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a b s t r a c t

The problem of computing bounds on the region-of-attraction for systems with polynomial vector
fields is considered. Invariant subsets of the region-of-attraction are characterized as sublevel sets of
Lyapunov functions. Finite-dimensional polynomial parametrizations for Lyapunov functions are used. A
methodology utilizing information from simulations to generate Lyapunov function candidates satisfying
necessary conditions for bilinear constraints is proposed. The suitability of Lyapunov function candidates
is assessed solving linear sum-of-squares optimization problems. Qualified candidates are used to
compute invariant subsets of the region-of-attraction and to initialize various bilinear search strategies
for further optimization. We illustrate the method on small examples from the literature and several
control oriented systems.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The region-of-attraction (ROA) of a locally asymptotically stable
equilibrium point is an invariant set such that all trajectories
emanating from points in this set converge to the equilibrium
point. Computing the exact ROA for nonlinear dynamics is very
hard if not impossible. Therefore, researchers have focused on
determining invariant subsets of the ROA. Among all other
methods, those based on Lyapunov functions are dominant in the
literature (Chesi, Garulli, Tesi, & Vicino, 2005; Chiang & Thorp,
1989; Davison & Kurak, 1971; Genesio, Tartaglia, & Vicino, 1985;
Hachicho & Tibken, 2002; Papachristodoulou, 2005; Tan& Packard,
2006; Tibken, 2000; Tibken & Fan, 2006; Vannelli & Vidyasagar,
1985). These methods compute a Lyapunov function as a local
stability certificate and sublevel sets of this Lyapunov function,
in which the function decreases along the flow, provide invariant
subsets of the ROA.

Using sum-of-squares (SOS) relaxations for polynomial non-
negativity (Parrilo, 2003), it is possible to search for polynomial
Lyapunov functions for systems with polynomial and/or rational
dynamics using semidefinite programming (Hachicho & Tibken,
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2002; Papachristodoulou, 2005; Tan & Packard, 2006). Reliable
and efficient solvers for linear semidefinite programs (SDPs) are
available (Sturm, 1999). However, the SOS relaxation for the prob-
lem of computing invariant subsets of the ROA leads to bilin-
ear matrix inequality (BMI) constraints. BMIs are nonconvex and
bilinear SDPs, those with BMI constraints, are known to be NP-
hard in general (Toker & Ozbay, 1995). Consequently, the state-of-
the-art of the solvers for bilinear SDPs is far behind that for the
linear ones. Recently PENBMI, a solver for bilinear SDPs, was intro-
duced (Koc̆vara & Stingl, 2005) and subsequently used for comput-
ing invariant subsets of the ROA (Tan & Packard, 2006; Tibken &
Fan, 2006). It is a local optimizer and its behavior (speed of conver-
gence, quality of the local optimal point, etc.) depends on the point
from which the optimization starts.

By contrast, simulating a nonlinear system of moderate
size, except those governed by stiff differential equations, is
computationally efficient. Therefore, extensive simulation is a
tool used in real applications. Although the information from
simulations is inconclusive, i.e., cannot be used to find provably
invariant subsets of the ROA, it provides insight into the system
behavior. For example, if, using Lyapunov arguments, a function
certifies that a set P is in the ROA, then that function must be
positive and decreasing on any solution trajectory initiating in
P . Using a finite number of points on finitely many convergent
trajectories and a linear parametrization of the Lyapunov function
V , those constraints become affine, and the feasible polytope
(in V -coefficient space) is a convex outer bound on the set of
coefficients of valid Lyapunov functions. It is intuitive that drawing
samples from this set to seed the bilinear SDP solvers may
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improve the performance of the solvers. In fact, if there are a
large number of simulation trajectories, samples from the set often
are suitable Lyapunov functions (without further optimization)
themselves. Effectively,we are relaxing the bilinear problem (using
a very specific system theoretic interpretation of the problem)
to a linear problem, and the true feasible set is a subset of the
linear problem’s feasible set. Information from simulations is also
used in Prokhorov and Feldkamp (1999) and Serpen (2005) for
computing approximate Lyapunov functions.
Notation: For x ∈ Rn, x � 0 means that xk ≥ 0 for k = 1, . . . , n.
For Q = Q T

∈ Rn×n, Q � 0 (Q � 0) means that xTQx ≥ 0 (≤ 0)
for all x ∈ Rn. R[x] represents the set of polynomials in xwith real
coefficients. The subset Σ[x] := {π ∈ R[x] : π = π2

1 + π2
2 +

· · ·+π2
m, π1, . . . , πm ∈ R[x]} of R[x] is the set of SOS polynomials.

For π ∈ R[x], ∂(π) denotes the degree of π . C1 denotes the
space of continuously differentiable functions. We use the term
‘‘semidefinite programming’’ to mean optimization problems with
affine objective function and general (not necessarily affine)matrix
(semi)definiteness constraints. C

2. Characterization of invariant subsets of the ROA and bilinear
SOS problem

Consider the autonomous nonlinear dynamical system

ẋ(t) = f (x(t)), (1)

where x(t) ∈ Rn is the state vector and f : Rn
→ Rn is

such that f (0) = 0, i.e., the origin is an equilibrium point of
(1), and f is locally Lipschitz. Let φ(ξ, t) denote the solution to
(1) at time t with the initial condition x(0) = ξ . If the origin is
asymptotically stable but not globally attractive, one oftenwants to
knowwhich trajectories converge to the origin as time approaches
∞. The region-of-attraction R0 of the origin for the system (1) is
R0 := {ξ ∈ Rn

: limt→∞ φ(ξ, t) = 0}. A modification of a similar
result in Vidyasagar (1993) provides a characterization of invariant
subsets of the ROA. For η > 0 and a function V : Rn

→ R, define
the η-sublevel set ΩV ,η of V as ΩV ,γ := {x ∈ Rn

: V (x) ≤ η}.

Lemma 1. Let γ ∈ R be positive. If there exists a C1 function V :

Rn
→ R such that

ΩV ,γ is bounded, and (2)

V (0) = 0 and V (x) > 0 for all x ∈ Rn (3)

ΩV ,γ \ {0} ⊂
{
x ∈ Rn

: ∇V (x)f (x) < 0
}
, (4)

then for all ξ ∈ ΩV ,γ , the solution of (1) exists, satisfies φ(ξ, t) ∈

ΩV ,γ for all t ≥ 0, and limt→∞ φ(ξ, t) = 0, i.e., ΩV ,γ is an invariant
subset of R0. C

In order to enlarge the computed invariant subset of the ROA,
we define a variable sized region Pβ := {x ∈ Rn

: p(x) ≤ β},
where p ∈ R[x] is a fixed positive definite convex polynomial, and
maximize β while imposing the constraint Pβ ⊆ ΩV ,γ along with
the constraints (2)–(4). This can be written as

β∗ (V) := max
β>0,V∈V

β subject to (2)–(4), Pβ ⊆ ΩV ,γ . (5)

Here V denotes the set of candidate Lyapunov functions over
which the maximum is defined, for example all C1 functions.
Lemma 1 and the associated optimization problem in (5) provide a
characterization of the invariant subsets of the ROA in terms of the
sublevel sets of Lyapunov functions.

The problem in (5) is an infinite-dimensional problem. In order
to make it amenable to numerical optimization (specifically SOS
optimization), we restrict V to be all polynomials of some fixed
degree. We use the well-known sufficient condition: for any π ∈
R[x], if π ∈ Σ[x], then π is positive semidefinite (Parrilo, 2003).
Using simple generalizations of the S-procedure (Lemmas 2 and
3), we obtain sufficient conditions for set containment constraints.
Specifically, let l1 and l2 be positive definite polynomials (typically
εxTx for some small real number ε). Then, since l1 is radially
unbounded, the constraint
V − l1 ∈ Σ[x] (6)
and V (0) = 0 are sufficient conditions for (2) and (3). By Lemma 2,
if s1 ∈ Σ[x], then
− [(β − p)s1 + (V − γ )] ∈ Σ[x] (7)
implies the set containment Pβ ⊆ ΩV ,γ , and by Lemma 3, if
s2, s3 ∈ Σ[x], then
− [(γ − V )s2 + ∇Vfs3 + l2] ∈ Σ[x] (8)
is a sufficient condition for (4). Using these sufficient conditions, a
lower bound on β∗(V) can be defined as

β∗

B (V, S) := max
V∈V,β,si∈Si

β subject to (6)–(8),

V (0) = 0, si ∈ Σ[x], β > 0.
(9)

Here, the setsV andSi are prescribed finite-dimensional subspaces
of polynomials. Although β∗

B depends on these subspaces, it will
not always be explicitly notated. Note that since conditions (6)–(8)
are only sufficient conditions, β∗

B (V, S) ≤ β∗(V) ≤ β∗(C1).
The optimization problem in (9) is bilinear because of the product
terms βs1 in (7) and Vs2 and ∇Vfs3 in (8). However, the problem
has more structure than a general BMI problem. If V is fixed, the
problem becomes affine in S = {s1, s2, s3} and vice versa. In
Section 3, we will construct a convex outer bound on the set of
feasibleV and sample from this outer bound set to obtain candidate
V ’s, and then solve (9) for S, holding V fixed.

3. Relaxation of the bilinear SOS problemusing simulation data

The usefulness of simulation in understanding the ROA for a
given system is undeniable. Faced with the task of performing a
stability analysis (e.g. ‘‘for a given p, is Pβ contained in the ROA?’’),
a pragmatic, fruitful and wise approach begins with a linearized
analysis and at least amodest number of simulation runs. Certainly,
just one divergent trajectory starting in Pβ certifies that Pβ 6⊂ R0.
Conversely, a large collection of only convergent trajectories hints
at the likelihood that indeedPβ ⊂ R0. Suppose this latter condition
is true, let C be the set of Nconv trajectories c converging to the
origin with initial conditions in Pβ . In the course of simulation
runs, divergent trajectories d whose initial conditions are not in
Pβ may also get discovered, so let the set of d’s be denoted by D
and Ndiv be the number of elements ofD. Although C andD depend
on β and the manner in which Pβ is sampled, this is not explicitly
notated.

With β and γ fixed, the set of Lyapunov functions which
certify that Pβ ⊂ R0, using conditions (6)–(8), is simply
{V ∈ R[x] : (6)–(8) hold for some si ∈ Σ[x]} . Of course, this set
could be empty, but it must be contained in the convex set {V ∈

R[x] : (10) holds}, where

∇V (c(t))f (c(t)) < 0,
l1(c(t)) ≤ V (c(t)), and V (c(0)) ≤ γ ,

γ + δ ≤ V (d(t)),
(10)

for all c ∈ C, d ∈ D, and t ≥ 0, where δ is a fixed (small)
positive constant. Informally, these conditions simply say that any
V which verifies that Pβ ⊂ R0 using conditions (6)–(8) must, on
the trajectories starting in Pβ , be decreasing and take on values
between 0 and γ . Moreover, V must be greater than γ on divergent
trajectories. In fact, with the exception of the strengthened lower
bound on V (beyond mere positivity), the conditions in (10) are
even necessary conditions for any V ∈ C1 which verify Pβ ⊂ R0
using conditions (2)–(4).
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3.1. Affine relaxation using simulation data

Let V be linearly parametrized as V := {V ∈ R[x] : V (x) =

ϕ(x)Tα}, where α ∈ Rnb and ϕ is an nb-dimensional vector of
polynomials in x. Given ϕ(x), constraints in (10) can be viewed as
constraints on α ∈ Rnb yielding the convex set {α ∈ Rnb : (10)
holds for V = ϕ(x)Tα}. For each c ∈ C, d ∈ D, let Tc and Td be finite
subsets of the interval [0, ∞) including the origin. A polytopic
outer bound for this set described by finitely many constraints is
Ysim := {α ∈ Rnb : (11) holds}, where

[∇ϕ(c(τc))f (c(τc))]T α < 0,

l1(c(τc)) ≤ ϕ(c(τc))Tα, and ϕ(c(0))Tα ≤ γ ,

ϕ(d(τd))
Tα ≥ γ + δ

(11)

for all c ∈ C, τc ∈ Tc, d ∈ D, and τd ∈ Td. Note that ϕ(c(0))Tα ≤ γ
in (11) provides necessary conditions for Pβ ⊆ ΩV ,γ since c(0) ∈

Pβ for all c ∈ C. In practice, we replace the strict inequality in
(11) by [∇ϕ(c(τc))f (c(τc))]T α ≤ −l3(c(τc)), where l3 is a fixed,
positive definite polynomial imposing a bound on the rate of decay
of V along the trajectories.

The constraint that ∇Vf be negative on a sublevel set of V
implies that ∇Vf is negative on a neighborhood of the origin.
While a large number of sample points from the trajectories will
approximately enforce this, in some cases (e.g. exponentially stable
linearization) it is easy to analytically express as a constraint on the
loworder terms of the polynomial Lyapunov function. For instance,
assume V has a positive definite quadratic part, and that separate
eigenvalue analysis has established that the linearization of (1)
at the origin, i.e., ẋ = ∇f (0)x, is asymptotically stable. Define
L(P) := (∇f (0))T P + P (∇f (0)), where PT

= P � 0 is such that
xTPx is the quadratic part of V . Then, if (8) holds, it must be that

L(P) ≺ 0. (12)

Let Ylin := {α ∈ Rnb : P = PT
� 0 and (12) holds}. It is well-

known that Ylin is convex (Boyd & Vandenberghe, 2004). Again, in
practice, (12) is replaced by the condition L(P) � −εI , for some
small real number ε. Furthermore, define YSOS := {α ∈ Rnb : (6)
holds}. By Parrilo (2003), YSOS is convex. Since Ysim, Ylin and YSOS
are convex, Y := Ysim ∩Ylin ∩YSOS is a convex set in Rnb . Eqs. (11)
and (12) constitute a set of necessary conditions for (6)–(8); thus,
we have Y ⊇ B := {α ∈ Rnb : ∃s2, s3 ∈ Σ[x] such that (6)–(8)
hold}. Since (8) is not jointly convex in V and the multipliers, B
may not be a convex set and even may not be connected.

A point in Y can be computed solving an affine (feasibility) SDP
with the constraints (6), (11) and (12). An arbitrary point in Y may
or may not be in B. However, if we generate a collection A :=

{α(k)
}
NV −1
k=0 of NV points distributed approximately uniformly in Y,

it may be that some of the points are in B. To this end, we use the
so-called ‘‘Hit-and-Run’’ (H&R) randompoint generation algorithm
as described in Tempo, Calafiore, and Dabbene (2005). When
applied to generate a sample of Y, each step of H&R algorithm
requires solving four small affine SDPs.

3.2. Algorithms

Since a feasible value of β is not known a priori, an
iterative strategy to simulate and collect convergent and divergent
trajectories is necessary. This process when coupled with the H&R
algorithm constitutes the Lyapunov function candidate generation.
Simulation and Lyapunov function generation (SimLFG) algo-
rithm: Given positive definite convex p ∈ R[x], a vector of polyno-
mials ϕ(x) and constants βSIM ,Nconv ,NV , βshrink ∈ (0, 1), and empty
sets C and D, set γ = 1, Nmore = Nconv , Ndiv = 0.
(i) Integrate (1) from Nmore initial conditions in the set {x ∈ Rn
:

p(x) = βSIM}.
(ii) If there is no diverging trajectory, add the trajectories to C and

go to (iii). Otherwise, add the divergent trajectories to D and
the convergent trajectories to C, let Nd denote the number of
diverging trajectories found in the last run of (i) and set Ndiv
to Ndiv + Nd. Set βSIM to the minimum of βshrinkβSIM and the
minimum value of p along the diverging trajectories. Set Nmore
to Nmore − Nd, and go to (i).

(iii) At this point C has Nconv elements. For each i = 1, . . . ,Nconv ,
let τ i satisfy ci(τ ) ∈ PβSIM for all τ ≥ τ i. Eliminate times in Ti
that are less than τ i.

(iv) Find a feasible point for (6), (11) and (12). If (6), (11) and (12)
are infeasible, set βSIM = βshrinkβSIM , and go to (iii). Otherwise,
go to (v).

(v) Generate NV Lyapunov function candidates using H&R algo-
rithm, and returnβSIM and Lyapunov function candidates. C

The suitability of a Lyapunov function candidate is assessed
by solving two optimization problems. Both problems require
bisection and each bisection step involves a linear SOS problem.
Alternative linear formulations appear in the Appendix. These
do not require bisection, but generally involve higher degree
polynomial expressions.

Problem 1. Given V ∈ R[x] (from SimLFG algorithm) and positive
definite l2 ∈ R[x], define

γ ∗

L := max
γ ,s2,s3

γ subject to s2, s3 ∈ Σ[x], γ > 0,

− [(γ − V )s2 + ∇Vfs3 + l2] ∈ Σ[x].
(13)

If Problem 1 is feasible, then γ ∗

L > 0 and define:

Problem 2. Given V ∈ R[x], p ∈ R[x], and γ ∗

L , solve

β∗

L := max
β,s1

β subject to s1 ∈ Σ[x], β > 0,

−
[
(β − p)s1 − (V − γ ∗

L )
]

∈ Σ[x].
(14)

Although γ ∗

L and β∗

L depend on the allowable degree of s1, s2, and
s3, this is not explicitly notated.

Assuming Problem 1 is feasible, it is true that Pβ∗
L

\ {0} ⊆

ΩV ,γ ∗
L

\ {0} ⊂ {x ∈ Rn
: ∇V (x)f (x) < 0}, so V certifies that

Pβ∗
L

⊂ R0. Solutions to Problems 1 and 2 provide a feasible point
for the problem in (9). This feasible point can be further improved
by solving the problem in (9) using PENBMI and/or iterative
coordinate-wise linear optimization schemes, one of which is
given next.
Coordinate-wise optimization (CWOpt) algorithm: Given V ∈

R[x], positive definite l1, l2 ∈ R[x], a constant εiter , and maximum
number of iterations Niter , set k = 0.

(i) Solve Problems 1 and 2.
(ii) Given s1, s2, s3, and γ ∗

L from step (i), set γ in (7) and (8) to γ ∗

L ,
solve (9) for V and β , and set β∗

L = β∗

B .
(iii) If k = Niter or the increase in β∗

L between successive
applications of (ii) is less than εiter , return V , γ ∗

L , and β∗

L .
Otherwise, set k to k + 1 and go to (i). C

The algorithms (SimLFG, Problems 1 and 2, and CWOpt) yield
lower bounds on β∗(C1), as they produce a Lyapunov function
which certifies that a particular value of β satisfies Pβ ⊂ R0.
Upper bounds (i.e., values of β that are not certifiable) may also
be obtained. More specifically, diverging trajectories found in
the course of simulation runs provide upper bounds on β∗(C1)
while inconsistency of the constraints (6), (11) and (12) provide
upper bounds on β∗

B . A diverging trajectory with the initial
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Fig. 1. Histograms of β∗

L (black bars) and β∗

B (white bars) from seeded PENBMI runs
for ∂(V ) = 4 (left), 6 (right).

condition x0 satisfying p(x0) = β proves that Pβ cannot be a
subset of the ROA, i.e., β∗(C1) < β . Furthermore, restricting
Lyapunov function candidates to Vϕ :=

{
ϕ(x)Tα : α ∈ Rnb

}
has additional implications. Infeasibility of any of the constraints
(6), (11) and (12) for some value of β (recall (11) implicitly
depends on β) verifies β∗

B

(
Vϕ, S

)
≤ β∗

(
Vϕ

)
< β , regardless

of the subspaces constituting S. Moreover, the gap between the
value of β proven unachievable and what we actually certify,
namely a lower bound to β∗

B

(
Vϕ, S

)
, can be used as a measure of

suboptimality introduced due to the finiteness of the degree of the
multipliers and the fact that the bilinear search and the coordinate-
wise linear search are only local optimization schemes. Finally,
H&R, SimLFG and CWOpt algorithms become more efficient using
parallel computing.

4. Examples

Certifying Lyapunov functions, multipliers and missing param-
eters for all examples in this paper are available at http://jagger.
me.berkeley.edu/∼pack/certify. In the examples, li(x) = 10−6xTx
for i = 1, 2, 3.

4.1. Van der Pol dynamics

The Van der Pol dynamics ẋ1 = −x2, ẋ2 = x1 + (x21 − 1)x2 have
a stable equilibrium point at the origin and an unstable limit cycle.
The limit cycle is the boundary of the ROA. We applied SimLFG
algorithm with p(x) = xTx and the parameters Nconv = 200,
βSIM = 3.0 (initial value), βshrink = 0.9, and NV = 50 for ∂(V ) =

2, 4, and 6. We found Ndiv = 21 diverging trajectories during the
simulation runs and feasible solutions for (6), (11) and (12) in step
(iv) with βSIM = 1.44, 1.97, and 2.19 for ∂(V ) = 2, 4, and 6,
respectively. We assessed (computed corresponding values of β∗

L
for) the Lyapunov function candidates generated in step (v) solving
Problems 1 and 2 and further optimized initializing PENBMI with
the solutions of these problems. Fig. 1 showsβ∗

L and corresponding
β∗

B values for ∂(V ) = 4 and 6. Practically, every seeded PENBMI run
terminated with the same β∗

B value which is the largest known (at
least by us) value of β for which (9) is feasible with the prescribed
families of Lyapunov functions and multipliers. In addition, we
performed 10 unseeded PENBMI runs for ∂(V ) = 4 and 6. Of these
runs 90% and 50%, respectively, terminated successfully (with an
optimal value of β equal to that from the seeded PENBMI runs).
Moreover, unseeded PENBMI runs took longer computation times
than seeded PENBMI runs. For comparison, seeded PENBMI runs
took 3–8 and11–24 s for ∂(V ) = 4 and6, respectively, on a desktop
PC, whereas they took 50–250 and 1000–2500 s, respectively, for
unseeded PENBMI runs. Fig. 2 shows the level sets of the Lyapunov
functions corresponding to the value of β∗

B .
Fig. 2. The invariant subsets of the ROA (dot: ∂(V ) = 2, dash: ∂(V ) = 4, and solid:
∂(V ) = 6 (indistinguishable from the outermost curve for the limit cycle)).

Table 1
Volume ratios for (E1)–(E7)

Example Volume ratio Example Volume ratio

(E1) 16.7/10.2 (E2) 0.99/0.85
(E3) 37.2/23.5 (E4) 1.00/0.28
(E5) 62.3 /7.3 (E6) 35.0/15.3
(E7) 1.44/0.70

4.2. Examples from the literature

We present results obtained using the method from the
previous section for the systems in (15). (E1)–(E3) are from Chesi
et al. (2005), (E4) and (E7) are from Vannelli and Vidyasagar (1985),
and (E5) and (E6) are fromHauser and Lai (1992) and Hachicho and
Tibken (2002), respectively. Since the dynamics in (E1)–(E7) have
no physical meaning and there is no p given, we applied SimLFG
algorithm sequentially: Apply SimLFG algorithm with p(x) = xTx
and NV = 1 for ∂(V ) = 2. Call the quadratic Lyapunov function
obtained V̂ . Set p to V̂ and apply SimLFG algorithm with this p
and NV = 1 for ∂(V ) = 4. For (E5)–(E7), we further applied
CWOpt algorithm with Niter = 10. Table 1 shows the ratio of
the volume of the invariant subset of the ROA obtained using
this procedure to that reported in the corresponding references.
Empirical volumes of sublevel sets of V are computed by randomly
sampling a hypercube containing the sublevel set. Values in Table 1
are volumes normalized by π and 4π/3 for 2- and 3-dimensional
problems, respectively. For (E4), (E6), and (E7), we also empirically
verified that the invariant subsets of the ROA reported in the
corresponding references are contained in those computed by this
sequential procedure.

(E1) :
{
ẋ1 = x2, ẋ2 = −2x1 − 3x2 + x21x2.

(E2) :

{
ẋ1 = x2,
ẋ2 = −2x1 − x2 + x1x22 − x51 + x1x42 + x52.

(E3) :

{
ẋ1 = x2, ẋ2 = x3,
ẋ3 = −4x1 − 3x2 − 3x3 + x21x2 + x21x3.

(E4) :

{
ẋ1 = −x2, ẋ2 = −x3,
ẋ3 = −0.915x1 + (1 − 0.915x21)x2 − x3.

(E5) :

{
ẋ1 = x2 + 2x2x3, ẋ2 = x3,
ẋ3 = −0.5x1 − 2x2 − x3.

(E6) : {ẋ1 = −x1 + x2x23, ẋ2 = −x2 + x1x2, ẋ3 = −x3.

(E7) :

{
ẋ1 = −0.42x1 − 1.05x2 − 2.3x21 − 0.5x1x2 − x31,
ẋ2 = 1.98x1 + x1x2.

(15)

http://jagger.me.berkeley.edu/~pack/certify
http://jagger.me.berkeley.edu/~pack/certify
http://jagger.me.berkeley.edu/~pack/certify
http://jagger.me.berkeley.edu/~pack/certify
http://jagger.me.berkeley.edu/~pack/certify
http://jagger.me.berkeley.edu/~pack/certify
http://jagger.me.berkeley.edu/~pack/certify
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Table 2
Certified values of β before and after applying CWOpt algorithm and fromunseeded
PENBMI run

∂(V ) = 2 ∂(V ) = 4

Before iterations 6.56 8.99
After iterations 8.56 14.4
PENBMI (unseeded) 8.60 15.2

4.3. Controlled short period aircraft dynamics

The closed-loop dynamics in (16) have an asymptotically stable
equilibrium point at the origin.

ẋ =


5∑

i=1

a1ixi +
5∑

i=1

r1ixix2 + r16x32

5∑
i=1

a2ixi +
∑

i,j=2,5

rijxixj

A345x

 . (16)

Here, x = [x1, x2, x3, x4, x5]T is the state vector, x1, x2 and x5 are
pitch rate, angle of attack, and pitch angle, respectively, x3 and
x4 are the controller states, and A345 ∈ R3×5. Before applying
our method, we performed excessive simulations and found a
diverging trajectory whose initial condition x0 satisfies xT0x0 =

16.1; therefore, initialized βSIM with 16.0. We applied algorithm
SimLFG with p(x) = xTx, βshrink = 0.85, Nconv = 4000, NV =

1 for ∂(V ) = 2 and 4. We assessed the Lyapunov function
candidates solving Problems A.1 and A.2 and further optimized
using CWOpt algorithm with Niter = 6. Certified values of β before
and after applying iterations and from unseeded PENBMI runs are
shown in Table 2. Unseeded PENBMI runs led to slightly higher
values of β . However, this benefit was at the expense of high
computational effort. For example, the unseeded PENBMI run took
38 h for ∂(V ) = 4whereas ourmethod took 36min (15min for the
SimLFG algorithmand21min for the CWOpt algorithm). Finally, the
dependence that the starting point of CWOpt algorithm has on its
performance is significant. For example, simply initializing CWOpt
algorithm with V (x) = xTPx + 0.001

∑5
i=1 x

4
i , where PT

= P � 0
satisfies L(P) = −I yields poor results. After 30 iterations, the
CWOpt iteration converges, but the resultant Lyapunov function
only certifies P8.5 ⊂ R0.

4.4. Pendubot dynamics

The pendubot is an underactuated two-link pendulum with
torque action only on the first link. We designed an LQR controller
to balance the two-link pendulum about its upright position. Third
order polynomial approximation of the closed-loop dynamics is
ẋ1 = x2, ẋ2 = 782x1 + 135x2 + 689x3 + 90x4, ẋ3 = x4 and ẋ4 =

279x1x23−1425x1−257x2+273x33−1249x3−171x4. Here, x1 and x3
are angular positions of the first link and the second link (relative
to the first link). We applied SimLFG algorithm sequentially exactly
as described in Section 4.2 and CWOpt algorithmwith 10 iterations
and obtained β∗

L = 1.69. Conversely, we found a diverging
trajectory with the initial condition x̄ with p(x̄) = 1.95 proving
that 1.69 ≤ β∗(C1) < 1.95. Fig. 3 shows the x2 = 0 and x4 = 0
slice of the invariant subset of the ROA alongwith initial conditions
(with x2 = 0 and x4 = 0) for some diverging trajectories.

4.5. Closed-loop dynamics with nonlinear observer based controller

For the dynamics ẋ1 = u, ẋ2 = −x1+x31/6−u and y = x2, where
x1 and x2 are the states, u is the control input and y is the output, an
observer L with polynomial vector field ż = L(y, z) with ∂(L) = 3
and a control law in the form u = −145.9z1 + 12.3z2, where z1
Fig. 3. A slice of the invariant subset of the ROA (solid line) and initial conditions
(with x2 = 0 and x4 = 0) for diverging trajectories (dots).

and z2 are the observer states, were computed in Tan (2006). The
application of SimLFG algorithm with ∂(V ) = 2 and p from Tan
(2006) and CWOpt algorithm with Niter = 4 leads to β∗

L = 0.32.
We also applied CWOpt algorithm (initialized with the quadratic
V found in the first application) with ∂(V ) = 4 and Niter = 6 and
obtained β∗

L = 0.52. Conversely, we found a diverging trajectory
with the initial condition (x̄, z̄) satisfying p(x̄, z̄) = 0.54 proving
that 0.52 ≤ β∗(C1) < 0.54.

5. Critique and conclusions

5.1. Sampling vs. simulating

A common question we get is ‘‘why simulate to get the sam-
ple points? — just sample some region, and impose ∇V (x)f (x) <
0 there’’. There are a few answers to this. Intuitively, even run-
ning a few simulations gives insight into the system behavior.
Engineers commonly use simulation to assess rough measures of
stability robustness andROA.Moreover, as converse Lyapunov the-
orems (Vidyasagar, 1993) implicitly define a certifying Lyapunov
function in terms of the flow, it makes sense to sample the flow
when looking for a Lyapunov function of a specific form. Fur-
thermore, we have the following observation demonstrating that
merely sampling some region and imposing ∇V (x)f (x) < 0 there
carries misleading information. Consider the Van der Pol dynamics
with p(x) = xTx and let Sβ denote a finite sample of Pβ . It can be
shown that the set of quadratic positive definite functions V that
satisfy

S1.8 \ {0} ⊂
{
x ∈ Rn

: ∇V (x)f (x) < 0
}

(17)

is nonempty. In fact, for V (x) = 0.32x21 − 0.25x1x2 + 0.31x22,
(17) is satisfied (actually for all x ∈ P1.8, ∇V (x)f (x) ≤ −l3(x)).
This naively suggests drawing samples from the set of quadratic
positive definite functions satisfying (17) in order to try to prove
that P1.8 ⊂ R0. However, simulations reveal a contradicting fact:
Using trajectories with initial conditions in S1.8 for ∂(V ) = 2,
i.e., with ϕ(x) = [x21, x1x2, x

2
2]

T, constraints (6), (11) (with γ = 1),
and (12) turn out to be infeasible. This verifies that no quadratic
Lyapunov function can prove P1.8 ⊂ R0 using conditions (6)–
(8), with the additional constraint that V̇ (x) ≤ −10−6xTx on
all trajectories starting in P1.8. Recall though, that using quartic
Lyapunov functions we know β∗

(
Vϕ, S

)
≥ 2.14. By these

observations, we have the following series of inclusions for the
subsets of the positive definite quadratic polynomials

{V : V certifies Pβ ⊂ R0 using (6)–(8)}
⊂ {V : ∇V (cs(τ ))f (cs(τ )) < 0 ∀τ , ∀s ∈ Sβ}

⊂ {V : ∇V (s)f (s) < 0 ∀s ∈ Sβ},
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where cs denotes the trajectory with the initial condition s ∈ Sβ .
Therefore, merely sampling instead of using simulations leads to
a larger outer set from which the samples for V are taken in step
(v) of SimLFG algorithm and it is less likely to find a function that
certifies that Pβ ⊂ R0.

5.2. Conclusions

We proposed a method for computing invariant subsets of
the region-of-attraction for asymptotically stable equilibrium
points of dynamical systems with polynomial vector fields. We
used polynomial Lyapunov functions as local stability certificates
whose certain sublevel sets are invariant subsets of the region-
of-attraction. Similar to many local analysis problems, this is a
nonconvex problem. Furthermore, its sum-of-squares relaxation
leads to a bilinear optimization problem. We developed a method
utilizing information from simulations for easily generating
Lyapunov function candidates. For a given Lyapunov function
candidate, checking its feasibility and assessing the size of the
associated invariant subset are affine sum-of-squares optimization
problems. Solutions to these problems provide invariant subsets of
the region-of-attraction directly and/or they can further be used as
seeds for local bilinear search schemes or iterative coordinate-wise
linear search schemes for improved performance of these schemes.
We reported promising results in all these directions.

Acknowledgements

This work was sponsored by the Air Force Office of Scientific
Research, USAF, under grant/contract number FA9550-05-1-0266.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied,
of the AFOSR or the US Government.

Appendix

Lemma 2. Given g0, g1, . . . , gm ∈ R[x], if there exist s1, . . . , sm ∈

Σ[x] such that g0 −
∑m

i=1 sigi ∈ Σ[x], then {x ∈ Rn
: g1(x),

. . . , gm(x) ≥ 0} ⊆ {x ∈ Rn
: g0(x) ≥ 0}.

Lemma 3. Given g0, g1, g2 ∈ R[x] such that g0 is positive definite
and g0(0) = 0, if there exist s1, s2 ∈ Σ[x] such that g1s1 + g2s2 − g0
∈ Σ[x], then {x ∈ Rn

: g1(x) ≤ 0} \ {0} ⊂ {x ∈ Rn
: g2(x) > 0}. C

Problems 1 and 2 in Section 3 compute lower bounds on the
largest value of γ and β such that, for given V and p, ΩV ,γ \

{0} ⊂ {x ∈ Rn
: ∇V (x)f (x) < 0} and Pβ ⊂ ΩV ,γ . We

propose alternative formulations, that do not require line search,
to compute similar lower bounds. Labeled γ ∗

a and β∗
a , these are

generally different than γ ∗

L and β∗

L . For h, g ∈ R[x] and a positive
integer d, define µo(h, g) := infx 6=0 h(x) such that g(x) = 0, and

µ∗(h, g, d) := sup
µ>0,r∈R[x]

µ subject to

(h − µ)
(
x2d1 + · · · + x2dn

)
− gr ∈ Σ[x].

Note that µ∗(h, g, d) ≤ µo(h, g).

Lemma 4. Let g, h : Rn
→ R be continuous, h be positive

definite, g(0) = 0, and g(x) < 0 for all nonzero x ∈ O,
a neighborhood of the origin. Define γ o

:= µo(h, g). Then, the
connected component of {x ∈ Rn

: h(x) < γ o} containing the origin
is a subset of {x ∈ Rn

: g(x) < 0} ∪ {0}. C
Proof. Suppose not and let x 6= 0 be in the connected component
of {x ∈ Rn

: h(x) < γ o} containing the origin but g(x) ≥ 0. Then,
there exists a continuous function ϑ : [0, 1] → Rn such that
ϑ(0) = 0, ϑ(1) = x, and h(ϑ(t)) < γ o for all t ∈ [0, 1]. Since
g(0) = 0 and g(x) < 0 for all nonzero x ∈ O, there exists 0 <

ε < 1 such that g(ϑ(ε)) < 0. Since x is not in {x ∈ Rn
: g(x) < 0},

g(ϑ(1)) ≥ 0. Since g and ϑ are continuous, there exists t∗ ∈ (0, 1]
such that g(ϑ(t∗)) = 0, which implies h(ϑ(t∗)) ≥ γ o. This
contradiction leads to x ∈ {x ∈ Rn

: g(x) < 0}. �

Corollary 5. Let V ∈ R[x] be a positive definite C1 function and
satisfy (12) and V (0) = 0. Then, for all γ such that 0 < γ <

µo(V , ∇Vf ), the connected component of ΩV ,γ containing the origin
is an invariant subset of the ROA. C

Proof. Since the quadratic part of V is a Lyapunov function for
the linearized system, there exists a neighborhood O of the
origin such that ∇V (x)f (x) < 0 for all nonzero x ∈ O.
By Lemma 4, the connected component of ΩV ,γ containing the
origin, a subset of the connected component of {x ∈ Rn

:

V (x) < µo(V , ∇Vf )} containing the origin, is contained in
{x ∈ Rn

: ∇V (x)f (x) < 0} ∪ {0}. Corollary 5 follows from regular
Lyapunov arguments (Vidyasagar, 1993). �

Corollary 6. For some positive integer d1, define γ ∗
a := µ∗(V , ∇Vf ,

d1). Then, if γ < γ ∗
a for some positive integer d1, then the connected

component of ΩV ,γ containing the origin is an invariant subset of the
ROA. C

Corollary 7. Let 0 < γ < γ ∗
a , d2 be a positive integer, V , p ∈ R[x]

be positive definite and p be convex. Define β∗
a := µ∗(p, V − γ , d2).

Then for any β < β∗
a , Pβ ⊂ ΩV ,γ and Pβ ⊂ R0. C
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