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Abstract—Extensive research has demonstrated the potential
improvement in physical layer performance when multiple radios
transmit concurrently in the same radio channel. We consider
how such cooperation affects the requirements for full con-
nectivity and percolation in large wireless ad hoc networks.
Both noncoherent and coherent cooperative transmission are
considered. For one-dimensional (1-D) extended networks, in
contrast to noncooperative networks, for any path loss exponent
less than or equal to one, full connectivity occurs under the
noncoherent cooperation model with probability one for any node
density. Conversely, there is no full connectivity with probability
one when the path loss exponent exceeds one, and the network
does not percolate for any node density if the path loss exponent
exceeds two. In two-dimensional (2-D) extended networks with
noncoherent cooperation, for any path loss exponent less than or
equal to two, full connectivity is achieved for any node density.
Conversely, there is no full connectivity when the path loss
exponent exceeds two, but the cooperative network percolates for
node densities above a threshold which is strictly less than that
of the noncooperative network. A less conclusive set of results
is presented for the coherent case. Hence, even relatively simple
noncoherent cooperation improves the connectivity of large ad
hoc networks.

Index Terms—Connectivity, Percolation, Physical layer coop-
eration, Ad hoc networks, Wireless networks.

I. INTRODUCTION

IRELESS ad hoc networks have been a topic of

extreme interest recently. Naturally, connectivity is
one of the key issues that requires significant study, since
few network services can function properly if the network
is disconnected. Due to the wireless medium, any node in a
wireless network receives non-zero signal energy from every
other node in the network, and thus every node is connected
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in some sense to every other node. However, in practice, to
support routing and scheduling algorithms, networks define
one-hop neighbors for a node as those to which it is able
to establish productive direct communication, where the latter
requires some minimal received signal quality for physical
layer functions (e.g. synchronization) and achieving some
minimal utility, as considered in detail in Section II. Two
nodes are then defined as being connected if there exists some
sequence of these hops between them.

Although wireless ad hoc networks are finite, asymptotic
(in a large number of nodes) analyses have proven useful
for understanding the characteristics of large networks and
will be considered here. In conventional noncooperative net-
works, nodes can communicate directly if they are within
a distance r determined by the required received signal-to-
noise ratio (SNR), the peak transmission power, and the path
loss attenuation function. However, when a set of already-
connected nodes transmits simultaneously, cooperation helps
meet the received signal requirements, thus allowing a node at
a distance greater than r away to be pulled into the connected
component. The asymptotic connectivity properties of such
cooperative networks is of our interest. This paper surveys
our previous work in the field, while also providing a number
of new results. In particular, we follow the model that we
originally presented in [1], for which a much stronger set of
results is established in [2]. Here, we present a number of
new results and proof techniques beyond [2]: the results on
full connectivity of Theorems 3.3 and 3.7 are stronger than the
analogous results in our work [2] and employ a quite different
construction. In addition, the proofs of Theorems 3.4, 3.8,
and 4.3 have been modified, often substantially, from those
in [2] so as to improve the precision and clarity. Finally,
we include more precise statements on percolation, including
Theorem 4.1, rather than simply deducing what we can about
percolation from our full connectivity results.

In extended networks, as considered here, nodes are dis-
tributed across an infinite region according to a Poisson
point process with density A > 0. Connectivity for extended
networks is generally defined as the existence of one cluster
containing an infinite number of connected nodes, and contin-
uum percolation with the Poisson Boolean model has been the
most common approach to study connectivity. For a given 7,
when the node density \ exceeds a given threshold )., there
will be one infinite cluster almost surely, whereas for node
densities less than A, there is no infinite cluster with proba-
bility one [3]. Previous work has also shown that there is no
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TABLE 1
MAJOR RESULTS FOR FULL CONNECTIVITY OF THE NONCOHERENT COOPERATIVE TRANSMISSION MODEL
(cv IS THE PATH LOSS EXPONENT AND A IS THE NODE DENSITY)

Extended Networks
1-D 2-D
a <1 | Full connectivity a < 2 | Full connectivity
oV A>0 oV A>0
a>1 | No full connectivity || a> 2 | No full connectivity
oVA>0 oVA>0
TABLE II

MAJOR RESULTS FOR PERCOLATION OF THE NONCOHERENT COOPERATIVE TRANSMISSION MODEL
(¢ IS THE PATH LOSS EXPONENT AND A IS THE NODE DENSITY)

Extended Networks
1-D 2-D
a <1 Percolation a < 2 | Percolation
oV A>0 oV A>0
1 < a <2 | Open problem
a> 2 No percolation || a > 2 | Percolation threshold reduced
oV A>0

percolation in noncooperative one-dimensional networks [4].
In the cooperative setting, we only consider percolation in the
noncoherent case, where the symmetry of the links allows
us to employ a definition analogous to the noncooperative
case. In particular, we will define the noncoherent cooperative
network as percolating if a node located at the origin is in
an infinite cluster with strictly positive probability. Because
of the connectivity improvements afforded by cooperation,
we also consider in detail whether an extended network is
fully connected, which is defined as every node belonging to
a single connected component.

This paper focuses on the connectivity of one-dimensional
(1-D) and two-dimensional (2-D) cooperative wireless ad hoc
networks. 1-D networks are of interest, for example, in model-
ing networks distributed in river valleys or along transportation
corridors, whereas 2-D networks are more appropriate for
open regions. For the noncoherent cooperative transmission
portion of this work, we adopt the cooperative framework
of [1] and develop new analytical approaches that allow us
to obtain a complete set of necessary and sufficient conditions
for full connectivity with respect to node density A for a given
path loss exponent « in the channel model. A summary of
the results for full connectivity are shown in Table I. The
achievability results in Table I include the important o = 1
case in 1-D and o« = 2 case in 2-D, and we note that o < 2
occurs in many 2-D communication scenarios where there
is a “waveguiding” effect, such as in underwater acoustic
communications where the power attenuation in commonly
employed transmission bands is mainly dictated by a power
law decay with exponent a@ ~ 1.5 [7]. Our results for the
existence of percolation in the network are shown in Table II.
Unlike the case of full connectivity, we do not have a complete
set of necessary and sufficient conditions when considering
percolation. Rather, we describe a number of results and then
highlight the open problems.

The positive results in Tables I and II for the noncoherent
cooperative transmission case serve as a lower bound to the
connectivity gains of cooperative networks, and we discuss
briefly in Section II how the negative results can be applied
to other cooperative systems, as well. However, to also in-

Noncooperative
networks

Cooperative / ~
Networks .o . ,

Fig. 1. Connectivity in noncooperative and cooperative networks

vestigate an upper bound, we consider a coherent coopera-
tive transmission framework modeled upon perfect distributed
beamforming and present a less conclusive collection of results
under this model.

The rest of this paper is organized as follows. In Section II,
the cooperative transmission models are precisely defined. The
full connectivity of extended networks assuming noncoherent
cooperative transmission is the core of the paper and is studied
in Section III. The percolation of extended networks assuming
noncoherent cooperative transmission is studied in Section IV.
Section V presents connectivity results for extended networks
under the distributed beamforming model. Finally, we con-
clude in Section VI with comments on the problem considered
and future work.

II. COOPERATION MODELS

Cooperation techniques allow clusters of nodes that have
already formed under a noncooperative model to pool their
resources together to further connect isolated nodes; thus, the
size of each cluster keeps growing until no more nodes can
be pulled into any current cluster, as shown in Fig. 1. In
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this section, we derive the requirement for one set of already
connected nodes to establish a connection to another set of
already connected nodes.

Under the conventional r-radius model [5] employed in
the classical connectivity problem [6], each node is able to
communicate directly with others (namely, one-hop neighbors)
within a distance of 7, which is determined as follows. Noting
that wireless transmitters are generally constrained by their
peak (rather than average) transmission power, let P, be
the peak transmission power of a single node and 7 be the
minimum received power required at the receiver for physical
layer functionality and a minimal utility under a given channel
model and transceiver architecture (e.g. to achieve a minimum
signal-to-noise required for synchronization and some minimal
data rate). For two nodes to communicate directly, they must
be within a distance 7 that satisfies:

P-r =7 (D)

There are a number of possible methods for realizing physical
layer cooperation. For example, at the high end of performance
(and implementation complexity) are techniques such as dis-
tributed beamforming [8], which provides coherent voltage
summing at the receiver by precisely phasing transmissions.
Other techniques include cooperative diversity [9], distributed
multiple-input multiple-output (MIMO) [10], etc. Since our
strongest conclusion is tied to achievability, we present in
detail a simple distributed frequency-shift keyed (FSK) co-
operation method that does not require phase coherence at
the transmitter and represents a worst case of cooperation
that achieves only power summing. However, having the
conclusive results of Table I for this model, we then discuss
below how these results can be applied to rigorously arrive at
analogous lower and upper bounds for the performance of the
more conventional technique of cooperative diversity [9]. We
also present a distributed beamforming model to find results
for an optimistic form of cooperation.

For each model, the key is understanding when a connected
set of nodes €24 can connect to another connected set of
nodes ), where the size of either 24 or 5 can be unity to
correspond to the noncooperative transmit or noncooperative
receive case, respectively. Consider first the model for the
noncoherent distributed FSK scheme under the worst-case (for
connectivity purposes) assumption of a frequency-nonselective
quasi-static Rayleigh fading channel between each pair of
nodes in the network, where the fading between different pairs
is assumed to be independent and identically distributed (IID).
From the detailed physical layer description and performance
derivation in the Appendix, clusters 24 and p can be

connected if
Py > (i) =T @)
JEQA kEQB

where d; ;. is the distance between nodes j and k, and 7 is
the same as in (1). Equation (2) is symmetric in 24 and Qp:
(2) is true for €24 to be able to transmit to g if and only if
(2) is true for Qp to be able to transmit to 4.

Throughout Sections III and IV, the sufficient (but not
always necessary) condition of (2) is treated as both sufficient
and necessary, which is rigorously justified as follows. First,

since it is sufficient, it can clearly be used to establish
the positive (achievability) results in Tables I and II (The-
orems 3.3, 3.7, and 4.3). Next, from (16) and the discussion
that follows it, (2) becomes both sufficient and necessary when
|Qp| = 1. Since the converse (negative) results in Table I
(Theorems 3.4 and 3.8) only employ (2) in the |Qp| = 1
case, these results also hold for the exact physical layer model.
Finally, since the reduction in required received signal power
due to diversity is bounded, converging down to the threshold
for an additive white Gaussian noise (AWGN) system in
the limit of high diversity, the converse result of Table II
(Theorem 4.1), which is true for any fixed threshold, still
holds.

Likewise, suppose that we are interested in the performance
of networks employing cooperative diversity techniques as
described in [9], which would provide a |Q24] times higher
diversity than the model of (2). Clearly, the positive results
still apply. Again, since the reduction in the required received
signal power due to diversity is bounded, this does not change
the negative results in Tables I and II, since these results hold
for any fixed threshold.

Finally, we present a model for distributed beamforming [8].
Because we want to use this as an upper bound to all forms
of cooperation, we allow the distributed beamforming model
to encompass both the distributed FSK scheme, when that is
advantageous due to its receiver cooperation, plus a scheme
that assumes phase coherence at the transmitter. Furthermore,
we will be optimistic (from the perspective of connectivity)
and assume an AWGN channel between any pair of nodes.
Under these assumptions, a group of nodes 24 can transmit
to a group of nodes 2 if there exists a node ¢ in Q5 such
that:

2

JEQA

(dip;%)o‘ 2 Tawon 3
J

as derived in the Appendix, where Ty is the required
received signal power to establish direct communication on
an AWGN channel. Unlike the noncoherent cooperative trans-
mission scheme, this model is not symmetric, in that there
may exist cluster €24 that can transmit messages to nodes in
cluster Q g, but for which nodes in cluster {2 cannot transmit
messages to nodes in €2 4.

III. FULL CONNECTIVITY UNDER THE NONCOHERENT
COOPERATIVE TRANSMISSION MODEL

In this section, we establish conditions for full connectivity
laws under the noncoherent cooperative transmission model
for various path loss exponents « in 1-D and 2-D extended
networks. The results are shown in Table I. As with prior work
of ours and others, the results provide conditions on Ar (1-
D) or Ar? (2-D) for connectivity for a given «; hence, for
clarity, we assume without loss of generality that each node
has transmission radius » = 1 and suppress the straightforward
modifications for the r # 1 case. In fact, for the results of this
section, statements are established for any A > O inthe r = 1
case, which implies that they are also true for any A > 0 for
any r > 0.
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A. One-dimensional Networks

1) Path Loss Exponent o < 1: The main idea of the
achievability results is to show that, with probability one, there
exists some segment of the line that satisfies a particular quite
restrictive node distribution property; then, this segment can be
shown to be fully connected, and, starting with this segment,
other adjacent segments can be captured successively until
the entire line is covered. The successive capture requires two
technical lemmas, which are presented before the full theorem.

Lemma 3.1: For arbitrary T' > 0 and integer n > 0,
consider an interval [0, (1 + 1/n)T") with each of the n + 1
subintervals [¢1'/n, (i + 1)T/n) (i = 0,1,--- ,n) containing
at least #7/n nodes, § > 1/[>." 1/(i+1)], and all of
the nodes within [0,T) are fully connected. Then under the
noncoherent cooperative transmission model, the nodes within
[0,(1 4+ 1/n)T) are fully connected.

Proof: It suffices to consider the case where the nodes are
situated as follows: groups of 87 /n nodes at locations iT/n
(t=0,---,n—1) and a single node at location (1 + 1/n)T.
Thus, given that the nodes in [0,T) are fully connected, the
received power at (1 4+ 1/n)T is lower bounded by

0T = ((i+2)T\ " LA
= Al -0
n < n > Zi+1

=0

|
Lemma 3.2: For arbitrary T > 0 and integer n > 0, con-
sider an interval [0, T') with M nodes arranged in two different
configurations. In Configuration 1, the nodes are divided into
n equal size groups at locations i¢T/n (i = 0,---,n — 1)
and in Configuration 2, they are divided into n + 1 equal
size groups at locations i7'/(n+1) (i = 0,--- ,n). Let Ry(x)
denote the received power at any location z+7" (z > 0) under
Configuration k£ (kK = 1,2) and assume that the nodes within
[0,T) are fully connected. Then R;(x) < Ra(x),V x > 0.

Proof:
M < 1
R —
1(#) n ; x+iT/n
1 & i
- 2/()
n+1
-M 1
R —
2(2) n—l—lig;x—i—iT/(n—i—l)
n+1 .
1 )
N n+1g;f<n+1)
where f(y) = —M/(x+Ty). Since f(y) is strictly increasing
and concave for y > 0, Theorem 2 of [16] yields —R;(z) >
—RQ({E). |
Theorem 3.3: In a 1-D extended network with o < 1,
transmission radius » = 1, and node density A > 0, full

connectivity occurs with probability one.

Proof: First, assume o« = 1. Consider N segments of
the line, each of length L. For any A > 0, consider arbitrary
@ such that 0 < 8 < A\, and let ¢ = A — 6 > 0. We will
generally demonstrate connectivity results when there is a
density of 6 nodes per unit length in a particular sequence

of (large) segments, which we can then show is true with
high probability since § < A. Choose the smallest integer n
such that > 1/ [ | 1/(i + 1)], which is always possible
since the sum in the denominator diverges as n — oo. Divide
each segment of length L into n subsegments of equal length
loglog N/, where v = £2/[2(6 + ¢)].

We are interested in finding a segment of length L that has
a particular distribution of groups of connected nodes. Let C'
be the event that there exists at least one segment of the N of
length L such that each of its n subsegments of length L/n
has a set of greater than or equal to 6L /n nodes within a
single unit length. Now, we show that P(C') — 1 as N — oo.
Define C; as the event that the i*" segment of length L has
the desired node distribution. Let n; ;, be the number of nodes
in the k" subsegment of the i*" segment. Write:

The first term can be lower bounded by requiring each sub-
segment to have at least L /n nodes in a specific unit length,
recalling the uniformity of distribution of a fixed number of
nodes in a given length of a Poisson process, and recognizing
that node locations in different subsegments are independent.
Then,

The second term of (4) is lower bounded through a Chernoff
bound argument. The number of nodes n; ; in subsegment k
of length L/n is a Poisson random variable with parameter
= AL/n. Thus, for any ¢ € (0, 1],

P(niy < (1 0)u) < exp(—pd®/2) 5)

which implies (using 6 = ¢/\):
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T T 1
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Fig. 2. Adding segments in 1-D extended networks

The above arguments, combined with the continuity of prob-
ability, yield:

N
-y r(Ue)

1 (1= (P@)Y) h
n N
> lim_ (1 - <1 - (%)GL (1_ 1og1N> ) )

Per above, we will use such a segment to grow our coopera-
tive cluster. First, for this segment, note that all of the nodes in
the n groups, each with number of nodes 6L /n and confined to
a unit length, are connected. To see this, observe that the 6L /n
nodes within a unit length of any subsegment are connected
(because r = 1). Next, the aggregate received power at a group
in one subsegment from a group in an adjacent subsegment is
lower bounded by:

6L oL 1 62L
— || — =—>1
< n ) ( n ) 2L/n 2n

for sufficiently large N. Since every group can reach the group
in the subsegment to either side, all of these groups of nodes
are connected. It is also possible to show that any other single
node in the segment will also be connected to this emerging
cluster by using the exact proof of Lemma 3.1 above, except
with the single node at the worst-case location ' = L. Thus, if
C occurs, there exists a segment of length L = nloglog N /v
that both satisfies the desired node distribution condition and
is fully connected.

Now, relabel this originating segment as segment 0. We
add to both sides of segment O an infinite number of adjacent
segments, where the k-th segment to the right or left of
segment 0 has length I, = (1 + 1/n)*"1L/n, k =1,2,---,
as shown in Fig. 2. Consider N — 1 segments to the right
of segment 0. Let mj denote the number of nodes in the
k-th segment, which is Poisson distributed with parameter
ur = E[my] = M. The application of Chernoff’s bound
(with § = ¢/)\) yields:

k—1
P (mk < (1 + l) 0—L>
n n
£2 1\*'L
= (14Z= e
< oxp 200 +¢) ( +n> n
() )
=exp|—y (14 — —
n n

Since the numbers of nodes in the segments are independent
Poisson random variables, we have:

P (my, > (1+1/n)*10L/n,Vk) (6)
N—-1
> ] (1= exp(—y(1 +1/n)*'L/n))
k=1

Since L = nloglog N /7,
exp(—y(1 4 1/n)* "1 L/n) = 1/(log N)+1/m"
and

P (my = (1+1/n)*"10L/n, Vk)
N

-1
1
2 H (1 - (1OgN)(1+1/n)k1)

k=1

N—oo (7

We now apply Lemmas 3.1 and 3.2 to establish that the
network is fully connected with probability one as N — oo,
as follows. Per above, segment O is the segment of length
L whose corresponding event C;, as defined above, occurs.
Now, by (7), we know that, with high probability, segments
1,2, 3, --- have a node density greater than ¢ nodes per unit
length. Applying Lemma 3.1, every node in segment 1 is able
to join the cluster of segment 0. Furthermore, by Lemma 3.2,
when trying to pick up all successive segments, the power
Ry(x) received from the connected length (1 + 1/n)L is
lower bounded by one whose nodes are evenly distributed in
n (rather than n+ 1) equal-length subsegments on (1+1/n)L.
Now, Lemma 3.1 reveals that the latter pessimistic configura-
tion is sufficient to join all nodes in the segment of length
(1+1/n)1+1/n)L = L+ L/n+ (1 + 1/n)L/n, thus
connecting segment 2. Then, Lemma 3.2 is applied again.
Obviously, the repetition of this process in each direction from
segment O connects the entire line into the cluster. Since \ was
arbitrary, the result is established for o = 1. Finally, a system
with a@ < 1 performs at least as well as one with @ = 1.
Therefore the result holds for all o < 1. ]

2) Path Loss Exponent o > 1:

Theorem 3.4: Under the noncoherent cooperative transmis-
sion model, full connectivity occurs with probability zero in
a 1-D extended network for any node density A > 0 when
a> 1.

Proof: For any probability of disconnection 1 — /2
arbitrarily close to one, we will show that there exists a
distance d* such that a node j with no other nodes within
distance d* of node j has greater than probability 1 — /2
of being disconnected. Observing that such a node exists
somewhere on the line with high probability completes the
proof.

Consider arbitrary € > 0 and consider node j located at z;.
Assuming the optimistic case that all other nodes except node
7 are in a single connected cluster, the power received at node
J is given by:
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When o > 1, X converges with high probability. The
singularity at the origin causes technical difficulties, so, for
some small ¢ such that 0 < § < 1, define

1
2 (dk,j)*

Vo, Ty —x,]>8

X:

which has finite mean 2F [X]. Moreover, define X (n) for
integer n as

X(n) = > 14 —.

Vg, 0<|zr—z;|<n (dkd)

Now, for any sample point for which X converges, ):( (n) is
non-negative and non-decreasing as it converges to X, and,
hence, by the monotone convergence theorem of integration,

E[X(n)] — E[X].

Thus, there exists a d* such that for n > d*, E[X]| —

E[X(n)] < €/2. Define:

Z(n) =X — X(n) =

> @
dy )

T E(zj—n,z;+n) ( Iw)
By the Markov inequality,

P(Z(d*) > 1) < E[Z(d")] < % @)
Now, with probability greater than 1 —e/2, we can find a node
somewhere on the line who has no neighbors within distance
d*. By (8), such a node is disconnected with probability
greater than 1 — &/2. [ |

B. Two-dimensional Networks

1) Path Loss Exponent o < 2: The main line of thought
is analogous to the proof of Theorem 3.3: we show that,
with high probability, there exists at least one L x L region
with a desired node distribution, and then we grow the fully
connected component from that region. However, because we
have not been able to establish a 2-D analog of Lemma 3.2,
the growth from the initial region is constructed differently.

Two technical lemmas precede the proof of the full state-
ment.

Lemma 3.5: For arbitrary T' > 0 and integer n > 0,
consider a square [0,27")? with 4n? equally sized subsquares
[(T/n,(i+1)T/n]x[jT/n, (G+1)T/n] G,j=0,1,---,2n—
1), each of which containing at least #72/n? nodes, 6 >
1/ (z;jf 1/i— 03 3/12), and all of the nodes within the
square [0,7)? are fully connected. Then, under the noncoher-
ent cooperative transmission model, the nodes within [0, 27")?
are fully connected.

Proof: The doubling takes place in n steps, resulting in a
square of size (14+k/n)T x(14+k/n)T atstepk =1,2,--- ,n.
At step k, we start with a fully connected square of size (1 +
(k—1)/n)T x (1+ (k —1)/n)T, consisting of (n+k —1)?
small squares of size T//n x T/n, each with 672 /n? nodes.
Assume the worst case that these nodes are located in the
lower left corner of each of the small squares and that we are
trying to connect a single node at location ((1+ k/n)T, (1 +
k/n)T). Since, at any stage, there is always an n X n set of

++++++ el
n d=4T/m

(L1 distance)

Fig. 3. A lower bound on the received power

squares with identical distances to ((1+ k/n)T, (14 k/n)T)
as those between the nxn set [iT/n, (i+1)T/n|x [T /n, (j+
1)T/n](i,5=0,1,--- ,n—1) and the point ((1+1/n)T, (1+
1/n)T), it is sufficient to consider the k = 1 case. In the k = 1
case, the received power at ((1+1/n)T, (14+1/n)T) is lower
bounded by:

n? i=1 ((i+3)T/n)2
n+3 .

1—3
=0 Z )
(3
=4
n+3

n+31 3
= li X7

>1

The lower bound arises by taking the L; distance rather than
the Euclidean distance and by only counting power from nodes
in the upper right half of the square [0, T")?, as shown in Fig. 3.
|
Lemma 3.6: For arbitrary T' > 0 and integer n > 0,
consider a square [0, 7')? with M nodes arranged in two differ-
ent configurations. In Configuration 1, the nodes are divided
into n? equal size groups at locations (i1'/n,jT/n) (i,j =
0,1,---,n—1), and, in Configuration 2, they are divided into
4n? equal size groups at locations (iT/2n,jT/2n) (i,j =
0,1,---,2n — 1). Let Ri(z) denote the received power at
any location (x + T,z + T') (z > 0) under Configuration k
(k = 1,2) and assume that the nodes within [0,7")? are fully
connected. Then Ry (z) < Ra(x),V = > 0.
Proof: Consider modifying Configuration 2 to arrive at
Configuration 1 in the following manner. Form n? sets of four
locations each in Configuration 2:

Apy — {<_T£> 7 ((anT’g)
n'n 2n n

£7 (2]+1)T 7 (2Z+1)T, (2_]—|—1)T ’
n 2n 2n 2n
i=0,1,---,n—1, 57=0,1,---n—1

and now, for each set, co-locate the nodes at the other three
locations with those at (¢7'/n, 77'/n). Clearly, this results in
Configuration 1 and reduces the power received at (x+7T, x+
T) from each set. u
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L N1tz | e 2n

Fig. 4. Adding squares in 2-D extended networks

Theorem 3.7: In a 2-D extended network with a@ < 2,
transmission radius » = 1 and node density A > 0, full
connectivity occurs with probability one.

Proof: First, assume o = 2. Consider N 2 squares each of
size L x L in a 2-D network. For any A > 0, consider arbitrary
0 such that 0 < 6 < A, and let e = A\ — 6 > 0. Define n as the
smallest integer such that 6 > 1/ [Z::rf 1/i— S} 3/2'2} ,
which we can always do because the denominator diverges
as n — oo. Divide each L x L square into n? subsquares
of size L/n x L/n. Let L = n+/loglog N /v, where v =
e2/2(0 +¢)).

Now, we are interested in finding an L x L square that
satisfies a node distribution property analogous to the 1-D
case. Let C be the event that there exists at least one square
of size L x L such that each of its n? subsquares of size
L/n x L/n has greater than or equal to #L%/n? nodes within
a single area of size % X % Then, similarly to the 1-D case,
it can be shown that P(C) — 1 as N — oo.

Now, for the L x L square satisfying the subsquare distribu-
tion requirement, each set of at least L2 /n? nodes within a
single area of size \/iﬁ X % in a given subsquare is connected
and can connect to the corresponding set in the subsquares in

all four primary directions (up, down, left, right) if

OL?\ (OL*\ [ n \°  62L? -

n? n? VBL) — 5n? ’
which is true for sufficiently large N. Hence, all of these
groups of nodes are connected. As in the 1-D case, it is then
straightforward to establish that any node in the L x L square

is also connected to this cluster (In this case, use a simplified
version of Lemma 3.5).

Now, we grow in a slightly different manner than in the
1-D case. In particular, at the first stage, we will grow from
size L x L to size 2L x 2L by adding 3n? (small) squares
of size L/n x L/n to the cluster. Then, we will show that
dividing the new 2L x 2L square into n? (rather than 4n?)
subsquares is pessimistic for further growth, yet is sufficient
for that growth to proceed indefinitely, as shown in Fig. 4.

To establish this line of thought, we first demonstrate that,
with high probability, all (small) squares at all stages have
a density of at least § nodes per unit area. Let my; (k =
1,2,3,---, 4 = 0,1,---,3n? — 1) be the number of nodes
in the i*" (small) square to be added at the k" stage, and
consider N stages of growth. Since there are 3n? squares of
size (2871L/n) x (2871L/n) at the k'™ stage, the desired

probability is written as:

P(my; > 2**=D0L2 /n? Vk, Vi)

P(my; > 22*=D9L2/n? Vi)

I
=

b
Il
—_

2

- 3n
Plmio > 22(k_1)9L2/n2)]

[
=

>
Il
—

r 3n?
1— exp(—22(k*1) log log N)}

W
=

E
Il
—_

[
=

r 1 3n?
1— _ Nzeo
(log N)22(k 1)
1L

~
Il

where the inequality follows from the Chernoff bound (see the
proof of Theorem 3.3).

Given the high probability event characterized in (9), the
successive application of Lemma 3.5 and Lemma 3.6 allows
the L x L square satisfying the subsquare distribution require-
ment (a square that results in the occurrence of event C') to
grow to cover [0, 00) X [0, c0).

Finally, start with a 2L x 2L region, where each L x L
quarter of the region satisfies the subsquare distribution re-
quirement and grow each of the quarters as above to cover a
different quadrant of the 2-D plane, thus connecting all nodes
in the 2-D plane for o = 2 and any A > 0. A system with
o < 2 performs at least as well as one with a = 2. Therefore
the result holds for all o < 2. [ |

2) Path Loss Exponent v > 2:

Theorem 3.8: Under the noncoherent cooperative transmis-
sion model, full connectivity occurs with probability zero in
a 2-D extended network for any node density A > 0 when
o> 2.

Proof: The proof follows that of Theorem 2: there exists a
d* such that a node with no neighbors within 2-D distance d*
is disconnected with high probability, and such a node exists
with high probability. [ ]

IV. PERCOLATION UNDER THE NONCOHERENT
COOPERATIVE TRANSMISSION MODEL

In this section, we establish conditions for percolation under
the noncoherent cooperative transmission model in terms of
node density A, when the path loss exponent « takes different
values in 1-D and 2-D extended networks. The results are
summarized in Table II.

We define the cooperatively occupied region to be the region
which is reachable by the nodes distributed according to the
Poisson process using cooperative communication. We define
by W* the cooperatively occupied component of the origin,
and let 6%(\) = 6*(\) be the probability that W* is an
unbounded cooperatively occupied component. This is similar
to the percolation function #(\) in the non-cooperative case.
As for 6, 6*()) is an increasing function in A (the proof of
Proposition 2.9 in [3] applies almost identically).

We can thus define A} to be the critical density, as for the
non-cooperative case:

N(r) = inf{A > 0: 05(\) > 0} )
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One obvious equality is that 0 < A% < A.. This section focuses
on discussing whether A} is trivial (0 or co) in 1-D and 2-
D for some values of «, and on proving bounds on A} in
the 2-D case.

A. One-dimensional Networks

Clearly, Theorem 3.3 implies percolation for all A for any
pathloss exponent o < 1. Hence, our interest here is for a > 1.
The following result establishes a negative result for path loss
exponents o > 2.

Theorem 4.1: Under the noncoherent cooperative transmis-
sion model, the node at the origin in a 1-D network is in a
finite cluster with high probability for any node density A > 0
when o > 2.

Proof: The first part of the proof follows that of Theorem
3.4. In particular, we show that there exists a distance d* such
that a gap in the line of length 2d* leads to a disconnection of
any clusters to its left and right with high probability. Showing
that such a gap occurs to the left and right of node at the
origin within a fixed length with high probability completes
the proof.

Consider any € > 0. For some point z on the line, let:

1
Z Z (ko_)a

Vep<zo, |xpk—xo|>6 Vax;>z0, |Tj—T0|>0

X~:

which, excepting nodes near xy for technical reasons, is the
aggregate of the received power of all nodes to the right of =g
if all of the nodes to the left of x( transmitted cooperatively.

Note that E[X] < oo for a > 2. Define:

- 1
X(Tl) = Z Z (dk7j)a

ro—n<zp<ro—0 To+d<z;<T0+N

Now, X (n) converges up to X; hence, by the monotone

convergence theorem, E[X (n)] — E[X]. Thus, there exists
a d* such that Vn > d*, E[X] — E[X (n)] < &/2. Define:

1
Z Z (dk,j)a

rp<ro—m  Tj>To+n

Z(n)=X — X(n) =

By the Markov Inequality,

HﬂM>U<EMWﬂ<§
for any n > d*. Hence, a gap of length 2d* causes discon-
nection of portions to the left and right of xy with probability
>1—¢/2.

Now, consider a node at the origin, and divide the line to
its right into segments of length 2d*. The number of nodes
in a segment is Poisson with parameter 2d* A, and thus each
segment has an identical non-zero probability of having zero
nodes. Hence, one can choose an M* large enough such
that the probability of not observing such a segment in M*
lengths is less than /4. Hence, the node at the origin has
gaps of length > 2d* to its left and right within the interval
(=2M*d*,2M*d*) with probability > 1 — £/2. Since the
number of nodes within a length of 4A/*d* is Poisson, it is
finite with probability 1, and, with probability > 1 — ¢, the
number of nodes to which a node at the origin is connected
is upper bounded by the number of nodes in a length 4M*d*.

Hence, the node at the origin is in a finite cluster with
probability > 1 — ¢ for any € > 0. ]

Unfortunately, we are unable to obtain a positive or negative
result for 1 < o < 2. A path to a positive result would likely
demonstrate that connected sets emerge between gaps in the
line with sufficient regularity to allow connectivity to “jump”
the gaps, while a negative result would require exactly the
opposite.

B. Two-dimensional Networks

Clearly, Theorem 3.3 implies percolation for all A for any
pathloss exponent o < 2. Hence, our main interest here is for
o> 2.

Consider the critical density for percolation to occur in 2-
D networks employing noncoherent cooperative transmission
with a > 2. Consider » = 1, and normalize the power so
that two nodes connect if the received power is greater than
1/r® = 1. In order to consider the effect of cooperation,
consider two nodes 7o and ¢;. Without loss of generality, we
can assume that 7, is at the origin, and that i lies on the z-axis
with a negative z-coordinate. Let d be the distance between
nodes ip and ;. Then, nodes ¢y and ¢; can jointly connect to
a node j if

1 1
+ >1 (10)

do " ge

20,] 11,7

Consider a node % on the positive z-axis such that 1/d! ; +
1/di0‘1’,~C = 1. The coordinates of node k are (xg,0), with xj
satisfying
1 N 1 _1
(z +d)>
Lemma 4.2: If node iy and node ¢; are connected, they can
cooperatively connect to any node within the circle of center
x;, and radius xy.
Proof: For any node j within the circle of radius zy
centered at the origin,

1 11 1 B
d de 7 a " (zp+d)e

10,J i1,]

(1)

o
L

1

due to the fact that d;, ; = |x;| <z and d;, ; < |z;| + d by
the triangle inequality. [ ]

It is easy to check that xj > 1. Also, z is a function of d
such that z;, is monotonously decreasing as d — oo. Writing
xy as a function of d, one can observe that x;(1) > 1 and
dlirn x(d) = 1. This implies that there exists some d* > 1

such that xk(d*) = d*. Lemma 4.2 implies that two nodes
within distance d* can jointly connect to any third node within
distance d* of either one.

Theorem 4.3: In a 2-D extended network with a > 2 and
transmission radius r = 1, percolation occurs with probability
one for any A > A%, where A} satisfies:

Ac

(vieum)

Proof: As in Theorem 3.3, the main idea is to show
that, with probability one, there exists an area of space which
satisfies a particular node distribution property; then, this area

A< (12)
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can be shown to be fully connected, and starting from there, an
infinite connected component can be constructed. To identify
the connected component, we couple the cooperative system
with a non-cooperative system which does percolate. We
restrict ourselves to pairwise cooperation, where €2, contains
two nodes, cooperatively communicating with a singleton €.

Consider a Poisson process with density A < A, and a
Poisson Boolean model with radius d* such that (d*)2\ > A..
Two nodes are connected if their distance is less than or equal
to d*. Since the Poisson Boolean model with radius d* and
density A is a scaled version of the one with radius 1 and
density (d*)2), and since (d*)?\ > )., the Poisson Boolean
model with radius d* and density A percolates with probability
one.

This super-criticality of the Poisson Boolean model implies
that there exists an infinite connected component almost
surely.

Now consider a circle of radius 1/2 centered at the origin.
With a fixed, positive probability, this circle contains two
nodes, ip and ;. Further, ip and ¢; belongs to the infinite
connected component of the Poisson Boolean model with a
fixed probability, say 6 (for further discussion of the perco-
lation function 6(p, A), we refer the reader to [3]). The event
that two nodes exist in C(0,1/2) and belong to the infinite
connected component of the Poisson Boolean model has thus
a probability 6’ > 0.

Conditioned on the fact that ¢; belongs to the infinite
connected component, we now select any other node j which
also belongs to the infinite connected component. By defini-
tion of the connected component, this means that there exists
an integer N and a sequence of nodes {ix} (2 < k < N)
satisfying iy = j, and for all 1 < k < N, node iy, and 4541
are within distance d*.

According to Lemma 4.2, if two nodes are located within
distance d*, they can cooperatively reach any node within
distance d* of either one. Therefore, since node iy is within
distance d* of node 4; and d;,;, < 1 < d*, nodes %o
and 7; can jointly connect to node 72 (indeed, since we do
not assume that for k& > 1, ix4; is distinct from i or
ix—1, this connection might even be trivial). The fact that
di,,i;; < 1 allows us to initiate the cooperative communication.
Again, since node i3 is within distance d* of node iy and
di, i, < d*, nodes i; and iy can connect to node i3. In
general, nodes ix_; and ¢ can connect to node ix1; thus,
we have a connected path between 41, 41,42, -- ,4nx—_1, j in the
cooperative communications model. This shows that both g
and ¢; can communicate to any node in the infinite connected
component of the Poisson Boolean model.

Since the event “ip and ¢; exist and belong to the infi-
nite connected component of the (non-cooperative) Poisson
Boolean model” has probability 6" strictly greater than 0,
the cooperative model percolates as well for any A\ greater
than \./(d*)%. Clearly, 1/(d*)* + 1/(2d*)* = 1 implies
d* = {/1+1/2%, and this completes the proof. For o = 2,
s = \/5/_4, and the cooperation effectively reduces the
critical density by at least 20%. [ ]

For o > 2, an open problem remains as to whether the
critical density is strictly greater than zero, as we have been
unable to demonstrate that there exists a (small) A > 0 where

the 2-D network does not percolate.

V. EXTENDED NETWORKS: DISTRIBUTED BEAMFORMING
MODEL

The oo < 1 and @ > 2 cases are straightforward extensions
of the noncoherent transmission case, but the regime between
a =1 and o = 2 is interesting. The challenge here is the lack
of reciprocity described under (3), without which it is difficult
to establish full connectivity.

Theorem 5.1: In a 1-D extended network under the coher-
ent cooperative transmission model:

e « < 1: full connectivity occurs for any A > 0;

e 1 < « < 2: there are an infinite number of nodes that can
transmit to every other node in the network for A > 0;

e « = 2: there are an infinite number of nodes that can
transmit to every other node in the network for A > 2;

e « > 2: full connectivity never occurs for any A > 0.

Proof: For the o < 1 case, the distributed FSK scheme
achieves full connectivity for any A > 0. The o > 2 case
follows similar lines to the proof of Theorem 3.4.

For the 1 < a < 2 case, consider N segments of length
L, where NV is a positive integer. For any finite node density
A > 0, choose arbitrary 6 such that 0 < 6 < X and denote
e =A—0. Let L = loglog N /v, where v = £2/[2(0 + ¢)].
Similar to the proof of Theorem 3.3, we have:

P(3 fully connected segment of length L) Noeo
Suppose we start from such a segment and divide the
network into an infinite number of adjacent segments
of exponentially growing length in both directions, such
as ---4L,2L,L,2L,4L---. We number these segments
symmetrically starting from sequence number 0, such as
--+2,1,0,1,2---. Let ny be the number of nodes in segment
k(k=0,1,---,N—1), where k is the sequence number and
Lj, = 2L is the segment length. Using Chernoff’s bound,

N ——+4oco
-

P (ny > 2"0L, all k) 1

Thus, when N tends to infinity and covers the whole line, each
segment k contains at least 2L nodes with probability one.
In order to connect the adjacent segment, nj must satisfy:

2FOL > [(28 + 28411

ng =
3a/2
0 = (QkL)l—a/Q
3(1/2,}/1701/2 N oo

~ (2%loglog N)1—o/2 0
Therefore, starting from the fully connected segment 0, the
connected segments will reach neighboring segments in each
step, expanding exponentially to cover the whole line.
For the o = 2 case, consider IV segments of length L. Let
A =2+ ¢, where € > 0. Based on the proof of Theorem 1 in
[2], B=¢2/[2(2+¢)] and L = 2log N/{3, we have

N——+oco
B

P(ny, > 2L, all k) 1

For any segment, if there are 2L nodes located within a unit
length, they will be able to reach all the other nodes in the
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segment. Similarly to the 1 < o < 2 case, we can prove that
there exists a fully connected segment with probability 1.

P(3 fully connected segment of length L)
>1—(1-(1/0)H)"

(i 3 2l0g N/B\ NV
2log N

N —+o00
-1

Starting from a fully connected segment, the distance d that
nodes in the segment will reach using beamforming can be
computed as follows.

2
P\
<2L\/d—a> =P

Therefore, we have d = 2L. The original fully connected
segment can reach neighboring segments at both sides. Since
each segment contains at least 2L nodes, the expansion will
continue to cover the whole line. [ ]

Theorem 5.2: In a 2-D extended network under the coher-
ent cooperative transmission model:

e « < 2: full connectivity occurs for any A > 0;

e 2 < « < 4: there are an infinite number of nodes that can
reach every other nodes in the network for any A\ > 0;

e « = 4: there are an infinite number of nodes that can
reach every other nodes in the network for A > 5;

e « > 4: full connectivity never occurs for any A > 0.

Proof: The proof follows that of Theorem 5.1. |

VI. CONCLUSION

In this paper, we have shown that physical layer coop-
eration is able to significantly improve the connectivity in
wireless ad hoc networks. Conclusive results are shown in
Table I for the consideration of full connectivity, and the
results of Table II have been established when considering
percolation. Extensions to coherent cooperative transmission
(beamforming) have been considered. For dense networks, it is
straightforward to apply these results to establish the conjec-
ture from [1] that O(1/N) transmission area is sufficient for
complete connectivity with probability one when o < 2 in the
2-D case [2]. We hasten to note that the results here are based
on the assumption that establishing connectivity (rather than
maximizing capacity) is the key goal. For example, perhaps
an application only desires the ability to get a single message
across a wireless network when absolutely necessary, and thus
we desire to know at what density this is possible. Because
the goal is connectivity rather than capacity, the resulting
constructions can require significant capacity overhead in the
asymptotic limit.

In this paper we have assumed a path loss attenuation func-
tion in the form of a power law, i.e., [(r) = r—<, where r is the
distance between the sender and receiver, and « is the path loss
exponent. Note that this attenuation function has a singularity
at the origin, and the received power increases without bound
as 7 decreases. However, in reality, the received power is
always finite and bounded from above by the transmission
power. To reflect the finite received power, a more realistic

path loss attenuation function is I(r) = min(1,r~%) [15]. It
can be easily verified that the proofs in the paper do not rely
on the increasing scaling property of the power law function
as r decreases. On the contrary, we consider the worst case
scenario where the tail behavior of the power law for large r
is used. Thus, we have verified that the results still hold under
the more realistic bounded path loss attenuation function.

APPENDIX
DERIVATIONS OF COOPERATION MODELS

Before beginning the derivations for the distributed FSK
model, consider how the threshold 7 in (1) is derived. There
are many metrics that could be employed to determine whether
two nodes are one-hop neighbors, including average bit error
probability, bit error outage, average rate, rate outage probabil-
ity, etc. These metrics all lead to the model of (2), but, so as to
make the presentation clear we focus on the average bit error
probability rather than trying to capture all of these metrics
in a single formulation. Given the quasi-static Raleigh fading
assumption on a given link, the average bit error probability
of a coded coherently received binary modulation would be
given by [11, pg. 818]

1
oLl [
2 2+7

where v = G.P.T,r~“/Ny, G, is the gain of the coded
modulation over a binary orthogonal scheme, T’ is the symbol
interval, and Ny/2 is the (two-sided) power spectral density
of the additive white Gaussian noise (AWGN) process at the
receiver. From the desired average bit error probability, this
equation can then be employed to find the threshold 7 on the
required P~ for successful communication.

(13)

Now, consider a set of connected nodes {24 attempting to
transmit to a connected set of nodes {1z using distributed
FSK. For simplicity, assume the timing asynchronism relative
to the symbol interval 7T is negligible (see [17] if it is not)
and that any residual frequency offset between the connected
transmitters is insignificant relative to the frequency shift
between the signals used to represent a data bit 0 and a data
bit 1. Suppressing the pulse shaping, the complex baseband
signal during the time interval (iT, (i + 1)7%) from the j**
transmitter is given by:

2 (t) = /2P e fit+05)

where f; is the frequency shift of the carrier corresponding
to the i*" data bit b; € {0,1}, which is to be transmitted
during interval (T, (i + 1)T), and §; is the phase offset of
the j*" transmitter. Recalling the IID frequency-nonselective
Rayleigh fading model assumed, let X;; denote the zero-
mean, variance (d; )~ ® complex Gaussian random variable
representing the gain between nodes j and k, where d; . is
the distance between node j and node k. Then, the received
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signal at the k' node of the receive cluster is given by:

yi(t) > V2PX e O oy (2)

JEQA
= | D0 Xjue?® | V2P oy (t)
JEQA

= hp\/2Pe?m it ¢ ng(t)

where hj is complex Gaussian with mean O and variance
> jean(djie)”, and ny(t) is a set of IID zero-mean com-
plex Gaussian random processes each with (two-sided) power
spectral density Ny/2. Note that interference from other
simultaneously transmitting clusters, as would be present in
many wireless data networks, is not addressed in the model.
Rather, we are interested in the minimum requirements when
connectivity is the key goal. Besides being of theoretical
interest, this would find direct application when one considers
a network where interest is in the ability of all (or a large set)
of nodes being able to broadcast a high-priority (e.g. alarm)
message to all (or a large set) of other nodes.

We will also assume cooperation in the reception by nodes
within the receive cluster, and make the common physical
layer assumption that each receiving node is able to measure
its equivalent complex gain hjy from the transmitters, which
is easily established from pilot symbols within the transmitted
signal. The more difficult part of receiver cooperation is that
the received symbol samples must be routed to a single node
in the cluster for joint processing. This can be done in systems
where connectivity is the critical goal, and has even been
employed in systems where capacity maximization is the
goal [10]. After the receivers estimate hy, they correlate their
signal with each of the frequencies corresponding to bit O
and bit 1, weight the results by i}, and transmit the resulting
two scalars to a central decision unit. The processing of these
scalars is equivalent to the central decision unit observing the
signal:

(14)

y(t) = (hiyw(t) + hini(t)
keEQp
= | D Il ) V2P Y hina(t)
keQp keQp

which is binary (receiver coherent) orthogonal signaling with
|Q2p|-fold diversity with diversity paths of unequal power.
Assuming a coding gain of G. and recalling the quasi-static
IID Rayleigh fading assumption, the average probability of bit
error is obtained as:

G PT
Po=E Q| |2 IP=5—= (15)

keEQR

where the expectation is over the random variables {hy; k =

1,2,---,|Qp5|}. An upper bound to this is obtained as:
1 Ye
P< = |1— 16
b < 5 [ 2+%] (16)

where v, = G.P/T; (ZjGQA Y ke (dj_,k)_o‘) /Np, by as-
suming that all of the received power is in a single (rather

than |Qp|) diversity paths and applying [11, pg. 818]. In other
words, the right side assumes that the diversity gain is ignored.
However, as noted in the main text, it is important that the
inequality in (16) becomes an equality when there is only
a single receiving node (|Q2g| = 1). Now, comparing (13)
with (16) yields the sufficiency condition (2) for cluster 24
to connect to cluster 2p.

Next, consider the system model for distributed beamform-
ing on an AWGN channel, and recall that we seek a system
to serve as an upper bound on the connectivity performance
of cooperative schemes. Assuming accurate node location
information, frequency synchronization, and phase locking of
the transmitters in the cooperating group, the group can set
their phase offsets so as to produce positive reinforcement
of their signals at some location in space. In other words,
the received signal at a node &k at such a position for, say, a
transmitted quadrature amplitude modulation (QAM) symbol
s; would be given by:

y(t) = >

JEQA

Py
(djx)”
where the phase synchronization has eliminated the transmitter

dependence of the phase offset of the sinusoidal carrier. This
then leads to the model of (3).

siV/2 cos(2m fot + 0) a7
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