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Abstract

Scientific workflows have recently emerged as a new
paradigm for representing and managing complex dis-
tributed scientific computations and data analysis, and have
enabled and accelerated many scientific discoveries. Many
scientific workflows are distributed and collaborative as
they result from some collaborative research projects that
involve a number of geographically distributed organiza-
tions. In these workflows, information flow control becomes
a key security problem. In this paper, we propose to model a
scientific workflow using a hierarchical state machine and
present techniques for verifying and controlling information
propagation in scientific workflow environments based on
hierarchical state machines. To the best of our knowledge,
this is the first effort for information flow analysis in the
area of scientific workflows.

1. Introduction

Today, many scientific discoveries are achieved and
accelerated by scientific workflows, which have recently
emerged as a new paradigm for representing and managing
complex distributed scientific computations and data anal-
ysis [31]. A scientific workflow is a formal specification
of a scientific process, which represents, streamlines, and
automates the steps from dataset selection and integration,
computation and analysis, to final data product presentation
and visualization. A Scientific Workflow Management Sys-
tem (SWMS) supports the specification, execution, re-run,

and monitoring of scientific processes. The scientific work-
flow paradigm not only enables a scientist to focus on the
science itself rather than underlying computation resource
and data management, but also facilitates the exploratory
process and result reproducibility [22].

While business workflows are typically control-flow ori-
ented, scientific workflow tend to be dataflow-oriented.
More specifically, in a business workflow model, the de-
sign of a workflow focuses on how execution control flows
from one task to another (sequential, parallel, conditional,
loop, or event-condition-action triggers), forming various
control flows; in a scientific workflow model, the design of
a workflow focuses on how the input data are streamlined
into various data analysis steps using data channels to pro-
duce various intermediate data products and final workflow
data products, forming variousdata flows.

As more and more scientific research projects become
collaborative in nature, scientific workflows can also be
collaborative and involve a number of geographically dis-
tributed organizations. In these workflows, information can
flow from one workflow task to another and across different
organizations in the forms of dataflows and file, database,
and Web access. As a result, information flow control [32]
becomes a key security problem in such scientific workflow
environments. Information flow control is different from
traditional access control: while access control mechanisms
prevent information from being accessed by unauthorized
users, they do not prevent an authorized user to pass on the
accessed information to another unauthorized user. Thus,
the lacking of an information flow control mechanism might
result in scientific workflows in which information is leaked



to unauthorized workflow tasks, users, or hosts. Formal
modeling and verifying that a scientific workflow complies
with a given information flow policy is an important and
challenging problem. We motivate our research by the fol-
lowing example.

A motivating example. Let us consider a human epilepsy
collaborative research study that is conducted by a collabo-
ration among Children’s Hospital of Michigan (H1), Henry
Ford Hospital in Detroit (H2), a number of epilepsy re-
searchersR from the Department of Neurology, and a num-
ber of computer scientistsC from the Department of Com-
puter Science at Wayne State University.

The goal of the project is to identify fiber tract patterns
and their associations with abnormal cortical regions. Fig-
ure 1 shows various principals, datasets, and programs in-
volved. In the figure, an oval represents a principal within
the system; the system has the following principals:H1,
H2, p, R, W , andC. Arrows in the diagrams represent the
directions of information flows between principals; a square
box represents a piece of data that is flowing. Double ovals
represent trusted software programs.

Each principalO defines its own information policy that
specifies a set of principalsaccess(O) that can access data
of O. In our example, two pieces of data are needed for
each patientp: the patientp’s PET data that can be retrieved
from the Children’s Hospital, and his/her fMRI data that can
be retrieved from the Henry Ford Hospital. To control the
propagation of these pieces of data, each hospital limits the
data only to the patient and the hospital itself. This is repre-
sented by{p, H1} and{p, H2}, respectively. The program
“Retrieve Data” is a trusted program which is run by the
hospital to retrieve the data and can be read by bothp and
researchersR. A researcher fromR can invoke a scientific
workflow W (to be described later) to identify each patient
p’s fiber tract pattern and abnormal cortical regions. The
execution of the workflow also needs the interaction from
a computer scientist which specifies appropriate parameters
with assistance from some knowledge base. The knowledge
base is secured by label{C} and the interaction information
between the workflow and computer scientists are protected
by {C, W} to ensure that these information are only read-
able toC andW . Finally, the result of the study is only
readable to the patient andR. This is achieved by label
{R, p}.

A sample human epilepsy scientific workflow is shown
in Figure 2. In this example, the twoLoadactors enable an
e-scientist to choose two files, one for a PET data file and
the other for a fMRI data file, via the two input parame-
ters,Source1andSource2, respectively. The twoStageac-
tors upload these two files to two remote hosts,CSHOST1
andCS HOST2, respectively. ParametersTarget1andTar-
get2 are used to specify the target file names. Two in-
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Figure 1. A medical scenario for human
epilepsy research.
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Figure 2. A human epilepsy scientific work-
flow.

stances of a coclustering subworkflow previously proposed
by us [28] will be executed atCS HOST1andCS HOST2,
respectively, to conduct independent analysis with different
input parameter values formp, which specifies the muta-
tion rate of the algorithm. Finally, the outputs of the two
subworkflows are fed to the inputs of the last actorVisu-
alization at hostCS HOST3, which visualizes a 3-D brain
model with identified fiber tract patterns. In this workflow,
if the Visualizationactor is changed to an actor that is de-
veloped byH1, then the information flow policy is violated
since patientp’s PET is not supposed to be disclosed toH2

and his/her fMRI data is not supposed to be disclosed toH1.
A manual analysis of such a violation is sophisticated and
challenging for large-scale and hierarchical scientific work-
flows.

In this paper, we propose a modelhierarchical state ma-
chine for scientific workflow(HSMSW), which is based on
hierarchical state machines(HSM) [5, 4, 3], to formally
model and verify scientific workflows, and control infor-
mation propagation in scientific workflows. A hierarchical
state machine is an extension to a finite state machine, in
which a state can be an ordinary state or a superstate, which
is a state machine itself. Such a nesting structure makes



hierarchical state machines a natural formalism for mod-
eling scientific workflows where actors may be composed
of multiple sub-actors. Furthermore, compared to a finite
state machine, a hierarchical state machine provides a more
modular and succinct system representation and allows us
to model large systems. For example, if a component is
used more than once, we only need to specify it once and
reuse it in different contexts. HSMSW extends hierarchical
state machines with a notion ofconnection channelwhich
is used to model control and data flows in scientific work-
flows. HSMSW also extends hierarchical state machines
with modular features such as variable scoping.

2. Hierarchical State Machines

A hierarchical state machine (HSM) [5]K is a tuple
〈K1, . . . , Kn〉 of modules, in which each moduleKi has
the following components:

1. A finite setNi of states.

2. A finite setBi of sub-modules, representing super-
states. The setsNi andBi are pairwise disjoint.

3. A subsetIi of Ni, calledentry states.

4. A subsetOi of Ni, calledexit states.

5. An indexing functionYi : Bi 7→ {i + 1 . . . n}, which
maps each sub-moduleb of Ki (b ∈ Bi) to j with j >

i. If Yi(b) = j, thenb is a reference to the definition
of moduleKj , each pair(b, u) with u ∈ Ij is calleda
call of Ki, and each pair(b, v) with v ∈ Oj is calleda
returnof Ki.

6. A transition edge relationEi consisting of pairs(u, v),
in which the sourceu is either a state or a return ofKi

and the sinkv is either a state or a call ofKi.

7. A labelling functionLg
i : Ei 7→ G that maps each edge

of theKi to a condition guard.

8. A labelling functionLa
i : Ei 7→ A that maps each edge

of theKi to an action.

A hierarchical state machine can be “flattened” to a finite
state machine by recursively substituting each module with
the associated sub-module references. Since the references
of the same sub-module can reside in different modules,
each module can appear in a number of different contexts.
It has been shown in [5] that flattening may cause expo-
nential blow-up, especially when there are many references
pointing to the same module. A module is called atop-level
moduleif it does not have parent modules. The transitions
are edges connecting states and modules with one another.

Each transition is of the forms1
G/A
→ s2 such that, given
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Figure 3. A hierarchical state machine

a source states1, if guardG (condition) holds, then a set
of variable assignmentsA will be performed, leading to the
target states2.

Figure 3 illustrates an example of a hierarchical state ma-
chineK = 〈K1, K2〉. We use squares to denote modules
and round-corner rectangles to denote module references.
We use◦, •, and⊗ to denote entry states, exit states, and in-
ternal states (states that are neither entry nor exit states), re-
spectively. The guards and actions are omitted in the figure.
By distinguishing between modules and module references,
we may control the degree of sharing of modules. There are
two modules in the graph,K1 andK2. K1 is a top-level
module. It contains five statesN1 = {n1, n2, n3, n4, n5}
and two sub-modulesB1 = {b1, b2}, both of which are ref-
erences to the definition ofK2. Y1(b1) = Y1(b2) = 2.
The entry states ofK1 areI1 = {n1} and exit states are
O1 = {n5}. (b1, m1) and (b2, m1) are the calls ofK1.
(b1, m4) and(b2, m4) are the returns ofK1. Each edge in
K1 is a pair(u, v) whereu is either a state ofK1 or a return
of K1 andv is either a state ofK1 or a call ofK1. K2 is a
module that contains a finite state machine with four states
and four transitions. We assume that all references form an
acyclic graph.

3 Formal Modeling of Scientific Workflows
Using Hierarchical State Machines

In this section, we present Hierarchical State Machine
for Scientific Workflows (HSMSW), a hierarchical state
machine extended specifically for scientific workflows. The
HSMSW model is different from the traditional hierarchi-
cal state machine model given in Section 2. First, HSMSW
resembles modules using connection channels. A connec-
tion channel connects an exit state of one module with an
entry state of another module. Each connection channel is
labelled with a guard, which specifies the condition under
which the data can be passed through this channel. Connec-
tion channels are different from transitions in hierarchical
state machines: If a moduleK1 has two incoming connec-
tion channels from modulesK2 andK3, respectively, then
K1 cannot be executed until bothK2 andK3 have finished
their execution. In contrast, transitions represent “or” re-
lation: if a staten1 has two incoming transitions fromn2

andn3, thenn1 can be reached ifn2 or n3 is reached and



the condition in the corresponding transition holds. Second,
actions in the transitions are not restricted to a set of assign-
ments, instead, actions may also be file, database, and Web
access. Finally, HSMSW extends the hierarchical state ma-
chine with variable scoping.

It is straightforward to model scientific workflows using
HSMSWs. Each atomic actor (i.e., actor that does not have
sub-actors) is modeled using a module containing a finite
state machine modeling the internal structure of the actor.
Each occurrence of an atomic actor is modeled as a refer-
ence to the corresponding module of the actor. The abstract
level of the finite state machine depends on the properties
we want to verify. One of such finite state machines can be
constructed as follows: states represent the control locations
associated with a set of variables; actions are sequences of
sequential statements; and guards are conditions in condi-
tional or loop statements. The input and output ports in a
scientific workflow are modeled using entry and exit states
in HSMSW, respectively. Data and control flows between
two actorsA1 and A2 are modeled as connection chan-
nels between the two HSMSWs modelingA1 andA2. A
composite actor (i.e., actor that contains sub-actors) is mod-
eled as a module with all subactors modeled as modules in
HSMSW.

We now illustrate how to model the scientific workflow
shown in Figure 2 using HSMSW. Each atomic actor,Load,
Stage, Initialize, andVisualization, is modeled using a mod-
ule containing a finite state machine that models the inter-
nal structure of the actor. Each occurrence of these actors is
modeled as a reference to the corresponding module. The
composite actors located atCS HOST1andCS HOST2are
modeled using modules, each of which contains references
referencing to modules modelingInitialize andCocluster.
A data channel between two actors, e.g. between actors
LoadandStage, is modeled using a connection channel.

The execution of an HSMSW starts when data arrives
at all entry states of the top-level modules. The execution
terminates if all processed data have been transferred back
to the exit states or the execution gets stuck as all outgoing
transitions are disabled.

4. Verification and Information Flow Control
of Scientific Workflows

In this section, we present techniques for using HSMSW
to formally verify properties of scientific workflows and to
control information propagation in scientific workflow en-
vironments. Our framework can also be used to collect file
access provenance for scientific workflows. Here, we as-
sume that the permission for executing each actor is ob-
tained from appropriate access control.

4.1. Verification of Scientific Workflows

Alur and Yang [4] proposed a symbolic model checking
algorithm for hierarchical reactive machines. A hierarchical
reactive machine is a hierarchical state machine with mod-
ular features, such as variable scoping and exceptions. The
algorithm is directly applied to hierarchical reactive ma-
chines with more efficiency than first flattening the hierar-
chical reactive machine into a finite state machine and then
performing model checking on the transformed finite state
machine. Similar to hierarchical state machines, hierarchi-
cal reactive machines use transitions instead of connection
channels to connect two modules. Thus, the algorithm can-
not be directly applied to verify HSMSW.

In this section, we extend the algorithm in [4] to
deal with HSMSW. As in [4], the guards in transitions
are encoded symbolically using binary decision diagrams
(BDDs) [12]. The state space of a finite state machine is
partitioned into a set of state regions, each of which rep-
resents a set of states. Each state region is represented by
a single BDD. The algorithm then computes a set of reach-
able states. If a top moduleKi gets control for the first time,
it computes the set of reachable states from its entry states
until it gets stuck at a state. A statec is called astuck state
if none of the guards leavingc are satisfied and we say that
the controlgets stuckat c. An entry statep is called astuck
entry stateif p waits inputs from other modules. When a
stuck entry statep is encountered, the model checker back-
tracks to traverse other paths untilp does not get stuck or no
new states can be reached.

After every top module has finished the first computa-
tion, a stuck setS is constructed which consists of stuck
states at each top module. The algorithm then constructs
a current onion ringfor each top moduleKi based onS.
The current onion ring maps the states where the control got
stuck during the last computation atKi to newly reached
state sets obtained from image computations (i.e., single-
step reachability computation) at top modules other than
Ki. By applying the image computation to the current onion
ring of Ki, the control may continue from those stuck states
(for example, the value of global variables at a stuck state
of a module may be changed by another module). The al-
gorithm terminates if all the onion rings for top modules are
empty, which means that no new states can be reached.

4.2. Information Flow Control of Scientific

Workflows

In this section, we consider hosts as principals and leave
other finer-grained information flow control for future work.
In our model, objects are system resources such as files,
databases, or tuples of a database. Each object has an ob-
ject ID. ObjectO in hosth is specified ash : O. Each



hosth has ahost information flow policy, access(h), which
specifies the set of principals that can access the objects in
h. However, this policy can be overruled by anobject in-
formation flow policy, access(O), which specifies the set of
principals that can accessO. Therefore, for each objectO in
hosth, the set of principals that can accessO is access(h)
if access(O) is not specified, andaccess(h) ∩ object(O)
otherwise. We say thatinformation flows from objectO1

to objectO2 if information stored inO1 is transferred to
O2 through a sequence of operations, including assignment
statements, file reading/writing statements, I/O operations,
parameter passing, and file transfers.

Our Information flow control technique consists of two
stages: 1) prior to execution, static information flow analy-
sis is performed to ensure that no information will be leaked
to unauthorized hosts. During the construction of a sci-
entific workflow, a HSMSW is constructed which can be
used to detect violations that are independent of input and
output parameter values of the scientific workflow. After
the user provides input and output parameter values to the
scientific workflow and before the scientific workflow ex-
ecutes, the input and output parameter values are passed
to the HSMSW, which allows us to detect violations that
depend on input and output parameter values. 2) If no vi-
olation is detected at Stage 1), the workflow is executed.
During the execution, we keep track of how information
propagates and collect a set of object IDssource(O) from
which information flows to objectO. At the end of execu-
tion, source(O) will be written to the provenance store of
O. source(O) is used in both stages to control informa-
tion propagation because a scientific workflow may be ex-
ecuted multiple times with different input datasets and pa-
rameter values or multiple workflow runs may access the
same object. For example, suppose that during the exe-
cution of workflowW1, information ofO1 is transferred
to O2. As a result,source(O2) = {O1}. Next, work-
flow W2 is executed, which reads fromO2 and writes its
contents toO3. To keep track of information propagation,
source(O2) is read as well so that we knowO2 contains
the information originated fromO1. After W2 finishes exe-
cution,source(O3) = {O1, O2}, indicating that objectO3

contains the information that originated from bothO1 and
O2.

For clarity of presentation, we use an abstract syntax of
our original XML-based language to illustrate how to con-
struct a HSMSW and to control information flow based on
HSMSW. LetS denote the set of statements,C the set of
conditions, and letx, y, f , andfp range over variables.
The language in its abstract form is given below:

S ::= x = y | fp = fopen(f) | x = fread(fp)

| fwrite(x, fp) | fclose(fp) | S1; S2

| if C then S1 else S2

Algorithm 1 Algorithm for constructing finite state ma-
chine from atomic actor

1: procedureCreateFSM(S)
2: Create an entry stateT
3: AddMultiStmts(S,T )

4: procedureAddMultiStmts(S1; S2, State)
5: if S1 is “if C thenS3 elseS4” then
6: AddMultiStmts(S3; S2, State)
7: AddMultiStmts(S4; S2, State)

8: ReplaceState
α

−→ T1 with State
C/α
−→ T1

9: else
10: Target = AddSingleStmt(S1, State)
11: AddMultiStmts(S2, T arget)
12: end if

13: procedureAddSingleStmt(S,State)
14: if S is “x = y” then
15: Target = State∪{x = y}
16: else
17: if S is “fp = fopen(f)” then
18: Target = State∪{fp = id(f)}
19: else
20: if S is “x = fread(fp)” then
21: Target = State∪{x = (source(∗fp) ∪ {∗fp})}
22: else
23: if S is “fwrite(x, fp)” then
24: Target = State∪{∗fp = ∗fp ∪ x}
25: else
26: Target = State

27: end if
28: end if
29: end if
30: end if
31: if Target 6= State then

32: Add State
true/S
−→ Target

33: end if
34: returnTarget

The program consists of a set of statements separated
by “;”. “ fopen”, “ fread”, and “fwrite” represent open-
ing an object, reading from an object, and appending data
at the end of an object, respectively. The translation from
a scientific workflow to a HSMSW has been given in Sec-
tion 3. Each atomic actor is translated into a finite state
machine using Algorithm 1. The value of each variable
v in such a finite state machine is either the ID of an
object (when evaluating “fp = fopen(f)”), or a set of
IDs of objects whose content may be transferred tov.
This is different from the finite state machine generated
for verification where each variable contains its real value,
e.g. content read from an object. The top-level function
CreateFSM(S), when given a programS as input, create
a stateT and callsAddMultiStmts(S, T ) to construct a
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T1: input - i1, output -o1

fp1 = fopen(i1);
x = fread(fp1);
y = x;
fclose(fp1);
fp2 = fopen(h2 : f2);
fwrite(y, fp2);
fclose(fp2);
o1 := “h2 : f2”;

T2: input - i2, output -o2

fp1 = fopen(i2);
x = fread(fp1);
y = x;
fclose(fp1)
fp2 = fopen(h3 : f3);
fwrite(y, fp2);
o2 = y;
fclose(fp2)

Figure 4. Description of a scientific workflow
that consists of an actor T .

finite state machine forS with entry stateT . The function
AddSingleStmt(S, State) generates transitions for each
single statementS with entry stateState. After assign-
ment statement “x = y” is processed,{x = y} is added
to the state, which means that the value ofy is assigned to
x. When “fp = open(f)” is processed,fp is assigned the
ID of the objectf . ∪ is overriding unionwhich is defined
as follows:T1∪T2 = T2 ∪ {t|t ∈ T1 ∧ var(t) 6∈ vars(T2)}
wherevar(t) is the variable oft andvars(T2) is the set
of variables ofT2. After “x = fread(fp)” is processed,
source(∗fp) ∪ {∗fp} is assigned tox, where∗fp is the
value offp, i.e., the object ID stored infp. “fwrite” is
similarly handled. “fopen” does not change the state. To
construct the state machine from statement “ifC thenS3

elseS4; S2” with entry stateState, we construct state ma-
chines fromS3 andS4 with entry stateState and then add
conditionC to transitions of the state machines constructed
whose source state isState.

Let host(h : o) = h andvalue(x) be the value ofx.
We say that a workflow runR conforms to the information
flow policy if and only if there does not exist a transition

s
c/fwrite(x,fp)

−→ s′ such thathost(fp) 6∈ access(oi) for
someoi ∈ value(x). We say a scientific workflowW is
safeif and only if there does not exist a workflow runR of
W such thatR violates the information flow policy.

Consider an example workflow given in Figure 4.2. The
workflow consists of an actorT , which is composed of two
sub-actorsT1 andT2. T1 andT2 execute in sequential order
and the output ofT1 acts as the input toT2. T1 reads from
input i1 and appends the contents read to fileh2 : f2. T2

reads fromi2 and writes toh3 : f3. The HSMSW is con-
structed as follows: Wheni1 is read byT1, source(i1) is
read andx = source(i1) ∪ {i1}. After y := x is evaluated,
y = source(i1)∪{i1}. When the contents ofy is written to
h2 : f2 in T1, h2 : f2 = y = source(i1) ∪ {i1}, indicating

that information flows fromi1 and objects insource(i1) to
h2 : f2. Next,h2 : f2 is passed toi2 andT2 is evaluated.
At the endh3 : f3 = source(h2 : f2) ∪ {h2 : f2}.

Suppose that a user wants to execute the workflow with
input h1 : f1, theni1 is replaced withh1 : f1. Assume
that initially source(h1 : f1) = source(h2 : f2) =
source(h3 : f3) = ∅. Also, assume thataccess(h1 :
f1) = {h2, h3} and access(h2 : f2) = {h3}. Af-
ter h1 : f1 is read andx is assigned toy, x = y =
{h1 : f1}. Whenfwrite(y, h2 : f2) is evaluated, because
h2 ∈ access(h1 : f1), the information flow policy is not vi-
olated and hence the contents ofy can be written toh2 : f2.
As a result,h2 : f2 = {h1 : f1}. After processingT2,
h3 : f3 = {h1 : f1, h2 : f2}. Since no information flow
violations are detected, the workflow can be executed. Dur-
ing the execution, we keep track of how information propa-
gates and updatesource(O). Now, suppose that we change
access(h1 : f1) to {h2}. ThenT violates this policy be-

cause there exists a transition
true/fwrite(h2:f2,h3:f3)

→ such
thath3 6∈ access(h1 : f1) whereh1 : f1 ∈ value(h2 : f2).

The second stage of information flow control technique
gathers a set of original sourcessource(O) for each ob-
jectO, which carries extra information needed for scientific
workflow provenance metadata other than those captured
by dataflows and input and output parameters. In this way,
we can capture the derivation history of a data product, in-
cluding the original data sources, intermediate data prod-
ucts, and the workflow steps that were applied to produce
the data product. The scientific workflow provenance meta-
data can then be stored and queried using a scientific work-
flow provenance store for reproducibility and recreativity
support [13].

5. Related Work

Much work has been done for the modeling and anal-
ysis of workflows using formal methods, including Petri
nets [1, 2], Workflow nets [15, 36, 34], UML [21, 20],
and logics [29, 18]. Among the various properties of
workflows, the modeling and analysis of security proper-
ties of workflows are particularly important, including ac-
cess control [9, 39], delegation [37, 6], and separation of
duty [26, 10].

Recently, there has been an increasing interest in the
applications of workflow technologies in the scientific do-
main, resulting inscientific workflows. In contrast to
their business counterparts, which are task-centric and
control-flow oriented, scientific workflows are typically
data-centric and dataflow-oriented, and thus pose different
challenges [31]. Although several scientific workflow man-
agement systems [30, 23, 16, 33, 41, 42, 14] have been de-
veloped, few of them provide any form of support for verifi-
cation and analysis, particularly for the modeling and anal-



ysis of secure information flow and provenance metadata
access, which are very important in the environments of sci-
entific workflows.

The area of information flow analysis has received con-
siderable attention. The lattice model of information flow
was first proposed in [7] and [19]. Recently, a number of
information flow control techniques have been developed
for decentralized systems or web services (e.g. [32, 24, 35,
27, 40]). However, none of these work is done in the con-
text of scientific workflows or uses hierarchical state ma-
chines to perform information flow analysis. Furthermore,
in addition to support information flow analysis, our frame-
work also allows us to verify many other properties such as
deadlock-freedom.

Access control mechanism has also been widely used
for preventing data from being leaked to unauthorized
users/hosts. A number of access control mechanisms
have been proposed for distributed systems, and workflows
(e.g. [25, 38, 8]). However, access control mechanism is
different from information flow analysis as it controls who
can access the data, but does not control how data are prop-
agated after they are obtains.

Recently, the Kepler system extends its actor-oriented
modeling framework with frames and templates by borrow-
ing ideas from hierarchical state machines [11]. This ap-
proach seamlessly integrates control-flows into a dataflow-
based design paradigm without sacrificing the benefits of
dataflows. Although Kepler provides aconcretehybrid
model for designing and executing scientific workflows
with both dataflows and control-flow features, verification
and information flow analysis are not part of the framework.
In contrast, we aim at developing anabstractmodel for
scientific workflows based on hierarchical state machines,
providing a foundation for formal modeling and analysis of
scientific workflows, including information flow analysis.

6 Conclusion and Future Work

In this paper, we proposed to use hierarchical state ma-
chines to formally model and verify properties and control
information propagation in scientific workflows. We plan
to extend our work to deal withimplicit information flow,
support scientific workflows having Web services as their
components and secure access control of scientific work-
flow provenance incorporating the notion of abstraction
views [17]. Another direction for future work is the devel-
opment of algorithms for incremental construction of hier-
archical state machines and incremental verification of sci-
entific workflows when minor structural changes are made
to workflows during execution.
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