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Identifying the interface between two interacting proteins provides
important clues to the function of a protein, and is becoming increasing
relevant to drug discovery. Here, surface patch analysis was combined with
a Bayesian network to predict protein–protein binding sites with a success
rate of 82% on a benchmark dataset of 180 proteins, improving by 6% on
previous work and well above the 36% that would be achieved by a random
method. A comparable success rate was achieved even when evolutionary
information was missing, a further improvement on our previous method
which was unable to handle incomplete data automatically. In a case study
of the Mog1p family, we showed that our Bayesian network method can aid
the prediction of previously uncharacterised binding sites and provide
important clues to protein function. On Mog1p itself a putative binding site
involved in the SLN1-SKN7 signal transduction pathway was detected, as
was a Ran binding site, previously characterized solely by conservation
studies, even though our automated method operated without using
homologous proteins. On the remaining members of the family (two
structural genomics targets, and a protein involved in the photosystem II
complex in higher plants) we identified novel binding sites with little
correspondence to those on Mog1p. These results suggest that members of
the Mog1p family bind to different proteins and probably have different
functions despite sharing the same overall fold. We also demonstrated the
applicability of ourmethod to drug discovery efforts by successfully locating
a number of binding sites involved in the protein–protein interaction
network of papilloma virus infection. In a separate study, we attempted to
distinguish between the two types of binding site, obligate and non-obligate,
within our dataset using a second Bayesian network. This proved difficult
although some separation was achieved on the basis of patch size,
electrostatic potential and conservation. Such was the similarity between
the two interacting patch types, we were able to use obligate binding site
properties to predict the location of non-obligate binding sites and vice versa.
© 2006 Elsevier Ltd. All rights reserved.
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Introduction

Structural genomics projects are beginning to
produce protein structures with unknown function,
and therefore accurate, automated predictors of
protein function are required if all these structures
are to be annotated in reasonable time. Identifying
the interface between two interacting proteins
provides important clues to the function of a protein
and can reduce the search space required by docking
algorithms to predict the structures of complexes.
Detecting novel protein–protein binding sites is also
d.
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becoming increasing important to the drug discov-
ery process given recent evidence that protein–
protein interactions make “drugable” targets.1,2

Nooren & Thornton3 describe two ways of classify-
ing protein–protein interactions based on the compo-
nents and lifetime of the complex. The term “obligate”
describes complexes in which individual components
cannot exist as stable structures independently in vivo.
By contrast, if each component can exist as a stable
structure under physiological conditions then the
complex is described as non-obligate. Interactions can
be further classified as permanent, weak transient or
strong transient according to the lifetime of the
complex. Permanent interactions are very stable and
mostly, but not always occur in obligate complexes.
Weak transient interactions occur between two pro-
teins that need to associate and dissociate continuously
in vivo. A transient interactionmay become permanent
under certain cellular conditions but usually the type of
interaction is inferred by the function of the protein.
In general, binding sites share common proper-

ties that distinguish them from the rest of the
protein.4–7 For example, in their bound conforma-
tion they are often the most planar and accessible
of all the surface patches regardless of interaction
type.6 Hydrophobic residues also cluster at some
interfaces,8–10 especially large interfaces of obligate
or permanent complexes,5,9,11 whilst other smaller,
transient interfaces are less hydrophobic and have
a significant number of polar residues.5,11–13

Hydrophobic residues tend to be scattered over
these interfaces in order to accommodate electro-
static interactions,12 hydrogen bonding and salt
bridges.11,14 Charged side-chains are often
excluded from protein–protein interfaces with the
exception of arginine. Arginine is one of the most
abundant interface residues regardless of interac-
tion type15,16 mainly due to its hydrogen bonding
capacity and role in cation-π interactions.17 Patches
of low desolvation energy or “optimal docking
areas” (ODAs) often correspond to protein–protein
interfaces.18 However, secondary structure compo-
sition appears to be of little discriminatory value,
since neither α-helices nor β-sheets dominate at
transient binding sites.13 Alanine-scanning has
shown that binding free energy is not equally
distributed at a protein–protein interface19,20 with
the majority of the binding affinity provided by a
small number of conserved, polar “hot-spot”
residues21,22 often at the centre of the binding site.23

Evolutionary conservation has some discrimina-
tory power for obligate and more permanent
interactions,24,25 although protein–protein interfaces
in general are often not conserved to the extent
where they can be distinguished from other surface
patches.26–28 Nevertheless conservation scoring sys-
tems such as Evolutionary Trace have been used
with some success to locate protein–protein binding
sites.29,30 Interestingly, the interface core tends to be
more conserved than the periphery in both obligate
and non-obligate cases.31

No single property absolutely differentiates pro-
tein–protein interfaces from other surface patches6
therefore most binding site prediction methods
combine more than one physical–chemical property.
Jones & Thornton32 defined roughly circular patches
on the protein surface, then scored and ranked each
patch according to its chemical and physical proper-
ties. Similarly, Neuvirth et al.33 applied a probabil-
istic approach to assess the likelihood of surface
patches being part of a binding site using a dataset
of unbound proteins involved in transient interac-
tions. Several groups have used machine learning
methods such as neural networks34–37 and support
vector machines25,38–41 (SVMs), although the most
effective of these make extensive use of structural
information.38,39 In particular, we used an SVM in
combination with surface patch analysis to predict
binding sites with a success rate of 76% on a
benchmark dataset of 180 proteins containing both
obligate and non-obligate binding sites.38 However,
the SVM was unable to handle incomplete data
automatically, such as instances where evolutionary
information was unavailable. Furthermore, given
that a randommethod achieves a success rate of 36%
on the same data set there is still a need to improve
prediction accuracy.
A number of attempts have been made to dif-

ferentiate the interface types assigned by Nooren &
Thornton.3 Per-residue surface and interfaces areas
of non-obligate interactions tend to be smaller than
those of obligate interactions,42 with obligate inter-
actions involving more non-polar contacts.43 Min-
tseris &Weng44 found that obligate interfaces evolve
more slowly than transient interfaces. This allows
them to co-evolve with their interaction partners and
so correlated mutations are rare between transient
interfaces.44 In earlier work, the same authors used
atomic contact vectors to discriminate obligate from
non-obligate interactions with a success rate of 91%
although this required knowledge of the binding
partner.45 Recently De et al.43 found that involve-
ment of defined secondary structure elements such
as β-sheets and helices is muchmore common across
subunits at an obligate interface than a non-obligate
interface. Despite these differences, there remains a
need for an accurate classifier of interaction type that
combines structural and sequence information and
requires no knowledge of the binding partner.
In this work, we have devised a highly accurate

protein–protein binding site prediction method
using a Bayesian network in combination with
surface patch analysis. We also attempt to distin-
guish obligate from non-obligate binding sites using
a second Bayesian network. Bayesian networks are
probabilistic graphical models which provide com-
pact representations for expressing joint probability
distributions and for inference.46 This representation
and use of probability theory makes Bayesian net-
works suitable for learning from incomplete datasets,
expressing causal relationships, combining domain
knowledge and data, and avoid over-fitting a model
to data. Consequently, a host of applications in com-
putational biology have used Bayesian networks
and Bayesian learning methodologies:47,48 analysis
of gene expression data,49–58 prediction of
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transcription factor binding sites and other functional
DNA regions,59–62 prediction of sub-cellular
location,63 discovering structural correlations in α-
helices,64 protein–protein interaction prediction,65

and gene function prediction.66 To our knowledge,
Bayesian networks have yet to be applied to protein–
protein binding site prediction.

Overview

This work is motivated in two ways: to predict
both protein–protein binding site location and type
(whether obligate and non-obligate), and in doing so
provide insights into the properties that characterise
a binding site and drive complex formation.
The first part of this work, binding site location

prediction, consists of two separate phases. In the
training phase, we train two Bayesian networks (one
analogous to a naïve Bayes classifier and another
designed using expert knowledge) to distinguish
between interacting and non-interacting surface
patches taken from a benchmark dataset of 180
proteins.38 To do this we exploit several surface
properties previously implicated in distinguishing
protein–protein binding sites from the rest of the
protein surface: hydrophobicity, residue interface
propensity, shape, sequence conservation, electro-
static potential, and solvent accessible surface area
(ASA). The best performing classifier is then carried
forward to the prediction phase where we perform
two cross-validation tests: one using all available
data, the other without access to sequence conserva-
tion scores. In addition, we carry out a study on four
proteins in theMog1p family that share the same fold
but little sequence similarity. The family represents
an ideal test case for ourmethod, since it includes two
structural genomics targets, one of which has little or
no detectable sequence homology to any known
protein, and two other proteins involved in protein–
protein interactions but with binding sites yet to be
located experimentally. Finally in the prediction
phase, we demonstrate our method's applicability
to the drug discovery process by predicting known
binding sites involved in the protein–protein inter-
action network of papilloma virus infection.
In the second part of this work, we train a second

Bayesian network to distinguish obligate from non-
Figure 1. The two Bayesian network structures tested in th
and non-interacting patches. (a) Naïve and (b) expert.
obligate binding sites using similar properties to
those used in binding site location prediction but
with the addition of patch size and secondary
structure nodes. Based on findings from this study
we carry out a heterogeneous cross-validation test
where we train our binding site location Bayesian
network above on obligate data in order to predict
non-obligate binding sites, and vice versa.
Results and Discussion

Training phase

Two Bayesian network structures

We compared binding site prediction performance
of two Bayesian network structures: a structure
analogous to a naïve Bayes classifier (Figure 1(a)),
and an “expert”Bayesian network (Figure 1(b)), both
with 14 nodes representing the mean and standard
deviation of seven surface properties across a patch,
and a class node (binding site patch?).
A naïve structure contains only edges from the class

node to the other observations (thus assuming that all
the variables are independent) and is called a naïve
Bayes classifier. We derived an expert Bayesian
network structure with edges between the residue
interface propensity and hydrophobicity nodes (Fig-
ure 1(b)). Our rationale was that the hydrophobic
nature of a patch of protein surface is strongly cor-
relatedwith the residues foundwithin that region; the
correlation coefficientswere 0.93 and 0.73 between the
means and standard deviations, respectively, of patch
hydrophobicity and residue interface propensity.
Training procedure

For each protein within our benchmark, non-
redundant training set of 180 proteins38 (see also
Materials and Methods), we generated one protein
surface patch involved in interactions (interacting
patch) and one patch taken from the non-interacting
parts of the surface (non-interacting patch) of
equivalent size to the interacting patch. We then
trained both the naïve and expert Bayesian networks
to distinguish between the two patch types and com-
is work for their ability to distinguish between interacting



Figure 2. ROC curves for naive (AUC=0.89±0.01) and
expert (AUC=0.90±0.01) Bayesian network structures.
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pared performance. Note that no sequence homo-
logues were found in Swissprot (release 46) for 12 of
the 180 proteins. In these cases, the expectation
maximisation (EM) algorithm was used to estimate
the expected values of the conservation scores (see
Materials and Methods).
The Bayesian network assigns a probability score

to each patch under test. Consequently, classification
performance depends on the probability threshold
below which a patch is classed as “non-interacting”
and abovewhich a patch is classified as “interacting”
and so calculating sensitivity (TP/TP+FN,where TP
and FN are the numbers of true positives and false
negatives) or specificity (TN/TN+FP, where TN and
FP are the numbers of true negatives and false
positives) values at a single threshold is potentially
misleading. Therefore, we plotted receiver operating
characteristic (ROC) curves to evaluate performance.
A ROC curve is a plot of sensitivity (true positive
rate) versus (1-specificity) (false positive rate) across a
range of probability thresholds (in our case from 0.0
to 1.0). The area under a ROC curve (AUC) gives a
measure of classifier performance; an AUC of 1.0 is
indicative of a perfect classifier whereas the AUC of
a classifier no better than random is 0.50. In order to
derive a probability threshold, p, to define our
“predicted patches” in the prediction phase, we
chose a point on the ROC curve of the best classifier
at which the gradient is equal to one, and is closest to
the point (0, 1). This point represents an equal cost of
a false positive and a false negative.

Training performance

ROC curves for each of the Bayesian network
structures are shown in Figure 2. The AUC for the
naïve classifier was 0.89±0.01, compared to 0.90±
0.01 for the expert Bayesian network, suggesting
little gain in associating hydrophobicity with resi-
due interface propensity. The high AUC for the
naïve classifier was nevertheless indicative of a very
good classifier. In both cases, the equal costs
probability p was approximately 0.50, where mean
sensitivity and specificity values were both 0.81 for
the naïve classifier, and 0.83 for the expert Bayesian
network.
The small size of the data set was a potential source

of overfitting so it was important to measure the
significance of our AUC values obtained above.
Randomisation testing has previously been found to
be very effective at assessing over-fitting.67,68 Here,
the original training set is copied and class labels are
replaced with random class labels. Then the Bayesian
network is trained on these data using the same
methodology that is used with the original data. Any
estimate of accuracy greater than random for the
randomly labelled data reflects the bias in the
methodology, and this reference distribution can
then be used to adjust the estimates on the real data.
In thiswork, randomization testingwas implemented
by training both Bayesian networks on five datasets
each containing 360 patches randomly classified into
equal numbers of interacting and non-interacting
patches. From these random data, ROC curves were
plotted that gave “baseline”AUCvalues towhich our
AUC values above could be compared. The extent to
which these baseline AUC values exceeded 0.50 (the
performance of a random classifier) indicated the
level of potential over-fitting of the model.
Baseline AUC values of 0.57±0.01 and 0.59±0.01

were obtained for the naïve and expert structures,
respectively, suggesting that the slight increase in
training performance with the expert structure
could be related to the larger number of free
parameters in this model. It is also worth noting
that the Bayesian network structures learnt auto-
matically from the training data using maximum
weight spanning tree and greedy search algorithms
(see Materials and Methods) displayed no edges
other than those between the class node and the
other variables. These learned structures equated to
the naïve structure in Figure 1(a).
We concluded that therewere nouseful connections

between nodes other than those between the class
node and the other variable nodes. Therefore,weused
a naïve Bayesian network in all subsequent analyses.
Comparison with previous work

In previous work,38 a support vector machine
(SVM) was trained to distinguish interacting patches
from non-interacting patches from the same bench-
mark dataset with a mean Matthews Correlation
Coefficient69 (MCC; equation (1)) of 0.63±0.03. This
was used as the basis for comparison here, because
AUC values were not reported in the earlier study.
This amounts to comparing the performance of the
classifiers at a single, optimal value of the classifica-
tion threshold (0.0 for the SVM score, and p=0.5 for
the Bayesian network).

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp

ð1Þ
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An MCC of +1 represents perfect training classi-
fication (no false positives or negatives) whereas –1
represents a complete failure (all positives classified
as negative and vice versa).
For the SVM, the baseline MCC, calculated by

training on random data (analogous to the random
data used for calculating baseline AUC), was 0.13±
0.03. The Bayesian network achieved a mean MCC
of 0.62±0.03 and baseline MCC of 0.09±0.05.
Therefore, even though gross MCC scores were
similar (0.62 versus 0.63), the baseline MCC of the
naïve Bayesian network was marginally less than
that of the SVM indicating that the SVM model had
a tendency to over-fit the training data to a slightly
greater extent than the Bayesian network.

Prediction phase

Prediction strategy

For each protein subject to binding site prediction,
we generated enough patches for complete coverage
of the protein surface (one patch per surface atom).
Each patch was then assigned a probability value by
the naïve Bayesian network (trained as above)
according to the likelihood that the patch was part
of a protein–protein binding site. These probability
values were used to produce a ranked set of non-
overlapping predicted patches with probabilities
above p=0.50.
Table 1. Comparison of leave-one-out cross-validation
success rates between a naïve Bayesian network and an
SVM used in previous work38

Predictor
No. of

examples
No. of

successesa
No. of patches
ranked 1st

A. Non-obligates
Naïve BN 66 52 35
SVM 66 43 28

B. Obligates
Naïve BN 114 96 60
SVM 114 93 53

C. All
Naïve BN 180 148 94
SVM 180 136 81

Standard deviations were 1–2% of the mean value in all cases.
a No. of proteins with a patch of over 50% precision and 20%

interface coverage ranked in the top 3.
Success criteria

We used two measures to define the success of our
predicted patches: patch precision, indicating the
proportion of the predicted patch residues that were
interface residues (equation (2)), and interface
coverage, indicating the proportion of interface
residues that were included in the predicted patch
(equation (3)).

Patchprecision ¼ No: of interface residues in patch
No: of patch residues

ð2ÞInterface coverage

¼ No: of interface residues in patch
No: of interface residues

ð3Þ

The patch precision measure is equivalent to
reliability used by Neuvirth et al.,33 with interface
coverage equivalent to the percentage overlap
measure by Jones & Thornton.32 Neither group
considered both measures for their success criteria.
In terms of assessing prediction performance, our
priority was high patch precision with a reasonable
level of interface coverage. Thus, a prediction was
deemed a success if a binding site patch with over
50% precision (equation (2)) and 20% interface
coverage (equation (3)) was ranked in the top three
predicted patches.
As a measure of the significance of our predictions

we also calculated the number of successes one
would expect to achieve across our data set if each
protein surface was sampled at random (equation
(4)) in Materials and Methods).
Predictive performance

Leave-one-out cross-validation. Leave-one-out cross-
validation involved removing one protein from the
training set (and the interface residue propensity
calculation to avoid bias), training the Bayesian
network on the remaining proteins, and then pre-
dicting the position of the binding site on the selected
protein. This process was repeated until all pro-
teins had been left out. Because non-interacting
patches were chosen at random for the training
step, results varied slightly between separate cross-
validation runs. Therefore, we repeated the entire
cross-validation procedure five times and evaluated
average performance.
The naïve Bayesian network performed consider-

ably better than the SVM of earlier work,38 achiev-
ing a success rate of 82% (148/180) compared to 76%
(136/180) with the SVM (Table 1C). Both methods
performed significantly above the 36% (65/180)
success rate expected across the whole data set by
random chance. An example set of results taken
from one of the five cross-validation runs providing
details for each individual test case is given in
Supplementary Data, Table 3.
The percentage of top ranked binding site

patches also increased from 45% (81/180) with
the SVM to 52% (94/180) with the Bayesian
network. The overall increase in performance
with the naïve Bayesian network can, for the
most part, be attributed to its higher success rate
of 79% (52/66) on non-obligate interfaces, com-
pared to 65% (43/66) with the SVM (Table 1A). By
contrast, performance on the obligomers increased
by less than 1% (Table 1B). It is interesting to note
that whilst the SVM compared well with the naïve
Bayesian network in training (see above), the
Bayesian network appears to generalise better to
unseen data. This supports our initial theory based
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on the random training results that the SVM
model was overfitting the data to a greater extent
than the Bayesian network.
The upper limits of patch precision and interface

coverage and specificity are constrained by the size
and shape of the patch relative to the interface. Our
calculation of patch size (see Materials and Meth-
ods) was such that the majority of the interacting
patches (67%) during training were smaller than
their corresponding binding sites, with only 4%
matching their binding site exactly. However, small
patch sizes that cover only the core of the binding
site are potentially an advantage, since “hot-spot”
residues contributing most of the binding affinity
tend to cluster at the centre of interfaces.23 This
suggests that patches consisting of mainly the
central binding site residues provided a strong
binding site “signal” for the Bayesian network to
learn. Furthermore, in the majority of cases the
side-chains of these hot spot residues are in their
bound conformation even before any physical
interaction occurs.70 There is also evidence from
molecular dynamics simulations to suggest that the
core of the interface is generally less mobile than
the periphery.71 Therefore, our smaller patches may
be more tolerant to conformational changes during
complex formation than patches that cover the
entire interface.

Discrimination between protein binding sites and
other functional regions. Most functional site pre-
dictors, particularly those that use evolutionary
information alone, are indiscriminate in terms of
the type of site they predict, whether a protein,
ligand or DNA binding site. This is because most
important sites functional sites on a protein surface
tend to be highly conserved. With the inclusion of
the six properties in addition to sequence conserva-
tion, and the training of the Bayesian network on
protein binding sites alone, our method should be
specific to protein binding site prediction. However,
we have shown previously that there is a possibility
that in cases where a successful patch is not found,
one of the top three patches could be located at
another important functional region on the protein
surface, particularly a ligand binding site.38 This is
not surprising, since protein–protein binding sites
often share common properties with ligand binding
sites such as high conservation and presence of
clefts. There are even cases where both protein
inhibitors and ligands can bind at enzyme active
sites, and it is now thought possible that small
molecule drugs can bind at protein–protein interac-
tion sites.1,2 Therefore, in cases where we do predict
a known ligand binding site, this ligand binding site
may also be the location for an as yet unknown
protein binding site. Given this, it is difficult to
quantify how well the Bayesian network can
distinguish between protein binding sites and
ligand binding sites. Nevertheless, recent evidence
has shown that ligand and protein binding site clefts
can display properties distinctive from one
another72 and so our method should be biased
towards predicting protein–protein binding sites
over ligand binding sites.
The ability of our method to discriminate a DNA

from a protein binding site is more critical since,
unlike in the case of a ligand binding site, a protein is
unlikely to bind to a DNA binding site. To test
whether we were indeed predicting protein binding
sites in preference to DNA binding sites, we carried
out a small study on 33 proteins that are known to
bind both proteins and DNA. These test cases were
selected from two recent datasets of DNA binding
proteins73,74 using similar criteria to our derivation
of the 180 protein training set (see Materials and
Methods). The important filtering steps included the
removal of proteins sharing over 20% sequence
identity with another DNA binding protein or a
protein within our 180 protein training set. NMR
structures and structures whose resolution was
worse than 3.0 Å were also disallowed as were
complexes whose interfaces were made up of more
than one separate chain or proteins containing more
than one known protein binding site.
Training a Bayesian network on our 180 protein

training set and testing on each DNA binding
protein in turn, we achieved a success rate of 88%
(29/33) in protein binding site prediction, whilst the
DNA binding site was predicted amongst the top
three patches in only 33% (11/33) of cases (Table 2).
Twenty-two top ranked patches formed part of a
protein binding site whereas only two covered a
DNA binding site. In only three cases (grey high-
lighted in Table 2) a DNA binding site patch was
ranked higher than a protein binding site patch
within the top three.
Most of the dataset comprises of obligate protein

interactions since DNA binding proteins with non-
obligate protein binding sites are poorly represented
in the PDB. This could explain our high success rate
since obligate binding sites are generally easier to
predict than non-obligates (see above). Neverthe-
less, the two non-obligate binding sites in our
dataset were both predicted successfully and more
accurately than their respective DNA binding sites.
These results suggest that our method is heavily
biased towards predicting protein binding sites over
DNA binding sites, and that the properties of a DNA
binding site are sufficiently different from a protein
binding site to make this possible.

ROC curve. To assess prediction performance
further, we generated a ROC curve (Figure 3)
based on probability scores calculated by the
Bayesian network for all 133,600 patches used in
leave-one-out cross-validation. The data set there-
fore contained 8249 positive and 125,351 negative
patches where positive patches were those with over
50% patch precision and 20% interface coverage.
The area under the curve (AUC) was 0.86±0.02,
which indicated that predictive performance was
comparable with training performance and the
model had generalized well to unseen data even
though the training set of 180 proteins was relatively
small.



Figure 3. ROC curve (AUC=0.86±0.02) to assess
prediction performance. Ten probability thresholds were
considered between 0.0 and 1.0.

Table 2. Ability of Bayesian network to predict protein
binding sites in preference to DNA binding sites

Cases where a DNA binding site patch is ranked higher than
the best ranked protein binding site patch.

a Within the top three patches only, the highest ranked binding
site patch with greater than 50% precision and 20% interface
coverage to either a protein or DNA binding site. “–” Denotes
no binding site patch found in top three.
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Probability score versus patch precision/interface
coverage. To study the relationship between prob-
ability score and patch precision/interface cover-
age further we generated all 133,600 patches
possible across the 180 protein dataset according
to our patch definition (see Materials and Meth-
ods), and then calculated patch precision and
interface coverage for each patch. The Pearson
correlation coefficient, R, derived by linear regres-
sion, between probability score output by the
Bayesian network and patch precision was 0.48,
and between probability score and interface cover-
age was 0.42. Over this large dataset these
correlations are highly significant with p-values
for zero correlation equal to 0.0 (reported by
Matlab). These results suggest a strong correlation
between probability score and the degree of inter-
face in the patch.
Handling missing data

Effect of hiding the conservation nodes. One of the
strengths of a Bayesian network is its ability to
handle incomplete or missing data. A common
source of missing data for our patches is evolu-
tionary information if no homologues of the query
protein are found (this occurs in 12/180 proteins in
our data set). To demonstrate that the Bayesian
network was robust to the removal of evolutionary
information, we performed leave-one-out cross-
validation with conservation scores on the query
protein missing. That is, for the naïve structure
trained with evolutionary information (where avail-
able), the probability of a patch from the query
protein being part of a binding site was calculated
when evolutionary information (the mean and
standard deviation of the conservation scores across
a patch) was missing and the two nodes treated as
hidden. An overall success rate of 82% (147/180)
was achieved despite the missing data, which was
comparable with that achieved using all available
data. Therefore, the Bayesian network was success-
fully able to infer the binding site patch class node
by marginalising over all possible values of the
hidden variables. It is important to remember that
this kind of study would have been very difficult
with our SVM without resorting to assigning
dummy conservation scores on the test protein,
since it is not possible to train an SVM on a full set of
attributes and test with one or more attributes
hidden.
The use of conservation does have some effect on

prediction as illustrated by results on non-obligate
and obligate interfaces separately. Performance on
obligate interfaces actually increased from 84% to
89% (96/114 to 101/114) upon removal of evolu-
tionary information, but decreased from 79% to 70%
(52/66 to 46/66) on non-obligates, suggesting that
evolutionary properties make a significant contribu-
tion to the detection of some non-obligate interfaces,
whilst hindering the detection of a number of
obligate interfaces.
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Two case studies. In an attempt to explain the
results above further, we studied two proteins
where hiding the conservation nodes made a
difference to binding site prediction: Zn, Cu super-
oxide dismutase75 (an obligate homo-dimer; PDB
code: 1xso, chain A), and a cytotoxic T-lymphocyte
protein that makes a non-obligate interface with T
lymphocyte activation antigen CD8076 (PDB code:
1i8l, chain C). In the case of superoxide dismutase,
hiding the conservation nodes improved binding
site prediction, whereas the opposite was true for
the T-lymphocyte protein. Note that here we assume
the Bayesian network has learnt that binding site
patches tend to be hydrophobic and conserved with
high residue interface propensity.Whilst this may be
true, the Bayesian network uses other nodes and
could have learnt more complex, non-linear ways to
separate interacting from non-interacting patches.
The majority of the site of interaction between the

superoxide dismutase subunits is hydrophobic with
high interface propensity, although it is not particu-
larly well conserved with respect to the rest of the
protein surface with the majority of conservation
scores around 0.5. Adjacent to this binding site is a
patch consisting of a convex protrusion of high
hydrophobicity and interface propensity sur-
rounded by a ring of highly conserved, hydrophilic
residues of low interface propensity. Utilising all
available data, including evolutionary information,
the naïve Bayesian network was unable to predict a
binding site patch in the top three ranked patches on
superoxide dismutase (Figure 4). Instead, the adja-
cent patch was predicted as the most likely binding
site with a probability of about 91%. Conversely,
with the two conservation nodes hidden, a top
ranked patch with 75% interface coverage and 67%
patch precision on the surface of this protein was
predicted with a probability of approximately 93%.
Figure 4. Effect of hiding the conservation nodes on pred
binding site on superoxide dismutase that is predicted by the B
Amore conserved patch predicted as the most likely binding si
patch is the His61 residue, which forms an integral part of th
Interestingly, the adjacent patch is predicted as the
third ranked patch but with probability reduced to
75%. So why is prediction of this obligate binding
site hindered by using evolutionary information?
The key perhaps lies in the differences between the
binding site itself and the patch adjacent to it. Mean
hydrophobicity and residue interface propensity
values at binding site are slightly higher than those
at the adjacent patch, although the adjacent patch is
much more conserved. Hiding the conservation
nodes effectively reduces the influence of evolu-
tionary information (although some knowledge of
how to use conservation comes from the training
data), and so the remaining nodes, particularly
hydrophobicity and interface residue propensity,
both of which are favourable at the binding site,
become more critical. Consequently, without evolu-
tionary information, the probability of the adjacent
patch being a binding site patch reduces to 75%
whilst high hydrophobicity and interface propensity
mean that a binding site patch is now ranked top
despite the lack of conservation. Of course, the
failure to locate the obligate binding site on super-
oxide dismutase using all available data is not
necessarily a negative result, since the patch
adjacent to the binding site may itself be part of
another, maybe non-obligate, binding site that is
essential for the enzyme's function. Indeed, further
study revealed that the patch included a significant
proportion of the active site cavity, in particular the
invariant His61 residue that forms a bridge between
the copper and zinc ions. This may be a common
problem in the specific prediction of obligate
binding sites on proteins with conserved functional
sites (of any type) elsewhere on the surface, and may
explain why evolutionary infor-mation tends to
hinder the detection of obligate rather than non-
obligate binding sites. Whereas the majority of the
iction of an obligate binding site. (a) The homo-dimeric
ayesian network when the conserved nodes are hidden. (b)
te location when all data is made available. Included in this
e enzyme active site.
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non-obligate proteins in our dataset are dimers with
one protein–protein binding site, some of the
proteins defined as obligate may also have other
conserved functional sites that would be detected by
algorithms based on conservation information.
With regard to the non-obligate example (cyto-

toxic T-lymphocyte protein), a top ranked patch
with 82% interface coverage and 60% patch
precision at 98% probability is predicted by the
naïve Bayesian network when all available data are
utilised. However, with the two conservation nodes
hidden, no successful patches in the top three
ranked patches are predicted. Unlike the obligate
binding site on superoxide dismutase, the non-
obligate binding site on T-lymphocyte protein is
part of the most conserved region of the protein
surface. It is also of high interface residue
propensity but, unusually since interface propen-
sity and hydrophobicity are often well correlated,
only average hydrophobicity. This could be the
reason why hiding the conservation nodes has a
negative affect on prediction, since without evolu-
tionary information a patch with average conserva-
tion but both high hydrophobicity and residue
interface propensity is predicted as the top ranked
patch.
In the non-obligate case therefore, conservation

provides an essential guide for the Bayesian net-
work to locate the binding site. By contrast, a highly
conserved, non-binding site patch on superoxide
dismutase misdirects predictions away from the
obligate binding site, perhaps due to the presence of
the enzyme active site in this patch. In this case,
hiding evolutionary information is an advantage,
since other nodes become more influential and the
higher hydrophobicity and residue interface pro-
pensity at the obligate binding site ensure that it
predicted with greater probability than the compet-
ing patch. However, these results suggest that while
inclusion or exclusion of conservation information
has different effects on different individual cases,
average performance over the whole test set is only
marginally changed. Interfaces can therefore be
successfully predicted without using homology.

Studies on the Mog1p structural family

We applied our prediction method to the four
proteins comprising the Mog1p structural family: (1)
Mog1p, a regulatory protein for the nuclear transport
of Ran GTPase in yeast; (2) TM1622 from Thermotoga
maritime, solved by the Joint Centre for Structural
Genomics and one of the seven structural genomics
targets chosen for the inaugural Automated Protein
Function Prediction Assessment (APFPA) exercise
2005; (3) hypothetical protein Pa94 from Pseudomonas
aeruginosa (termed APC22056 by Midwest Centre for
Structural Genomics); and (4) PsbP protein, a reg-
ulator of the photosystem II complex from higher
plants. There is little sequence similarity between
these four proteins but they do show strong structural
similarity (Figure 5) that indicates divergent evolu-
tion. Mog1p, Pa94 and PsbP are classified in SCOP77
as having aMog1p/PsbP-like fold. TM1622 has yet to
be classified formally. In terms of function, Mog1p is
known to bindGTP andGTPases, including Gsp1p, a
homolog of mammalian Ran, the Ras family
GTPase.78,79 Mog1p may also play a role in yeast
SLN1-SKN7 signal transduction, regulating the
Skn7p transcription factor in response to osmotic
stress through binding of three proteins, Sln1p, Skn1p
and Ypd1p.80 It is not known whether these three
proteins can bind simultaneously or not so up to four
binding sites may exist on the Mog1p surface. PsbP is
unlikely to bind Ran, but does bind to other
GTPases.81 The exact functions of TM1622 and Pa94
remain unknown but since they are likely to bind
other proteins in the form of GTPases they provide
ideal targets for protein–protein binding site predic-
tion. Therefore, one aspect of this work was to first
predict binding sites on the best characterised protein,
Mog1p, and then use these predictions as a reference
for predictions on the other members of the family. In
this way, any functional similarities between mem-
bers of the family could be inferred.
Throughout this work, we restricted ourselves to

using the fully annotated Swissprot release 46 data-
base as a source of sequence homologues. However,
insufficient numbers of homologues were detected
in this database for Mog1p, TM1622, or Pa94 in
order for us to calculate useful conservations scores,
and so predictions on these three proteins were
made without reference to evolutionary informa-
tion. As such, these made good test cases for the
ability of our method to predict on the basis of other
information. If the larger Uniprot82 database, con-
taining a number of un-annotated sequences, is
considered then homologues can be found for
Mog1p and Pa94 (but not TM1622). This enabled
us to compare our predictions on these two proteins
(made without access to evolutionary information)
with those of Consurf,83 a state-of-the-art method
for identifying functionally important residues from
multiple sequence alignments with the option of
both a Swissprot and, more importantly for our
purposes, a Uniprot82 sequence search. In the case of
Mog1p, we also compared our predictions with
conserved residues found manually by Stewart &
Baker.79

Mog1p

Stewart & Baker79 observed a concave cluster of
conserved residues between residues 30–70 and
identified this as a putative Ran binding site on
Mog1p. By multiple sequence alignment of Mog1p
with a Schizosaccharomyces pombe homologue and
three expressed sequence tag (EST) sequences from
human, mouse and Caenorhabditis elegans, seven
invariant and seven conserved surface residues
were found in this region. Later studies revealed
that mutations to either one of two conserved acidic
residues Asp62 or Glu65 prevent Ran binding.84 The
putative Ran binding site is flanked on one side by a
conserved ridge that separates the Ran binding site
from another concave surface patch containing a



Figure 5. TOPS diagrams85 of the four members of the Mog1p family. Note that any small secondary structures such
as single turn helices or isolated β-bridges were removed for clarity.
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second cluster of conserved residues. In addition to
these, a further two clusters of conserved residues
can be found on the surface of Mog1p.
We predicted the top three most probable binding

site patches on the surface of Mog1p (PDB code:
1eq679) using our trained naïve Bayesian net-
work. From each patch we only considered the core
residues (residues in which over 50% of the
corresponding surface vertices were patch vertices)
and compared them to the conserved and invariant
residues identified by Stewart & Baker79 (note that
the S. pombe homologue used by Stewart & Baker,79

even though detected in Swissprot, was seen by our
automated method as providing insufficient infor-
mation to calculate useful conservation scores).
Predicted patches were located on three of the four
conserved clusters of residues on the surface of
Mog1p. The third ranked patch included the pro-
posed Ran binding site capturing three of the seven
conserved residues and two invariant residues
including Glu65. Interestingly, probability score for
this patch decreased from 68% to 65% in the E65A
mutant84 unable to bind Ran (PDB code: 1jhs),
suggesting that predictions can be sensitive even to
single mutations at an interface. The top ranked
patch (probability score: 93%) included three con-
served residues and one invariant residue and
covered the concave patch separated from the Ran
binding site by the invariant loop.
Little is known about the binding sites involved in

SLN1-SKN7 signal transduction except that they are
located beyond residue 78.80 Some of the residues
contributing to the top ranked patch were within the
30–70 residue range; however, the second ranked
patch (probability score: 83%) was located at a
significant cluster of conserved residues beyond
residue 78. Indeed, seven of the 13 residues
contributing to the core of the second ranked patch
were conserved of which one was invariant. Con-
sidering that the Bayesian network made this
prediction without use of this evolutionary informa-
tion, we propose that the second ranked patch
represents a potential binding site for one of the
three SLN1-SKN7 signal transduction proteins.
Overall we captured 12 of the 46 conserved, and

four of the seven invariant surface residues observed
by Stewart & Baker.79 If we include peripheral as
well as core predicted residues these numbers
increase to 18 conserved and all seven invariant
residues. Therefore, even though our predicted
patches together only covered 34% of the surface,
we retained all the invariant residues and three of
the four conserved clusters of residues. It should be
noted that a number of unpredicted conserved
residues are part of the “ridge” between the top
and third ranked patches suggesting that these have
a role in maintaining the integrity of one or both of
these possible binding sites.
We also compared our predicted patches to the

residues considered by the Consurf83 web server to
be functionally important. Using a multiple se-
quence alignment as input, Consurf implements
the Rate4Site algorithm,87 an extension of the evo-
lutionary trace method devised by Lichtarge et al.,29

to build an evolutionary tree and calculate a con-
servation score for each residue position. Each score
is normalised so that the average score for all resi-
dues is zero, and the standard deviation is one. From
these scores, nine levels of conservation are derived.
Herewe considered residues undergoing the slowest
rates of evolution in levels 7–9 as “conserved”. In
order to acquire sufficient numbers of sequence ho-
mologues for the multiple sequence alignment
(MSA) we used Uniprot82 as the source sequence da-
tabase. With Consurf default parameters, 39 unique
sequence homologues were found. From the MSA,
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52 of the 160 (33%) surface residues on Mog1p were
calculated to be conserved. There was considerable
agreement between the study by Stewart & Baker79

andConsurf despite the larger numbers of sequences
acquired by the latter, indeed all seven invariant
surface residues found by Stewart & Baker79 were
calculated as conserved by Consurf. All three of the
patches predicted to be binding sites by our method,
operating without the use of evolutionary informa-
tion, were enriched with Consurf conserved resi-
dues. Considering both the core and periphery of the
patch, 80%, 52% and 63% of residues in the top,
second and third ranked patches, respectively, were
considered functionally important byConsurf. Over-
all, 73% (38/52) of Consurf conserved surface
residues were captured by the three patches and
92% (22/24) of the most conserved (level 9) residues.
These results further support our hypotheses that the
second ranked patch is indeed a binding site for one
of the three SLN1-SKN7 signal transduction pro-
teins, and that the third ranked patch includes the
Ran binding site. The strong correlation between the
top ranked patch and conserved residues also
suggests this patch is of functional significance.

TM1622, Pa94 and PsbP

Despite the striking structural similarities between
each member of the Mog1p family (Figure 5), there
was little evidence from our binding site predictions
that they shared interaction partners.
Structural alignment with SSM86 revealed that the

majority of the binding sites were predicted at non-
equivalent positions between each protein. The
exceptions were approximately 25% surface area
overlap between the top ranked patch of Mog1p and
that of TM1622 (PDB code: 1vr8), and 75% overlap
between the same patch on Mog1p and the second
ranked patch on Pa94 (PDB code: 1tu1).
The predictions on TM1622 and Pa94 were carried

out without evolutionary information, since no
sequence homologues were detectable in the Swis-
sprot database. However, for Pa94 19 unique
sequence homologues were found in Uniprot82 so,
as with Mog1p, we were able to compare our
method with Consurf in this instance. Despite
Consurf only finding 25% (35/138) of surface
residues on Pa94 to be functionally important, 91%
(32/35) of these residues were included in our top
three predicted patches which together covered only
56% (77/138) of the total number of surface residues.
Given this strong agreement between our method
and Consurf, we suggest that our patches represent
functionally important regions on the surface of
Pa94 and possible protein-protein binding sites.
Predictions on PsbP (PDB code: 1v2b81) were

carried out using evolutionary information, since we
identified numerous homologues for this protein in
Swissprot. All the top three ranked patches included
a hydrophobic pocket. The pocket of the top ranked
patch (probability score: 96%) was less well con-
served than its surrounding residues whilst the
pockets on the other two patches (probability scores:
89% and 85%) were conserved. It is possible that one
of these patches represents an interface to another
protein in the photo-system II complex, although the
complex form of PsbP has yet to be elucidated
experimentally.
No patches equivalent to the Ran binding site

patch on Mog1p were found on TM1622, Pa94 or
PsbP. Furthermore, all predicted patches lacked the
acidic residues essential to Ran binding on Mog1p.
This suggests either the other family members do
not bind Ran, or Ran has evolved different modes of
binding for each of the proteins. The latter may be
possible because Ran is known to bind NFT2 and
importin β at different places on its surface.88,89

These results demonstrate the potential for a range
of functions and interactions even between proteins
of similar structure. In cases such as these, binding
site prediction methods such as ours are essential,
since function cannot be inferred from either
sequence or structural homology. Details of the
residues involved in all the predicted patches on
Mog1p, Pa94, TM1622 and PsbP are given in
Supplementary Data, Table 4.

Locating potential drug targets

Many human diseases result from abnormal
protein–protein interactions so finding drugs that
inhibit these interactions is of critical importance.
Despite the large and often hydrophobic areas
involved, it is now thought possible that small
molecules can inhibit protein–protein interactions,1,2

particular in light of the recent advances in screening
techniques.90,91 As an aid to the screening process,
one could also locate potential sites of interaction on
a protein surface in silico using a prediction program
such as ours and then design inhibitors that bind at
these sites. Use of a reliable computational method in
this way to complement “wet-lab” studies would be
more cost effective than experimental work alone. A
recent review on protein–protein interactions in
human disease92 provides some ideal test cases to
assess the ability of our method to predict possible
drug targets on protein surfaces. Here, we concen-
trate on the protein–protein interaction network
involved in papilloma virus infection.
Papilloma viruses are double-stranded DNA

viruses that invade the basal layer of epithelial
cells to cause benign lesions and cancer in higher
eukaryotes.93,94 Once within the basal layer, their
genome is maintained and replicated as an extra-
chromosomal plasmid. The virus persists by repli-
cating and then segregating this plasmid into the
nuclei of the daughter cells of the epithelium using
a network of protein–protein interactions involving
viral E1 and E2 proteins, and the human protein
Brd4. The E2 protein consists of a C-terminal
domain that binds DNA as a dimer,95 and a
regulatory N-terminal trans-activation domain that
binds viral E1 protein.96 E2 also targets the cellular
protein Brd4, which anchors the viral plasmid to
chromosomes of the host cell.97,98 Inhibition of any
one of these protein–protein interactions should
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perturb viral replication and thus curb the infection.
We therefore used our Bayes prediction strategy to
predict potential binding sites on the surface of both
the E2 trans-activation (PDB code: 1r6k99) and DNA
binding (PDB code: 1jj495) domains. Note that the
E2 trans-activation domain was in unbound form.
Results were encouraging (Figure 6). On the E2

trans-activation domain (Figure 6(a)), the top
ranked patch covered the E1 helicase/E2 trans-
activation domain interaction site, including resi-
dues Tyr19 and Glu39 that are critical for binding.99

More specifically, the patch covered the interaction
site of the peptide inandione, an inhibitor of the E1/
E2 interaction,99,100 with 40% precision and 92%
binding site coverage. Precision was low because
the calculation was based on a small molecule
binding site covered by a large protein–protein
interaction patch; precision on the whole E1
binding site would have been higher. Figure 6(c)
shows two possible positions of the inhibitor, A and
B, found in the crystal structure. Inhibitor B is most
likely the in vivo position of the inhibitor as
inhibitor A binds only weakly with a secondary
binding pocket.99 The binding pocket of inhibitor B
can only be found on the bound form of E2, which
makes our predictions on the unbound form even
more impressive.
The third ranked patch was located at the

interaction site between the DNA binding domain
and the E2 trans-activation domain. Thus two of the
three highest ranked patches were located at a site
of functional importance on the surface of the E2
trans-activation domain. On the E2 DNA binding
domain (Figure 6(b)), the top ranked patch was
located at the site of dimerisation, a process
required for E2 binding to DNA.95 These results
strongly suggest that our protein–protein interface
method can help locate critical regions on a protein
surface that can be targeted by drugs, especially in
light of the recent evidence to suggest that small
molecule inhibitors can make effective protein–
protein interaction blockers.1,2 We compared our
results with Promate,33 a web server dedicated to
protein–protein binding site prediction. Promate
predicted one patch of four residues close to the E1
helicase binding site; however, only one of these
residues actually formed part of the peptide
inandione interaction site.
Figure 6. Predicted patches on
papilloma virus E2 protein. (a)
Trans-activation domain (PDB code:
1r6k); (b) DNA binding domain
(PDB code: 1jj4); (c) detail of the in-
hibitor peptide inandione interac-
tion site.



Table 3. Assessing the ability of different properties/
property combinations to classify interaction type

BN variable
Gross
AUC +/−

Random
AUC +/−

Net
AUC

Patch size 0.76 0.03 0.52 0.02 0.24
Electrostatic

potential
0.70 0.03 0.55 0.02 0.15

Conservation 0.69 0.02 0.57 0.02 0.11
Secondary

structure
0.67 0.02 0.58 0.03 0.09
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Distinguishing non-obligate interfaces from
obligate interfaces: a second Bayesian network

Pre-selection of discriminatory properties

We tested a total of eight properties for their
ability to distinguish obligate from non-obligate
interacting patches: hydrophobicity, conservation,
electrostatic potential, ASA, shape index, curved-
ness, secondary structure and patch size. As in the
binding site patch prediction Bayesian network, two
nodes (mean and standard deviation) were calcu-
lated from hydrophobicity, conservation, electro-
static potential, ASA, shape index and curvedness.
Single nodes were calculated from secondary
structure and patch size. Therefore, excluding the
class node, a maximum 14 node Bayesian network
was possible.
Secondary structure and interacting patch size

nodes were added on the basis of previous work by
Mintseris & Weng,44 and De et al.43 Secondary
structure was assigned by Stride101 and used as a
discrete node that could take one of four values
dependent on the majority of secondary structure
comprising the patch: α−helix (discrete value=1), β-
sheet (2), other (3), or mixed (4) if no single
secondary structure element constituted over 50%
of the patch. Patch sizes were equivalent to 6% of the
size of the surface area of the protein under test
therefore no knowledge other than the size of the
query protein was required. Size was expressed as
the radius of the patch and was treated as a
continuous node. We did not normalise this node
as it is difficult to assign a maximum possible limit
to the radius of a protein–protein interface.
Two further changes were made from the Baye-

sian network we used to predict interacting patches.
First, we discarded residue interface propensity,
which was used specifically to identify interface
regions (it would have been counter-intuitive to use
it on a data set consisting of only interacting
patches). Second, we used un-normalised conserva-
tion scores prompted by the work of Mintseris &
Weng44 who noted that obligate interfaces evolve
more slowly than non-obligate interfaces. The
normalised conservation scores we used in the
binding site patch prediction Bayesian network
were relative to the other conservation scores within
the same protein, meaning that the highest scoring
residue was assigned a score of 1.0 regardless of its
actual conservation score. Therefore, they were
useful in distinguishing the more conserved inter-
acting patches from non-interacting patches on the
same protein. Here we attempt to distinguish
obligate from non-obligate interfaces that occur on
separate proteins so any evolutionary differences
between these two types of patches would have
been obscured by normalisation.
Shape index 0.62 0.03 0.55 0.01 0.07
Curvedness 0.63 0.02 0.56 0.03 0.06
ASA 0.64 0.02 0.59 0.03 0.05
Hydrophobicity 0.61 0.02 0.59 0.03 0.02

AUC, area under ROC curve.
Assessing individual property contributions

Eight naïve Bayesian networks based on one
property were trained on our “interaction type”
data set consisting of 132 patches taken from the 180
interacting patches described above: 66 non-obligate
patches and five subsets of 66 patches chosen at
random from the 114 obligate patches. This ensured
a balanced training set of equal numbers of each
interaction type. We therefore carried out five
training runs per property and plotted ROC curves
and “gross AUCs” from the mean data. Note that
specificity and sensitivity measures for the ROC
curves were derived as if non-obligates were
labelled as positive and obligate interfaces negative.
As with the binding site patch prediction Bayesian

networks, with such a small data set there was
always a danger of overfitting, therefore it was
important to measure the significance of our gross
AUC values. Each Bayesian network was trained on
the same five training sets but with half of the
obligate interacting patches randomly assigned as
non-obligate, and vice versa. The extent to which
baseline AUC values obtained on this data exceeded
0.50 indicated the level of potential overfitting of the
single property model. The net AUC value was
calculated by subtracting baseline AUC from gross
AUC. Results for each individual property are
shown in Table 3.
Patch size was the best discriminator achieving a

net AUC of 0.24 and gross AUC of 0.76±0.03. These
results appear to agree with previous studies that
have shown that larger interfaces are usually
obligate.42,43 What is surprising is that our patch
sizes were estimates of interface size based on the
size of the query protein and so our results suggest
that obligate and non-obligate interactions can be
distinguished at this accuracy level solely on the
basis of protein size. Electrostatic potential was the
next best performing property achieving an AUC of
0.70±0.03. This may have been due to the preva-
lence of enzyme–inhibitor interfaces in our non-
obligate set where electrostatic interactions are
critical. Conservation also performed well appear-
ing to support the findings by Mintseris & Weng44

that obligate interfaces evolve more slowly than
non-obligate interfaces. Encouragingly, net AUC
achieved with un-normalised conservation score
was 0.11 in contrast to 0.02 with normalised score
so justifying our decision to use un-normalised
conservation in the interface type Bayesian network.
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ROC curves illustrating the discriminatory pow-
ers of patch size, electrostatic potential and con-
servation are shown in Figure 7. Also plotted is the
probability threshold as a function of false positive
rate. In order to derive the probability threshold
(p) at which false positives and false negatives
have an equal cost (not necessarily p=0.50; see
earlier), we identified the point on the ROC curve
where the gradient equals one (and is closest to
(0, 1)). This gave the following: p=0.43 for patch
size, p=0.53 for electrostatic potential and p=0.58
for conservation. In particular, the electrostatic
potential and conservation probability curves in-
volved extensive plateaus from around 0.6 to 0.5
therefore any slight change to the threshold in this
region would cause a large change in both spec-
ificity and sensitivity. This illustrates the danger of
evaluating performance at just one threshold.
There was some useful information provided by

secondary structure although net AUC was 0.09.
De et al.43 found that involvement of defined
secondary structure elements such as β-sheets
and helices is much more common across subunits
at an obligate interface than a non-obligate inter-
face. Our data support these claims: 70% of the
obligate interfaces were predominantly α-helix, β-
Figure 7. ROC curves to assess training performance of thr
size, (b) electrostatic potential or (c) conservation nodes. Also s
gradient equal to one on ROC curve and the classification thr
strand or “mixed” compared to only 52% of the
non-obligate interface (Table 4). Interestingly, only
11% of the obligate interfaces were predominantly
β-strand whereas 45% were α-helix. In contrast,
48% of non-obligate interfaces were predominantly
loops or other less well-defined secondary struc-
ture. Despite these differences, it appeared that the
distinguishing power of secondary structure was
limited overall.
Low net AUC values achieved by shape index,

curvedness and ASA suggested little significant
difference in topography between obligate and non-
obligate interfaces. Perhaps surprisingly hydropho-
bicity was the poorest discriminator, since perma-
nent interfaces, making up the majority of the
obligate set, are characterised by a larger, hydro-
phobic interfaces than transient interfaces constitut-
ing the majority of the non-obligate set.7,11 One of
the reasons for this may be our use of patches at the
interface centre that are frequently smaller than the
actual interface in order to achieve high precision in
binding site patch predictions. Therefore, our results
imply that the cores of the two interface types have
similar hydrophobicity levels and the difference
between obligate and non-obligate interfaces is the
number of non-polar contacts between binding
ee interface type Bayesian networks consisting of (a) patch
hown are changes in probability threshold. Circles indicate
eshold giving equal costs on the probability curve.



Table 4. Secondary structure composition of an obligate
versus a non-obligate interface

Secondary
structure

Interface type

Obligate Non-obligate

α Helix 0.45 0.27
β Strand 0.11 0.21
Other 0.30 0.48
Mixed 0.15 0.03
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sites43 rather than mean hydrophobicity over a
given surface area. This is consistent with groups
who have found that obligate interfaces are char-
acterised by large hydrophobic patches.5,9,11

The Bayesian network consisting of all 14 nodes
achieved a gross AUC of 0.84±0.02 but baseline
AUC increased to 0.70. Therefore any discrimina-
tory power gained by combining properties was
probably a result of overfitting. Even combining
electrostatic potential and patch size reduced net
AUC to 0.20.
We chose to differentiate obligates from non-

obligate interfaces because they are more descriptive
of protein function whereas the terms “permanent”
and “transient” describe the timescale of association.
However, our results reflect the difficulties of assign-
ing interface type even manually and there was a
strong possibility that we were not discriminating
obligates from non-obligates but rather transient and
permanent interfaces as it is these that made up the
majority of the non-obligate and obligate sets,
respectively. For example, the good performance of
the patch size nodemay have been due to permanent
interfaces being generally larger than transient
interfaces. Furthermore, the apparent difference in
electrostatic potential properties between obligate
and non-obligate interfaces may be solely due to the
number of enzyme-inhibitor interfaces in the non-
obligate set and not a general difference between the
interface types. A larger data set is required before
stronger conclusions can be made.

Further studies with the binding site patch
prediction Bayesian network

Heterogeneous cross-validation

Given the weak performance of the interface type
Bayesian network we investigated the possibility of
using obligate interface information to predict non-
obligate interfaces, and vice versa using the original
set of 14 nodes (not secondary structure or patch
size). To do this we carried out heterogeneous cross-
validation in which we trained the binding site
patch prediction Bayesian network shown in Figure
1(a) to distinguish obligate interacting patches from
non-interacting patches and then used the model to
predict binding site patches on the non-obligate
complex types, and vice versa. Whichever interaction
type was removed from the training set was also left
out of the interface residue propensity calculation as
well. As in previous work,38 we found it possible to
use non-obligate interface information to predict
obligate interfaces with a high success rate of 83%
(95/114), and vice versa with a success rate of 80%
(53/66). The latter success rate was slightly better
than the rate of 74% (49/66) obtained when non-
obligate interface properties were used to predict
non-obligate interfaces by leave-one-out cross-vali-
dation within the non-obligate training set. Normal-
isation of the nodes may have had the effect of
suppressing the differences, if any, between non-
obligate and obligate interface types although we
believe that this was only significant with regard to
conservation scores (see above).
Our results suggest the physical–chemical proper-

ties at non-obligate and obligate interfaces, particu-
larly in small patches that include the “core” of the
interface, are similar to such an extent that one can
use information from one type of interface to predict
the other. This explains our lack of success at
distinguishing non-obligate interfaces from obligate
interfaces. Perhaps the characteristics of an obligate
interface provide stronger interface detection signals
than non-obligate interface properties, hence the
improved prediction of non-obligate interfaces with
obligate information. In other words, the difference
between an obligate interface and the rest of the
protein surface is more marked than on a non-
obligate complex even if the nature of the differences
is similar. The strength of this “binding site signal”
could govern the stability of the contacts between
the two binding sites involved at the interface,
which in turn govern the nature of the interaction,
with obligate interactions more stable than non-
obligate contacts.

Binding affinity versus prediction success

So far we have treated obligate and non-obligate
interaction types as two discrete subsets in our
benchmark of protein complexes.38 However, a
continuum probably exists between the two inter-
action types.3 We therefore considered our predic-
tions in relation to theoretical binding affinity of
each protein complex as calculated by Dcomplex.102

As expected, all the non-obligate complexes exhib-
ited lower binding affinities of less than 30.0 kcal/
mol (binding free energy of −30.0 kcal/mol)
suggesting that most non-obligate interactions are
transient. However, obligate complexes exhibited a
range of binding affinities between 7.9 to 132.0 kcal/
mol, although the majority of these were greater
than 25.0 kcal/mol. This was probably because our
obligate data set consisted of both permanent and
transient interactions.
In order to study the relationship between

prediction success and binding affinity, we identi-
fied only those proteins upon which prediction
success was achieved in all five leave one-out cross-
validation rounds and called these “hits”, a protein
with a top ranked binding site patch in all five ro-
nds was called a “top hit”. A total of 75% of proteins
in complexes with less than 30.0 kcal/mol binding
affinity were hits and 48% were top hits in contrast
to 88% and 56%, respectively, of proteins in
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complexes with binding affinity above 30.0 kcal/
mol (all obligate complexes). Therefore, as binding
affinity increases, the probability of achieving
prediction success increases. There are probably a
number of reasons for this. Binding affinity is
strongly correlated (R=0.94) with interface size so
in most cases large interfaces give high binding
affinities. Intuitively, a larger binding site means that
more patches with over 50% precision and 20%
interface coverage will be available for the Bayesian
network to recognize as interacting patches, espe-
cially when one considers that patch sizes are
usually smaller than the actual interface in these
cases. More interesting perhaps is that binding sites
in high affinity complexes may provide a stronger
binding site signal, hence higher probability inter-
acting patches. Indeed, there is a correlation
between binding affinity and probability values of
patches at binding sites (Figure 8), with low
probability patches much less likely to occur at
high affinity binding sites.
Conclusion

In this work, we have devised a method to predict
both protein–protein binding site location and
interface type (obligate or non-obligate) using a
Bayesian network in combination with surface patch
analysis. We trained two Bayesian network struc-
tures to distinguish between interacting and non-
interacting surface patches taken from a benchmark
dataset of 180 proteins and found no significant
performance advantage in adding extra connections
to a simple naïve Bayes classifier. We therefore
carried forward the naïve Bayes classifier to the
prediction phase. This simple classifier achieved a
success rate of 82% in homogenous leave- one-out
cross-validation which was significantly better than
76% achieved with an SVM in previous work.38

Unlike a general functional site predictor such as
Figure 8. Mean probability is calculated from the ten
patches with highest precision and interface coverage in
each protein of the training set. Note that only positive
examples are represented.
those that use only evolutionary information, our
method is specific to protein–protein binding sites as
demonstrated by a small study on a test set of 33
proteins having both a DNA and protein binding
site on their surfaces. Predicted patches overlapping
the DNA binding site were higher ranked than the
protein binding site in only three of the 33 cases, and
protein binding sites were predicted with an 89%
success rate.
We also tested the ability of the Bayesian network

to handle missing data. Overall performance of the
Bayesian network without to access evolutionary
information on the test protein was comparable to
that of the original classifier, indeed some predic-
tions benefited from having access to less informa-
tion. In a case study of four proteins in the Mog1p
family sharing the same fold, two of which have
been structural genomics targets, we demonstrated
that our Bayesian network method can provide
important clues as to the functionally important
areas on a protein surface even when the test protein
has no detectable sequence homology to any known
protein. On Mog1p we detected a putative binding
site involved in the SLN1-SKN7 signal transduction
pathway, and predicted a Ran binding site, pre-
viously characterized solely by conservation studies,
even without reference to evolutionary information.
There was little correspondence between predicted
binding sites on other members of the Mog1p family
and those on Mog1p itself suggesting that each of
the four proteins is involved in different protein
interactions or functions despite the overall struc-
tural similarities. Finally in the prediction phase, we
demonstrated our method's applicability to the drug
discovery process by successfully locating a number
of binding sites involved in the protein–protein
interaction network of papilloma virus infection.
These results are particularly significant in light of
recent evidence that protein-protein interactions
make drugable targets.1,2
Distinguishing obligate from non-obligate binding

sites using a second Bayesian network proved more
difficult, although some separation was achieved on
the basis of patch size, electrostatic potential and
conservation. This result may have been due to our
use of interacting patches that were frequently
smaller than the actual interface. For example,
interfaces of obligate complexes are characterised by
large hydrophobic patches5,9,11 but whereas the
number of non-polar contacts across the two interface
types may differ significantly,43 the mean hydropho-
bicity values across the central region of the binding
site may still be comparable. Such was the similarity
in the two interacting patch types,wewere able to use
obligate binding site properties to predict the location
of non-obligate binding sites and vice versa. Indeed,
results on non-obligate binding sites actually
improved if only obligate information was used as
oppose to a mixture of non-obligate and obligate in-
formation. This led us to believe that the difference
between an obligate interface and the rest of the
protein surface ismoremarked thanon anon-obligate
complex even if the nature of the differences is similar.
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Overall we have demonstrated that our method
can not only predict protein–protein binding sites
with high success rate but can also be used to
provide valuable insights into the properties that
characterise them.
Materials and Methods

Training set

The details of our benchmark training set of 180 proteins
have been described.38 A comprehensive set of complexes
was chosen from the Protein Data Bank103 (PDB) and then
subjected to a number of stringent filtering steps. Proteins
sharing over 20% sequence identity with a higher
resolution structure (or the most recently determined
structure if resolutions were equal) of the same complex
type were removed. Evidence in the literature had to exist
that the complex occurred naturally and was stable as a
dimer so we eliminated interfaces only present as a result
of crystal packing. NMR structures were not used, nor
were mutant complexes or structures whose resolution
was worse than 3.0 Å. Fragments were allowed unless the
interface was severely truncated, but dimers containing a
protein of less than 20 residues were discarded. Com-
plexes whose interfaces were made up of more than one
separate chain or complexes containing more than one
binding site of the same type were also removed, as well
as complexes containing broken interfaces where one
protein contacts the other at two points. As far as possible
we aimed to include only proteins involved in dimeric
interactions to reduce the possibility of a non-interacting
patch (see below) containing residues involved in an
interaction different to the one given in the PDB file. A
total of 180 proteins taken from 149 complexes survived
the filtering process of which 36were involved in enzyme–
inhibitor interactions, 30 in “other” non-obligate interac-
tions, 27 in hetero-obligate interactions and 87 homo-
obligate interactions. Homo-obligate complexes were
classed as such if their subunits shared over 80% sequence
identity; only the subunit with the largest binding site was
retained. A complete list of proteins in the training set is
given in Supplementary Data, Table 1.

Molecular surface generation and interface
definition

We computed the solvent excluded surface (SES) of each
individual protein and/or complex with the MSMS
surface generation program104 using a probe radius of
1.5 Å. An atom was defined as part of the interface if it lost
more than 99% of its solvent accessible surface area upon
complex formation. Any atom not allocated to the inter-
face was deemed part of the non-interacting surface. A list
of interface residues for each protein in the training set is
listed in Supplementary Data, Table 2.

Bayesian networks

Bayesian networks are probabilistic graphical models,
which provide a compact representation for expressing
joint probability distributions and for inference. A set of
variablesx={X1,…,Xn} can be represented as nodes of the
Bayesian network, with relationships between the vari-
ables represented as directed edges connecting related
nodes. This defines a graph structure. To allow for efficient
inference and learning, a directed acyclic graph (DAG)
must be formed. The graph structure is chosen to exploit
the conditional independence between the variables; this
provides a concise representation in terms of simple
component distributions (factors), reducing the number of
parameters to be estimated. A naïve Bayes classifier has a
structure whereby the class variable C is a parent to each
variable Xi, which are each treated as being independent.
Model parameters in the form of conditional probability
distributions (CPDs) between a variable and those it
depends on are learned from the data, that is, for the naïve
Bayes classifier we learn the CPDs p(Xi|C).

Implementation

The Bayesian networks were implemented using the
Bayesian Network Toolbox for Matlab105 (BNT). All
variable distributions with regard to mean and standard
deviation of each property and patch radius were
approximately Gaussian (data not shown) allowing us to
treat their corresponding nodes as continuous. The class
nodes and the secondary structure node were discrete.
Bayesian network structures were learnt using the BNT

structure learning package106 (SLP) with the maximum
weight spanning tree and greedy search algorithms.

Learning

One advantage of using a Bayesian network is that it is
possible to learn the model parameters from data when
the training data sets are incomplete. For example, if a
protein has no known homologues, the two conservation
score nodes in Figure 1(a) will have no data associated
with them. To learn from incomplete data, we use the
Expectation-Maximisation (EM) algorithm, which esti-
mates the missing values by computing the expected
values and updating parameters using these expected
values as if they were observed values.

Inference

The joint probability distribution of the naïve Bayesian
network shown in Figure 1(a) can be expressed as:

pðC;X1; N ;XnÞ ¼ pðCÞ
Y
i

pðXijCÞ

Where C represents the “binding site patch?” node (more
generally C represents the classes that we are trying to
classify into), and Xi represent the other nodes in the
network. From the definition of conditional probability:

p CjX1; N ;Xnð Þ ¼ pðC;X1; N ;XnÞ
pðX1; N ;XnÞ

Since we are assuming all of the variables (Xi) are
independent (i.e. p(X1,…,Xn)=p(X1)…p(Xn)), the predictive
distribution of C given the variables Xi can be written:

p CjX1; N ;Xnð Þ ¼ p Cð Þ
Y
i

pðXijCÞ
pðXiÞ

The learned model enables predictions to be made
about the expected states of variables even if evidence for
one or more variables is missing. For example, if the test
protein has no known homologues we must marginalise
over the conservation score nodes in order to infer the
state of the variable we are interested in. To marginalise
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over the unknown variable Xj, (in the discrete case), the
probability of belonging to class C incorporates a
contribution for the probability of Xj being each of its
possible values (xj) given that particular classification C:

p Cjall the Xi except Xj
� �

¼ p Cð Þ
Y
ipj

pðXijCÞ
pðXiÞ

X
xj

pðXj ¼ xjjCÞ
pðXj ¼ xjÞ

0
@

1
A

A similar methodology is used for continuous variables
except that an integral is taken over all possible values of
the probability distribution p(Xj|C) in place of the
summation.

Surface patches

Patch properties

Approximately circular regions of protein surface of
defined size known as patches formed the basis for much
of this work. Each surface vertex, generated by MSMS,104

within a patch was labelled with seven physical–chemical
surface properties as described:38 hydrophobicity calcu-
lated using the Fauchère & Pliska scale,107 residue inter-
face propensity, shape index and curvedness,108,109

electrostatic potential calculated by Delphi,110,111 and
solvent accessible surface area (ASA) generated by
MSMS.104 Sequence conservation score was calculated
by Scorecons,112 which was locally installable and robust
enabling high throughput processing of results. These
properties were subsequently normalised between zero
and one and then the mean and standard deviation of each
property was calculated across the patch to produce the 14
Bayesian network variables listed in Figure 1.
Patch definitions

Interacting patch. We defined an interacting patch as an
approximately circular region of protein surface directly
involved in a protein–protein interaction. The centre of the
interacting patch was the centre of geometry of the actual
interface. The size of each patch was equivalent to 8% of
the size of the smallest of the two proteins known to be
involved in the interaction (see predicted patches defini-
tion, below, as to how we derived this figure).
Non-interacting patch. A non-interacting patch, of equiva-
lent size to an interacting patch, was taken from the non-
interacting parts of the surface. The centre of the non-
interacting patch was chosen at random from the set of
non-interacting surface vertices.
A more detailed explanation of the generation of

interacting and non-interacting patches can be found in
the work by Bradford & Westhead.38
Predicted patches. Predicted patches were generated as
follows: for each protein subject to interface prediction, we
generated enough patches for complete coverage of the
protein surface (one patch per surface atom). The centre of
each patch was the surface vertex closest to the centre of
geometry of each surface atom. Patch sizes were estimated
from a short study of the relationship between the size of
the interface and the sizes of the two proteins within the
complex.38 For each test case, the sizes of the proteins and
their interface were calculated in terms of number of
surface vertices. Using linear regression, it was found that
the interface size was equivalent to about 13% of the size of
the smallest protein in the complex, and about 12% of the
size of its parent protein. To avoid an excess of non-
interacting vertices in the interacting patch, and because of
the non-circularity of most interfaces, we favoured a
conservative patch size that was less than the average
values found above. Therefore, we set our patch size to 8%
of the size of the smallest of the two proteins known to be
involved in the interaction unless the binding partner was
unknown, in which case we used a patch size equivalent to
6% of the surface area of the query protein.
Each patch was then assigned a probability value by the

trained Bayesian network according to the likelihood that
the patchwas part of a protein–protein binding site. At this
point we discarded any patch with a probability value
below 0.50 and ranked the remaining patches according to
probability, with patches most likely to be located at a
binding site (and therefore having the highest probability
values) ranked highest. We then removed overlapping
patches by discarding any patch that shared more than
10% of its residues with a patch above it in the ranked list.
The outcome was a set of non-overlapping patches ranked
according to probability of being part of a binding site.
These ranked patches were defined as our “predicted
patches”.
Expected number of successful predictions by
chance

First, we calculated the probability, p, of finding a
binding site patch (a patch with at least 50% patch
precision and 20% interface coverage) at random amongst
the set of patches generated for each test case:

p ¼ No: of binding site patches
Total no: of patches

When considering the top three patches, we were, in
effect, making three attempts at finding a binding site
patch so, given p, we calculated the probability of
succeeding at least once in these three attempts:

Pðat least one binding site patch in top threeÞ
¼ 1� ð1� pÞ3

These P values allowed us to calculate the number of
successful predictions (a patch with at least 50% patch
precision and 20% interface coverage in the top three) one
would expect (E) to achieve by chance across our data set
(equation (4)).

E½number of successful predictions� ¼ P̄N ð4Þ

where P̄ is the mean of P across the dataset and N is the
number of proteins in the dataset.
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