
Adaptation of Obstacle-Avoidancein the face of Emerging Environmental DynamicsChris ThorntonCognitive and Computing SciencesUniversity of SussexBrighton BN1 9QNEmail: Chris.Thornton@cogs.susx.ac.ukTel: (44)273 606755 x 3239June 29, 1994AbstractThe avoidance of static obstacles is relatively easy to implement as an animat behaviour, evenwhere the animat receives realistic `sensory' input from the environment (e.g., simulated, infra-redproximity signals). [1,2,3] The behaviour can also be learned by a variety of methods. However,natural implementations of static-obstacle avoidance may break down if the objects in the environ-ment have dynamic properties. Any introduction of object motion directly a�ects the environmentalcues which anticipate impending collisions. The paper shows that this happens in a systematic way.The statistical order of the sensory collision cues increases roughly in proportion with the level ofobstacle mobility. Thus, adaptation of obstacle-avoidance behaviours (in animats) involves makinga transition from strategies based on low-order cues to strategies based on high-order cues.1 IntroductionThe aim of the paper is to investigate how simple, animat-based implementations of static-obstacle avoid-ance can be adapted to emerging environmental dynamics (i.e., the increasing mobility of environmentalobjects). First, the performance of a non-adaptive, obstacle-avoidance strategy is investigated using a2-dimensional, animat simulation environment.1 The simulations show that though the implementationof the behaviour is completely successful under static environmental conditions, it is quickly defeatedonce environmental dynamism increases beyond a certain threshold. I analyse the statistical order ofthe environmental cues upon which (successful production of) the behaviour is based and show that theinitial implementation is sensitive to �rst-order cues only. As the environmental dynamics increase, theorder of the signi�cant environmental cues increases and this renders the implementation ine�ective.2 The simulation setupA conventional animat simulationwas used for the experiments. The simulatedworld was a 2-dimensional,rectangular space containing six circular obstacles. The animat was triangular in shape and was capa-ble of making forwards, backwards and rotational moves within the space. At the beginning of eachsimulation it was placed into the world at a central position and on a random heading (i.e., facing ina randomly chosen direction). Its behaviour in each simulation cycle was produced by a hand-crafted1The environment is provided by the `POPBUGS' library, running under the Poplog environment. Poplog users canobtain this software free of charge from the author. 1



controller which generated levels of `drive' to be applied to two latitudinally-mounted wheels. Thesedrive levels were interpreted within the simulation program in the obvious way. The animat's movementin each cycle included a rotational component derived from their di�erence and a forwards/backwardscomponent derived from their sum.The animat was equipped with 7 proximity detectors. In each simulation cycle, each proximity detectorproduced a value representing the proximity of the nearest object along a particular ray. The rays werearranged in a forwards-facing fan, with one ray pointing directly ahead and each ray o�set 15 degreesfrom its neighbour(s). The proximity values were normalised with respect to the maximum measurabledistance within the space. Thus proximity values close to 1 indicated the presence of very near obstacleswhile the proximity value 0 indicates no obstacle detected.The general form of the simulation setup is shown in Figure 1. Here we see the animat shown as atriangle in the centre of the space. The six circles represent the six obstacles. The dashed lines show theproximity-detector rays and the small integers show the points at which the rays have intersected withan obstacle or a boundary of the space.
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Figure 1:3 Static-obstacle avoidanceThe animat's control procedure was based on the the following two rules.� If one of the proximity inputs exceeds 0.9 then execute a small turn to the right.� Otherwise execute a small forwards move. 2



Under this control regime, the animat `wanders' through the space, turning away (to the right) wheneverit is confronted with an obstacle or a boundary. The general e�ect is one of a random, obstacle-avoidingexploration of the space; see Figure 2.

Figure 2:4 The introduction of environmental dynamicsThe impact of emerging dynamics was examined by modifying the simulation so as to give the obstaclessimple dynamic properties. Each obstacle was randomly assigned a heading and then moved forward acertain distance in each simulation cycle. An obstacle arriving at a boundary would have its headingincreased by 170 degrees (modulus 360), i.e., nearly reversed. This ensured (1) that obstacles nevermoved beyond the boundaries of the space and (2) that they would not simply track back and forth onthe same linear trajetory.A `dynamism' parameter was implemented to control the degree of mobility of the obstacles. A dynamismvalue of 0 ensured that all obstacles would remain completely static. A dynamism value of 0.5 ensuredthat obstacles would have a limited mobility. A dynamism value of 1 ensured that obstacles would havea maximum degree of mobility, i.e., would move through the space very rapidly.Using the modi�ed simulation, it was easy to show that the original implementation of obstacle-avoidancewas robust for low dynamism values. For example, consider Figure 3. This shows a simulation sequencein which the animat (using the control procedure described above) successfully negotiates a number ofrelatively slow-moving obstacles. The original implementation of the behaviour remains e�ective underthis modestly dynamic regime largely because the animat is moving faster than the obstacles. Theslowness of the dynamic obstacles means that they are reasonably well approximated as static objectsand this allows the original controller to remain e�ective.If we increase the level of environmental dynamism the e�ectiveness of the control procedure is signi�-cantly reduced. This e�ect is shown in Figure 4. Here the animat `crashes' into a relatively fast-moving3



Figure 3:oncoming obstacle in the initial stages of the simulation.5 Statistical analysisThe adaptation of even very simple behaviours (such as obstacle avoidance) to emerging dynamics is ahard problem and this paper does not, in any sense, attempt to provide a direct solution to it. What itwill do is show that any successful adaptation strategy for static-obstacle avoidance must have certainproperties. In particular the adaptation strategy must enable the controller to test environmental cuesof increasing statistical order [4]. This is most easily demonstrated via an examination of the sensoryinputs used by the obstacle-avoiding animat within the simulation.The rows of Table 1 show a sequence of 10 sensory-motor associations implemented by the animatcontroller during the simulation. In each row, the �rst seven columns contain the proximity valuesproduced in a particular cycle, and the �nal two columns show the drive levels returned by by thecontroller procedure. Note that in the �rst three cycles shown, none of the proximity values exceedsthe threshold value of 0.9. The controller responds by specifying full drive for both wheels (i.e., asmall forwards moves). In cycles 4-6 the sensory inputs contain above-threshold proximity values. Thecontroller responds by specifying left-wheel drive only (i.e., a small turn to the right). In the remainingcycles the proximity values are always below threshold and pure forards moves are thus speci�ed.The controller used for the simulations implements a rule which refers to any one of the proximityinputs. This means that it relies on the testing of a �rst-order environmental cue (i.e., a sensoryproperty involving a single variable). Provided obstacles are static, or nearly so, this approach presentsno disadvantage. A �rst-order cue is capable of showing quite unambiguously that there is an objectdirectly ahead. Thus, testing a �rst-order cue is su�cient to reliably determine whether a turn isnecessitated.However, consider what happens as we increase the level of environmental dynamism. As long as obstacles4



Figure 4:move relatively slowly, �rst-order cues are su�cient to determine the presence of an obstacle directlyahead. As the velocity of obstacles increases, �rst-order cues cease to be e�ective indicators of obstaclepresence. A fast-moving object that is directly in front of the animat in one cycle of the simulationmay move out of its path in the next. Alternatively | and more disastrously for the controller | afast-moving obstacle that is well clear of the animat's trajectory in one cycle may move inside it inthe next. A �rst-order cue (i.e., a single proximity value) cannot discriminate between these two cases.Therefore single proximity values are necessarily ambiguous with respect to the task in hand.With modest dynamics, then, unambiguous evidence concerning the presence of an obstacle in the regionof space about to be occupied by the animat can only be obtained through tests made on more than oneproximity value. In other words, under modestly dynamic conditions, environment cues become at leastsecond-order. But we clearly need to determine the rapidity | relative to the increase in environmentaldynamism | of the increase in the order of environmental cues.0.792 0.799 0.791 0.767 0.719 0.599 0.309 1 10.739 0.747 0.738 0.707 0.64 0.495 0.28 1 10.683 0.695 0.685 0.647 0.567 0.391 0.248 1 10.937 0.935 0.688 0.694 0.68 0.637 0.546 0.3 00.932 0.936 0.937 0.94 0.69 0.694 0.673 0.3 00.744 0.925 0.932 0.936 0.944 0.931 0.693 0.3 00.697 0.696 0.868 0.876 0.876 0.63 0.655 1 10.649 0.648 0.805 0.816 0.524 0.589 0.618 1 10.602 0.601 0.571 0.756 0.478 0.552 0.58 1 10.554 0.553 0.521 0.696 0.432 0.511 0.544 1 1Table 1:5



Given the potential complexity of the e�ect there would seem to be little hope of �nding an analyticsolution. However, there are good reasons to think that cue order will increase roughly in proportionwith environmental dynamism. In the simulations performed all the obstacles in the environment movedon linear trajectories at the same constant speed. This is clearly a minimally dynamic regime in whichsecond-order environmental cues spanning no more than two sensory cycles can be used to unambiguouslydetermine the linear trajectory of an object. This information is su�cient to determine the presenceof the obstacle in the next simulation cycle. Thus, under the regime simulated, second-order, two-cycleenvironmental cues should contain su�cient information for e�ective control.A modest increase in the qualitative character of the environmental dynamics can be obtained by allowingthe obstacles to move on circular rather than linear trajectories. Under this regime, it is clear that atleast three proximity measurements (spanning three cycles) are required to establish the trajectory ofan obstacle. Environment cues for the behaviour thus become at least third order. If we now allowobstacles to adopt arbitrary dynamic characteristics (e.g., we allow obstacles to choose whether to movein a zig-zag motion, or a looping motion, or jerky motion) then we can expect the order of environmentalcues for the behaviour to increase rapidly. At a rough estimate, an environmental cue for sucessfulobstacle avoidance with obstacles producing arbitrary dynamics might be greater than tenth-order.The general implication is that any successful adaptation of static-obstacle avoidance (and probably manyother simple animat behaviours) which seeks to deal with emerging environmental dynamics must takeaccount of the necessity to test increasingly high-order environmental cues spanning increasingly largenumbers of sensory cycles. The observation is but a small step on the way to an e�ective decompositionof the general problem of adaptation to dyanamic e�ects. But it does provides us with a rule of thumb forevaluating potential adaptation models. For example, imagine that the simple recurrent neural network(SRN) [5] is put up as a candidate model for the adaptation-to-dynamics task. The rule-of-thumbregarding environmental cues might lead us to attribute low plausibility to this model on the groundsthat SRNs have a limited capacity for preserving persistent internal state and thus could not be expectedto deal with high-order cues spanning many cycles of sensing and behaviour.6 SummaryThe paper has described some animat simulations which sought to investigate the preservation of ob-stacle avoidance behaviour in an increasingly dynamic environment. The simulations showed that animplementation which is highly e�ective in a static environment degrades rapidly as the velocity of theobstacles increases. Informal arguments were put forward in support of the view that there will typicallybe a rough proportionality between the increase in dynamism and the increase in the order of environ-mental cues which must be tested. This observation provides the beginnings of a decomposition for theproblem of adaptation-to-dynamics and a potential rule-of-thumb for evaluating existing models.References[1] Braitenberg, V. (1984). Vehicles: Experiments in Synthetic Psychology. London: The MIT Press.[2] Kontoravdis, D., Likas, A. and Stafylopatis, A. (1992). Collision-free movement of an autonomousvehicle using reinforcement learning. Proceedings of the Tenth European Conference on Arti�cialIntelligence. John Wiley Sons.[3] Thornton, C. (1993). Supervised learning of conditional approach: a case study. CSRP 308, Cogni-tive and Computing Sciences, University of Sussex, UK.[4] Duda, R. and Hart, P. (1973). Pattern Classi�cation and Scene Analysis. New York: Wiley.[5] Elman, J. (1990). Finding structure in time. Cognitive Science, 14 (pp. 179-211).6


