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The emerging areas of micro- and nano-technologies exhibit important strength differences that 
result from continuous modification of the material microstructural characteristics with changing 
size, with smaller being stronger. There are many experimental observations which indicate that, 
under certain specific conditions, the size of micro/nano-systems significantly affect their 
strength such that a length scale is required for predicting such size effects when using the 
classical theories of continuum mechanics. For example, experimental works have shown 
increase in strength by decreasing: (a) the particle size in nano-composites; (b) the diameter of 
nano-wires in torsion and uniaxial compression; (c) the thickness of thin films in micro-bending 
and uniaxial tension; (d) the grain size of nano-crystalline materials; (e) void size in nano-porous 
media; (f) the indentation depth in micro/nano indentation tests, etc (see Abu Al-Rub and 
Voyiadjis [1, 2] for a complete list of references). 

Therefore, it is well-known by now through intensive experimental studies that have been 
performed at the micron and nano length scales that the material mechanical properties strongly 
depend on the size of specimen and the microstructural features. The classical continuum 
mechanics fails to address this problem since no material length scale exists in its constitutive 
description. On the other hand, nonlocal continuum theories of integral-type or gradient-type 
have been to a good extent successful in predicting this type of size effect. However, they fail to 
predict size effects when strain gradients are minimal such as in the Hall-Petch effect. This 
problem is the main focus of this work. The effect of the material microstructural interfaces 
increase as the surface-to-volume ratio increases. It is shown in this work that interfacial effects 
have a profound impact on the scale-dependent plasticity encountered in micro/nano-systems. 
This is achieved by developing a higher-order gradient-dependent plasticity theory that enforces 
microscopic boundary conditions at interfaces and free surfaces. These nonstandard boundary 
conditions relate the microtraction stress at the interface to the interfacial energy. Application of 
the proposed framework to size effects in shear loading of a thin-film on an elastic substrate is 
presented. Three film-interface conditions are modeled: soft, intermediate, and hard interfaces. 
 

I. Higher-Order Gradient Plasticity Theory 
In order to be able to model the small-scale phenomena, such as the effect of size of 
microstructural features on the material mechanical properties, an attempt is made now to 
account for the effect of plastic strain gradients on the homogenized response of the material. 
This is done by developing a higher-order gradient-dependent theory using the principle of 
virtual power and the laws of thermodynamics. The theory of Abu Al-Rub et al. [3] is recalled 
here. 
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Based on the crystallographic dislocation basis presented by Abu Al-Rub et al. [3] it is shown 
that both the gradients of the plastic strain tensor, p∇ε , and the effective plastic strain, p∇ , 
should enter the definition of the internal virtual power besides their corresponding local parts; 
i.e. pε  and p , such that one cannot exist without the other. Therefore, the principle of virtual 
power, which is the assertion that given any sub-body Γ , the virtual power expended on Γ  by 
materials or bodies exterior to Γ  (i.e. external power) be equal to the virtual power expended 
within Γ  (i.e. internal power), can be expressed as follows: 

 ( ) ( ), , d de p p p
ij ij ij ij ijk ij k k k i i ij ijX R p S Q p V t v m Aσ δε δε δ δε δ δ δε

Γ ∂Γ
+ + + + = +∫ ∫  (1) 

where σ  is the Cauchy stress, e p= −ε ε ε  is the elastic strain with ε  being the total strain and pε  
is the plastic strain, X  is the backstress associated with local kinematic hardening, R  is the 
drag-stress associated with local isotropic hardening, S  is a higher-order stress associated with 
nonlocal kinematic hardening, Q  is a higher-order force associated with nonlocal isotropic 
hardening, t  is the macroscopic surface traction, v  is the velocity vector, m  is a higher-order 
moment stress that is prescribed at the surface boundary ∂Γ  with an outward unit normal n . 
Note that δ  is the variation parameter used here to designate a virtual quantity, the 
superimposed dot designates the derivative with respect to time, and the comma is used to 
designate a derivative with respect to kx . 

Substituting e p= −ε ε ε , = ∇ ⊗ vε , and p p= Nε , with N  being the direction of the plastic 
strain (i.e. the plasticity flow rule) where its magnitude is || || 1=N , into the virtual power 
balance, Eq. (1), and then applying the divergence theorem yields, after some lengthy 
manipulations, the following results: 
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The fields Γ , δ v , and pδε  may be arbitrarily specified if and only if 

 , 0ij jσ = ,   i ij jt nσ=  (3) 

 ( ), , 0ij ij ijk k k k ijX S R Q Nτ − + − − = ,     ( )ij ijk k ij km S Q N n= +  (4) 

where τ  is the deviatoric part of σ . According to the notion of Gurtin [4], Eq. (3)1 expresses the 
macroforce balance, Eq. (3)2 defines the stress vector as the surface density of the forces 
imposes which also provides the local macrotraction boundary conditions on forces, Eq. (4)1 is 
the microforce balance, and Eq. (4)2 is the microtraction condition, which is a higher-order 
internal boundary condition augmented by the interaction of dislocations across interfaces. The 
microtraction condition, Eq. (4)2, is the soul of this paper as is shown next. 

By taking the Euclidian norm of Eq. (4)1 one can show that the microforce balance is the 
nonlocal form of the von-Mises plasticity yield function such that: 

 , , 0ij ij ijk k k kX S R Qτ − + − + =  (5) 

The constitutive equations for the thermodynamic forces σ , X , S , R , and Q  can be obtained 
by making use of the nonlocal Clausius-Duhem inequality [3, 5]: 
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 0ij ijσ ε ρ− Ψ + ≥  (6) 

where ( , , , , )e p pp pΨ = Ψ ∇ ∇ε ε ε  is the Helmholtz free energy which is a function of the local 
and nonlocal internal variables, ρ  is the material density, and  designates the nonlocality 
energy residual that results from nonlocal long-range microstructural interactions between the 
material points in the active plastic zone and interfaces given by  

 ( )
,

p
ijk ij k k

S Q pε= +  (7) 

which shows that in the absence of gradients, one retains the local Clausius-Duhem inequality 
such that 0= . Substituting the time derivative of Ψ  into Eq. (6) along with Eq. (7) yields: 
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where yσ  is the size-dependent initial yield strength. If one assumes the following quadratic 
form for Ψ : 

 1 1 1 1 12 2 2
, , , ,2 2 2 2 2

e e p p p p
ij ijkl kl ij ij ij k ij k k kE h hp h h p pρ ε ε ε ε ε εΨ = + + + +  (9) 

where E  is the symmetric fourth-order elastic stiffness tensor, h  is the plasticity hardening 
modulus, and  is the material length scale, then one can express the nonlocal yield condition in 
Eq. (5) as follows: 

 2 2 2 2 0p p
ij ij ij yf h h hp h pτ ε ε σ= − + ∇ − − + ∇ =  (10) 

where 2∇  designates the Laplacian operator. In the absence of plastic strain gradients, the 
classical von-Mises criterion is retrieved. 

II. Interfacial Energy Effect 
Interfacial energy in small-scale systems (e.g. thin films, nano wires, nanocomposites) is 
significant and cannot be ignored when the surface-to-volume ratio becomes large enough. In 
Eq. (4)2, the microtraction stress m  is meant to be the driving force at the material internal and 
external boundaries, which can be interpreted as the interfacial stress at free surface or interface 
which is conjugate to the surface plastic strain. Therefore, m  can be related to the interfacial 
energy ϕ  per unit surface area by using [3, 6, 7]: 

 ( )( )p p I
ij ijm ϕ ε= ∂ ∂ε   on p∂Γ  (11) 

where ( )p Iε  is the interfacial plastic strain and p∂Γ  is the plastic interface. 0ϕ =  designates a 
free surface where dislocations are allowed to escape, while ϕ → ∞  designates a micro-clamped 
surface (i.e. rigid interface) where dislocations are not allowed to go through. Hence, constrained 
plastic flow could be modeled either as a full constraint, i.e. 0p =ε  (when ϕ → ∞ ), or no 
constraint, i.e 0=m  (when ϕ → ∞ ). The surface energy ϕ  presented in Eq. (11) can be 
assumed to have the following form: 

 ( )1 ( ) ( ) ( )
2

p I p I p I
I y ij ij ijhϕ σ ε ε ε= +    on  p∂Γ  (12) 



 4

where yσ  is the bulk (size-independent) yield strength, h  is the strain hardening modulus, and 

I  is a interfacial length scale that is related to the boundary layer thickness and characterizes 
the stiffness of the interface boundary in resisting plastic deformation. If 0I = , the interface 
would behave like a free surface and one obtains a micro-free boundary condition (i.e. 0=m ). 
On the other hand, if I → ∞  then it would represent a condition for fully constrained 
dislocation movement at the interface and one obtains a micro-clamped boundary condition (i.e. 

0p =ε ). The microtraction stress at the boundary, m , can then be obtained from Eqs. (11) and 
(12) as 

 ( )( ) ( ) ( )|| ||p I p I p I
ij I y ij mn ijm hσ ε ε ε= +   on  p∂Γ  (13) 

where if ( ) 0p I
ijε = , then ij I y ijm σ δ= ±  such that I yσ  characterizes the interfacial yield strength. 

Therefore, Eq. (13) physically characterizes a bulk-like yield condition at the interface, which 
governs the plasticity at the interface. 

III. Application to Uniaxial loading of a thin film on a substrate 
This section presents an application of the proposed gradient plasticity model to handle size 
effects in metallic thin films. This model is used to investigate the size-dependent behavior in 
uniaxial loading of a plastic thin film on an elastic substrate [see Figure 1(a)]. The nonlocal yield 
function in Eq. (10) is solved numerically using the finite element algorithm for gradient 
plasticity as detailed in Abu Al-Rub and Voyiadjis [8]. Readers are referred to this paper for 
more details. 

Results in Figs. 1(b) and 1(c), 2(a), and 2(b) are presented for h E =0.2 for film thicknesses, 
where E is the Young’s modulus, as represented by / d =0.1, 0.5, 1, 1.5, and 2. The level of 
interfacial energy at the interface is controlled by the normalized ratio I . Figs. 1(b) and 1(c) 
show the non-uniform plastic strain distribution across the film thickness d  and the average 
stress-strain relation for / 1.0I = . It is obvious from Figure 1(c) that both the overall yield 
strength of the film and the strain hardening rate increase with decreasing the characteristic size 
d . This response conforms qualitatively to the experimentally observed stress-strain response at 
the micron and submicron length scales [9]. In further results which are not reported here, a 
maximum increase in the yield strength and the strain hardening rate is obtained by assuming a 
rigid interface where dislocations are not allowed to transmit across the interface but instead 
piles-up there. Softer responses are obtained by reducing the interfacial strength. This indicates 
that for a rigid interface, d  alone (represented by the ratio d ) controls the increase in the yield 
strength, whereas for compliant and intermediate interfaces both d  and I  determine the yield 
strength and strain hardening rate. 

Finally, one concludes that the formulation of higher-order boundary conditions is very 
important within strain gradient plasticity theory, especially, at interfaces, grain, or phase 
boundaries. It is shown that interfacial effects can be considered by relating the microtractions at 
interfaces to the interfacial energy which is dependent on the plastic strain at the interface. This 
is an important aspect for further development of gradient-dependent plasticity that is capable of 
modeling size effects in micro/nano-systems. It is shown that the existence of both gradients and 
interfacial energies contribute to the observed size effects. 
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