x(0) = x) with a scale factor s1/l.
4: repeat
5: Sample overlapping patches X(t) = [F1x

(t), · · · ,Fnx
(t)] from x(t).

6: Compute ̂X(t) in Eqn.(1) by using the NLSS search.
7: L-BFGS optimization for new W(t),b(t), c(t) by using Eqn.(12).
8: Predict new SR image x̃(t) by using Eqn.(5), (6), (7) and (2).
9: Perform the back-projection operation for x̃(t).
10: W(t+1) = W(t);b(t+1) = b(t); c(t+1) = c(t); x(t+1) = x̃(t).
11: t = t+ 1.
12: until reach a satisfied solution.
13: until reach l layers.
14: return SR image x(t).

– X̂ = [x̂1, x̂2, · · · , x̂n], a matrix of n patches obtained from NLSS search.

– X̃ = [F1x̃,F2x̃, · · · ,Fnx̃], a matrix of n patches extracted from the recon-
structed SR image in Eqn. (2).

– Y = [y1,y2, · · · ,yn], a matrix of the encoding neurons before L2 normal-
ization.

– U = [u1,u2, · · · ,un], a matrix of the hidden neurons after L2 normalization.
– Z = [z1, z2, · · · , zn], a matrix of the output units after decoding.

Thus the object function in Eqn.(3) can be reformulated as,

f(x,W,b, c) =
1

2n
‖Z− X̂‖2F +

η

2n
‖Z− X̃‖2F +

γ

n
1ᵀ
m(

√
U⊗U+ ε1m×n)1n.(11)

After a series of derivations, we can obtain the gradients of the function f with
respect to the variables W,b, c as follows:

∂f

∂W
=

1

n
UAᵀ +

1

n
CX̂ᵀ,

∂f

∂b
=

1

n
C1n,

∂f

∂c
=

1

n
A1n, (12)

where

A = (Z− X̂) + η(Z− X̃), B = WA+ γU�√
U⊗U+ ε, (13)

R = 1m×n �
(
1m

√
1ᵀ
m(Y ⊗Y + ε)

)
, Q = 1m×n −Y ⊗Y, (14)

C = (B− (1m(1ᵀ
m(U⊗B)))⊗Y ⊗R)⊗R⊗Q. (15)

In the above equations, ⊗ and � are respectively the element-wise multiplication
and division operation.
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4.3 Stacked CLA

The collaborative local auto-encoder is then stacked to get a deep architecture,
where the input of each layer is obtained from the output SR results of the
former layer. The whole SR process with SCLA is concluded in Algorithm 1.

5 Experiments

In this section, we evaluate the performance of the proposed method on the
examples frequently-used in those SR literatures. Here we also consider two
classic evaluation criterions: human visual quality, objective performance on P-
SNR and SSIM [30]. The magnification factor is set to 3 or 4 used in most SR
literatures. Empirically, we also find the SR images with a larger magnification
factor (e.g., 6∼8) are satisfactory on visual performance. With an overlarge fac-
tor, the SR image will deviate from the ground-truth, which naturally leads to a
worse quantitative performance. Due to space limitation, more SR results may
be downloaded from the website: http://vipl.ict.ac.cn/paperpage/DNC/.

Experimental configuration: We use patch size with 7 × 7 pixels, i.e.,
the window size of the filter in CLA. The sampling step of patches is set to 2
pixels. The layer number of the network cascade is set to l = 5 as default. In the
generation process of multi-scale images used for the NLSS search, we employ a
low-pass Gaussian filter with a standard deviation of 0.55 as used in [32]. In the
NLSS search, we choose the first nearest neighbor to predict the new patch. In
CLA, the parameter a in the hyperbolic tangent function is set to 1, the number
of filters (or maps) is set to 200, the sparse parameter γ and the collaborative
parameter η are respectively set to 0.01 and 0.1. To suppress the noises in SR,
we pre-train a denoising auto-encoder with Gaussian noises σ = 1, 5, 10 as the
initial network of CLA, where the training data only contains the input image
and its downscaled images. In addition, due to the sensibility to the luminance
component, we transform RGB images into YCbCr images and then conduct
super-resolution on the luminance channel of YCbCr, as most SR methods do.

5.1 Visual Performance

In the first experiment, we show the whole super-resolution process in visual
performance with increasing layers. An example is shown in Fig.2. The input low-
resolution image is very blur especially for those characters in the bottom lines.
We gradually upscale the LR image into a 3 factor HR image with five cascade
layers, each with a equal scale factor1 of 31/5 ≈ 1.25. With the increase of layers,
the characters become more and more clear. Compared with the state-of-the-art
methods [10, 15]2, DNC achieves comparable, even better visual performance for

1 We also tried the setting where each layer magnifies the same number of pixels,
which achieves a similar performance with the equal scaling setting.

2 Since Kim’s method [15] uses additional samples to pre-learn a model, here we use
the general model released from their website for fair comparison.
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Table 1. PSNR (dB) and SSIM results of the reconstructed high-resolution images
on luminance components (3×). For each method, two columns are PSNR and SSIM
respectively. The bold (resp. underlined) values denote the best (resp. second best.)

Images
Yang et al. Kim et al. Lu et al. DNC

[33] [15] [22] NSLL NSLL+CLA

Bike 24.01 / 0.773 24.43 / 0.784 23.78 / 0.767 24.29 / 0.782 24.56 / 0.796

Butterfly 26.16 / 0.877 27.09 / 0.894 25.48 / 0.857 26.64 / 0.894 27.83 / 0.914

Flower 28.73 / 0.837 28.91 / 0.832 28.30 / 0.829 28.89 / 0.840 29.15 / 0.849

Girl 33.38 / 0.823 33.00 / 0.807 33.13 / 0.819 33.43 / 0.823 33.48 / 0.826

Hat 30.45 / 0.858 30.67 / 0.847 30.29 / 0.854 30.83 / 0.863 31.02 / 0.868

Parrots 29.60 / 0.906 29.76 / 0.893 29.20 / 0.900 29.69 / 0.906 30.18 / 0.913

Parthenon 27.07 / 0.795 27.14 / 0.790 26.44 / 0.729 27.40 / 0.802 27.49 / 0.811

Plants 32.72 / 0.903 32.90 / 0.891 32.33 / 0.899 33.05 / 0.907 33.13 / 0.913

Raccoon 29.12 / 0.772 29.03 / 0.760 28.81 / 0.758 29.05 / 0.767 29.15 / 0.772

most SR characters, which have less noticeable artifacts. Note these result are
best viewed in zoomed PDF.

In the next experiment, we compare our method with the recent state-of-
the-art methods [33, 10, 15, 8] in terms of visual quality. They either learn a
transformation from LR patches to HR patches by external examples [33, 15], or
utilize the self-similarity of the input image itself to perform single image super-
resolution [10, 8]. We adopt those common testing examples in their literatures.
Most results are quoted from the related literatures except [15] for which we use
their released codes. Fig.3 shows the SR results of different methods on “child”
by 4× and “cameraman” by 3×. The results of [10] appear to be overly sharp
with some artifacts, e.g., some ghost artifacts along the face contour in “child”,
and some jags in camera area of “cameraman”. The SR images of [15] and [33]
take on some smoothness on edges (e.g., corner of mouth) and accompany with
small artifacts along salient edges.

In addition, we also test our method on the images of natural landscapes, as
shown in Fig.4. Those type of images usually contain diverse textures and rich
fine structures. As shown in this figure, the textures super-resolved by [8] are a
little blurry, as [32] does. In comparison, for our method, the restored edges are
much sharper and clearer, and more textural structures are also recovered. As a
whole, the SR images of our method look more natural.

5.2 Objective Evaluation

To evaluate the SR methods objectively, PSNR and SSIM [30] are used to mea-
sure their performance. Since the SR process is only imposed on the luminance
channel of the color image, we only consider the quantitative difference on the
luminance channel between the SR image and the original image. According to
the protocol in [5], we conduct super-resolution on 9 images by a scale factor
of 3. As shown in Tab.1, we also compare the other state-of-the art methods
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[33, 15, 22]. For our method, NLSS actually works in a deep model mode, i.e.,
it stacks several NLSS even without auto-encoder, which we think accounts for
its competitive results over these related methods with single-layer model. In
addition, CLA also plays an important role in removing noises and artifacts es-
pecially for the deep network, though it doesn’t bring a great improvement on
PSNR and SSIM in most cases 3. That is, CLA may efficiently suppress those
noises and artifacts while NLSS produces rich textural details. As a whole, our
method is more efficient to perform super-resolution due to its elaborate design
in the production of texture structures and the suppression of noises.

Computational Efficiency: The computational cost of the proposed method
mainly spends on the NLSS search and the computation of CLA. In practice,
each cascade layer only needs to stack three CLAs (i.e., loops), which can reach a
satisfying solution. Currently, for each image in our experiments, it takes about
several minutes without any optimized Matlab code on a general PC. However,
the algorithm can easily be parallelized with GPU for fast processing, as those
common deep learning algorithms do. In addition, we may speed up the NLSS
search process in a local neighbor area like in-place self-similarity in [32].

6 Conclusion

In this paper, we propose a deep network cascade to conduct the image super-
resolution problem layer by layer. In each layer, we elaborately integrate the
non-local self-similarity search and collaborative local auto-encoder. The CLA
can efficiently suppress artifacts and collaborate the compatibility among over-
lapping patches while the NLSS search enriches the textural detail of patches.
By iteratively stacking the NLSS search and the CLA with the back-projection
constraint, the super-resolution results can be refined, which also makes the SR
information properly propagate in the network cascade. After the concatenation
of multiple SCLA models, each with a small scale factor, the input LR image can
be gradually upscaled into a more natural-looking HR image. Extensive exper-
iments demonstrate the proposed method is more effective and more promising
in the task of image super-resolution. In future work, we will consider how to
accelerate the algorithm.
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(a) Input (b) DNC-1 (c) DNC-2 (d) DNC-3

(e) DNC-4 (f) DNC-5

(g) Kim et al.[15] (h) Glasner et al.[10]

Fig. 2. An example of gradual SR by 3×. The proposed network cascade magnifies the
input LR image layer by layer in (b)-(f). Please zoom PDF with 324× 405 pixels.
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(a) Kim et al.[15]

(b) Yang et al.[33]

(c) Glasner et al.[10]

(d) DNC

Fig. 3. Super-resolution results on “child” (4×) and “cameraman” (3×). Please zoom
PDF with 512×512 and 768×768 pixels respectively for “child” and “cameraman”.
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(a) Kim et al.[15]

(b) Freeman & Fattal[8]

(c) Yang et al.[32]

(d) DNC

Fig. 4. Super resolution results (3×). Results best viewed in zoomed PDF, at least
642× 429 pixels for the former and 963× 642 pixels for the latter.
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