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Abstract
This paper considers the problem of efficiently managing

storage space in a hybrid storage system employing flash
and disk drives. The flash and disk drives exhibit different
performance characteristics of read and write behavior. We
propose a technique for balancing the workload properties
across flash and disk drives in such a hybrid storage system.
We consider various alternatives for managing the storage
space in such a hybrid system and show that the proposed
technique improves performance in diverse scenarios. The
presented approach automatically and transparently manages
migration of data blocks among flash and disk drives based
on their access patterns. We implemented a prototype storage
system employing our ideas. This paper presents the design
and an evaluation of the proposed approach through realistic
experiments.

I. INTRODUCTION
Novel storage devices based on flash memory are becoming

available with price/performance characteristics different from
traditional magnetic disks. Many manufacturers have started
building laptops with these devices. While these devices may
be too expensive (at this time) for building larger flash-only
storage systems, storage systems incorporating both flash-
memory based devices and magnetic disks are becoming
available.
Traditionally, storage systems and file systems have been

designed considering the characteristics of magnetic disks such
as the seek and rotational delays. Data placement, retrieval,
scheduling and buffer management algorithms have been de-
signed to take these characteristics into account. When both
flash and magnetic disk drives are employed in a single hybrid
storage system, a number of these policies may need to be
revisited.
Flash based storage devices exhibit different characteristics

than magnetic disk drives. For example, writes to flash devices
can take longer than magnetic disk drives while reads can fin-
ish faster. The flash drives have no seek and rotational latency
penalties unlike their magnetic counterparts, but have a limit
on the number of times a block can be written. Flash drives
also typically have more uniform performance (especially for
reads) depending on file size, where magnetic disks typically
perform better with larger file sizes. The write performance
of flash drives can experience much larger differences in peak
to average completion times due to block remapping done in
the Flash Translation Layer (FTL) and necessary erase cycles
to free up garbage blocks. These differences in characteristics
need to be taken into account in hybrid storage systems in
efficiently managing and utilizing the available storage space.

Fig 1 shows the time taken to read, write a data block from
a disk drive and two flash drives considered in this study.
We read blocks of specific size from a random offset in the
drive to obtain this performance data. As can be seen from
the data, the flash and disk drives have different performance
for reads and writes. First, flash drive is much more efficient
than the magnetic disk for small reads. While flash drive
read performance increases with the read request size, the
magnetic disk performance improves considerably faster and
at larger request sizes, surpasses the performance of the flash
devices. Small writes have nearly the same performance at
both the devices. As the write request size grows, the magnetic
disk provides considerably better performance than the flash
device. the disk drive is more efficient for larger reads and
writes. These characteristics are observed for a 250GB, 7200
RPM Samsung SATA magnetic disk (SP2504C), a 16GB
Transcend SSD (TS16GSSD25S-S) and a 32GB MemoRight
GT flash drives. While different devices may exhibit different
performance numbers, similar trends are observed in other
drives.
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Fig. 1. Read, write performance of different devices

As can be seen from this data, requests experience different
performance at different devices based on the request type
(read or write) and based on the request size (small or large).
This work is motivated at managing storage space to maximize
performance in a hybrid system that utilizes such devices
together.
Various methods have been proposed to compensate and

exploit diversity in device characteristics. Most storage sys-
tems use memory for caching and manage memory and storage
devices together. Most of these approaches deal with devices
of different speeds, storing frequently or recently used data on
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Fig. 2. (a)Migration paths in traditional hybrid storage systems. (b)Migration
paths in space management layer.

the faster devices. However, the flash and disk storage devices
have asymmetric read/write access characteristics, based on
request sizes and whether the requests are reads or writes.
This asymmetry makes this problem of managing the different
devices challenging and interesting in a flash+disk hybrid
system. In order to accommodate these characteristics, in this
paper, we treat the flash and disk devices as peers and not as
two levels in a storage hierarchy.
Our approach is contrasted with traditional approach of a

storage hierarchy in Fig. 2. In a traditional storage hierarchy,
hot data is moved to the faster (smaller) device and cold data
is moved to the larger (slower) device. In our approach, the
cold data is still moved to the larger device. However, the hot
data may be stored in either device because of the performance
asymmetry. For example, hot data that is mostly read may be
moved to the Flash device while large files that are mostly
written may be moved to the disk drive.
Flash technology is advancing rapidly and device perfor-

mance characteristics differ from manufacturer to manufac-
turer, from one generation to the next. This warrants that a
solution to managing the space across the devices in a hybrid
system should be adaptable to changing device characteristics.
We consider two related issues in this paper for managing

space across flash and disk drives in a hybrid system. The first
issue is allocation. Where should data be allocated? Should
we first allocate data on flash before starting to use the disk
drive? Should we employ striping across the two devices until
space constraints force us to do something else? Clearly, these
decisions will have implications on load on different devices,
their utilization and the performance of the storage system.
A second issue we consider in this paper is this: given a

block allocation, can we adapt the storage system to better
utilize the devices in a hybrid system? We approach this
problem through data redistribution or migration of data
from one device to another device to match the data access
characteristics with the device characteristics. For example, if
a data block has a higher number of reads compared to writes,
it may be better suited to flash device and moving it from its
currently allocated disk drive to flash drive may improve its
performance. Similarly, if a file and its blocks are sequentially
written and read, it may be better located on the magnetic
disk without any loss in performance (compared to the flash
device) while preserving space on the smaller flash device for
other blocks. In this paper, we focus on the problem of data
redistribution (through migration), in storage systems built out
of flash and magnetic drives.
We propose a measurement-driven approach to migration to

address these issues. In our approach, we observe the access
characteristics of individual blocks and consider migrating
individual blocks, if necessary, to another device whose char-
acteristics may better match the block access patterns. Our
approach, since it is measurement driven, can easily adapt to
different devices and changing workloads or access patterns.
In this paper, we study the two related issues of allocation

and data migration among the flash and disk drives to manage
these diverse devices efficiently in a hybrid system. We make
the following significant contributions in this paper: (a) we
propose a technique for managing data efficiently in a hybrid
system through dynamic, measurement-driven data migration
between flash and disk drives, (b) we study the impact of dif-
ferent allocation decisions in such a system, (c) we show that
the performance gains possible through flash devices may be
strongly contingent on the workload characteristics observed at
the storage system and (d) that flexible block management in
a hybrid system is possible through a demonstration of results
from a Linux-based prototype.
The remainder of this paper is organized as follows. Section

II gives details of the related work. Section III describes the
the proposed approach to managing the space in a hybrid
system. Section IV presents our prototype implementation and
its evaluation. Section V presents the results of the evaluation.
Section VI provides a discussion of the results and the future
work. Section VII concludes the paper.

II. RELATED WORK

Data (file) migration has been studied extensively earlier in
systems where disks and tapes are used [3], [7], [8], [18], [19].
HP’s AutoRAID system considered data migration between a
mirrored device and a RAID device [1]. In these systems, hot1
data is migrated to faster devices and cold data is migrated
to slower devices to improve the access times of hot data
by keeping it local to faster devices. When data sets are
larger than the capacity of faster devices in such systems,
thrashing may occur. Some of the systems detect thrashing
and may preclude migration during such times [1]. Adaptive
block reorganization to move hot blocks of data to specific
areas of disks has been studied in the past [35], [36].
Our work is measurement driven and considers migration

among flash and disk drives with different read/write charac-
teristics amid dynamically changing conditions at the devices.
Data migration can be decided by read/write access patterns
and loads at the different devices. In the work considered here,
data can move in both directions from flash to disk and disk
to flash for performance reasons. Second, the realized perfor-
mance in our system depends on read/write characteristics as
well as the recency and frequency of access. Characteristics of
data migration can be much different in our system compared
to earlier hierarchical systems.
Aqueduct [13] takes a control-theoretic approach to data mi-

gration among storage devices without significantly impacting
the foreground application work. Aqueduct uses I/O request

1Data that is currently being accessed or active is called “hot” data and
data that is not currently being accessed or inactive is called “cold” data.
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response time as a performance measure, but there are signif-
icant differences from our work. First, Aqueduct is guided by
static policy decisions of the system administrator unlike our
dynamic choice of blocks during run time. Data distribution
and migration issues are considered in [14], [15], [16] as a
result of configuration changes due to additions and removal of
disks in large scale storage systems. Adaptive file set migration
for balancing the metadata workload among servers in shared-
disk file systems is considered in [17]. Observed latencies
were used for migration. Our work is different from this work:
(a) Our system is dealing with migrating block-level data in
contrast to file-level data (e.g., file sets), and (b) we consider
read and write requests separately.
Flash storage has received much attention recently. A

number of studies have been done on wear leveling and
maintaining uniformity of blocks [30], [31], [32]. Studies have
been done on block management and buffer management [27],
[28], [29], [34]. File system design issues for flash storage have
been considered in [33] and file translation layers (FTLs) are
employed to mimic log structured file systems in current flash
storage devices. Recently, employment of flash in a database
workload is considered [26]. This work considered static
measurement of device performance in deciding on migration
as opposed to our method of employing dynamically measured
response times. Dynamic measures are employed in managing
power consumption in storage systems in [12]. Flash memory
is being used as a cache to improve disk drive performance
[e.g., 25]. Flash memory has been studied for reducing the
power consumption in a storage system [40].
File system based approaches for flash and non-volatile

storage can be found, for example in [38], [39]. These systems
can take file level knowledge (data types and their typical
access behavior)into account which may not be available at
the device level. We consider a device level approach here
and we manage storage across the devices at a block or chunk
level instead of at the file level. Second, our approach can
potentially, leave parts of a file on the flash drive and parts of
the file on a disk drive depending on the access patterns, which
is not possible in file-based approaches. In addition, the device
level approach may obviate the need for new file systems or
changes to every file system that employs a flash drive. It is
not our intent to argue that the device level approach is better
than the file system approach or vice versa, but that they are
based on different assumptions and lead to different design
points and benefits.
Data migration is considered previously in networked de-

vices [6], in large data centers [4], [5]. This body of work
considers optimization of data distribution over longer time
scales than what we consider here. This work considers
migration of datasets across different systems unlike our focus
here on migration of data blocks within a single system. Our
work is inspired by much of this earlier work.

III. MEASUREMENT-DRIVEN MIGRATION

Our general approach is to pool the storage space across
flash and disk drives and make it appear like a single larger
device to the file system and other layers above. We manage

the space across the different devices underneath, transparent
to the file system. We allow a file block on one device to be
potentially moved later to another device that better matches
the access patterns of that data block. We also allow blocks to
move from one device to another device as workloads change
in order to better utilize the devices.
In order to allow blocks to be flexibly assigned to different

devices, an indirection map, containing mappings of logical
to physical addresses, needs to be maintained. Every read and
write request is processed after consulting the indirection map
and determining the actual physical location of data. Similar
structures have been used by others [1], [9], [10]. In our
system, as the data migrates from one device to another device,
there is a need to keep track of the remapping of the block
addresses. When data is migrated, the indirection map needs
to be updated. This is an additional cost of migration. We
factor this cost into the design, implementation and evaluation
of our scheme. In order to reduce the costs of maintaining this
map and updates to this map, we consider migration at a unit
larger than a typical page size. We consider migration of data
in chunks or blocks of size 64KB or larger.
We keep track of access behavior of a block by maintaining

two counters, one measuring the read and the other write
accesses. These counters are a “soft” state of the block i.e.,
the loss of this data is not critical and affects only the
performance, but not the correctness of data accesses. This
state can be either maintained in memory or on disk depending
on the implementation. If memory is employed, we could
maintain a cache of recently accessed blocks for which we
maintain this state, in order to limit memory consumption.
It is also possible to occasionally flush this data to disk to
maintain this read/write access history over longer time. In
our implementation, we maintain this information in memory
through a hash table. This table is only as large as the set of
recent blocks whose access behavior we choose to remember
and is not proportional to the total number of data blocks in the
system. We employed two bytes for keeping track of read/write
frequency separately per chunk (64Kbytes or higher). This
translates into an overhead of 0.003% or lower or about 32KB
per 1GB of storage. We limited the memory consumption of
this data structure by deallocating information on older blocks
periodically.
We employ the read/write access counters in determining a

good location for serving a block. A block, after receiving a
configured minimum number of accesses, can be considered
for migration or relocation. This is to ensure that sufficient
access history is observed before the block is relocated. We
explain below how a relocation decision is made. If we decide
to relocate or migrate the block, the read/write counters are
reset after migration in order to observe the access history
since the block is allocated on the new device.
We took a general approach to managing the device char-

acteristics. Instead of characterizing the devices statically, we
keep track of device performance dynamically. Every time a
request is served by the device, we keep track of the request
response time at that device. We maintain both read and write
performance separately since the read, write characteristics
can be substantially different as observed earlier. Dynamically
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measured performance metrics also allow us to account for
load disparities at different devices. It also allows a single
technique to deal with diverse set of devices without worrying
about any configuration parameters.
Each time a request is sent to the device, a sample of the

device performance is obtained. We maintain an exponential
average of the device performance by computing average
response time = 0.99 * previous average + 0.01 * current
sample. Such an approach is used extensively in networking,
in measuring round trip times and queue lengths etc [22].
Such exponential averaging smooths out temporary spikes in
performance while allowing longer term trends to reflect in the
performance measure. For each device i, we keep track of the
read ri and write wi response times. We consider all request
sizes at the device in computing this average response time to
reflect the workload at that device in our performance metric.
As we direct different types of request blocks to different
devices, the workloads can be potentially different at different
devices.
Given a block j’s read/write access history through its

access counters Rj and Wj and the device response times,
we use the following methodology to determine if a block
should be moved to a new location. The current average
cost of accessing this block j in its current device i, Cji=
(Rj ∗ ri + Wj ∗ wi)/(Rj + Wj). The cost of accessing a
block with similar access patterns at another device k, Cjk

(computed similarly using the response times of device k) are
compared. If Cji > (1 + δ) ∗Cjk , we will consider this block
to be a candidate for migration, where 0 < δ is a configurable
parameter. We experimented with different values of δ in this
study. A larger value for δ demands a greater performance
advantage before moving a block from one device to another
device.
In general, when there are several devices which could

provide better performance to a block, a number of factors
such as the load on the devices, storage space on the devices
and the cost of migration etc. can be considered for choosing
one among these devices.
Migration could be carried out in real-time while normal

I/O requests are being served and during quiescent periods
when the devices are not very active. The migration decision
could be made on a block by block basis or based on looking
at all the blocks collectively at once through optimization
techniques. Individual migration and collective optimization
techniques are complementary and both could be employed
in the same system. We primarily focus on individual block
migration during normal I/O workload execution in this paper.
Later, we plan to incorporate a collective optimization tech-
nique that could be employed, for example, once a day.
There are many considerations to be taken into account

before a block is migrated. The act of migration increases
the load on the devices. This could affect device performance.
Hence, it is necessary to control the rate of migration. Second,
a fast migration rate, may result in moving data back and forth,
causing oscillations in workloads and performance at different
devices. In order to control the rate of migration, we employ
a token scheme. The tokens are generated at a predetermined
rate. Migration is considered only when a token becomes
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Fig. 3. Architecture of space management layer.

available. In our current implementation, we experimented
with a conservative, static rate of generating tokens.
When a block is migrated from one device i to another

device k, the potential cost of this migration could be ri +wk,
ri for reading the block from device i and wk for writing
the block to its new location on the device k. In order to
reduce the costs of migration, we only consider blocks that
are currently being read or written to the device, as part of
normal I/O activity. Migrating non-active blocks is carried out
by a background process during quiescent periods.
Depending on the initial allocation, there may be several

blocks that could benefit from migration. A number of strate-
gies could be employed in choosing which blocks to migrate.
We maintain a cache of recently accessed blocks and migrate
most recently and frequently accessed blocks that could benefit
from migration. When ever a migration token is generated, we
migrate a block from this cached list. The cached list helps
in utilizing the migration activity to benefit the most active
blocks.
Migration is carried out in blocks or chunks of 64KB or

larger. Larger block size increases migration costs, reduces the
size of the indirection map, can benefit from spatial locality or
similarity of access patterns. We study the impact of the block
size on the system performance. We investigate migration
policies that consider the read/write access patterns and the
request sizes.
We study several allocation policies since the allocation

policies could not only affect the migration performance, but
can also affect the system performance significantly (even
without migration). These policies include (a) allocation of
all the data on flash while it fits; allocating the later data on
magnetic disk when flash device becomes full. (b) allocation
of all the data on the disk drive, and (c) striping of data across
both flash and disk drives.
We also consider a combination of some of these policies

when possible. We consider the impact of migration along with
the allocation policies in our study.

IV. IMPLEMENTATION
We developed a Linux kernel driver that implements several

policies for migration and managing space across flash and
disk drives in our system. The architecture and several modules
within the space management layer are shown in Fig. 3.
The space management layer sits below the file systems and



5

above the device drivers. We implemented several policies
for detecting access patterns of blocks. The sequential access
detector identifies if blocks are being sequentially accessed by
tracking the average size of sequential access to each block.
The device performance monitor keeps track of the read/write
request response times at different devices. The hot/cold data
classifier determines if a block should be considered hot. The
indirection map directs the file system level block addresses
to the current location of those blocks on the underlying
flash and disk devices. The indirection map is maintained on
the hard disk, a memory copy of it allows faster operations.
The block access characteristics, in our implementation, are
only maintained in memory. The block access counters are
initialized to zero, both on bootup and after a migration.
In the experimental environment, the NFS server was a

commodity PC system equipped with an Intel Pentium Dual
Core 3.2GHz processor, 1GB of main memory. The magnetic
disk used in the experiments was one 7200 RPM, 250G
SAMSUNG SATA disk (SP2504C), the flash disk drives are
a 16GB Transcend SSD (TS16GSSD25S-S), and a 32GB
MemoRight GT drive, which were connected to Adaptec SCSI
Card 29160 through a SATA-SCSI converter(ADSALVD160).
All the NFS clients are simulated by one load generator in the
environment.
The operating system on the NFS server was Fedora 9 with

a 2.6.21 kernel, and the file system used was the Ext2 file
system. The hybrid storage system is connected to the server
and a number of other PCs are used to access the server as
clients. We cleaned up the file system before each experiment
(using file system mkfs command). Device level performance
is measured using processor jiffies.
The next section presents performance evaluation and com-

parison of different policies.

V. EVALUATION
A. Workload
We used multiple workloads for our study. The first work-

load, SPECsfs benchmark, represents file system workloads.
The second workload, Postmark benchmark, represents typical
access patterns in an email server. We also use IOzone
[23] benchmark to create controlled workloads at the storage
system in order to study the impact of read/write request
distributions on the performance of the hybrid system.
SPECsfs 3.0 is the SPEC’s benchmark for measuring NFS

file server’s performance [20]. This synthetic benchmark gen-
erates an increasing load of NFS operations against the server
being evaluated and measures its response time and the server
throughput as load increases. The operations of the benchmark
consists of small metadata operations and reads and writes.
A large percentage of the read/write operations, 85%, in this
workload, are for small files in the range of 1-15KB.
SPECsfs reports a curve of response time vs. delivered

throughput (not offered load). The system performance is
measured by base response time, the slope of the response time
vs. throughput curve and its throughput saturation point. When
the offered load exceeds the throughput saturation point,
the delivered throughput will decrease as requests timeout.

Therefore, the reported curves usually go backward at the
end. The speed of the server and client processor, the size
of file cache, and the speed of the server devices determine
these measured characteristics of the server [21]. We employed
SPECsfs 3.0, NFS version 3 using UDP. At higher loads, the
delivered throughput can decrease as requests time out if not
completed within the time limit of the benchmark (50ms).
The SPECsfs benchmark exhibits a read write ratio of

roughly 1:4 in our experimental environment, i.e., for every
read request, roughly 4 write requests are seen at the storage
system. In order to study the impact of different workloads,
we also employed IOzone. IOzone is a synthetic workload
generator. We employed 4 different processes to generate load.
Each process can either read or write data. By changing the
number of processes reading or writing, we could control the
workload read/write ratio from 100%, 75%, 50%, 25% and
0%. We employed Zipf distribution for block access to model
the locality of accesses. In this test, we also bypassed the cache
to keep a careful control of the read/write mix at the storage
system.
We use Postmark [37] as a third workload. Postmark is an

I/O intensive benchmark designed to simulate the operation
of an e-mail server. The lower bound of the file size is 500
bytes, and upper is 10,000 bytes. In our Postmark tests, we
used Postmark version 1.5 to create 40,000 files between 500
bytes and 10 kB and then performed 400,000 transactions. The
block size was 512 bytes, with the default operation ratios and
unbuffered I/O.
We expect these three workloads generated by SPECsfs,

IOzone and Postmark to provide insights into the hybrid
system performance in typical file system workloads and in
other workloads with different read/write request distributions.

B. Benefit From Migration

In the first experiment, we evaluated the benefit from the
measurement-driven migration. We compared the performance
of the following four policies:
- FLASH-ONLY: Data is allocated on the flash disk only.
- MAGNETIC-ONLY: Data is allocated on the magnetic

disk only.
- STRIPING: Data is striped on both disks.
- STRIPING-MIGRATION: Data is striped on and

migrated across both disks.
The results are shown in Figure 4(a) for Transcend flash

drive. Since there are more write requests in the workload
than read requests, and write performance of the flash disk is
much worse than that of the magnetic disk, the response times
for FLASH-ONLY are longer than those for MAGNETIC-
ONLY. Both these systems utilize only one device. The
performance of STRIPING is between these two systems even
though we get benefit from utilizing both the devices. The
performance of the hybrid system is again impacted by the
slower write response times for the data allocated on the flash
device. Ideally, the addition of a second device should improve
performance (which happens with the faster MemoRight flash
drive as shown later).
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Fig. 4. (a)Benefit from measurement-driven migration. (b)Request distribution in measurement-driven migration.

As can be seen from Figure 4(a), the measurement-based
migration has the throughput saturation point at 600 NFS op-
erations/sec, that is much better than 426 NFS operations/sec
in the STRIPING policy, and 434 NFS operations/sec in
the MAGNETIC-ONLY policy. This improvement benefits
from the data redistribution which matches the read/write
characteristics of blocks to the device performance.
Figure 4(b) shows the request distribution in different

system periods. At the first, beginning at 2000 seconds, the
number of the write requests directed to the magnetic disk and
to the flash disk are quite close. However, over time, more and
more write-intensive data are migrated to the magnetic disk,
resulting in more write requests at the magnetic disk. For
example, in Figure 4(b), at the system time between 12000
and 14000 seconds, there are 433343 sectors written to the
magnetic disk while only 79043 sectors are written to the
flash disk (i.e. nearly 5.5 times as many sectors are written
to disk compared to flash), while the read request sizes to the
devices are close to each other at 69011 and 59390 sectors
respectively. This request pattern at the end of the simulation
shows that our approach is succeeding in redistributing write-
intensive blocks to the magnetic disk even though the initial
allocation of blocks distributes these blocks equally on the two
devices.
This experiment shows that the measurement-driven migra-

tion can effectively redistribute the data to the right devices
and help decrease the response time while improving the
throughput saturation point of the system.

C. Sensitivity study
1) Impact of Migration Threshold Parameter δ: As ex-

plained earlier, δ is a configurable parameter, that controls how
much performance advantage is expected (after migration)
for the accesses to the block that is being migrated. In this
experiment, we evaluated the impact of using different δ
values. Generally, the smaller the δ, the higher the probability
that the chunk will be migrated. As a result, too small a value
of δ can cause higher migration. On the other hand, if the value
is too large, the efficiency of the migration can be weakened
as the data can not be remapped to the right device. Based
on the results from the experiment shown in Figure 5(a), the
value δ = 1 is chosen for the rest of the tests.

2) Impact of Chunk Size: Figure 5(b) shows the impact
of using the different chunk sizes. Chunk sizes of 64KB
and 128KB had nearly the same performance at various
loads while a larger chunk size of 256KB showed worse
performance. In all the following experiments, we used the
chunk size of 64KB.

D. Comparison with 2-harddisk Device
In this experiment, we compared the performances of the

hybrid storage system and a 2-hard disk striping storage
system (data is striped on two hard disks and no migration
is employed). First, we used SPECsfs 3.0 to generate the
workload.
Figure 6(b) shows the comparison of the MemoRight-based

hybrid system against the 2-disk system. It is observed that
the hybrid system outperforms the 2-harddisk striping storage
system, achieving nearly 50% higher throughput saturation
point. The hybrid storage system delivers higher performance,
fulfilling the motivation for designing such a system.
Figure 6(a) shows the comparison of the Transcend-based

hybrid system against the 2-disk system. It is observed that the
2-harddisk striping storage system works better than the hybrid
drive on both the saturation point and the response time.
We used IOzone to generate workloads with different

read/write ratio to find out what kind of workloads are more
suitable for the hybrid storage system. In this experiment, we
employed four processes to generate workload at the storage
system. By varying the number of processes doing reads vs.
writes, we could create workloads that 100% writes, to 75%,
50%, 25% or 0% write workloads (0R4W, 1R3W, 2R2W,
3R1W and 4R0W). We employed a Zipf distribution for data
accesses in each process and bypassed the cache to maintain
a controlled workload at the storage system.
The results are shown in Figure 7. Each workload name

consists of <number of reading processes R number of writing
processes W>. Each process reads from or writes to a 512MB
file according to a Zipf distribution. We adjusted the number
of processes to control the ratio of read/write requests to the
device. To bypass the buffer cache, we used direct I/O. While
the 2-harddisk system did not employ migration, we tested the
hybrid system with two policies STRIPING and STRIPING-
MIGRATION.
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Fig. 7. Hybrid drive vs. 2-harddisk striping device on IOzone.

As we can see from Figure 7, the performance of Transcend-
based hybrid drive with STRIPING policy is not as good as
that of the 2-harddisk system, especially the writing perfor-
mance. However, with migration employed, the performance
of the hybrid drive achieved significant improvement, even
surpassed the 2-harddisk system. The results show that the
hybrid drive with migration can get higher performance im-

provement when the ratio of read/write requests is higher,
even with the slower Transcend flash drive. When the ratio
was 1:3 (in workload 1R3W), the performances of 2-harddisk
system and hybrid drive with STRIPING-MIGRATION policy
are almost the same.
These results indicate that read/write characteristics of the

workload have a critical impact on the hybrid system. With
migration, the hybrid system’s performance can be improved
greatly and made to offer a performance improvement over a
2-disk system over much wider workload characteristics than
it would have been possible.
The results with Postmark benchmark experiment are shown

in Table I. In our experiment we employed two simultaneous
processes to generate sufficient concurrency, both processes
running the Postmark benchmark with parameters mentioned
in V-A. We ran our experiments across both the hybrid storage
systems with Transcend and MemoRight flash drives and on
the 2-disk system. It is observed that migration improved the
transaction rate, read/write throughputs in both the hybrid
storage systems, by about 10%. It is also observed that the
Transcend-based hybrid system could not compete with the
2-hard disk system. However, the MemoRight-based hybrid
system could outperform the 2-hard disk system, by roughly
about 10-17%.
We conducted a second experiment with Postmark bench-
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Process 1 Process 2
Transactions Read Write Transactions Read Write

/sec Throughput Throughput /sec Throughput Throughput
Transcend-Hybrid (Striping) 52 211.46 49.22 50 204.70 47.65
Transcend-Hybrid (Migration) 58 237.18 55.21 57 229.68 53.46
MemoRight-Hybrid (Striping) 126 509.17 118.52 125 502.98 117.08
MemoRight-Hybrid (Migration) 137 553.17 128.76 134 538.76 125.41

2-Harddisk 121 487.77 113.54 115 462.86 107.74
TABLE I

PERFORMANCE OF DIFFERENT SYSTEMS WITH POSTMARK WORKLOAD. THROUGHPUT IS IN KBYTES/SECOND.

mark to study the impact of request size. In this experiment
again, we employed two simultaneous Postmark processes.
The file size was varied from a low of 500 bytes to 500
Kbytes, with each process generating and accessing 4,000
files. Each process conducts 80,000 total transactions in this
experiment. The results of these experiment are shown in Table
II. We employed two migration policies. In policy labeled
Migration-1, only read/write characteristics were considered
as earlier. In the second policy labeled Migration-2, request
size was considered as detected by our sequentiality detector
module. If the observed request size is less than one migration
block (64KB in this experiment), we allowed the block to be
migrated based on the read/write request patterns of that block.
If the request size is observed to be larger, we allowed this
data to exploit the gain that can be had from striping data
across both the devices. If the block is accessed as part of a
request larger than 64KB, it is not migrated.
The results of these two policies are shown in Table II. It

is observed that migration policy based on read/write patterns
improved the performance over striping. When we considered
the request sizes and the read/write access patterns (Migration-
2), the performance is observed to be higher. While the
performance improved by about 7% for MemoRight based
hybrid storage system when read/write patterns are considered,
the performance on an average improved by about 20% when
both read/write patterns and the request size are considered.
The performance for Transcend based storage system also
improves in both the policies, the performance improvement is
not as substantial. These experiments show that both read/write
and request size patterns can be exploited to improve perfor-
mance.
Memoright-based hybrid storage system provided better

performance than a 2 hard disk system, but Transcend-based
hybrid system could not match the performance of the 2
hard disk system. The results in this section indicate that the
newer Memoright flash drive provides superior performance
and exploiting such devices in various scenarios will remain
interesting.

VI. DISCUSSION & FUTURE WORK

Typically, storage or memory hierarchies are considered for
dealing with different speeds of devices or components. The
asymmetric read/write costs or performance of flash and disk
drives warranted a more flexible approach to block allocation
and redistribution.
In our approach, data is migrated conservatively to other

locations only when there is a benefit in terms of performance.

To avoid oscillations and to take costs of migration into
account, we set thresholds (the δ parameter) to dampen our
system. In the future, we plan to make this parameter δ a
function of migration cost of moving from one device to
another device and the loads on the devices.
Migration among devices of different speeds are considered

earlier in AutoRAID [1] and in storage systems based on disk
and tape [3], [7], [8], [18], [19].
In this paper, we considered several allocation policies:

initially all the data on flash, all the data on disk, striping,
and allocation partially determined by the observed device
performance characteristics. Random allocation has been pro-
posed by others [2], [11] to achieve load balancing with
heterogeneous devices. We will consider random and other
allocation schemes that employ file system or application level
hints, in the future.
We plan to integrate our online migration with a system

level block placement optimization strategies that are imple-
mented less frequently (e.g., once a day). Strategies for seek
optimization of blocks on disk device have employed such
strategies before [24], [25].
We also plan to evaluate our migration policy in more

diverse workloads and test it on a wider set of flash devices
and different capacity configurations of flash and disk. We plan
to control the token generation rate, in the future, based on the
observed loads and utilizations of devices in the system.
Our results indicate that it is possible to detect the read/write

access patterns and the request sizes to migrate the blocks to
the appropriate devices to improve the device performance in
a hybrid system. The measurement-drive approach is shown to
be flexible enough to adapt to different devices and different
workloads. We expect the hybrid storage systems to provide
significant performance improvements as flash drives improve.

VII. CONCLUSION
In this paper, we studied a hybrid storage system employing

both flash and disk drives. We have proposed a measurement-
driven migration strategy for managing storage space in such a
system in order to exploit the performance asymmetry of these
devices. Our approach extracts the read/write access patterns
and request size patterns of different blocks and matches
them with the read/write advantages of different devices. We
showed that the proposed approach is effective, based on
realistic experiments on a Linux testbed, employing three
different benchmarks. The results indicate that the proposed
measurement-driven migration can improve the performance
of the system significantly, up to 50% in some cases. Our
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Process 1 Process 2
Transactions Read Write Transactions Read Write

/sec Throughput Throughput /sec Throughput Throughput
Transcend-Hybrid (Striping) 17 3.19M 434.88K 17 3.19M 434.69K

Transcend-Hybrid (Migration-1) 18 3.35M 449.43K 17 3.33M 449.75K
Transcend-Hybrid (Migration-2) 19 3.47M 461.86K 18 3.45M 460.23K
MemoRight-Hybrid (Striping) 25 5.39M 610.72K 25 5.33M 602.92K

MemoRight-Hybrid (Migration-1) 26 5.69M 644.48K 26 5.67M 642.35K
MemoRight-Hybrid (Migration-2) 33 5.91M 740.05K 30 6.38M 722.17K

2-Harddisk 24 5.15M 583.10K 24 5.13M 580.32K
TABLE II

PERFORMANCE OF DIFFERENT SYSTEMS WITH POSTMARK WORKLOAD. THROUGHPUT IS IN BYTES/SECOND. THE LOWER BOUND OF THE FILE SIZE IS
500 BYTES, AND THE UPPER BOUND IS 500,000 BYTES.

study also provided a number of insights into the different
performance aspects of flash storage devices and allocation
policies in such a hybrid system. Our work showed that
the read/write characteristics of the workload have a critical
impact on the performance of such a hybrid storage system.
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