
Carnegie Mellon University
Research Showcase

Computer Science Department School of Computer Science

6-1-2009

Power Capping Via Forced Idleness
Anshul Gandhi
Carnegie Mellon University

Mor Harchol-Balter
Carnegie Mellon University, harchol@cs.cmu.edu

Rajarshi Das
IBM Research

Jeffrey O. Kephart
IBM Research

Charles Lefurgy
IBM Research

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted
for inclusion in Computer Science Department by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Gandhi, Anshul; Harchol-Balter, Mor; Das, Rajarshi; Kephart, Jeffrey O.; and Lefurgy, Charles, "Power Capping Via Forced Idleness"
(2009). Computer Science Department. Paper 868.
http://repository.cmu.edu/compsci/868

http://repository.cmu.edu
http://repository.cmu.edu/compsci
http://repository.cmu.edu/scs
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu


Power Capping Via Forced Idleness

Anshul Gandhi
Carnegie Mellon University
anshulg@cs.cmu.edu

Mor Harchol-Balter∗
Carnegie Mellon University
harchol@cs.cmu.edu

Rajarshi Das
IBM Research

rajarshi@us.ibm.com

Jeffrey O. Kephart
IBM Research

kephart@us.ibm.com

Charles Lefurgy
IBM Research

lefurgy@us.ibm.com

Abstract
We introduce a novel power capping technique, IdleCap,
that achieves higher effective server frequency for a given
power constraint than existing techniques. IdleCap works
by repeatedly alternating between the highest performance
state and a low-power idle state, maintaining a fixed av-
erage power budget, while significantly increasing the av-
erage processor frequency. In experiments conducted on
an IBM BladeCenter HS21 server across three representa-
tive workloads, IdleCap reduces the mean response time by
up to a factor of 3 when compared to power capping using
clock-throttling. Furthermore, we argue how IdleCap ap-
plies to next-generation servers using DVFS and advanced
idle states.

1. INTRODUCTION
Many data center operators are facing severe power con-
straints as they attempt to fit new high-density servers within
their existing data center power and cooling infrastructure [2].
One method for operating a server under a power constraint
is power capping, which limits the average power consump-
tion of the server over a time interval to stay within a bud-
get [3, 5]. In recent years, IBM, HP, and Intel have de-
ployed power capping in their products [4, 6, 12]. One
way to achieve power capping is to run the server at a fixed

frequency, where this frequency is the highest performance
state or throttle state such that the server’s power consump-
tion in that state is below the required power budget. An-
other way to achieve power capping is to lower the proces-
sor frequency whenever the server’s power consumption over
unit time crosses the given power budget.

In this paper we not only aim to achieve the power cap-
ping goal, but also seek to simultaneously minimize response

time of the workload. Our solution is to introduce a new
power capping approach, IdleCap, that provides a higher

∗Research supported by NSF SMA/PDOS Grant CCR-
0615262 and a 2009 IBM Faculty Award.

time-averaged processor frequency for a given power con-
sumption budget or power cap, thereby leading to lower re-
sponse times. Like existing power capping techniques based
on feedback control [13, 14, 20, 21] and soft-scaling [18], Idle-
Cap dithers between available processor states to cap power
consumption. What distinguishes IdleCap is that it alter-
nates between extreme states (the highest performance state
and a low-power idle state), as compared to existing power-
capping techniques which dither between adjacent clock-
throttling states (t-states) or DVFS states (p-states) [1]. In
the implementation of IdleCap presented in this paper, the
low-power idle state is the C1E state [9] available on modern
Intel processors.

Importantly, IdleCap does not switch to the idle state simply
when there is no work to do (as is common nowadays [16]
to save power and energy). Rather, IdleCap purposely alter-
nates between the highest performance state and the C1E
state. Since the time involved in switching between C1E and
the highest performance state is on the order of microsec-
onds, IdleCap can easily achieve the required average power
constraint on a 1 second (and possibly finer) timescale. The
intuition and analysis behind IdleCap are presented in Sec-
tion 2.

To verify our idea, we test IdleCap on a Woodcrest-based
server [8] (Dual-Core Intel Xeon Processor 5160). We com-
pare IdleCap with power capping via clock-throttling since
clock-throttling is available on all server processors and of-
fers a wide choice of power cap settings. By comparison,
DVFS usually offers a reduced choice of power cap settings
and is not available on all server processors. We observe a
factor of 3 improvement in mean response time for CPU-
bound (DAXPY [19] and LINPACK [10]) workloads and a
factor 2 improvement for memory-bound (STREAM [15])
workloads. These improvements hold over a range of alter-

nation rates, where the time between switches can vary from
a fraction of a second to tens of seconds. A detailed discus-
sion of the experimental setup and results is presented in
Section 3.

IdleCap can also lead to higher effective frequency in proces-
sors with DVFS provided it has access to its advanced idle-
states (e.g., Nehalem-based servers [7]). However, since such
servers are not available in the market yet, we experiment
with clock-throttling and the C1E idle-state in Woodcrest-
based servers. In Section 4 we discuss how IdleCap can
be used in future processors that support DVFS and more



power-efficient C-states [9].

2. THE IDLECAP SCHEME
In this section, we introduce the IdleCap power capping
scheme and the intuition behind it. Then, we analyze Idle-
Cap for both CPU-bound and non CPU-bound workloads
and establish that IdleCap will outperform power capping
approaches based on clock-throttling for all power cap values
in each case.

2.1 High-level algorithm
Consider the solid line in Fig. 1 (labeled clock-throttling),
which displays the power consumed by the server used in
our experiments as a function of the server frequency estab-
lished by clock-throttling, when the server is 100% utilized
by the DAXPY workload. We refer to this as the power-

to-frequency relationship at 100% CPU utilization. Observe
that, within the allowed frequency range of .375 GHz to 3
GHz, the power-to-frequency relationship is very close to
linear. However, the power consumption in the C1E state,
PC , is 126 watts, which is 23 watts less than the value that
the linear relationship would suggest, P0 = 149 watts. Be-
cause of this non-linear drop in power below .375 GHz, the
power-to-frequency relationship is actually concave down-

wards. This is the key fact that we exploit.

Suppose that one is given a power budget of 170 Watts. Ac-
cording to the clock-throttling graph, this allows us to run
the server at a steady frequency of 1 GHz. Now suppose we
purposely choose to use our 170 Watts instead to alternate
between extreme power levels, alternating each second be-
tween approximately 220 Watts and 120 Watts, achieving
an average power usage of 170 Watts. When running at 220
Watts, the server frequency is (about) 3 GHz. When run-
ning at 120 Watts, the server frequency is (about) 0 GHz.
Hence, the average server frequency achievable by alternat-
ing between 220 Watts and 120 Watts is 1.5GHz. This fact
is expressed by the dashed line connecting PC and Pmax.

Thus in the above example we have gone from a frequency of
1 GHz to 1.5 GHz without any additional power! This is the
idea behind IdleCap. While the rest of our discussion focuses
on clock-throttling, the same intuition is equally valid in
processors with DVFS where P0 > PC .

2.2 More detailed algorithm
In Section 2.1, we maintained a fixed power budget of P =
170 Watts by alternating between 120 Watts and 220 Watts
spending r = 1

2
fraction of time in the highest performance

state. More generally, IdleCap can maintain any fixed power
budget, P , by spending some r fraction of time in the highest
performance state and 1−r fraction of time in the C1E state.

The relationship between power consumption and effective
frequency for IdleCap is represented by the the dashed line in
Fig. 1 (labeled IdleCap). Observe that the IdleCap curve is
always below the concave-downwards clock-throttling curve
in Fig. 1. Graphically, the horizontal gap between the two
curves shows that for any desired power budget, P , IdleCap’s
effective frequency exceeds that of clock-throttling.

For example, suppose we require that the system maintain a
power cap of 157 watts while running the 100% CPU-bound

Figure 1: Solid line represents power consumed vs
frequency for a 100% CPU-bound workload DAXPY,
and PC represents the C1E state. Dashed line rep-
resents IdleCap, which affords higher effective CPU
frequency than clock-throttling for any power budget.

Figure 2: Solid line represents power consumed vs
frequency for a memory-bound workload STREAM,
and PC represents the C1E state. Dashed line rep-
resents IdleCap, which affords higher effective CPU
frequency than clock-throttling for any power budget.

workload from Figure 1. If we were to use conventional
power capping that utilizes active CPU states, our system
would run at a fixed 0.375 GHz (see the datapoint to the left
of the arrow). Drawing a horizontal line across to the dashed
line, we find that the IdleCap scheme could achieve the same
power consumption of 157 watts, but increase the effective
frequency to over 1 GHz, nearly tripling the processor speed.
To achieve this effective frequency, IdleCap would alternate
between the C1E state and the 3 GHz state, spending about
r = 1

3
of the time in the 3 GHz state and (1 − r) = 2

3
of

the time in the C1E state. As is evident from Fig. 1, the
improvement in effective frequency diminishes as the power
cap increases, but is always non-negative.

In alternating between extreme frequency states, we define
the alternation period to be the time between successive vis-
its to the same frequency state. In the example above, if the
alternation period is, say, 1 second, then we would repeat-
edly spend 1

3
seconds in the 3 GHz state followed by 2

3
sec-



onds in the C1E state. As we will later see in Figs. 3(b), 4(b)
and 5(b), the exact duration of the alternation period has
little effect on the improvement in mean response time af-
forded by IdleCap.

To a degree that will depend on the specifics of the ap-
plication, and the extent to which it is CPU-bound, this
higher effective frequency will typically translate into lower
response time. For example, if the application is 100% CPU-
bound, one would expect the improvement in mean response
time afforded by IdleCap over clock-throttling to be almost
a factor 3 at lower power cap values. In fact, this is what
we see for the DAXPY workload in Section 3.

2.3 Non CPU-bound workloads
Fig. 2 illustrates the power-to-frequency relationship for a
memory-bound workload, STREAM. The solid line repre-
sents clock-throttling whereas the dashed line represents Idle-
Cap. Both Figs. 1 and 2 have an almost linear power-to-
frequency relationship for clock-throttling. However, the
clock-throttling line in Fig. 2 is flatter than the clock-throttling
line in Fig. 1. This increases the downwards concavity of
clock-throttling for STREAM and in turn makes the hori-
zontal gap between clock-throttling and IdleCap much higher
for STREAM than for DAXPY. This flatness can be ex-
plained as follows: Since STREAM is a memory-bound work-
load, it spends a lesser fraction of time using the CPU than
DAXPY. In fact STREAM is around 70% memory-bound
and 30% CPU-bound. Hence, on increasing the server fre-
quency, the power consumed by STREAM does not rise as
quickly as for DAXPY.

Given the higher downward concavity of clock-throttling for
STREAM as compared to DAXPY, one would expect to see
a higher improvement in response time for STREAM over
DAXPY. Specifically, the horizontal gap for STREAM is
greater, and hence the improvement in effective frequency is
also greater than for DAXPY. However, the improvement in
mean response time for a memory-bound workload does not
scale in the same way as does the improvement in effective
server frequency. This is because the response time of a
memory-bound workload is made up of time spent at the
CPU as well as time spent executing memory operations.
On increasing the effective server frequency, only the time
spent at the CPU decreases, hence the overall improvement
in mean response time is not as great as the improvement
in effective server frequency. We verify this experimentally
for STREAM in Section 3.

2.4 Analysis
In this Section we present expressions for the effective fre-
quencies given a fixed power cap, Pcap, under both clock-
throttling and IdleCap. To do this, we invert the linear de-
pendence of power upon frequency depicted in Figs. 1 and
2, yielding:

fCT(Pcap) =
Pcap − P0

Pmax − P0

fmax

fIC(Pcap) =
Pcap − PC

Pmax − PC

fmax (1)

where fCT and fIC represent the effective frequencies under
clock throttling and IdleCap, P0 and Pmax are the application-
dependent parameters as shown in the figures, fmax is the

highest server frequency (3 GHz), and PC is the idle-state
power consumption. The fraction of time that should be
spent in the high performance state under IdleCap to achieve
power Pcap is:

r(Pcap) = fIC(Pcap)/fmax =
Pcap − PC

Pmax − PC

. (2)

To understand the impact of power capping upon mean re-

sponse time, one needs to compose the power-to-frequency
relationship of Eq. (1) with the frequency-to-response-time
relationship. Interestingly, this latter relationship is differ-
ent for IdleCap than it is for clock throttling.

We define TH to be the natural duration of a job when the
processor operates at fmax. This definition applies to jobs
of any type. Under clock throttling, the processor slows to
f < fmax, while memory continues to operate at normal
speed. If the job is completely compute bound, under a
closed-loop setting, one can expect the job completion time
to increase to THfmax/f ; otherwise one can only say that it
should exceed TH .

Under IdleCap, however, the CPU and memory are treated
equally: they are both either fully utilized or fully unutilized.
Thus both are slowed by the same factor r. According to
Eq. (2), we can expect the job completion time, for any

workload type, to increase to:

E[T IdleCap] = TH · fmax/f (3)

where TH is obtained via measurements. In the next sec-
tion, we shall see that our theoretical predictions for the
mean response time under IdleCap (given by Eq. (3)) are in
excellent agreement with the observed values.

The mean response time of jobs under existing power cap-
ping techniques is not entirely predictable, and is very ap-
plication specific. Thus, a user cannot predict the power cap
or processor frequency that she must operate at to achieve a
given performance target (say mean response time target).
By using IdleCap however, a user can easily predict the pro-
cessor frequency value, f (using Eq. (3)), required to meet
the given mean response time target. Thus, the user can
set the value of r = f

fmax

, which gives the fraction of time
IdleCap should spend in the highest performance state.

3. EXPERIMENTAL RESULTS
Our experimental setup consists of an IBM BladeCenter
HS21 blade server featuring two 3.0 GHz dual-core Intel
Woodcrest processors and 4 GB of memory per blade. All
our experiments (including Figs. 1 and 2) are conducted on
the Linux operating system, and we measure power con-
sumption via IBM’s Amester software. We experiment with
three workloads: DAXPY and Intel’s LINPACK benchmark
are CPU-bound, while STREAM is memory-bound.

We use httperf [17] to generate jobs that run sequentially,
one right after the other, so that there is always exactly one
job in the system (closed-loop). Using httperf, we record
the mean response time of the jobs, and use the AMEster
software to set the clock-throttling state and measure the
server’s mean power consumption.



150 160 170 180 190 200 210 220
0

10

20

30

40

50

60

70

80

Power cap value (watts) →

M
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

on
ds

) 
→

 

 

Clock−throttling
IdleCap

observed

IdleCap
theory

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

20

Alternation period (seconds) →

M
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

on
ds

) 
→

 

 

Clock−throttling
IdleCap

(a) (b)

Figure 3: Figure (a) shows the improvement in mean response time of IdleCap over clock throttling for the
DAXPY workload. IdleCap’s improvement is as high as a factor of 3.5 at the lowest power caps. The solid line
indicates experimental results for clock-throttling. The IdleCap curve indicates both experimental results for
IdleCap (shown as diamonds) and the theoretical predictions for IdleCap from Eq. (3) in Section 2.4 (shown
as dashed lines). Figure (b) shows the effect of the alternation period on the improvement in mean response
time afforded by IdleCap over clock throttling for a power cap of 180 Watts. We see a slight increase in the
improvement as we increase the alternation period.

To compare IdleCap with conventional clock-throttling, we
first run the workload under clock-throttling by setting the
processor to each of the available throttle states, and mea-
sure the power consumption. We then use Eq. (2) to com-
pute the value of r that would result in the same time-
averaged power consumption obtained by clock-throttling.
We implement IdleCap using a simple script that alternates
between the highest performance state and the C1E halt
state. We first run a version of IdleCap that alternates with
alternation period one second, i.e., r × 1 seconds are spent
in the 3 GHz state and (1 − r) × 1 seconds are spent in the
idle state.

To study the effect of the alternation period on the improve-
ment in mean response time afforded by IdleCap over clock-
throttling, we fix an average power consumption value and
run IdleCap with different alternation periods. We now dis-
cuss our results for the three workloads DAXPY, LINPACK
and STREAM.

Fig. 3(a) illustrates the improvement in mean response time
afforded by IdleCap over clock-throttling for the 100% CPU-
bound workload DAXPY [19]. Observe that the ratio of
clock-throttling’s mean response time to that of IdleCap
ranges from 1 at a power cap of 210 watts to as much as 3.5
for a power cap of 160 watts. The tremendous improvement
at low average power levels results from exploiting the power
savings of the C1E state for a longer fraction of time. The-
oretical predictions for IdleCap are shown using the dashed
line, which sits right on top of the experimental results.

Fig. 3(b) illustrates the effect of alternation period on the
improvement in mean response time afforded by IdleCap
over clock-throttling for a power budget of P = 180 Watts.
We see that the alternation period has no significant effect on
the improvement in mean response time afforded by IdleCap.

This result holds true in our experiments for other values of
P as well.

Figs. 4 and 5 present comparable results for the LINPACK [10]
workload, which runs at about 70% CPU utilization (be-
cause the initialization phase runs on 1 core and the solving
phase runs on all cores), and the memory-bound STREAM
workload [15] respectively. The response time improvements
for LINPACK are reduced slightly below those for DAXPY,
and those for STREAM are reduced even further, as pre-
dicted in Section 2.3. Note the effect of alternation period
on the improvement in mean response time afforded by Idle-
Cap over clock-throttling in Figs. 4(b) and 5(b). We see that
the percentage improvement drops slightly as we shorten the
alternation period. This drop in improvement can be ex-
plained as follows: When we shorten the alternation period,
there will be more alternations per second between the 3
GHz state and the C1E state. For larger alternation peri-
ods, the overhead due to alternating between these states is
negligible. However, at alternation periods as low as 0.001
seconds, there are a thousand alternations happening in the
system every second. These alternations affect the perfor-
mance of the workload significantly. However, even at an
alternation period of 0.001 seconds, we see that IdleCap pro-
vides a 30% improvement in mean response time over clock-
throttling for both LINPACK and STREAM. Thus, we can
implement IdleCap at granularities as fine as a millisecond,
and possibly lower.

Finally, note that the IdleCap performance is entirely pre-
dictable across all workloads as discussed in Section 2.4.
This is seen by the fact that the dashed lines (the theo-
retical predictions) in Figs. 3, 4 and 5 are always on top of
the IdleCap experimental values (shown as diamonds).



150 160 170 180 190 200 210
0

5

10

15

20

25

30

35

Power cap value (watts) →

M
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

on
ds

) 
→

 

 

Clock−throttling
IdleCap

observed

IdleCap
theory

10
−3

10
−2

10
−1

10
0

10
1

0

5

10

15

Alternation period (seconds) →

M
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

on
ds

) 
→

 

 

Clock−throttling
IdleCap

(a) (b)

Figure 4: Figure (a) shows the improvement in mean response time of IdleCap over clock throttling for the
LINPACK workload. IdleCap’s improvement is as high as a factor of 3.0 at the lowest power caps. The solid
line indicates experimental results for clock-throttling. The IdleCap curve indicates both experimental results for
IdleCap (shown as diamonds) and the theoretical predictions for IdleCap from Eq. (3) in Section 2.4 (shown as
dashed lines). Figure (b) shows the effect of the alternation period on the improvement in mean response time
afforded by IdleCap over clock throttling for a power cap of 180 Watts. We see an increase in the improvement
as we increase the alternation period.

4. FINAL REMARKS
In this paper, we have shown that IdleCap is superior to
power capping techniques that rely on clock throttling (the
t-states) for both CPU and memory-bound workloads. We
have also shown that the behavior of IdleCap is entirely pre-
dictable via analysis. This is in contrast to existing power
capping techniques, where the performance is application
dependent. IdleCap is a very versatile algorithm, applying
to a wide range of workloads across all processor frequen-
cies and a broad range of alternation periods. Since IdleCap
works even for alternation periods as small as 1 millisecond,
it can respond well to spikes in power supply or workload
variations, by changing its effective server frequency to en-
sure that the desired power cap is maintained.

One might ask how these results extend to DVFS. Under cur-
rent DVFS technology, the IdleCap technique is not applica-
ble because the C1E idle state power is not sufficiently low
to make the power-to-frequency relationship concave down-
wards. However, in future processors with even deeper idle
processor states (e.g. C3 and C6 [7]), the power consumption
for these states is expected to fall below the extrapolated
value (P0) obtained from the power-to-frequency relation-
ship for DVFS, making the power-to-frequency relationship
concave downwards. Figure 6 shows the processor power-
to-frequency relationship for current-generation Intel mobile
processors [11] that have these advanced idle states, assum-
ing worst-case workload. Tomorrow’s servers are expected
to have these same idle states, resulting in the downwards
concave behavior that we’ve been observing. As shown in
Figure 6, IdleCap should again offer improvements over ex-
isting power capping throughout the entire range of power
caps, with up to a factor of 1.6 improvement in effective fre-
quency. While Figure 6 suggests a linear power-to-frequency
curve, one can also imagine a non-linear power-to-frequency
curve, especially towards the high frequency end of the spec-

trum. In such cases, IdleCap’s improvement over DVFS
would be limited to the lower frequency range. Our future
work will evaluate the effectiveness of these deeper (more
energy-efficient) C-states to maintain a power cap and also
assess how their attendant longer entry and exit times affect
the alternation rate in IdleCap.

Finally we note that DVFS does not enable us to achieve the
full range of frequencies obtainable under clock-throttling,
namely frequencies below 0.75 GHz (see Fig. 6). Hence,
clock-throttling is the only mechanism for frequency scaling
in the < 0.75 GHz frequency regime. Hence, even in systems
that deploy DVFS in the higher frequency range, IdleCap
can still be used to improve upon clock-throttling in the
lower frequency range; the only difference is that IdleCap
would now alternate between the idle state and the lowest
DVFS state.

5. REFERENCES
[1] L. Brown, A. Keshavamurthy, D. Li, R. Moore,

V. Pallipadi, and L. Yu. ACPI in Linux: architectures,
advances and challenges. In Proceedings of the Linux
Symposium, 2005.

[2] Gartner. Gartner says 50 percent of data centers will have
insufficient power and cooling capacity by 2008.
http://www.gartner.com/it/page.jsp?id=499090,
November 2006.

[3] HP. Study: HP data center management solution reduces
costs by 34 percent. http://www.hp.com/hpinfo/newsroom/
press/2007/070625xa.html, June 2007.

[4] HP. HP insight power manager. http://h18013.www1.hp.
com/products/servers/management/ipm/index.html,
Novemeber 2008.

[5] IBM. IBM helps clients “meter” datacenter power usage to
help lower energy costs. http:
//www-03.ibm.com/press/us/en/pressrelease/19695.wss,
May 2006.



165 170 175 180 185 190 195
0

2

4

6

8

10

12

Power cap value (watts) →

M
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

on
ds

) 
→

 

 

Clock−throttling
IdleCap

observed

IdleCap
theory

10
−3

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

6

7

8

Alternation period (seconds) →

M
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

on
ds

) 
→

 

 

Clock−throttling
IdleCap

(a) (b)

Figure 5: Figure (a) shows the improvement in mean response time of IdleCap over clock throttling for the
STREAM workload. IdleCap’s improvement is as high as a factor of 2.0 at the lowest power caps. The solid
line indicates experimental results for clock-throttling. The IdleCap curve indicates both experimental results for
IdleCap (shown as diamonds) and the theoretical predictions for IdleCap from Eq. (3) in Section 2.4 (shown as
dashed lines). Figure (b) shows the effect of the alternation period on the improvement in mean response time
afforded by IdleCap over clock throttling for a power cap of 180 Watts. We see an increase in the improvement
as we increase the alternation period.

Figure 6: Solid line represents processor power vs fre-
quency for DVFS Dual Core Extreme x9100, assum-
ing worst-case workload. Dashed line represents Idle-
Cap, which affords higher effective CPU frequency
than DVFS, via the C6 idle state.

[6] IBM. Going green with IBM systems director active energy
manager. http:
//www.redbooks.ibm.com/redpieces/pdfs/redp4361.pdf,
August 2008.

[7] Intel Corp. Intel: Nehalem.
http://intel.wingateweb.com/US08/published/sessions/
NGMS001/SF08_NGMS001_100t.pdf.

[8] Intel Corp. Intel news release: Woodcrest.
http://www.intel.com/pressroom/archive/releases/
20060626comp.htm.

[9] Intel Corp. Power and thermal management in the intel
core duo processor. http://download.intel.com/
technology/itj/2006/volume10issue02/vol10_art03.pdf,
May 2006.

[10] Intel Corp. Intel Math Kernel Library 10.0 - LINPACK.
http://www.intel.com/cd/software/products/asmo-na/
eng/266857.htm, 2007.

[11] Intel Corp. Intel Core2 Duo Mobile Processor Datasheet:
Table 20. http://download.intel.com/design/mobile/
datashts/32012001.pdf, 2008.

[12] Intel Corp. Intel dynamic power datacenter manager. http:
//softwarecommunity.intel.com/articles/eng/3931.htm,
August 2008.

[13] C. Lefurgy, X. Wang, and M. Ware. Power capping: a
prelude to power shifting. Cluster Computing, November
2007.

[14] C. Lefurgy, X. Wang, and M. Ware. Server-level power
control. In ICAC ’07: Proceedings of the Fourth
International Conference on Autonomic Computing,
Jacksonville, FL, USA, 2007. IEEE Computer Society.

[15] J.D. McCalpin. Stream: Sustainable memory bandwidth in
high performance computers.
http://www.cs.virginia.edu/stream/.

[16] David Meisner, Brian T. Gold, and Thomas F. Wenisch.
Powernap: eliminating server idle power. In ASPLOS ’09:
Proceeding of the 14th international conference on
Architectural support for programming languages and
operating systems, 2009.

[17] D. Mosberger and T. Jin. httperf—A Tool for Measuring
Web Server Performance. ACM Sigmetrics: Performance
Evaluation Review, 26(3):31–37, 1998.

[18] R. Nathuji and K. Schwan. Virtual power: Coordinated
power management in virtualized enterprise systems.
SOSP, October 2007.

[19] K. Rajamani, H. Hanson, J. C. Rubio, S. Ghiasi, and F. L.
Rawson. Online power and performance estimation for
dynamic power management. IBM Research Report
RC-24007, July 2006.

[20] X. Wang and M. Chen. Cluster-level feedback power
control for performance optimization. HPCA, 2008.

[21] Z. Wang, X. Zhu, C. McCarthy, P. Ranganathan, and
V. Talwar. Feedback control algorithms for power
management of servers. Third International Workshop on
Feedback Control Implementation and Design in
Computing Systems and Networks, June 2008.


	Carnegie Mellon University
	Research Showcase
	6-1-2009

	Power Capping Via Forced Idleness
	Anshul Gandhi
	Mor Harchol-Balter
	Rajarshi Das
	Jeffrey O. Kephart
	Charles Lefurgy
	Recommended Citation



