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Abstract

A refined heuristic for computing schedules for gossiping inthe tele-
phone model is presented. The heuristic is fast: for a network with n
nodes andm edges, requiringR rounds for gossiping, the running time is
O(R·n · logn ·m) for all tested classes of graphs. This moderate time con-
sumption allows to compute gossiping schedules for networks with more
than 10,000 PUs and 100,000 connections. The heuristic is good: in prac-
tice the computed schedules never exceed the optimum by morethan a few
rounds. The heuristic is versatile: it can also be used for broadcasting and
more general information dispersion patterns. It can handle both the unit-
cost and the linear-cost model. A second heuristic, is less versatile, but by
refined search techniques it can tackle even larger problems. Together these
heuristics lead to strongly improved bounds for gossiping and broadcasting
on many of the most important interconnection networks suchas shuffle-
exchange networks, butterflies and pancakes.

1 Introduction

Gossiping. Collective communication operations occur frequently in parallel
computing, and their performance often determines the overall running time of an
application. One of the fundamental communication problems isgossiping(also
called total exchange or all-to-all non-personalized communication). Gossiping is
the problem in which every processing unit,PU, wants to send the same packet to
every other PU. Said differently, initially each of then PUs contains an amount of
data of sizeh, and finally all PUs know the complete data set of sizeh·n. Gossip-
ing appears in all applications in which the PUs operate autonomously for a while,
and then must exchange all gathered data to update their databases. Many aspects
of the problem have been investigated for all kinds of interconnections networks
[2, 4, 5, 6, 10, 14, 18]. We focus on networks with a known but not necessarily
regular structure. Such networks may represent a set of nodes in the internet, the
servers of a banking institution or the processors of a parallel computer.



Heuristics. In this paper we present two heuristics for constructing gossiping
schedules and our experiences with them.

The matching heuristiccombines simplicity and versatility and gives very
good performance. It can handle both the unit-cost and the linear-cost model
(all definitions are given in Section 2) and all kinds of initial packet distribu-
tions. Particularly, it is also suited for computing broadcasting schedules. The
matching heuristic operates in rounds. In each round, it constructs a maximum
weighted matching of the graph underlying the interconnection network. The
pairs of matched PUs communicate. The non-trivial part is how to set the weights
so that the gossiping time is minimized. In the linear-cost model, one also has to
determine how much and which data is going to be communicated. Other inter-
esting aspects are the value of look-ahead, and whether one might also compute
approximate matchings without incurring performance losses.

Thecoloring heuristicworks differently: initially a small set of matchings is
constructed, and then schedules composed of these matchings are tested. Basi-
cally, the algorithm performs an exhaustive search throughall possible schedules,
but the order in which the schedules are tested is optimized and many less promis-
ing schedules are pruned out. In principle the coloring heuristic can be applied to
any network, but it is most useful forg-regular networks that allow ag coloring:
a decomposition of all edges ing perfect matchings.

Previous Work. Heuristics have been applied for computing communication
schedules since many years [17]. The matching heuristic hasbeen applied to sev-
eral communication problems by Fraigniaud and Vial [7, 8, 9]. Though the un-
derlying idea is the same, our paper goes beyond [7] in many respects. In [7], the
matchings are computed for graphs that are weighted by considering the number
of packets that may be transferred over each edge (for point-to-point communi-
cation, in [8] a modified weighting is applied to keep packetson a shortest path).
This is a good idea, in Section 4, we consider it under the namepotential ap-
proach, but often substantially better results can be achieved by attributing the
edge weights according to more global criteria, as is done byour BFS approach.
Furthermore, we introduce a quite sophisticated techniquefor gossiping in the
linear-cost model; we consider the implications of using approximate matchings;
we study the value of look-ahead. The efficiency of our implementation makes
the heuristic effective for large graphs, and allowed us to perform sets of ex-
periments that are sufficiently large to draw meaningful conclusions. All this is
complemented with the coloring heuristic and the discoveryof many new results
for important classes of networks, suggesting new theoretical research.

Benchmarks. Gossiping in the unit-cost model has been studied for numerous
networks. However, (almost) matching lower and upper bounds have been found
only for few classes of graphs underlying the network [12, 3]. For the linear-cost
model even fewer results could be found in the literature. Asour algorithm is close
to optimal, we need very accurate estimates to evaluate its precise performance.



We have done two things. In the first place, we have written an exponential-time
exhaustive search. This program gives optimal gossiping schedules for graphs
with up to 20 nodes and 30 edges. In the second place, we have studied linear-
cost gossiping in detail for meshes and tori. The derived schedules are almost
optimal, even for odd side lengths. As far as we know, these results are new.

graph n m LW UP HR time
Mesh80×80 6400 12640 158 158 158 22800
Hypercube13 8192 53248 13 13 13 8839
Knödel13,8192 8192 53248 13 13 15 10571
Butterfly10 10240 20480 16 25 24 11021
DeBruijn13 8192 16381 18 41 25 9144
Pancake7 5040 30240 13 17 16 2688
Random10000,80000 10000 80000 14 ?? 17 35393

Table 1: Quality of the matching heuristic for graphs taken from various classes.
From left to right the columns give the number of PUs, the number of connec-
tions, the lower bound, the best-known upper bound, the value computed by our
algorithm and the time in seconds it took to compute the schedule. All results are
given for the unit-cost model.

Results. We thus obtained a set of benchmarks containing small graphs,
meshes, tori, complete graphs, hypercubes, Knödel graphs, cube-connected-
cycles, shuffle-exchanges, butterflies, de Bruijn graphs, star and pancake graphs,
and random graphs. A small selection of the results obtainedwith the matching
heuristic are given in Table 1. The graph properties of theseclasses are so diverse,
that we believe that if a heuristic performs so well for all ofthem, it will also per-
form well for graphs that cannot be analyzed theoretically.Generally, the number
of rounds required by the matching heuristic appears to be away from the opti-
mum by some slowly increasing number. On a normal workstation, a schedule for
a graph with a few thousand nodes can be computed in less than one hour.

The coloring heuristic has been applied to cube-connected-cycles, butterflies,
shuffle-exchanges, de Bruijn graphs, star and pancake graphs. It is much faster
than the matching heuristic: even for graphs with thousandsof nodes a solution is
often found in less than one minute. A great advantage of thisapproach is that the
schedules can be represented concisely.

The newly obtained results show that some of the theoreticalconstructions are
far from optimal. For gossiping on a shuffle-exchange and de Bruijn networks of
orderk, the current upper bounds are 4·k−3 and 3·k+2, respectively, [12]. Our
algorithm suggests that the true values are⌈21

2 ·k⌉−3 and 2·k−2, respectively.
For most cube-connected-cycles and for all butterfly and pancake graphs the con-
structed schedules improve the former ones [12, 3] by several rounds. Also for
broadcasting we find many new results.



2 Preliminaries
We are studying interconnection networks withn PUs andm connections. The
network will be identified with its underlying graph: PUs correspond to nodes
and connections to edges. The PUs can send/receive packets to/from the PUs it is
connected to, itsneighbors.

Gossipingcan be described as follows: initially each PU holds a certain
amount of private information; by communicating, the PUs should establish the
situation in which all PUs know all information. The complete specification of
the times each of the PUs is communicating with each of its neighbors is called
agossiping schedule. Broadcastingis the simpler problem in which initially only
one PU holds a piece of information that must be made known to all other PUs.

In the telegraphmodel a PU can be involved in only one communication op-
eration: either receiving or sending, but not both. In thetelephonemodel, a PU
can communicate with only one of its neighbors at a time, but it can both send and
receive during this communication. In this paper we assume the telephone model,
though our heuristic might easily be extended to the telegraph model.

Cost Models. Next to the communication model, the cost model is of great im-
portance. In theunit-cost modelit is assumed that it takes one time unit to start-up
communication with a neighbor, but that the actual data transfer takes negligible
time. In this case, it is natural to assume that all communication is performed in
discreterounds, and for a given graph the goal is to determine a gossiping sched-
ule that minimizesR, the required number of rounds. For large data sets or slow
connections, this model may not be realistic. A two-parameter model gives a more
accurate description of the actual communication behavior: transferring a packet
of sizes to a neighbor takes 1+ τ · s time. τ is the time it takes to transfer one
packet divided by the start-up time. Under thislinear-cost model, it is not always
optimal to exchange the maximum amount of information. Our heuristic is taking
care of this. Denoting the number of packetsPUi is sending in roundt by si,t , the
goal is now to determine a gossiping schedule that minimizes

T = R+ τ · ∑
t<R

max
i<n

{si,t}.

rounds, S= ∑t<Rmaxi<n{si,t} is called the number ofsteps.

Graph Classes.We are considering graphs of several classes. Here we mention
only some fundamental parameters. Definitions and more details can be found in
[6, 12, 3, 15].n andm denote the number of nodes and edges,LW andUP the
current lower and upper bounds forR.

Mesha×b: 2-dimensionala×bmesh.n= a·b, m= 2·a·b−a−b, LW= a+b−2.
Torusa×b: 2-dimensionala×b torus.n = a ·b, m= 2 ·a ·b, LW= (a+b)/2.
Hypercubek: k-dimensional hypercube.n = 2k, m= k/2 ·2k, LW= k, UP = k.
Knödel∆,k: Knödel graph.n = k, m = k ·∆/2, LW = ⌈logk⌉, UP = ⌈logk⌉, for

∆ = ⌊logk⌋.



CCCk: k-dimensional cube-connected-cycles.n = k · 2k, m = 3/2 · k · 2k, LW =
⌈5 ·k/2⌉−2, for k≥ 5, UP = 5 · ⌈k/2⌉.

SEk: k-th shuffle-exchange graph.n = 2k, m= 3/2 ·2k−3, for k even, andm=
3/2 ·2k−2, for k odd,LW= 2 ·k−1,UP = 4 ·k−3.

Butterflyk: k-th butterfly.n = k · 2k, m = 2 · k · 2k, LW = 1.741· k, for k >> 1,
UP = 5 · ⌈k/2⌉.

DeBruijnk: k-th de Bruijn graph.n= 2k, m= 2·2k−3,LW= 1.317·k, for k>> 1,
UP = 3 ·k+2.

Stark, Pancakek: k-th star or pancake graph.n = k!, m= (k− 1) · k!, UP = k+

∑k−1
i=3⌈logi⌉, for k≥ 3.

Randoma,b: Random graph fromGa,b. n = a, m= b, LW= ⌈log2a⌉+odd(a).

Here odd(n) = n mod 2. Bounds for gossiping in the linear-cost model are
rare. Obviously, on a network withn PUs, every PU must receiveh· (n−1) pack-
ets. Thus, for any schedule,S≥ h · (n− 1). BecauseR≥ ⌈logn⌉+ odd(n) [13],
the following trivial lower bound holds for allh, τ and any network:

T ≥ ⌈logn⌉+odd(n)+ τ ·h · (n−1). (1)

3 Gossiping on Meshes and Tori
In a d-dimensional mesh the PUs are laid out on ad-dimensional grid. Each PU
is connected with its at most 2· d neighbors. A torus is a mesh with additional
‘wrap-around’ connections, connecting the PUs on the outsides with the PUs on
the opposite outside. Meshes and tori are so simple, that almost optimal schedules
can be derived for them even for the linear-cost model. In a different context
gossiping on meshes has been studied in [11]. A path (one-dimensional mesh)
with n PUs is denoted byPn, a cycle (one-dimensional torus) byCn, an a× b
mesh byMa,b and ana×b torus byTa,b. The PUs are indexed by their positions
in the grid. The indices for every dimension start with 0.

Lemma 1 For gossiping on paths and cycles of length n,

T(Pn) = n−1+ τ ·h · (2 ·n−3), for every even n≥ 2,

T(Pn) = n+ τ ·h · (2 ·n−3), for every odd n≥ 5,

T(Cn) = n/2+ τ ·h · (n−1), for every even n≥ 2, (2)

T(Cn) ≤ ⌊n/2⌋+2+ τ ·h · (n+1), for every odd n≥ 3. (3)

(3) shows that, on a cycle of even length, gossiping can be performed optimally:
both the number of rounds and the number of steps are minimal.For the paths the
number of steps is almost twice as large as the lower bound.



Lemma 2 For gossiping on a×b meshes and tori,

T(Ma,b) ≤ a+b−1+ τ ·h· (a·b+a−1), for a,b≥ 2 even, (4)

T(Ma,b) ≤ a+b−1+ τ ·h· (a·b+3/2·a−3), for a≥ 2 even, b≥ 3 odd,

T(Ma,b) ≤ a+b+ τ ·h · (2 ·a·b−a−3), for a,b≥ 5 odd, (5)

T(Ta,b) = a/2+b/2+ τ ·h· (a ·b−1), for a,b≥ 2 even, (6)

T(Ta,b) ≤ ⌊a/2⌋+b/2+2+ τ ·h· (a ·b+1), for a≥ 3 odd, b≥ 2 even, (7)

T(Ta,b) ≤ ⌊a/2⌋+ ⌊b/2⌋+4+ τ ·h· (a·b+2·a+1), for a,b≥ 3 odd. (8)

Proof: All schedules consist of two phases, In phase 1 the gossipingis performed
within the rows. In phase 2, gossiping is performed in the columns. The cost of
these phases is estimated with Lemma 1. For tori the rows and columns constitute
cycles, for meshes they are paths. For meshes, ifa is even, then phase 2 is per-
formed in pairs of adjacent columns that together constitute cycles of length 2·b.
If also b is even, the same applies to phase 1. Whena is even, either two or four
(depending on the parity ofb) PUs on each cycle hold the same information at the
beginning of phase 2. Thus, for the analysis of phase 2, we mayassume packets
of sizeh ·a/2. If a andb are even, then the first round of phase 2 is omited.

The result of (6) is optimal.R is always optimal or close to optimal. Only for
meshes witha andb odd the number of steps is a factor two too large. For 3×3
meshes we have an explicit construction withR= 5 andS= 11, which is optimal
for all τ ≤ 1. In the following we describe an algorithm that gives a better trade-
off between the numbers of rounds and steps for general odda andb: both the
number of steps and the number of rounds can be made asymptotically optimal.

k=5

Figure 1: A 25×11 mesh divided into 12 strips. All strips contain an even number
of nodes except for the leftmost strip with 27 nodes. The constructed cycles have
length 26 at most and finish gossiping within 13 rounds. The nodes drawn as small
circles are idle for 4, 2, 2, 2 and 3 rounds respectively.



Lemma 3 For gossiping on a×b meshes, a and b odd, the following result can
be achieved for all3≤ k < b:

T(Ma,b) ≤ a+b+ ⌈k/2⌉+ τ ·h·a· (b+b/k+k/2+7/2).

Proof: We use vertical strips of width 2 for most of their height and width 3 for
some consecutive rows. The leftmost strip contains 2·b+k nodes with 3≤ k < b
odd. All other strips are smaller with an even number of nodes. In each strip we
gossip on cycles of even length for(2 ·b+ k−1)/2 = R′ rounds. The routing in
the leftmost strip is most critical. The gossiping in the other strips can be tuned so
that it has no impact on the duration of the rounds.

Each node in the leftmost strip is starting with a superpacket of sizeh ·a/2.
The cycle is changing, usingk different idle nodesvi , 0≤ i < k. Thevi are idle
for l i successive rounds,v0 first, thenv1, and so on. The idea is illustrated in
Figure 1. Thel i are chosen so, that∑i l i = R′, ⌊R′/k⌋− 1 ≤ l i ≤ ⌈R′/k⌉+ 1 for
all k and l i even for 0≤ i < k− 1. If nodevi becomes idle in roundr, then the
two superpackets it received in roundr −1 from its neighborv are resent byv to
vi−1 in roundr + 1. This causes a delay of two rounds for all packets passingv
in this direction. Because alll i are even fori < k−1, only packets traveling in a
counterclockwise sense are concerned. Thus, only nodes in column 1, and none
of thevi , will be short of some packets due to this delay. They can be informed
by adjacent nodes from column 0 in one additional round whichis also used to
supply thevi with the at most 2· l i superpackets they have missed. Phase 1 takes
a+ τ ·h· (2·a−3) time. The firstR′ rounds of phase 2 requirea/2· (2·b+k−2)
steps, the additional rounda/2 ·2 ·maxi{l i} ≤ a · (b/k+5/2) steps.

Fork =
√

b, the
√

b/2 additional rounds as well as thea · (3/2 ·
√

b+7/2) addi-
tional steps are lower-order terms. The results can be immediately generalized to
higher dimensional meshes and tori:

Lemma 4 For gossiping on d-dimensional a1×·· ·×ad meshes and tori,

T(Ma1,... ,ad) ≤
d

∑
i=1

ai −d+1+ τ ·h · (
d

∏
i=1

ai +a−1), all ai ≥ 2, even,

T(Ta1,... ,ad) ≤
d

∑
i=1

ai/2+ τ ·h · (
d

∏
i=1

ai −1), all ai ≥ 2, even.

4 The Matching Heuristic: Description and Analysis
4.1 Description

Given a undirected graph representing the underlying network, the heuristic com-
putes a gossiping schedule, which for each round specifies the active edges and
the routed packets. For each round, based on the current datadistribution in the
network, the heuristic first determines the edges that are going to be used. Then,



for the linear-cost model, it selects the packets that are going to be transferred.
Finally, the data distribution as it arises after routing the selected packets is deter-
mined. Such rounds are repeated until the gossiping has beencompleted.

In the considered telephone model, a node can exchange data with only one
neighbor per round. Thus, for every round, the set of active edges must form
a matching of the graph. Actually, the heuristic constructsa maximum-weight
matching for a graph whose edges are weighted as a function ofthe packet dis-
tribution in the network: the more useful it appears to use anedge, the higher its
weight. In the unit-cost model, there is no limit on the number of packets that
can be exchanged during a round between two communicating PUs. On the other
hand, in the linear-cost model, for each roundt its number of stepsst has to be
fixed. Choosingst equal to the maximum number of packets any PU wants to
transfer to a matched neighbor might be inefficient, becausemany other PUs may
run out of packets in fewer thanst steps. Choosingst too small is inefficient, be-
cause then the start-up costs are not amortized optimally. Thus,st must be chosen
as a trade-off between extra start-up costs and wasted transfer capacity. Oncest

has been fixed, we have to decide for each active edge which packets to transfer.
For this purpose each packet is assigned a priority and the atmostst edges with
highest priority are transferred. The operations performed in each round can be
summarized as follows:

Algorithm ROUND HEURISTIC

1. Compute the weights for all edges.

2. Construct a maximum weighted matching. Matched edges are active in this
round.

3. In the linear-cost model: Fix the number of steps for this round.

4. In the linear-cost model: For each active edge, choose the set of packets to
be transferred.

5. Calculate the packet distribution as it arises after transferring all selected
packets.

The crux of the heuristic lies in step 1: how to set the edge weights? We use two
different methods.

Potential Approach. The weight of an edge(v,w) is set equal to itspotential,
defined as the number of packets known by eitherv or w, but not by both of them.

Lemma 5 Using the potential approach, calculating the edge weightsof a graph
with n nodes and m edges takesO(n ·m/ logn) time andO(n2/ logn) space.

BFS Approach. The potential approach is simple, requires little storage and is
very fast, but as a pure local, greedy approach it lacks a global view. The Breadth-
First-Search (BFS) approach, though far more expensive, ismuch better.



Definition 1 Thedispersion regionDR(p,t) of a packet p is the set of nodes that
know p at the beginning of round t (this is a connected subgraph). For a node v,
distv(p,t) denotes the shortest distance in the graph from v to a node w∈DR(p,t).
The set ofborder-crossing edgesbce(p,t) is defined as bce(p,t) = {(v,w)∈E| v∈
DR(p,t) and w 6∈ DR(p,t)}. For a node v6∈ DR(p,t), bcev(p,t) consists of all
edges in bce(p,t) that lie on a shortest path from DR(p,t) to v. See Figure 2.
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Figure 2: The dispersion regionDR(p,t) for some packetp. The edges ofbce(p,t)
are drawn bold.distv(p,t) = 3 andbcev(p,t) = {e1,e2}.

The weight attributed to an edge is given as the sum of the contributions by
each of the data packetsp. Only border-crossing edges can disseminatep further
and will be provided with weight. Consider an edgee∈ bce(p,t). How useful ise
for the rapid dissemination ofp? Packetp should preferably be routed on shortest
paths fromDR(p,t) to all other nodes: if, for a nodev, an edgee∈ bcev(p,t)
is chosen to be active in roundt, thendistv(p,t + 1) = distv(p,t)− 1. If e lies
on many of these shortest paths it is more useful. The largerdistv(p,t) is, the
more priority should be given to forwardingp towardsv. These criteria motivate
the following choice of the weight, involving parametersDist ExpandNumExp,
that is attributed by all nodesv 6∈ DR(p,t) to every edgee∈ bcev(p,t):

weight(v, p,t) =
distv(p,t)Dist Exp

|bcev(p,t)|NumExp
, (9)

In roundt, for all data packetsp, we have to computedistv(p,t) andbcev(p,t)
for all nodesv. We use a modified breadth first search algorithm, so nodes arecon-
sidered in order of increasingdistv(p,t). The edges inbcev(p,t) are maintained in
sorted lists and computed as follows. For all nodesv∈ DR(p,t) the setbcev(p,t)
is empty. For nodesv with distv(p,t) = 1, bcev(p,t) consists of all incident edges
that connectv to a node inDR(p,t). For largerdistv(p,t) the algorithm computes
the union of the setsbcewi (p,t), for all nodeswi adjacent tov with distwi (p,t) =
distv(p,t)−1. If the number of thesewi equalsj and∑i |bcewi (p,t)|= l , then this
union can be computed inO(l ·min{log j, log(m· j/l)+1}). Thus, the calculation
of thebcev(p,t) can easily be incorporated into the BFS search.



Lemma 6 Computing the edge weights for a graph with n nodes and m edgesus-
ing the BFS approach without considering the time to maintain the sets of border-
crossing edges bcev(p,t) takesO(n · (n+m)) time andO(n2/ logn) space. Com-
puting the bcev(p,t) takesO(n3 ·m) time andO(n ·m) space.

Proof: The modified BFS algorithm is called for alln packets. Without main-
taining thebcev(p,t) the time for one call isO(n+ m). Each of then dispersion
region can be maintained withn bits. For a nodev, bcev(p,t) is the union of at
mostn sets with at mostm elements each. This computation takesO(n ·m) time.
Thebcev(p,t) are computed for allp andv, giving a running time ofO(n3 ·m).
At any given time, at mostn setsbcev(p,t) are stored, each of maximal sizem.
Working with bit arrays, a factor logn is saved for time and storage.

Linear-Cost Model. In step 2 ofROUND HEURISTIC, a maximum weighted
matchingM is constructed that determines the active links. Thereupon, in the
unit-cost model, a PU sends all packets that are new to the receiver. In the linear-
cost model, the packets that are going to be routed along the active links are
determined in step 3 and 4. We now describe how this is done.

Let P (v) denote the set of packets known by a nodev, and let
TransferVolume(s,M ) be the number of packets that can be sent inssteps along
all edges inM :

TransferVolume(s,M ) = ∑
(v,w)∈M

min{s, |P (v)\P (w)|}+min{s, |P (w)\P (v)|}.

We want to maximize the number of transferred packets per cost unit. Letsopt be
the value ofs, 1≤ s< n for which the expressionTransferVolume(s,M )/(1+
τ ·h·s) is maximized. This valuesopt can be computed inO(n) time. We limit the
round tosopt steps.sopt depends onτ, the ratio of transfer costs to start-up costs:
larger start-up costs result in longer rounds and vice versa.

Now we have to choose the packets that are going to be transferred. This is
done by assigning weights to the packets and then picking foreach PU the at
mostsopt packets with the highest weights larger than zero. For a nodev with
e= (v,w) ∈M , a data packetp it is holding is given the weight that is assigned to
e during the BFS search forp. If the edge weights are stored for each of the data
packets, then these weights can be determined without additional work. However,
this may requireΩ(n ·m) storage. It is better to compute the packet weights only
after the active edges have been selected. In this way, less thann weights must be
stored for each of then/2 edges inM .

4.2 Refinements and Extensions

Look-Ahead. A more refined approach considers several matchings for a round,
computes the resulting distribution of packetsl rounds later, compares them and



then chooses the most promising matching. We use two methodsfor generating a
set of matchings. In step 2,ROUND HEURISTIC constructs a maximum weighted
matchingMopt. To obtain a suboptimal matching we may randomly choose a small
number of edges fromMopt, temporarily set their weights to 0 and compute a
new weighted matching. Another method uses different parameters for (9) which
leads to different edge weights. Unfortunately, there is noguarantee that also the
resulting matchings are different, and the cost for recomputing the edge weights
is high. Starting with several possible matchingsM1, . . . ,M j , we obtain packet
distributionsD1, . . .D j afterl rounds. We should select the matchingMi that leads
to the packet distributionDi for which the gossiping can be finished fastest. For
this selection, we should define a function that attributes some measure ofcostto
packet distributions. For a packet distributionD, distv(p,D) denotes the distance
in the graph from the nodev to the dispersion region of the data packetp underD.
For a parameterDist Exp′, that may be different fromDist Exp in (9), we define
the following function, that can be evaluated inO(n · (n+m)) time:

cost(D) = ∑
p<n

∑
v<n

distv(p,D)Dist Exp′ .

Approximate Matching. Since constructing the maximum weighted matching
in step 2 consumes up to 60% of the running time, we are interested in approxima-
tion algorithms with a smaller time complexity. We use theO(m· logn) algorithm
from [1].

Broadcasting. The heuristic is also suitable for computing broadcasting sched-
ules. The algorithm is the same but now the distribution of only one data packet
determines the edge weights. With the potential approach, all edge weights are
set to 0 or 1. With the BFS approach optimal results can achieved for many graph
classes. Since the edge weights are computedn times faster, the computation of
the maximum weighted matching dominates the running time. Fortunately, even
the matching is much easier, since in many cases there are only few edges with
non-zero weights, particularly during the first rounds. As also the storage require-
ments are much smaller than for gossiping, broadcasting schedules can be com-
puted for graphs with up to one million nodes.

5 The Matching Heuristic: Practical Behavior
5.1 Running Time

In order to analyze the running time, we have tested graphs with up to 16384
nodes from numerous classes of graphs (in total we performed93 measurements,
at least seven for every class, except for pancake and star graphs). We focus on
the unit-cost model: for the linear-cost model, the heuristic takes at most twice
as long. The total time consumptionTtotal has two main contributions: the time
TM for constructing the maximum weighted matchings; and the time TH for all



the rest.TM varies considerably, but the matching can be viewed as an external
routine. Therefore, it is not unreasonable to focus onTH . Inspired by theoretical
considerations, we have tested several functions that might describeTH as a func-
tion of n, m and the number of required roundsR. Somewhat surprisingly, for all
classes of graphs,TH can be approximated to within a few percent by a single
function of just two parameters:

Tapp(n,m,R) = α ·R·n ·m· log(n)+ β ·R·n2. (10)

For all classes of graphs,β has more or less the same value. On the PC we used
it was approximately 2·10−6. The values ofα ranged from 10−8 for meshes, to
10−7 for de Bruijn networks.

5.2 Quality of Computed Schedules

The quality of the heuristic heavily depends on the choice ofthe parameters. Par-
ticularly important isDist Exp from (9) which determines the influence of the
distance between nodes and dispersion regions. We used values in the range from
0.25 to 60. The optimal value depends on the the graph class, thesize of the graph
and the cost model. For larger graphs larger values ofDist Exp tend to give bet-
ter results. For the linear-cost model, values between 0.5 and 2.5 are suitable.
Better results are achieved whenDist Expdecreases from round to round. When
using approximate matching in step 2, then the optimum ofDist Exp is usually
higher than for exact matching. For meshes, the best choice is Dist Exp= 4. For
butterflies, the best choice isDist Exp= 2.

Results for the unit-cost model are given in Table 1 and Table4. For meshes,
tori and hypercubes the computed schedules are optimal. Generally, for all cases
in which the lower bound is sharp, our heuristic comes ratherclose to it. Studying
the developments for the graph classes in Table 4 gives the impression that with
increasingR the heuristic occasionally looses a round.

τ = 2.0 τ = 0.5 τ = 0.1 τ = 0
graph class n m R S R S R S R S
Mesh20×20 400 360 62 497 49 517 40 612 38 2713
Torus21×21 441 882 34 488 30 486 28 528 23 1023
CCC7 896 1344 24 902 22 904 23 943 20 1139
SE10 1024 1533 63 2047 50 2051 37 2073 23 3933
Butterfly7 896 1792 39 1044 33 1107 22 1110 17 1229
DeBruijn10 1024 2045 46 1221 39 1270 31 1513 18 2733
Random1000,8000 1000 8000 19 1009 18 1014 16 1028 13 1281

Table 2:RandSvalues achieved by the heuristic for variousτ values in the linear-
cost model for graphs taken from various classes.

For the linear-cost model we found the results in Table 2. These are typical
examples, not the best we could find. The adaptiveness of the heuristic is exposed



clearly: with decreasingτ the number of steps becomes less important and grad-
ually increases. At the same time the number of rounds decreases. Comparing
the results forτ = 0 andτ = 0.1, shows that oftenScan be reduced considerably
without increasingR by much. Apparently, computing schedules for the linear-
cost model is much harder than for the unit-cost model: the deviations from the
optimum values (as far as known) are considerable. For example, for a 20× 20
mesh, the heuristic finds schedules withT(τ = 2) = 1056,T(τ = 0.5) = 308,
T(τ = 0.2) = 153,T(τ = 0.1) = 102, respectively. All of these are about 25%
more than required by the schedule underlying (4), which hasR= 39 andS= 419
for all τ. All results were computed with the BFS approach. For Knödel, Star and
Pancake graphs,S is optimal for allk independently ofτ. For cube-connected-
cycles and butterfliesS is optimal for all evenk.

5.3 Refinements and Extensions

Look-Ahead. Look-ahead is most useful for small graphs. Probably, the reason
is that, even though the number of matchings that lead to an optimal gossiping
grows with increasing graph sizes, the ratio to all possiblematchings is rapidly
decreasing. So it becomes much harder to find them by randomlytesting subop-
timal matchings. One example for an improvement using look-ahead is the 5×5
mesh. This is the only instance of meshes for which the simpleheuristic was
not able to find an optimal schedule. For random graphs with 30nodes and 60
edges, look-ahead improves the result for about 40% of the graphs. We tested
a maximum of ten different matchings per round, computed another two rounds
look-ahead using only the optimal matching and compared theresulting distri-
butions of packets. Sometimes the result with look-ahead isworse than without.
This is due to the fact, that even when,cost(D1) < cost(D2), for two distributions
D1 andD2, it may nevertheless take longer to completeD1 thanD2.

Approximate Matching. Using approximative methods, the time for construct-
ing the weighted matching decreases from about 30% to less than 1% of the over-
all running time. The quality of the schedules depends on thegraph class. The
larger the graphs, the bigger the loss of quality. For meshesof almost all sizes
the calculated schedules are still optimal or at most one round away from it. For
shuffle-exchange graphs we loose at most one round, for de Bruijn graphs one
or two. Generally, the differences are not big, but if performance is important,
then exact matching is to be preferred. Approximate matching is particularly in-
teresting, when the weighted graph is constructed with the much faster potential
approach. Approximate matching is even more suited for broadcasting: the edge
weights are computed inO(m+ n) per round, much less than the time for exact
matching. Furthermore, for broadcasting, the quality of the computed schedules
is almost the same.

Broadcasting. Broadcasting schedules cannot only be computed much faster
than for gossiping, the structure of the problem is also so much simpler, that the



k CCCk SEk Butterflyk DeBruijnk
Opt HR Opt HR LB UB HR LB UB HR

3 6 6 5 5 5 5 5 4 6 4
4 9 9 7 7 7 7 7 6 8 5
5 11 11 9 9 8 9 9 7 9 7
6 13 13 11 11 10 11 10 8 11 8
7 16 16 13 13 11 13 12 10 12 9
8 18 18 15 15 13 15 14 11 14 11
9 21 21 17 17 15 17 16 12 15 12

10 23 23 19 19 16 19 17 13 17 14
11 26 26 21 21 18 21 19 15 18 15
12 28 28 23 24 19 23 22 16 20 17
13 31 31 25 26 21 25 23 18 21 18
14 33 33 27 28 23 27 24 19 23 20

Table 3: Broadcasting in four different graph classes. Given is the best result of the
heuristic together with the current lower and upper bound, or the optimum value,
if they are identical. ForSEk andDeBruijnk, the results hold for broadcasting from
node 0 and several other nodes. ForCCCk andButterflyk the results hold for any
source node. Italic printing indicates that the number matches the best previously
obtained value, bold printing indicates that the number improves the best previous
value. The “lower bounds” are not really lower bounds: they are computed with
the formulas in [12], which only hold asymptotically. Thus it may happen that for
DeBruijn7 the heuristic requires fewer rounds than given by the lower bound.

results are much better. Some results are given in Table 3. For cube-connected-
cycles and for shuffle-exchange graphs, optimal schedules are known, so we could
not hope to improve them. Nevertheless, it is very positive that our heuristic, in
a matter of minutes!, finds almost optimal results. For butterflies and de Bruijn
graphs, our heuristic improves the former constructions bya few rounds.

6 The Coloring Heuristic
The coloring heuristic is an alternative general gossipingheuristic. Initially,
the computer or the user constructs a setS of p matchingsMi , 0 ≤ i <
p, that appear suitable for gossiping. Then the program testsfor sequences
(Mi0,Mi1, . . . ,MiR−1) whether this is a gossiping schedule, until a solution has
been found. By making the right choice ofS , by pruning most of the sequences
and by enumerating the remaining ones in a non-trivial order, this simple idea
can be turned into an approach that beats the matching heuristic in speed and
performance for several classes of graphs. The coloring heuristic has also been
implemented for broadcasting. It is remarkably fast, but itcannot compete with
the matching heuristic in quality.



The program essentially consists ofR nested loops, implemented recursively.
At the top level, we start with one packet in every node. The operations in the
loop at levelj, 0≤ j <= R−2, can be summarized as follows:

1. Consider allMi , 0≤ i < p, and filter out those that appear useless.

2. Sort the surviving matchings according to their estimated usefulness.

3. Apply the highest ranked matching that has not been tried before to the
current data set and proceed to levelj +1.

At level R−1 the resulting data set is tested for completeness.

Choosing the Matchings. A good idea is to perform a minimum edge coloring
of the graph (whence the name of the heuristic) and then completing the sets of
edges with the same color to a maximal cardinality matching.Sometimes fewer
matchings will do, sometimes one should better add some more, but this approach
gives the smallest number of matchings that together contain all edges at least
once. Clearly this approach is most suited for regular graphs of degreeg that
allow a coloring withg perfect matchings. Examples are cube-connected-cycles,
butterflies, star and pancake graphs.

Optimizations. If, for given S andR, solutions exist at all, then typically there
are many of them. The goal is to minimize the time for finding one. So, we should
focus on parts of the search space where solutions lie most densely, pruning out
less promising sequences, even if we may miss some solutionsby this. An ele-
mentary observation is that we should haveMi j 6=Mi j−1, for all 1≤ j < R. This
reduces the number of sequences frompR to p · (p−1)R−1. For most classes of
graphs it was effective to also imposeMi j 6=Mi j−2, for all 2≤ j < R. This reduces
the number of sequences top·(p−1) ·(p−2)R−2. Adding the condition that each
matching occurs at least once in every subsequence ofp+ 1 matchings reduces
the number of sequences even much stronger. In the current implementation the
usefulness of a matching is estimated by the number of packets that it allows to
transfer (as in the potential approach).

7 Discoveries and Hypotheses
The heuristics were applied to regular graphs with known gossiping schedules for
testing their performance. Then it turned out that in many cases the schedules they
find are better than the best schedules in the literature. Allresults that could be
computed in a reasonable amount of time are given in Table 4 and Table 5.

For CCCk, [12] gives an upper bound of 5· ⌈k/2⌉, our coloring heuristic
achieves better for mostk. The results suggest that going fromk to k+1 increases
the number of rounds by 4 ifk is even and by 1 ifk is odd. This would give an
upper bound of 3· ⌈k/2⌉+k. ForSEk, [12] gives an upper bound of 4·k−3. Our
matching heuristic achieves much better. The results suggest that going fromk to
k+ 1 increases the number of rounds by 3 ifk is even and by 2 ifk is odd. This



k CCCk SEk Butterflyk DeBruijnk
LB UB HR LB UB HR LB UB HR LB UB HR

3 7 10 7 5 9 5 5 10 6 4 11 4
4 9 10 9 7 13 7 7 10 7 6 14 6
5 11 15 13 9 17 10 8 15 11 7 17 8
6 13 15 14 11 21 12 10 15 12 8 20 10
7 16 20 19 13 25 15 11 20 16 10 23 12
8 18 20 19 15 29 17 13 20 17 11 26 14
9 21 25 23 17 33 20 15 25 21 12 29 16

10 23 25 25 19 37 23 16 25 22 13 32 18
11 26 30 29 21 41 26 18 30 26 15 35 20
12 28 30 30 23 45 28 19 30 27 16 38 23
13 31 35 25 49 31 21 35 18 41 25
14 33 35 27 53 35 23 35 19 44 28

Table 4: Gossiping in four different graph classes. Given isthe best heuristic result
together with the current lower and upper bound.

would give an upper bound of⌈5/2 · k⌉−3. ForButterflyk, [12] gives an upper
bound of 5· ⌈k/2⌉. Our coloring heuristic achieves somewhat better. The results
suggest that going fromk to k+ 1 increases the number of rounds by 4 ifk is
even and by 1 ifk is odd. This would give an upper bound of 3· ⌈k/2⌉+k−3. For
DeBruijnk, [12] gives an upper bound of 3·k+2. Our matching heuristic achieves
much better. The results suggest that going fromk to k+1 increases the number of
rounds by 2. This would give an upper bound of 2·k−2. Our results forStark and
Pancakek are better than those in [3] (fork = 3,4,5,6,7,8, the best construction
in [3] givesR= 3,6,9,13,17,21, respectively), but it is hard to draw conclusions
from this except for the fact that apparently pancakes are better suited for gos-
siping than star graphs. This means that there cannot be a single general optimal
Caley graph gossiping strategy. In Table 3, for broadcasting, the differences of
the heuristic results with the lower bounds are so small, that they appear that to
be sharp.

8 Schedules and Examples
The matching heuristic constructs explicit schedules. These might be stored and
used for gossiping. However, only for small networks these are suited for human
interpretation. The coloring heuristic produces more insightful results. Before go-
ing in detail we considerPancake4 (see [3] for a definition and the best algorithm)
as an example. The matchings are defined by a 3-coloring: color c, 0≤ c< 3, con-
sists of all edges between node(i0, i1, i2, i3) and the node with the firstc+2 entries
of its index reversed. The coloring heuristic finds four schedules withR= 5 and
S= 23: 02102, 12012, 20120 and 21021. This shows thatPancake4 is a mini-



k CCCk Butterflyk
R Schedule R Schedule

3 7 0120120 6 012320
4 9 012021202 7 0123023
5 13 2020120120210 11 02103231023
6 14 01202120212020 12 012030230123
7 19 2012010201202120210 16 0123012321032310
8 19 0120120212021201212 17 01231023012302132
9 23 01212021202120212021210 21 023120312301230210321

10 25 012012012012021202120212022 023120312301230210321
11 29 0120120120120212021202120212126 01230132012310231203210321
k Stark Pancakek

R Schedule R Schedule
3 3 010 3 010
4 6 012010 5 02102
5 9 012310320 8 01230130
6 13 0123402413203 11 02102432104
7 18 012345024153012540 15 012345021025012
8 22 0123456031526402143506 20 01234560245602456043

Table 5: Schedules computed with the coloring heuristic andthe resultingR and
S for four classes of graphs and variousk.

mum linear gossip graph for 24 nodes. Actually, it is the example given in [6]. In
the following we describe the matchings for the four most interesting classes of
graphs, schedules based on them are given in Table 5.

Cube-Connected-CyclesThe nodes are indexed by two-tuples(i, j), where 0≤
i < 2k, gives the index of thek-cycle on which this node is lying and where 0≤ j <
k, gives the index of this node within its cycle. We will speak of cross edgesfor
the edges between(i, j) and(i ±2 j , j), and ofcycle edgesfor the edges between
(i, j) and(i,( j ±1) modk). We use three matchings covering all edges ofCCCk

exactly once. For evenk,M0 contains the edges between(i,2· j) and(i,2· j +1),
andM1 the edges between(i,2 · j −1) and(i,2 · j).M2 contains all cross edges.
For oddk the matchings must be slightly modified.M0 andM1 each contain⌊k/2⌋
cycle edges: inM0, the nodes(i,k−1) remain unmatched, inM1, the nodes(i,0).
M0 additionally contains the edges between(i,k−1) and(i±2k−1,k−1),M1 the
edges between(i,0) and(i ±1,0).M2 contains all cross edges, except for those
inM0 andM1, plus the edges between(i,0) and(i,k−1).

Butterflies. The nodes are indexed again by two-tuples(i, j), 0 ≤ i < 2k, and
0≤ j < k. The cycle edges are defined as before. The cross edges are nowrunning
from a node(i, j) to (i ±2 j ,( j +1) modk). For evenk,M0 andM1 are taken as
for CCCk.M2 contains the cross edges running from(i,2· j) to (i±22· j ,2· j +1),



M3 the edges from(i,2 · j −1) to (i ±22· j−1,2 · j). For oddk, the matchings are
somewhat mixed up.M0 andM1 contain⌊k/2⌋ cycles edges from each cycle:
for 0≤ i < 2k−1,M0 contains the edges between(i,2 · j) and(i,2 · j +1), for all
0≤ j ≤ (k−3)/2, for 2k−1 ≤ i < 2k, the edges between(i,2 · j −1) and(i,2 · j),
for all 1 ≤ j ≤ (k−1)/2. AdditionallyM0 contains the edges from(i,k−1) to
(i + 2k−1,0) for all 0 ≤ i < 2k−1. For 0≤ i < 2k−1, M1 contains the edges that
M0 contains for 2k−1 ≤ i < 2k and vice-versa for the otheri. The remaining edges
are attributed toM2 andM3. These are: the cross edges exept for those starting
in (i,k−1) plus the edges between(i,k−1) and(i,0).M2 contains these latter
edges for 2k−2 ≤ i < 2 ·2k−2 and 3·2k−2 ≤ i < 4 ·2k−2,M3 for the otheri. The
allocation of the cross edges is uniquely determined by this.

Star and Pancake Graphs.These are the ideal graphs for the coloring heuristic:
a minimum cardinality coloring with perfect matchings is soto say part of the
definition of the graphs. ForStark andPancakek, the nodes are indexed withk-
tuples(i0, i1, . . . , ik−1), where the set{i l |0≤ l < k} constitutes a permutation of
{0,1, . . . ,k−1}. ForStark,Mc, 0≤ c≤ k−2, contains all edges between nodes
(i0, i1, . . . , ik−1) and the node withi0 andic+1 exchanged. ForPancakek,Mc, 0≤
c ≤ k− 2, contains all edges between nodes(i0, i1, . . . , ik−1) and the node with
i0, . . . , ic+1 replaced byic+1, . . . , i0.

9 Conclusions and Further Work
We have presented heuristics for gossiping in the telephonemodel with unit or
linear costs. The matching heuristic computes almost optimal schedules and due
to its relative efficiency it can do so even for large graphs. Together with the col-
oring heuristic it leads to improved upper bounds for various important classes of
interconnection networks. Generally, these heuristics may become valuable tools
for the development of better gossiping and broadcasting schedules.
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[13] Knödel, W., ‘New Gossips and Telephones,’Discrete Mathematics, 13, p. 95, North-
Holland, 1975.

[14] Labahn, R., I. Warnke, ‘Quick Gossiping by Telegraphs,’ Discrete Mathematics, 126,
pp. 421–424, North-Holland, 1994.

[15] Leighton, T.,Introduction to Parallel Algorithms and Architectures: Arrays-Trees-
Hypercubes, Morgan-Kaufmann Publishers, San Mateo, California, 1992.

[16] Beier, R., ‘Eine Heuristik für das Gossiping-Problem.’ Master Thesis, Computer Sci-
ence Department, Universität des Saarlandes, to appear June 2000.

[17] Scheuermann, P., G. Wu, ‘Heuristic Algorithms for Broadcasting in Point-to-Point
Computer Networks,’IEEE Transactions on Computers, C-33(9), 1984.
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