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Abstract

A refined heuristic for computing schedules for gossipingha tele-
phone model is presented. The heuristic is fast: for a nétweith n
nodes andn edges, requirindR rounds for gossiping, the running time is
O(R-n-logn-m) for all tested classes of graphs. This moderate time con-
sumption allows to compute gossiping schedules for netsvarikh more
than 10,000 PUs and 100,000 connections. The heuristicad:go prac-
tice the computed schedules never exceed the optimum by timamea few
rounds. The heuristic is versatile: it can also be used foadicasting and
more general information dispersion patterns. It can hafith the unit-
cost and the linear-cost model. A second heuristic, is lessatile, but by
refined search techniques it can tackle even larger probl@oygther these
heuristics lead to strongly improved bounds for gossipind broadcasting
on many of the most important interconnection networks saglshuffle-
exchange networks, butterflies and pancakes.

1 Introduction

Gossiping. Collective communication operations occur frequently argilel
computing, and their performance often determines theadv@nning time of an
application. One of the fundamental communication prolslégossiping(also
called total exchange or all-to-all non-personalized camitation). Gossiping is
the problem in which every processing uiit), wants to send the same packet to
every other PU. Said differently, initially each of thé°Us contains an amount of
data of sizeh, and finally all PUs know the complete data set of $iza. Gossip-
ing appears in all applications in which the PUs operaterartwusly for a while,
and then must exchange all gathered data to update thelradats. Many aspects
of the problem have been investigated for all kinds of imtarections networks
[2, 4,5, 6, 10, 14, 18]. We focus on networks with a known butt mecessarily
regular structure. Such networks may represent a set ofsiodée internet, the
servers of a banking institution or the processors of a f@dmputer.



Heuristics. In this paper we present two heuristics for constructingsgosg
schedules and our experiences with them.

The matching heuristiccombines simplicity and versatility and gives very
good performance. It can handle both the unit-cost and tieaticost model
(all definitions are given in Section 2) and all kinds of iaitpacket distribu-
tions. Particularly, it is also suited for computing broasting schedules. The
matching heuristic operates in rounds. In each round, istants a maximum
weighted matching of the graph underlying the interconinachetwork. The
pairs of matched PUs communicate. The non-trivial part is tmset the weights
so that the gossiping time is minimized. In the linear-costlal, one also has to
determine how much and which data is going to be communicaitter inter-
esting aspects are the value of look-ahead, and whether ¢ also compute
approximate matchings without incurring performancedsss

The coloring heuristicworks differently: initially a small set of matchings is
constructed, and then schedules composed of these macniadested. Basi-
cally, the algorithm performs an exhaustive search thralfgossible schedules,
but the order in which the schedules are tested is optimiaddreany less promis-
ing schedules are pruned out. In principle the coloring is¢iarcan be applied to
any network, but it is most useful farregular networks that allow @ coloring:

a decomposition of all edges gperfect matchings.

Previous Work. Heuristics have been applied for computing communication
schedules since many years [17]. The matching heuristib&es applied to sev-
eral communication problems by Fraigniaud and Vial [7, 8, dough the un-
derlying idea is the same, our paper goes beyond [7] in mapegs. In [7], the
matchings are computed for graphs that are weighted by densg the number
of packets that may be transferred over each edge (for peiptint communi-
cation, in [8] a modified weighting is applied to keep packetsa shortest path).
This is a good idea, in Section 4, we consider it under the npatential ap-
proach but often substantially better results can be achievedttoypating the
edge weights according to more global criteria, as is doneury8FS approach
Furthermore, we introduce a quite sophisticated technfqugossiping in the
linear-cost model; we consider the implications of usingragimate matchings;
we study the value of look-ahead. The efficiency of our immatation makes
the heuristic effective for large graphs, and allowed us ¢ofgrm sets of ex-
periments that are sufficiently large to draw meaningfuldosions. All this is
complemented with the coloring heuristic and the discowdémany new results
for important classes of networks, suggesting new thezaktesearch.

Benchmarks. Gossiping in the unit-cost model has been studied for nuasero
networks. However, (almost) matching lower and upper bsurave been found
only for few classes of graphs underlying the network [12,FJr the linear-cost
model even fewer results could be found in the literatureodsalgorithm s close
to optimal, we need very accurate estimates to evaluateetige performance.



We have done two things. In the first place, we have writtenxqoeential-time
exhaustive search. This program gives optimal gossipitgduales for graphs
with up to 20 nodes and 30 edges. In the second place, we haliedtinear-
cost gossiping in detail for meshes and tori. The derivecdales are almost
optimal, even for odd side lengths. As far as we know, theselt®are new.

graph n m LW UP HR| time
Meshsox g0 6400 12640 158 158 158 22800
Hypercube; 8192 53248 13 13 13| 8839
Knodehzgio2 8192 53248 13 13 15| 10571
Butterfly; o 10240 20480 16 25 24| 11021
DeBruijn 3 8192 16381 18 41 25| 9144
Pancake 5040 30240 13 17 16| 2688
Ral’ldom_loooqgoooo 10000 80000 14 ?? 17| 35393

Table 1: Quality of the matching heuristic for graphs takemf various classes.
From left to right the columns give the number of PUs, the nentdf connec-
tions, the lower bound, the best-known upper bound, theevatumputed by our
algorithm and the time in seconds it took to compute the saleedll results are
given for the unit-cost model.

Results. We thus obtained a set of benchmarks containing small graphs
meshes, tori, complete graphs, hypercubes, Knodel grapiise-connected-
cycles, shuffle-exchanges, butterflies, de Bruijn grapias,ad pancake graphs,
and random graphs. A small selection of the results obtaivitdthe matching
heuristic are given in Table 1. The graph properties of tloéeseses are so diverse,
that we believe that if a heuristic performs so well for altleém, it will also per-
form well for graphs that cannot be analyzed theoretic@nerally, the number
of rounds required by the matching heuristic appears to beydvom the opti-
mum by some slowly increasing number. On a normal workstadschedule for
a graph with a few thousand nodes can be computed in less treamaur.

The coloring heuristic has been applied to cube-connecyetds, butterflies,
shuffle-exchanges, de Bruijn graphs, star and pancake girétpls much faster
than the matching heuristic: even for graphs with thousafdedes a solution is
often found in less than one minute. A great advantage oghysoach is that the
schedules can be represented concisely.

The newly obtained results show that some of the theoretaradtructions are
far from optimal. For gossiping on a shuffle-exchange and dgiBnetworks of
orderk, the current upper bounds arelkd— 3 and 3 k+ 2, respectively, [12]. Our
algorithm suggests that the true values @é -K] —3 and 2 k— 2, respectively.
For most cube-connected-cycles and for all butterfly andplea graphs the con-
structed schedules improve the former ones [12, 3] by seweuads. Also for
broadcasting we find many new results.



2 Preliminaries

We are studying interconnection networks wittPUs andm connections. The
network will be identified with its underlying graph: PUs ocespond to nodes
and connections to edges. The PUs can send/receive panffetsitthe PUs it is
connected to, itaeighbors

Gossipingcan be described as follows: initially each PU holds a certai
amount of private information; by communicating, the PUsgtl establish the
situation in which all PUs know all information. The comm@etpecification of
the times each of the PUs is communicating with each of itght®rs is called
agossiping schedul®roadcastings the simpler problem in which initially only
one PU holds a piece of information that must be made knowt tireer PUs.

In thetelegraphmodel a PU can be involved in only one communication op-
eration; either receiving or sending, but not both. In thlephonenodel, a PU
can communicate with only one of its neighbors at a time, fzén both send and
receive during this communication. In this paper we assura¢dlephone model,
though our heuristic might easily be extended to the tefgyraodel.

Cost Models. Next to the communication model, the cost model is of great im
portance. In thenit-cost modeit is assumed that it takes one time unit to start-up
communication with a neighbor, but that the actual datasfierrtakes negligible
time. In this case, it is natural to assume that all commuianas performed in
discreterounds and for a given graph the goal is to determine a gossipingdsch
ule that minimizeR, the required number of rounds. For large data sets or slow
connections, this model may not be realistic. A two-parameidel gives a more
accurate description of the actual communication behatriansferring a packet
of sizes to a neighbor takes + 1- stime. 1 is the time it takes to transfer one
packet divided by the start-up time. Under thieear-cost modelit is not always
optimal to exchange the maximum amount of information. Gaurfstic is taking
care of this. Denoting the number of packBtd; is sending in rountlby s¢, the
goal is now to determine a gossiping schedule that minimizes

T=R+T1- max{s}.
* t;i<n{s’t}

rounds S= S .rMa%«n{S} is called the number cfteps

Graph Classes. We are considering graphs of several classes. Here we mentio
only some fundamental parameters. Definitions and morelslegn be found in

[6, 12, 3, 15].n andm denote the number of nodes and edd&¥,and UP the
current lower and upper bounds far

Meshyp: 2-dimensionahx bmeshn=a-b,m=2.-a-b—a—b,LW=a+b-2.

Torus«p: 2-dimensionah x btorus.n=a-b,m=2-a-b,LW= (a+h)/2.

Hypercubg: k-dimensional hypercube.= 2K, m=k/2-2% LW =k, UP =k.

Knddeh x: Knodel graphn =k m=k-A/2, LW = [logk], UP = [logk], for
A = |logk].



CCGc: k-dimensional cube-connected-cyclas= k-2, m=3/2.k- 2%, LW =
15.k/2] — 2, fork > 5,UP = 5-[k/2].

SEc: k-th shuffle-exchange graph= 2, m=3/2.2K— 3, fork even, andn=
3/2.2¢— 2, forkodd,LW=2-k—1,UP=4.-k—3.

Butterfly: k-th butterfly.n = k-2, m=2.k- 2K LW = 1.741.k, for k >> 1,

UP =5-[k/2].
DeBruijn: k-th de Bruijn graphn= 2K, m=2.2k—3,LW=1.317-k, fork >> 1,
UP=3-k+2.

Stal, Pancakg: k-th star or pancake graph.= k!, m= (k—1) -k!, UP =k+
5 Ilogil, fork > 3.
Randomgp: Random graph front,p. n=a, m= b, LW= [log,a] + odda).

Here oddn) = n mod 2. Bounds for gossiping in the linear-cost model are
rare. Obviously, on a network withPUs, every PU must receive (n— 1) pack-
ets. Thus, for any schedul8> h- (n— 1). BecauseR > [logn] + oddn) [13],
the following trivial lower bound holds for ah, T and any network:

T > [logn] +oddn)+t-h-(n—1). (1)

3 Gossiping on Meshes and Tori

In ad-dimensional mesh the PUs are laid out od-dimensional grid. Each PU
is connected with its at most-2 neighbors. A torus is a mesh with additional
‘wrap-around’ connections, connecting the PUs on the daessivith the PUs on
the opposite outside. Meshes and tori are so simple, thatstloptimal schedules
can be derived for them even for the linear-cost model. Inferdint context
gossiping on meshes has been studied in [11]. A path (onerdiimnal mesh)
with n PUs is denoted by, a cycle (one-dimensional torus) I, anax b
mesh byM, , and ana x b torus byT, . The PUs are indexed by their positions
in the grid. The indices for every dimension start with 0.

Lemma 1 For gossiping on paths and cycles of length n,

T(P) = n—1+71-h-(2-n-3), for every even e 2,

T(Pn) = n+t-h-(2-n-3), for every odd n> 5,

T(Cy) = n/2471-h-(n—1), forevery event» 2, (2)
T(Cy) < [n/2]+2+71-h-(n+1), forevery odd n> 3. (3)

(3) shows that, on a cycle of even length, gossiping can blempeed optimally:
both the number of rounds and the number of steps are minkoathe paths the
number of steps is almost twice as large as the lower bound.



Lemma 2 For gossiping on & b meshes and tori,

T(Map) <a+b—-1+1-h-(a-b+a—1), fora,b>2even 4)
T(Map) <a+b—1+71-h-(a-b+3/2-a—3), fora> 2even, b>3o0dd

T(Map) <a+b+1-h-(2-a-b—a-3), fora,b>50dd (5)
T(Tap) =a/2+b/2+1-h-(a-b—1), fora,b>2even (6)
T(Tap) < |8/2] +b/24+2+1-h-(a-b+1), fora>3odd, b>2even (7)
T(Tap) < |a/2] + |b/2| +4+1-h-(a-b+2-a+1), fora,b>30dd (8)

Proof: All schedules consist of two phases, In phase 1 the gossipperformed
within the rows. In phase 2, gossiping is performed in theigois. The cost of
these phases is estimated with Lemma 1. For tori the rows@ndas constitute
cycles, for meshes they are paths. For meshesjdfeven, then phase 2 is per-
formed in pairs of adjacent columns that together constitytles of length 2b.

If alsob is even, the same applies to phase 1. Wa&neven, either two or four
(depending on the parity d) PUs on each cycle hold the same information at the
beginning of phase 2. Thus, for the analysis of phase 2, weassyme packets
of sizeh-a/2. If aandb are even, then the first round of phase 2 is omited

The result of (6) is optimalR is always optimal or close to optimal. Only for
meshes witha andb odd the number of steps is a factor two too large. Fer3
meshes we have an explicit construction viRk- 5 andS= 11, which is optimal
for all T < 1. In the following we describe an algorithm that gives adrettade-
off between the numbers of rounds and steps for generabaatti b: both the
number of steps and the number of rounds can be made asycafitotiptimal.

Figure 1: A 25x 11 mesh divided into 12 strips. All strips contain an even ham
of nodes except for the leftmost strip with 27 nodes. The tanted cycles have
length 26 at most and finish gossiping within 13 rounds. Ttaesarawn as small
circles are idle for 4, 2, 2, 2 and 3 rounds respectively.

k=5




Lemma 3 For gossiping on & b meshes, a and b odd, the following result can
be achieved for alB < k < b:

T(Map) <a+b+[k/2]+1-h-a-(b+b/k+k/2+7/2).

Proof: We use vertical strips of width 2 for most of their height aniditiv 3 for
some consecutive rows. The leftmost strip contains-2k nodes with 3< k < b
odd. All other strips are smaller with an even number of nottegach strip we
gossip on cycles of even length f#- b+ k— 1)/2 = R rounds. The routing in
the leftmost strip is most critical. The gossiping in theethtrips can be tuned so
that it has no impact on the duration of the rounds.

Each node in the leftmost strip is starting with a superptoksizeh-a/2.
The cycle is changing, usirigdifferent idle nodes;, 0 <i < k. They; are idle
for l; successive roundsy first, thenvy, and so on. The idea is illustrated in
Figure 1. The; are chosen so, thatjli = R, |[R/k| —1<|; < [R/k] + 1 for
all k andl; even for 0< i < k— 1. If nodev; becomes idle in round, then the
two superpackets it received in round 1 from its neighbow are resent by to
Vi_1 in roundr + 1. This causes a delay of two rounds for all packets passing
in this direction. Because dll are even foi < k— 1, only packets traveling in a
counterclockwise sense are concerned. Thus, only nodeduma 1, and none
of thev;, will be short of some packets due to this delay. They can fmrimed
by adjacent nodes from column O in one additional round wigcélso used to
supply thev; with the at most 2I; superpackets they have missed. Phase 1 takes
a+T1-h-(2-a—3)time. The firstR rounds of phase 2 requieg2- (2-b+k—2)
steps, the additional rourad2-2-max{l;} <a- (b/k+5/2) steps. O

Fork = /b, the/b/2 additional rounds as well as the(3/2-vb+ 7/2) addi-
tional steps are lower-order terms. The results can be inatedg generalized to
higher dimensional meshes and tori:

Lemma 4 For gossiping on d-dimensionaj « - - - x ag meshes and tori,

d d
T(Ma,,..aq) < _Za@—d+1+T-h-(_|_laa+a—1),allaizz,evem
i= i=
d d
T(Tay,. aq) < Zia;/2+1-h-(_|_|a4—1), allaj > 2, even
i= i=

4 The Matching Heuristic: Description and Analysis

4.1 Description

Given a undirected graph representing the underlying nédytioe heuristic com-
putes a gossiping schedule, which for each round specifeeadtive edges and

the routed packets. For each round, based on the currentigaidution in the
network, the heuristic first determines the edges that airgggo be used. Then,



for the linear-cost model, it selects the packets that amgytm be transferred.
Finally, the data distribution as it arises after routing elected packets is deter-
mined. Such rounds are repeated until the gossiping hasdoeepleted.

In the considered telephone model, a node can exchange ihtandy one
neighbor per round. Thus, for every round, the set of actilges must form
a matching of the graph. Actually, the heuristic constructmaximum-weight
matching for a graph whose edges are weighted as a functitreqiacket dis-
tribution in the network: the more useful it appears to useadge, the higher its
weight. In the unit-cost model, there is no limit on the numbg&packets that
can be exchanged during a round between two communicatisg®tthe other
hand, in the linear-cost model, for each rounits number of steps; has to be
fixed. Choosings equal to the maximum number of packets any PU wants to
transfer to a matched neighbor might be inefficient, becenesgy other PUs may
run out of packets in fewer thag steps. Choosing too small is inefficient, be-
cause then the start-up costs are not amortized optimdilys,& must be chosen
as a trade-off between extra start-up costs and wasteddrarapacity. Oncey
has been fixed, we have to decide for each active edge whidtetsao transfer.
For this purpose each packet is assigned a priority and theats edges with

highest priority are transferred. The operations perfatrimeeach round can be
summarized as follows:

Algorithm ROUND_HEURISTIC
1. Compute the weights for all edges.

2. Construct a maximum weighted matching. Matched edges &ive @t this
round.

3. In the linear-cost model: Fix the number of steps for thisneu

4. In the linear-cost model: For each active edge, choose thaf packets to
be transferred.

5. Calculate the packet distribution as it arises after tramifg all selected
packets.

The crux of the heuristic lies in step 1: how to set the edgeisP? We use two
different methods.

Potential Approach. The weight of an edgév,w) is set equal to itpotential
defined as the number of packets known by eitha@rw, but not by both of them.

Lemma 5 Using the potential approach, calculating the edge weigtits graph
with n nodes and m edges takeén - m/logn) time andO(n?/ logn) space.

BFS Approach. The potential approach is simple, requires little storage ia
very fast, but as a pure local, greedy approach it lacks aagjldbw. The Breadth-
First-Search (BFS) approach, though far more expensivayish better.



Definition 1 Thedispersion regio®R(p,t) of a packet p is the set of nodes that
know p at the beginning of round t (this is a connected subgrdfor a node v,
dist,(p,t) denotes the shortest distance in the graph from v to a ncd®®(p,t).
The set oborder-crossing edgdéee p,t) is defined as bd@,t) = {(v,w) e E|ve
DR(p,t) and w¢ DR(p,t)}. For a node w DR(p,t), bce(p,t) consists of all
edges in bcg, t) that lie on a shortest path from OJR,t) to v. See Figure 2.

Dispersion RegioR(p,t)

Figure 2: The dispersion regidR(p,t) for some packep. The edges dicg p,t)
are drawn bolddist,(p,t) = 3 andbce,(p,t) = {e1,e}.

The weight attributed to an edge is given as the sum of theribatibns by
each of the data packeps Only border-crossing edges can disseminaterther
and will be provided with weight. Consider an edge bcep,t). How useful ise
for the rapid dissemination gf? Packep should preferably be routed on shortest
paths fromDR(p,t) to all other nodes: if, for a node, an edgee € bce/(p,t)
is chosen to be active in rouridthendist,(p,t + 1) = dist,(p,t) — 1. If e lies
on many of these shortest paths it is more useful. The ladgn(p,t) is, the
more priority should be given to forwardingtowardsv. These criteria motivate
the following choice of the weight, involving paramet@&ist ExpandNumExp,
that is attributed by all nodes¢ DR(p,t) to every edge € bce,(p,t):

d iSl‘V( P, t)Dist_Exp

We'gh(va pat) = 4|bca/(p’t)|Num_EXp7

©)

In roundt, for all data packetp, we have to computgist,(p,t) andbce,(p,t)
for all nodesv. We use a modified breadth first search algorithm, so nodemare
sidered in order of increasirdjst,(p,t). The edges ibce,(p,t) are maintained in
sorted lists and computed as follows. For all nodesDR(p,t) the setoce,(p,t)
is empty. For nodeg with dist,(p,t) = 1, bce,(p,t) consists of all incident edges
that connect to a node irDR(p,t). For largerdist,(p,t) the algorithm computes
the union of the setbcey (p,t), for all nodesw; adjacent tos with disty (p,t) =
dist,(p,t) — 1. If the number of these; equalsj andy; [bcey, (p,t)| =1, then this

union can be computed i@(I - min{log j,log(m- j/1)+1}). Thus, the calculation
of thebce,(p,t) can easily be incorporated into the BFS search.



Lemma 6 Computing the edge weights for a graph with n nodes and m adges
ing the BFS approach without considering the time to mainthé sets of border-
crossing edges bggp,t) takesO(n- (n+m)) time andO(n?/logn) space. Com-
puting the beg(p,t) takesO(n®- m) time andO(n- m) space.

Proof: The modified BFS algorithm is called for ail packets. Without main-
taining thebce,(p,t) the time for one call iD(n+ m). Each of then dispersion
region can be maintained withbits. For a node, bce,(p,t) is the union of at
mostn sets with at mostn elements each. This computation tak¥s - m) time.
Thebce,(p,t) are computed for alp andv, giving a running time oo(n®- m).
At any given time, at most setsbce,(p,t) are stored, each of maximal sine
Working with bit arrays, a factor logis saved for time and storage. O

Linear-Cost Model. In step 2 of ROUND_HEURISTIC, a maximum weighted
matchingM is constructed that determines the active links. Thereppothe
unit-cost model, a PU sends all packets that are new to tleévegcin the linear-
cost model, the packets that are going to be routed alongdtieedinks are
determined in step 3 and 4. We now describe how this is done.

Let P(v) denote the set of packets known by a node and let
TransferVolumés, M) be the number of packets that can be semtsteps along
all edges im:

TransferVolumés, M) = z min{s, |P(V)\P(w)|} + min{s,| P(W)\P(v)|}.
(vw)em

We want to maximize the number of transferred packets penout Let sy be
the value ofs, 1 < s < n for which the expressiofiransferVolumés, M) /(1 +
T1-h-s) is maximized. This valug,; can be computed i®(n) time. We limit the
round tosypt steps.sopt depends on, the ratio of transfer costs to start-up costs:
larger start-up costs result in longer rounds and vice versa

Now we have to choose the packets that are going to be traedférhis is
done by assigning weights to the packets and then pickingdch PU the at
mostsyp: packets with the highest weights larger than zero. For a nogéh
e= (v,w) € M, adata packepitis holding is given the weight that is assigned to
e during the BFS search fg. If the edge weights are stored for each of the data
packets, then these weights can be determined withoutaaalitvork. However,
this may require2(n- m) storage. It is better to compute the packet weights only
after the active edges have been selected. In this wayHass tveights must be
stored for each of the/2 edges im\/.

4.2 Refinements and Extensions

Look-Ahead. A more refined approach considers several matchings forredrou
computes the resulting distribution of packet®unds later, compares them and



then chooses the most promising matching. We use two mefhodenerating a
set of matchings. In step ROUND_HEURISTIC constructs a maximum weighted
matchingMope. To obtain a suboptimal matching we may randomly choose # sma
number of edges froni,,, temporarily set their weights to 0 and compute a
new weighted matching. Another method uses different patara for (9) which
leads to different edge weights. Unfortunately, there ignarantee that also the
resulting matchings are different, and the cost for recaimpuhe edge weights

is high. Starting with several possible matchints, ... , M, we obtain packet
distributionsDs, . .. Dj afterl rounds. We should select the matchiigthat leads

to the packet distributiorD; for which the gossiping can be finished fastest. For
this selection, we should define a function that attributesesmeasure afostto
packet distributions. For a packet distributi®n dist,(p, 2) denotes the distance
in the graph from the nodeto the dispersion region of the data pacgeinder?D.

For a parameteDist Exgd, that may be different fronbist. Expin (9), we define
the following function, that can be evaluated@n- (n+ m)) time:

cos(D) = 5 Y dist(p, ) DIstEXd

pInvn

Approximate Matching. Since constructing the maximum weighted matching
in step 2 consumes up to 60% of the running time, we are intxés approxima-
tion algorithms with a smaller time complexity. We use thi@gn-logn) algorithm
from [1].

Broadcasting. The heuristic is also suitable for computing broadcastiites-
ules. The algorithm is the same but now the distribution df @me data packet
determines the edge weights. With the potential approdtbdge weights are
set to 0 or 1. With the BFS approach optimal results can aekiéar many graph
classes. Since the edge weights are compntétes faster, the computation of
the maximum weighted matching dominates the running tinogtuRately, even
the matching is much easier, since in many cases there ardesmledges with
non-zero weights, particularly during the first rounds. Asodhe storage require-
ments are much smaller than for gossiping, broadcastingdsgls can be com-
puted for graphs with up to one million nodes.

5 The Matching Heuristic: Practical Behavior
5.1 Running Time

In order to analyze the running time, we have tested grapkis up to 16384

nodes from numerous classes of graphs (in total we perfo88edeasurements,
at least seven for every class, except for pancake and stphg). We focus on
the unit-cost model: for the linear-cost model, the heigritetkes at most twice
as long. The total time consumptidgy, has two main contributions: the time
Twm for constructing the maximum weighted matchings; and theefly for all



the rest.Ty varies considerably, but the matching can be viewed as aralt
routine. Therefore, it is not unreasonable to focusligninspired by theoretical
considerations, we have tested several functions thattrdegcribely as a func-
tion of n, mand the number of required rounBsSomewhat surprisingly, for all
classes of graphgy can be approximated to within a few percent by a single
function of just two parameters:

Tapp(N,MR) = a-R-n-m-log(n) +B-R-n?. (10)

For all classes of graphB,has more or less the same value. On the PC we used
it was approximately 2106, The values ofx ranged from 108 for meshes, to
107 for de Bruijn networks.

5.2 Quality of Computed Schedules

The quality of the heuristic heavily depends on the choichefparameters. Par-
ticularly important isDist. Exp from (9) which determines the influence of the
distance between nodes and dispersion regions. We usesb\nlthe range from
0.25to 60. The optimal value depends on the the graph classizBef the graph
and the cost model. For larger graphs larger valueBist Exptend to give bet-
ter results. For the linear-cost model, values betwe@&nadd 25 are suitable.
Better results are achieved whBist. Expdecreases from round to round. When
using approximate matching in step 2, then the optimurDist. Expis usually
higher than for exact matching. For meshes, the best cheRisi Exp= 4. For
butterflies, the best choice Rist Exp= 2.

Results for the unit-cost model are given in Table 1 and Tdbkor meshes,
tori and hypercubes the computed schedules are optimakr@lyn for all cases
in which the lower bound is sharp, our heuristic comes rathase to it. Studying
the developments for the graph classes in Table 4 gives theeBrion that with
increasingR the heuristic occasionally looses a round.

1T=20| 1=05 | 1=01 =0
graph class n mR S|R S|R S|R S
Meshox20 400 36062 497/49 51740 612|38 2713
Torugix21 441 88234 488/30 486/28 528|23 1023
CCG 896 1344/ 24 902|122 904|23 943/20 1139
SEp 1024 1533 63 204750 2051 37 207323 3933
Butterfly, 896 179239 1044 33 110722 1110/ 17 1229
DeBruijn o 1024 2045 46 1221|139 1270 31 1513/ 18 2733
Randomngogsooo | 1000 8000 19 1009 18 101416 1028 13 1281

Table 2:RandSvalues achieved by the heuristic for variauglues in the linear-
cost model for graphs taken from various classes.

For the linear-cost model we found the results in Table 2.s€hare typical
examples, not the best we could find. The adaptiveness otitinéstic is exposed



clearly: with decreasing the number of steps becomes less important and grad-
ually increases. At the same time the number of rounds dsese&omparing
the results for = 0 andt = 0.1, shows that ofte can be reduced considerably
without increasingR by much. Apparently, computing schedules for the linear-
cost model is much harder than for the unit-cost model: théatiens from the
optimum values (as far as known) are considerable. For ebarfgr a 20x 20
mesh, the heuristic finds schedules wit = 2) = 1056, T(t = 0.5) = 308,
T(t=0.2) = 153,T(t = 0.1) = 102, respectively. All of these are about 25%
more than required by the schedule underlying (4), whichivas39 andS= 419

for all T. All results were computed with the BFS approach. For Khd8tar and
Pancake graphs§ is optimal for allk independently oft. For cube-connected-
cycles and butterflieSis optimal for all everk.

5.3 Refinements and Extensions

Look-Ahead. Look-ahead is most useful for small graphs. Probably, thsar
is that, even though the number of matchings that lead to #imapgossiping
grows with increasing graph sizes, the ratio to all possib&chings is rapidly
decreasing. So it becomes much harder to find them by rand@sting subop-
timal matchings. One example for an improvement using lab&ad is the &% 5
mesh. This is the only instance of meshes for which the sirhpléristic was
not able to find an optimal schedule. For random graphs witm@fes and 60
edges, look-ahead improves the result for about 40% of thphg. We tested
a maximum of ten different matchings per round, computedtardwo rounds
look-ahead using only the optimal matching and comparedéhelting distri-
butions of packets. Sometimes the result with look-aheabise than without.
This is due to the fact, that even wheos{D;) < cos(D»), for two distributions
Dy andD», it may nevertheless take longer to compl@ethanD,.

Approximate Matching. Using approximative methods, the time for construct-
ing the weighted matching decreases from about 30% to lessli%s of the over-
all running time. The quality of the schedules depends orgthgh class. The
larger the graphs, the bigger the loss of quality. For mesfiedmost all sizes
the calculated schedules are still optimal or at most onad@way from it. For
shuffle-exchange graphs we loose at most one round, for dgnRBmaphs one
or two. Generally, the differences are not big, but if penfance is important,
then exact matching is to be preferred. Approximate matghirparticularly in-
teresting, when the weighted graph is constructed with themifaster potential
approach. Approximate matching is even more suited fordzasting: the edge
weights are computed i@(m+ n) per round, much less than the time for exact
matching. Furthermore, for broadcasting, the quality & tomputed schedules
is almost the same.

Broadcasting. Broadcasting schedules cannot only be computed much faster
than for gossiping, the structure of the problem is also sehrgimpler, that the



k CC( SE Butterfly, DeBruijn,
Opt HR|Opt HR|LB UB HR|LB UB HR
3 6 6 5 5 5 5 5 4 6
4 9 9 7 7 7 7 7 6 8
5 11 11 9 9 8 9 9 7 9
6

7

8

4
5

7

13 13| 11 11| 10 11 10 8 11 8
16 16| 13 13| 11 13 12| 10 12 9
18 18| 15 15| 13 15 14| 11 14 11
9 21 21| 17 17| 15 17 16| 12 15 12
10| 23 23| 19 19| 16 19 17| 13 17 14
11| 26 26| 21 21| 18 21 19| 15 18 15
12| 28 28| 23 24| 19 23 22| 16 20 17
13| 31 31| 25 26| 21 25 23| 18 21 18
14| 33 33| 27 28| 23 27 24| 19 23 20

Table 3: Broadcasting in four different graph classes. Gigehe best result of the
heuristic together with the current lower and upper boumdhe optimum value,
if they are identical. FoBE, andDeBruijn,, the results hold for broadcasting from
node 0 and several other nodes. B&2G; andButterfly, the results hold for any
source node. Italic printing indicates that the number imegdhe best previously
obtained value, bold printing indicates that the numberowaps the best previous
value. The “lower bounds” are not really lower bounds: thesy @emputed with
the formulas in [12], which only hold asymptotically. Thasriay happen that for
DeBruijn; the heuristic requires fewer rounds than given by the loveamiul.

results are much better. Some results are given in Table r3cuHze-connected-
cycles and for shuffle-exchange graphs, optimal schedtgdswawn, so we could
not hope to improve them. Nevertheless, it is very posithat bur heuristic, in

a matter of minutes!, finds almost optimal results. For bfités and de Bruijn

graphs, our heuristic improves the former constructiona lfigw rounds.

6 The Coloring Heuristic

The coloring heuristic is an alternative general gossipimgiristic. Initially,

the computer or the user constructs a sef p matchingsa4, 0 <i <

p, that appear suitable for gossiping. Then the program tEstsequences
(M, M, , ..., M, ,) whether this is a gossiping schedule, until a solution has
been found. By making the right choice §f by pruning most of the sequences
and by enumerating the remaining ones in a non-trivial grihés simple idea
can be turned into an approach that beats the matching tieunisspeed and
performance for several classes of graphs. The coloringisteuhas also been
implemented for broadcasting. It is remarkably fast, bidaihnot compete with
the matching heuristic in quality.



The program essentially consists®hested loops, implemented recursively.
At the top level, we start with one packet in every node. Theragions in the
loop at levelj, 0< j <=R— 2, can be summarized as follows:

1. Consider allM;, 0 <i < p, and filter out those that appear useless.
2. Sort the surviving matchings according to their estimategfulness.

3. Apply the highest ranked matching that has not been triedrbab the
current data set and proceed to leyel 1.

At level R— 1 the resulting data set is tested for completeness.

Choosing the Matchings. A good idea is to perform a minimum edge coloring
of the graph (whence the name of the heuristic) and then cetinglthe sets of
edges with the same color to a maximal cardinality match8ametimes fewer
matchings will do, sometimes one should better add some,rhot¢his approach
gives the smallest number of matchings that together corthiedges at least
once. Clearly this approach is most suited for regular gsaphdegreeg that
allow a coloring withg perfect matchings. Examples are cube-connected-cycles,
butterflies, star and pancake graphs.

Optimizations. If, for given § andR, solutions exist at all, then typically there
are many of them. The goal is to minimize the time for finding 0o, we should
focus on parts of the search space where solutions lie mosetle pruning out
less promising sequences, even if we may miss some solliipttss. An ele-
mentary observation is that we should hadg # 94, ,, forall 1 < j <R. This
reduces the number of sequences frpfto p- (p— 1)RL. For most classes of
graphs it was effective to also impo34; # Mij,z, forall2< j < R Thisreduces
the number of sequencespio(p— 1) - (p—2)R2. Adding the condition that each
matching occurs at least once in every subsequengetof matchings reduces
the number of sequences even much stronger. In the curr@hgnnentation the
usefulness of a matching is estimated by the number of paithet it allows to
transfer (as in the potential approach).

7 Discoveries and Hypotheses

The heuristics were applied to regular graphs with knowrsgmisg schedules for
testing their performance. Then it turned out that in marsesahe schedules they
find are better than the best schedules in the literatureteslllts that could be
computed in a reasonable amount of time are given in Tablel4rable 5.

For CCG, [12] gives an upper bound of -3k/2], our coloring heuristic
achieves better for mokt The results suggest that going frdeto k+ 1 increases
the number of rounds by 4 Kis even and by 1 ik is odd. This would give an
upper bound of 3[k/2] + k. For Sk, [12] gives an upper bound of-& — 3. Our
matching heuristic achieves much better. The results sidglgat going fronk to
k+ 1 increases the number of rounds by & i even and by 2 ik is odd. This



k CCG Sk Butterfly, DeBruijn,
LB UB HR|LB UB HR|LB UB HR|LB UB HR
3 7 10 7 5 9 5 5 10 6 4 11 4
4 9 10 9 7 13 7 7 10 7 6 14 6
5(11 15 13 9 17 10 8 15 11 7 17 8
6

7

8

13 15 14| 11 21 12| 10 15 12 8 20 10
16 20 19| 13 25 15| 11 20 16| 10 23 12
18 20 19| 15 29 17| 13 20 17| 11 26 14

921 25 23|17 33 20| 15 25 21| 12 29 16
10| 23 25 25| 19 37 23| 16 25 22| 13 32 18
11| 26 30 29| 21 41 26| 18 30 26| 15 35 20
12| 28 30 30| 23 45 28| 19 30 27| 16 38 23
13| 31 35 25 49 31| 21 35 18 41 25
14| 33 35 27 53 35| 23 35 19 44 28

Table 4: Gossiping in four different graph classes. Givehéshest heuristic result
together with the current lower and upper bound.

would give an upper bound d6/2- k| — 3. ForButterfly, [12] gives an upper
bound of 5 [k/2]. Our coloring heuristic achieves somewhat better. Thelt®su
suggest that going frork to k+ 1 increases the number of rounds by «ifs
even and by 1 ik is odd. This would give an upper bound of{&/2] + k— 3. For
DeBruijn,, [12] gives an upper bound of B+ 2. Our matching heuristic achieves
much better. The results suggest that going fkamk + 1 increases the number of
rounds by 2. This would give an upper bound ek2- 2. Our results foStar, and
Pancake are better than those in [3] (fte= 3,4,5,6, 7,8, the best construction
in [3] givesR=3,6,9,13,17,21, respectively), but it is hard to draw conclusions
from this except for the fact that apparently pancakes atetbsuited for gos-
siping than star graphs. This means that there cannot bgle gjaneral optimal
Caley graph gossiping strategy. In Table 3, for broadcgstime differences of
the heuristic results with the lower bounds are so small, ttiey appear that to
be sharp.

8 Schedules and Examples

The matching heuristic constructs explicit schedules.s€hmaight be stored and
used for gossiping. However, only for small networks thesesaited for human
interpretation. The coloring heuristic produces moreghsful results. Before go-
ing in detail we considdPancake (see [3] for a definition and the best algorithm)
as an example. The matchings are defined by a 3-coloring: ¢da< ¢ < 3, con-
sists of all edges between nodg i1,i2,i3) and the node with the first+ 2 entries
of its index reversed. The coloring heuristic finds four stiles withR=5 and
S=23: 02102, 12012, 20120 and 21021. This shows Raatcake is a mini-



k CCG Butterfly,
R Schedule R Schedule
3| 7 0120120 6 012320
4| 9 012021202 7 0123023
5113 2020120120210 11 02103231023
6|14 01202120212020 12 012030230123
7119 2012010201202120210 16 0123012321032310
8119 0120120212021201212 17 01231023012302132
9123 01212021202120212021210 |21 023120312301230210321
10|25 012012012012021202120212@2 023120312301230210321
11|29 012012012012021202120212021226 01230132012310231203210321
k Stai Pancake
R Schedule R Schedule
3| 3 010 3 010
4| 6 012010 5 02102
5| 9 012310320 8 01230130
6|13 0123402413203 11 02102432104
7118 012345024153012540 15 012345021025012
822 0123456031526402143506 |20 01234560245602456043

Table 5: Schedules computed with the coloring heuristicthedresultingR and
Sfor four classes of graphs and varidus

mum linear gossip graph for 24 nodes. Actually, it is the eglengiven in [6]. In
the following we describe the matchings for the four mosetiesting classes of
graphs, schedules based on them are given in Table 5.

Cube-Connected-CyclesThe nodes are indexed by two-tuplésj), where 0<

i < 2, gives the index of thi-cycle on which this node is lying and wheregj <

k, gives the index of this node within its cycle. We will spedkcass edgefor
the edges betwei, j) and(i + 2!, j), and ofcycle edgesor the edges between
(i,j) and(i, (j £ 1) modk). We use three matchings covering all edge€6iG,
exactly once. For evelky 9 contains the edges betwe@m2- j) and(i,2- j+ 1),
and 4 the edges betwedi, 2- j — 1) and(i,2- ). Mz contains all cross edges.
For oddk the matchings must be slightly modifiet{p and?; each containk/2|
cycle edges: irip, the nodesgi, k— 1) remain unmatched, ifif, the nodesi,0).
Mo additionally contains the edges betwégik — 1) and(i £ 241 k— 1), 4 the
edges betweef(i,0) and(i + 1,0). M> contains all cross edges, except for those
in Mp and 2, plus the edges betweén0) and(i,k— 1).

Butterflies. The nodes are indexed again by two-tupleg), 0 <i < 2%, and
0< j <k The cycle edges are defined as before. The cross edges arenming
from a node(i, j) to (i+2J, (j +1) modk). For everk, Mo and 4 are taken as
for CCG. M> contains the cross edges running fréin2- j) to (i+2%1,2-j +1),



Mz the edges fronti,2- j — 1) to (i +2%1-1 2. j). For oddk, the matchings are
somewhat mixed upMp and 9 contain |k/2| cycles edges from each cycle:
for 0 <i < 21, 4 contains the edges betwegr2- j) and(i,2- j + 1), for all
0<j<(k—3)/2,for 21 <i < 2% the edges betwedn 2- j — 1) and(i,2- ),
forall 1< j < (k—1)/2. Additionally My contains the edges frofii, k — 1) to
(i+2<10)forall 0 <i< 2kt For0<i< 2?1 a1 contains the edges that
Mo contains for 81 < i < 2€and vice-versa for the otherThe remaining edges
are attributed toM, and Mz. These are: the cross edges exept for those starting
in (i,k— 1) plus the edges betweénk — 1) and (i,0). M> contains these latter
edges for 82 <i<2.22and 322 < < 4.22 af for the otheri. The
allocation of the cross edges is uniquely determined by this

Star and Pancake Graphs.These are the ideal graphs for the coloring heuristic:
a minimum cardinality coloring with perfect matchings istsosay part of the
definition of the graphs. Fd8tak andPancake, the nodes are indexed wita
tuples(io, i1, ... ,ik-1), where the sefi;|0 <| < k} constitutes a permutation of
{0,1,... ,k—1}. ForStak, M., 0< c < k—2, contains all edges between nodes
(ip,i1, ... ,ik—1) and the node witliy andic;1 exchanged. FoPancake, 9, 0 <

c < k— 2, contains all edges between nodgsi,... ,ik—1) and the node with
io,...,lct1 replaced bycy1,... ,io.

9 Conclusions and Further Work

We have presented heuristics for gossiping in the telephoodel with unit or
linear costs. The matching heuristic computes almost gitsthedules and due
to its relative efficiency it can do so even for large graplwgyether with the col-
oring heuristic it leads to improved upper bounds for vasiouportant classes of
interconnection networks. Generally, these heuristicg beome valuable tools
for the development of better gossiping and broadcastingddes.
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