
11

Analysis and Optimization of
Prediction-Based Flow Control in
Networks-on-Chip

UMIT Y. OGRAS and RADU MARCULESCU

Carnegie Mellon University

Networks-on-Chip (NoC) communication architectures have emerged recently as a scalable solution

to on-chip communication problems. While the NoC architectures may offer higher bandwidth

compared to traditional bus-based communication, their performance can degrade significantly in

the absence of effective flow control algorithms. Unfortunately, flow control algorithms developed for

macronetworks, either rely on local information, or suffer from large communication overhead and

unpredictable delays. Hence, using them in the NoC context is problematic at best. For this reason,

we propose a predictive closed-loop flow control mechanism and make the following contributions:

First, we develop traffic source and router models specifically targeted to NoCs. Then, we utilize

these models to predict the possible congestion in the network. Based on this information, the

proposed scheme controls the packet injection rate at traffic sources in order to regulate the total

number of packets in the network. We also illustrate the proposed traffic source model and the

applicability of the proposed flow controller to actual designs using real NoC implementations.

Finally, simulations and experimental study using our FPGA prototype show that the proposed

controller delivers a better performance compared to the traditional switch-to-switch flow control

algorithms under various real and synthetic traffic patterns.

Categories and Subject Descriptors: B.4 [Input/Output and Data Communications]

General Terms: Algorithms, Performance, Design

Additional Key Words and Phrases: Multi-processor systems, networks-on-chip, flow control, con-

gestion control

ACM Reference Format:
Ogras, U. Y. and Marculescu, R. 2008. Analysis and optimization of prediction-based flow control in

networks-on-chip. ACM Trans. Des. Autom. Elect. Syst. 13, 1, Article 11 (January 2008), 28 pages.

DOI = 10.1145/1297666.1297677 http://doi.acm.org/10.1145/1297666.1297677

The authors acknowledge the support of the Gigascale Systems Research Focus Center, one of five

research centers funded under the Focus Center Research Program, a Semiconductor Research

Corporation program.

Authors’ address: Department of Electrical and Computer Engineering, Carnegie Mellon

University, 5000 Forbes Avenue, Pittsburgh, PA 15213; email: {radum,uogras}@ece.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1084-4309/2008/01-ART11 $5.00 DOI 10.1145/1297666.1297677 http://doi.acm.org/

10.1145/1297666.1297677

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:2 • U. Y. Ogras and R. Marculescu

1. INTRODUCTION

Systems-on-Chip (SoCs) designed at nanoscale will soon contain billions of tran-
sistors [Semiconductor Industry Association 2006]. This makes it possible to in-
tegrate hundreds of IP cores running multiple concurrent processes on a single
chip. As a result, novel on-chip communication solutions that enable the design
of complex SoCs are needed. Due to their limited bandwidth and large capaci-
tive load, the legacy bus-based architectures become a performance bottleneck
for the design of multicore systems. On the other hand, the point-to-point com-
munication architectures fail to provide enough scalability in terms of area and
design effort [Bolotin et al. 2004; Lee et al. 2007].

In contrast to these traditional methods, the Network-on-Chip (NoC) commu-
nication architectures have been proposed to address the communication prob-
lems generated by the increasing complexity of single chip systems [Benini and
De Micheli 2002; Dally and Towles 2001; Guerrier and Greiner 2000; Hemani
et al. 2000; Jantsch and Tenhunen 2003]. While the NoC architectures offer sub-
stantial bandwidth increase and concurrent communication capability, their
performance can significantly degrade in absence of an effective flow control
mechanism. Such a control algorithm avoids resource starvation and conges-
tion in the network by regulating the flow of the packets competing for shared
resources, such as links and buffers [Bertsekas and Gallager 1992; Dally and
Towles 2004].

In the NoC domain, the term flow control was used almost exclusively in the
context of switch-to-switch [Dally and Towles 2001; Jalabert et al. 2004; Hu
and Marculescu 2005; Nilsson et al. 2003; Zeferino et al. 2004] or end-to-end
[Radulescu et al. 2005] transport protocols. These protocols provide a smooth
traffic flow by avoiding buffer overflow and packet drops. However, the flow
control can also regulate the packet population in the network by restricting
the packet injection to the network [Bertsekas and Gallager 1992].1 This is
precisely the main objective of this article. To the best of our knowledge, this
is the first study that addresses the congestion control problem in the NoC
domain.

Switch-to-switch flow control algorithms, such as on-off, credit-based, and
ack/nack mechanisms, regulate the traffic flow locally by exchanging control
information between the neighboring routers. These approaches have a small
communication overhead, since they do not require explicit communication be-
tween source/sink pairs. However, the switch-to-switch flow control does not
regulate the actual packet injection rate directly at the traffic source level. In-
stead, it relies on a backpressure mechanism that propagates the availability of
the buffers in the downstream routers to the traffic sources. Consequently, be-
fore the congestion information gets the chance to reach the traffic sources,
the packets generated in the meantime can seriously congest the network.
Moreover, wormhole routing is prone to head of line (HOL) blocking which
is a significant performance limiting factor. HOL blocking happens when the
packet header cannot propagate to the next router due to lack of buffering

1This function is also referred as congestion control. However, following the convention in Bertsekas

and Gallager [1992] and Gerla and Kleinrock [1980], we do not make such a distinction.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:3

space. When the HOL blocking occurs, all subsequent packets remain blocked
and thus the router output ports can starve. Therefore, congestion becomes even
more severe for networks that employ wormhole routing [Dally 1992; Smai and
Thorelli 1998].

End-to-end flow control algorithms, on the other hand, try to conserve the
number of packets in the network by regulating the packet injection rate right
at the source of messages. For example, in window-based algorithms, a traf-
fic source can only send a limited number of packets before the previously
sent packets are removed from the network. However, the major drawback of
end-to-end control algorithms is the large overhead incurred when sending the
feedback information [Bertsekas and Gallager 1992]. Besides this, the unpre-
dictable delay in the feedback loop can cause unstable behavior as the link
capacities increase [Paganini et al. 2001].

1.1 Overall Approach and Article Contribution

In this article, we propose a predictive flow control algorithm which enjoys
the simplicity of the switch-to-switch algorithms, while directly controlling the
traffic sources, very much like the end-to-end algorithms. Towards this end, we
first present an ON/OFF traffic source model. During the ON state, the traffic
sources generate packets in a bursty manner until the entire message is trans-
mitted. During the OFF state, on the other hand, the sources are silent, that
is, they either process data or wait for new inputs. The knowledge of the target
application enables us to characterize the distribution of the ON state. Next,
we develop a novel router model based on state space representation, where
the state of a router is given by the number of flits already stored in the input
buffers. Using the traffic source and router models, each router in the network
predicts the availability of its input buffers in a k-step ahead of time manner.
These availability values are computed via an aggregation process using the
current state of the router, the packets currently processed by the router, and
the availability of the immediate neighbors. Since all predictions are based on
data the routers receive directly from their immediate neighbors, the compu-
tations are decentralized and no global data exchange is required. Moreover,
we note that the availability information computed at time n is obtained by
aggregating the availability of the immediate neighbors at time n − 1. This
information, in turn, reflects the state of the routers situated two hops away,
at time n − 2, and so on so forth. Therefore, due to the aggregation process the
local predictions actually reflect the global view of the network. Finally, the
traffic sources utilize the availability of the local router to control the packet
generation process and avoid excessive injection of packets in the network. In
summary, the major contributions of this work are as follows:

—First, we present an ON/OFF traffic source model. The knowledge of the
target application enables us to precisely characterize the distribution of the
ON period. We illustrate this model using an NoC-based implementation of
the MPEG-2 encoder.

—Second, we develop a state space model of NoC routers. The proposed model is
a powerful tool for the analysis of router behavior. In this work, the proposed

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:4 • U. Y. Ogras and R. Marculescu

model is used to predict the availability of a given router. However, it can
be also utilized for power and performance analysis purposes [Ogras and
Marculescu 2007]. The predictions on buffer availability made by the routers
are, in turn, used by the traffic sources to decide whether or not to inject new
packets in the network. When congestion is likely, the source flow controllers
delay the injection of packets until the congestion is resolved.

—Finally, we present extensive experimental evaluation including the hard-
ware implementation of the proposed controller and simulation study involv-
ing real and synthetic benchmarks. Through hardware implementation, we
show that the proposed controller has a small area (0.011 mm2 for 0.18 um
technology). Furthermore, the simulations show much better performance
compared to basic link-level flow control.

1.2 Article Organization

In Section 2, we review the related work. System and traffic source models are
presented in Section 3. In Section 4, we develop the router model based on a
novel state space representation. The proposed flow controller and its practical
implementation are discussed in Section 5. Finally, the experimental results
appear in Section 6, and Section 7 concludes the article.

2. RELATED WORK

2.1 Networks-on-Chip

Due to the increasing complexity of SoCs, the design of scalable communica-
tion architectures has recently received significant attention [Guerrier and
Greiner 2000; Hemani et al. 2000; Sgroi et al. 2001]. The NoC architectures
are motivated as a scalable solution for on-chip communication in [Benini and
De Micheli 2002; Bolotin et al. 2004; Dally and Towles 2001; Guerrier and
Greiner 2000]. Design methodologies for application mapping to NoC archi-
tectures and NoC architecture synthesis appear in [Ascia et al. 2004; Hu and
Marculescu 2005; Murali et al. 2005] and [Ogras and Marculescu 2005, 2006;
Pinto and Sangiovanni-Vincentelli 2003; Srinivasan et al. 2004], respectively.
Several concrete NoC implementations are presented in [Adriahantenaina and
Greiner 2003; Bjerregaard and Sparso 2005; Dielissen et al. 2003; Lee et al.
2007; Liang et al. 2004; Millberg et al. 2004].

From a flow control perspective [Dally and Towles 2004; Gerla and Kleinrock
1980], most of the work presented in the NoC domain relies on the switch-to-
switch flow control; this is primarily due to the large overhead incurred by the
end-to-end flow control algorithms. A comparison of the fault-tolerance over-
head of various flow control algorithms employed in NoCs can be found in
[Pullini et al. 2005]. In that article, the authors consider buffer and channel
bandwidth allocation in presence of pipelined switch-to-switch links and ana-
lyze varying degrees of fault tolerance support, resulting in different area and
power trade-offs.

We note that, in real applications, the best-effort (or non–real time) and
guaranteed service (or real-time) traffic may coexist. The Aethereal network

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:5

architecture presented in [Radulescu et al. 2005] employs the end-to-end flow
control for guaranteed service in addition to the basic link-level control. More
precisely, the authors implement guarantees using contention-free routing
based on a time-division multiplexed approach and differentiate best-effort
traffic from the guaranteed traffic. The end-to-end flow control uses credits that
reflect the available buffering space in the destination. Similarly, the SPIN ar-
chitecture in [Adriahantenaina and Greiner 2003] also uses credit-based flow
control where buffer overflows at the target end of a path are checked at the
source. The receiver notifies the sender of every datum consumed, with a dedi-
cated feedback wire. [Bjerregaard and Sparso 2005] propose an asynchronous
NoC router architecture to support connection-oriented guaranteed service,
as well as best-effort routing. The guaranteed service operation is provided
through use of multiple virtual channels, a nonblocking switch and a link ac-
cess protocol, while the best-effort traffic uses credit-based flow control. Bolotin
et al. [2004] present the QNoC network architecture based on a two-dimensional
mesh topology and deterministic shortest path routing. In this architecture, the
traffic is divided into four classes with different levels of priority. Then, a pre-
emptive priority-based scheduling is proposed to provide QoS based on these
traffic types. [Harmanci et al. 2004] also provide guaranteed services on top of
best-effort traffic using prioritization of flows. A quantitative comparison be-
tween this connectionless scheme and a connection-oriented scheme [Radulescu
et al. 2005] such as is presented in Harmanci et al. [2005]. The authors conclude
that the connectionless scheme offers more stable end-to-end delay and it is able
to provide guaranteed latency for individual flows. Nostrum NoC architecture
[Millberg et al. 2004] has two dimensional mesh topology and employs an adap-
tive, deflection routing. In deflection routing, the incoming packet is routed to
one of the free output channels belonging to a minimal path. If all the channels
belonging to minimal paths are occupied, then the packet is misrouted. This
increases message latency even in the absence of congestion and bandwidth
consumption [Baydal et al. 2005; Duato et al. 2002; Hyatt and Agrawal 1997].
Moreover, when there are no available output channels, the entire packet needs
to be stored; this requires buffers large enough to store the packets. Nostrum
deals with this by fixing the packet size as 1-flit. However, this requires putting
the header information such as destination address to each packet. Hence, this
results in a large overhead and poor bandwidth utilization. Unlike the Nostrum
architecture, we support packets with arbitrary length. We employ wormhole
routing and deterministic shortest path routing algorithms. Finally, Nostrum
handles both best-effort and guaranteed latency traffic. The guaranteed service
is provided through virtual circuits implemented using looped containers and
temporally disjoint network concepts which require a synchronous design (i.e.,
a common notion of time across the network). As opposed to this, our proposed
technique targets best-effort traffic.

Flow control techniques mentioned in the previous paragraph target QoS
guarantees, whereas our technique targets best-effort traffic and prevents con-
gestion by regulating the best-effort traffic. Hence, our technique cannot be
used to provide guaranteed services per se. Instead, it makes the best use of net-
work bandwidth without sacrificing the bandwidth allocated to the guaranteed

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:6 • U. Y. Ogras and R. Marculescu

service traffic. Therefore, when a mechanism for the guaranteed service traffic
is in place, the proposed technique can be used in conjunction with this service
to fully exploit the bandwidth not utilized by the guaranteed service traffic.

2.2 Interconnection Networks

When the network becomes congested, performance degradation in terms of
both average message latency and accepted traffic is experienced. Congestion
control is well studied for macronetworks [Bertsekas and Gallager 1992; Gerla
and Kleinrock 1980; Paganini et al. 2001; Qiu and Shro 2004]. Paganini et al.
[2001], develop a decentralized control system, where the sources adjust their
traffic generation rates based on the feedback received from the bottleneck
links. A predictive explicit-rate control mechanism is presented in Qiu and
Shro [2004], where the authors consider a single bottleneck node and infinite
buffering resources. The sources adjust their traffic rates using the congestion
information received from the bottleneck node via control packets.

Injection limitation techniques are studied in the context of parallel com-
puter networks to avoid network saturation and cope with deadlock. Lopez
et al. [1998] use the number of busy output channels in a node to measure the
level of congestion. If the number of busy output channel exceeds a properly
selected threshold value, the router prevents injection of new messages. Since
this threshold is a function of the traffic pattern and packet sizes, the authors
adjust it dynamically as a function of network load. Baydal et al. [2005] sur-
vey a family of mechanisms for congestion control in wormhole networks. In
the first technique, congestion is measured as the ratio between the number of
free virtual channels and total number of useful virtual channel that could be
used by a certain message. If this ratio is larger than a threshold which should
be tuned manually, then the packet is injected to the network. In second tech-
nique, packet injection is permitted if all physical channels have at least one
virtual channel free or at least one physical channel has all its virtual channels
free. Finally, the third method computes the number of flits sent through each
virtual channel in a certain time interval to detect network congestion. If a
channel is busy and the number of flits sent is less than a threshold, then the
channel is considered congested. In case congestion is detected, packet injection
restrictions are applied at the local node. The time interval and threshold need
to be tuned, as in the first mechanism. These techniques rely on local feedback,
hence they lack knowledge about global information. On the other hand, Smai
and Thorelli [1998] present a global congestion control scheme based on time-
outs. In this scheme, each node monitors the time the header flit stays in the
source queue. If the waiting time is larger than a threshold, the node sends a
congestion signal to its neighbors. All the nodes receiving the congestion mes-
sage limit packet injection and share this information with their own neighbors.
The technique presented in Thottethodi et al. [2001] aims at detecting conges-
tion in early stages by taking the global conditions into account. The fraction
of full virtual channel buffers of all routers is used as the congestion metric.
The congestion data collected at each node is then disseminated to all other
nodes through an exclusive side-band reserved for this purpose. The authors

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:7

develop an all-to-all communication mechanism for dissemination of congestion
information with guaranteed delay bounds. However, this mechanism is specific
to the particular network topology and its generalization to other topologies is
not straightforward [Hedetniemi et al. 1998].

Our approach is different from the previously mentioned work in a number
of ways. First, our technique is computationally light since it relies on local
data transfers, similar to the basic switch-to-switch flow control. At the same
time, our mathematical formulation enables us to predict the available buffer-
ing space in the network without assuming any particular traffic pattern or
network topology. Due to the aggregation process performed at the routers, the
information exchanged between the switches actually reflects the global view of
the network. Furthermore, since the predictions reflect the state of the network
k steps ahead in time, the packet sources across the network can sense a possible
congestion situation early on and then adapt in order to avoid excessive packets
injection to the network. In what follows, we present the details of our approach.

3. SYSTEM AND TRAFFIC SOURCE MODELING

3.1 System Model and Basic Assumptions

We assume the network nodes consist of processing and storage elements (re-
ferred to as PEs); the nodes communicate by exchanging packets across the
network. We consider wormhole routing, so the packets are divided into flits.
The length of a packet (S) is measured by the number of flits it contains. For
convenience, the flit size is assumed to be equal to the physical channel width
(W). No assumption is made about the underlying network topology.

In order to avoid packet loss, a basic link-level ON-OFF flow control mech-
anism is implemented at the routers [Dally and Towles 2004]. The proposed
predictive control technique works together with this link-level mechanism to
control directly the behavior of the traffic sources.

3.2 Traffic Source Model

Traffic injection rate into the network is the main knob for source control.
Therefore, an accurate model of the input traffic is necessary for the develop-
ment of flow controller. Such a model will not only show how the input traffic
can be handled, but also describe its impact on the packet delay in the network.
Towards this end, we observe that the NoC nodes can be in two different states:

OFF State. The PE is either processing data or waiting for new data. While
in this state, the PE does not generate traffic (hence the name OFF) as shown
in Figure 2.

ON State. The PE injects packets to the network so the traffic source and
its corresponding state are referred to as ON. In this state, the source injects
packets in a bursty manner until the message is completely transmitted.

3.2.1 Experimental Justification for the ON/OFF Traffic Model. To sup-
port this observation with measured data, we collected traces from the sources
in the MPEG-2 encoder design presented in Lee et al. [2007]. The MPEG-2

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:8 • U. Y. Ogras and R. Marculescu

Fig. 1. (a) The data flow graph of the MPEG-2 encoder in Lee et al. [2007] and its (b) NoC-based

implementation are shown. The average values of ON and OFF periods (FON ave, FOFF ave), as

number of cycles, are also shown in Figure 1(a).

Fig. 2. (a) Traffic injection by the Frame Buffer module is shown. It can be observed that the

module switches between ON and OFF periods. (b) Traffic injection by the Inverse Discrete Cosine
Transform/Inverse Quantization module is plotted for a longer time scale. Bursty ON periods are

followed by long OFF period due to long data waiting time.

encoder data flow graph and its NoC-based implementation are depicted in
Figure 1. Figure 2(a) shows the traffic generated by the Frame Buffer module
which stores the frames reconstructed using the previously encoded frames.
The Frame Buffer module alternates between ON and OFF states. During the
OFF state, it waits for a read request from the Motion Compensation module,
as shown in Figure 1(a). Hence, no packet is generated during this period. Once
a read request is received, the Frame Buffer module prepares a packet contain-
ing the next macroblock to be processed and injects the packet to the network;
hence the module switches to the ON state. It stays in the ON state until all
the requested data is transmitted to the Motion Compensation module.

In Figure 2(b), we investigate the traffic generated by the Inverse Dis-
crete Cosine Transform (IDCT)/Inverse Quantization (IQ) module at a larger
time scale. This module receives macroblocks from Discrete Cosine Transform
(DCT)/Quantization (Q) module and performs inverse quantization and in-
verse discrete cosine transform to produce the reconstructed frame.

Since encoding the Intra (I) frames does not require motion estimation and
compensation, the IDCT/IQ module receives and processes packets at a very
high pace. Consequently, we observe bursty ON periods with small OFF periods

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:9

in between (time scale 5 × 104 − 6.8 × 104 nsec in Figure 2(b)). On the other
hand, encoding Predicted (P) frames is much slower in our design. For this
reason, the IDCT/IQ module waits longer for new blocks to be processed and
experience longer OFF periods.

We also note that the bursty nature of the on-chip traffic has been observed
by other researchers. For instance, the traffic model considered in Murali et al.
[2005] consists of bursts (i.e., ON periods) and silent (i.e., OFF) periods. Sim-
ilarly, the long-range dependent (LRD) behavior of on-chip multimedia traffic
is demonstrated and studied in Varatkar and Marculescu [2004]. It is a known
fact that ON-OFF traffic sources with heavy tailed distribution of ON (or OFF)
times gives rise to LRD traffic [Park and Willinger 2000].

3.2.2 Characterization for the Distribution of ON/OFF Periods. Let the
discrete time stochastic process λ(t), t ∈ Z + denote the instantaneous flit in-
jection rate at time t. The cumulative traffic volume generated up to time t
(denoted by V (t)) is given by:

V (t) = V (t − 1) + λ(t), V (0) = 0, t ∈ Z +. (1)

In the ON state, the flit injection rate λ(t) is constant and equal to channel
width; that is, λON = W bits/sec. If a header flit is injected to the network at
time t0, one can see that λ(t0 + �) �= 0 for 0 < � < S, where S is the packet
size in flits. Similarly, when the PE is in the OFF state, one can get an idea of
how much longer the OFF state will continue, given the amount of time already
spent for processing and type of processing done by the PE. Therefore, the inter-
arrival times are not memoryless, (i.e., not exponentially distributed) and so the
flit injection process cannot be modeled as a Poisson process. Consequently, we
employ the following classical ON/OFF [Park and Willinger 2000] model to
work with NoC traffic sources.

Distribution of tON. The duration of the ON state is determined by the size
of the packets generated by the node and λON; specifically, tON = �SW/λON�
where, again, S is the length of a packet (number of flits) and W is the phys-
ical channel width (W bits are transmitted per flit). While λON is constant, S
depends on the particular packet (or packets) generated by the source after
completing a certain task. In an NoC, the type of the tasks performed by each
PE and the size of the resulting message are typically known at design time.
For example, a DSP core implementing DCT/IDCT operations in a multimedia
chip, can produce only the cosine or inverse cosine transforms of a fixed size
data block. Hence, S can take only certain discrete values, usually known at
design time. Note that, this is in stark contrast with a general purpose network,
where a node can generate a much wider range of messages. As such, we model
the probability mass function FON as:

FON(t) = p(tON ≤ t) =
t∑

i=0

p
(
tON = i

)
. (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:10 • U. Y. Ogras and R. Marculescu

We can actually compute FON(t), since the communication volume between the
network nodes and λON are known at design time.

Distribution of tOFF. The duration of the OFF state is the sum of two
random variables. The first is the processing time of the PE, tproc; this can take
certain discrete values, based on the number of different tasks implemented by
the PE. Therefore, tproc is a discrete random variable with discrete probability
mass function:

Fproc(t) = p(tproc ≤ t) =
t∑

i=0

p(tproc = i).

The second component of tOFF is the waiting time (twait) for new data, before the
node cannot start processing. Unlike tON and tproc, the waiting time twait can
take a wide range of values as it depends on the latency in the network. When
tproc can take n different values, the distribution of tOFF can be expressed as a
function of the waiting time, p(twait ≤ t), as follows:

FOFF(t) =
n∑

k=1

p(twait ≤ t − tk|(tproc = tk))p(tproc = tk). (3)

In general, it is difficult to compute the distribution of twait, since it depends on
the latency experienced in the network. However, the predictive flow controller
presented in this paper depends only on the distribution of the tON, as explained
in Section 5.

3.3 Predictive Control of Traffic Sources

Suppose that the ON states of several traffic sources overlap and lead to tempo-
rary congestion in the network. Consequently, starting at time t0, the packets
generated by source i cannot be delivered to their destinations. In this scenario,
source i will continue to inject packets to the network until it senses congestion,
let say at time t0 + δ. The number of flits injected during this time is given by:

V (t) = min

(
t0+δ∑
t=t0

λ(t),
∑

BT

)

where the first element in the tuple represents the total number of flits that
can be generated by the source, while BT is the available buffering space along
the path from source i to the congested router. If the interval (t0, t0 + δ] covers
the ON period of the source, it is likely that the source will continue to inject
packets until it senses the backpressure effect due to the buffer starvation.
This, in turn, can further increase the number of packets in the network and
hence make the congestion more severe. Since there are many sources sharing
the same network resources, it is extremely important to minimize δ.

δ can be reduced by predicting the possible congestion before it becomes
severe and propagating this information to all traffic sources. Since the avail-
ability in the routers may indicate congestion, the traffic sources can send a
packet to the router only if its availability of greater than zero. Otherwise,
the traffic source can delay the packet injection until the resource availability

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:11

Fig. 3. Illustration of the ON-OFF source model and the control action. By delaying the start of

the ON period, the waiting time in the network can be reduced.

improves, as illustrated in Figure 3. Delaying the packet injection effectively
regulates the total number of packets in the network, hence the average packet
latency. While the precise time for packet injection is difficult (if not impossible)
to find at design time, an online predictor can guide the packet generation at
the source in order to utilize the network resources in the best possible way.

4. STATE SPACE MODELING OF NoC ROUTERS

To obtain accurate predictions for the available buffering space in the routers,
we also need a good model for the NoC router. Traditionally, the network re-
search has been focused on directly computing the router delay [Chien 1998;
Peh and Dally 2001]. Unlike previous work, our goal is to predict how many flits
the router can accept over the next k time steps. For this reason, the parameter
of interest is the occupancy of the router input buffers.2

We propose a state space representation of a NoC router driven by stochastic
inputs, as shown in Figure 4. The state of the router at time n is given by the
number of flits in its input buffers; that is:

X (n) = [x1(n), x2(n), . . . , xp(n)]T , (4)

where xP (n) is the state of the input port P (i.e., total number of flits in all
of the input buffers associated with port P) and ‘T ’ denotes the transposition
operation. For instance, a router with d neighboring routers and one local PE
connection has (d + 1) ports. Hence, X (n) is a (d + 1) × 1 vector.

The input received at port P, at time n, is denoted by uP (n). uP (n) is equal
to 1, if a flit is received at time n and is 0 otherwise. Similarly, the output
from port P is represented by yP (n), where yP (n) = 1 implies that a flit is
transmitted to the downstream router, at time n. Consequently, the input and
output processes of the router are given by the following P × 1 vectors:

U (n) = [u1(n), u2(n), . . . , up(n)]T ,

Y (n) = [y1(n), y2(n), . . . , yp(n)]T . (5)

2A similar model for the output buffers can be also developed.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:12 • U. Y. Ogras and R. Marculescu

Fig. 4. The state variables, inputs and outputs of a 4-port router are shown.

Next, we model how the flits are read from the input buffers. oP (n) = 1
means that one flit is read from the input buffer at port P , and the vector
O(n) = [o1(n), . . . , oP (n)]T represents the outcome of reading process from the
input buffers. Note that this is different from the outputs Y (n) of the router.
The output of the input buffers goes through the crossbar switch and then ends
up at one of the router output ports (Figure 4).

As a result, the knowledge of either Y (n) or O(n) provides information about
the other, given the connections in the crossbar switch. So, the router can be
described by an integrator, where the next state is determined by the current
state, current input and current output processes, as follows:

X (n + 1) = IP×P X (n) + U (n) − O(n). (6)

Router Stability. The router described by Equation (6) can become unsta-
ble (i.e., the state grows unbounded), if the average arrival rate to the router is
greater than the rate at which the router can serve any given packet. In prac-
tice, however, the input buffers are all finite. Hence, in order to avoid packet
loss, no more flits are accepted by the link-level flow control when the buffers
are full. As a result, the router model given in Equation (6) can be refined
as:

X (n + 1) = IP×P X (n) + [U (n)H(n)] − O(n), (7)

where H(n) = [h(b1 − x1(n)), h(b2 − x2(n)), . . . , h(bP − xP (n))]T .h(xi) is the unit
step function (i.e., h(xi) = 0 if xi ≤ 0, and h(xi) = 1 otherwise), and b1 to bP

represent the capacity of each input buffer. We also emphasize that [U (n)H(n)]
represents the element-wise product in this equation; it is used hereafter for
notational simplicity.

Finally, solving Equation (7) with respect to a known state X (n0), gives the
state at time n + n0 as

X (n + n0) = X (n0) +
n+n0−1∑

j=n0

([U (j)H(j)] − O(j)). (8)

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:13

Fig. 5. (a) Buffer utilization and (b) delay histogram of a router.

Obviously, the router described by Equation (8) has a bounded response.
However, since such a control does not limit the source injection directly, the
input buffers will remain full for most of the time, if the average arrival rate be-
comes larger than the service rate of the router. This, in turn, results in blocked
links and large delays in the network. One can regulate the traffic injection by
an open loop controller [Dally and Towles 2004]. However, this solution does
not solve the congestion problem completely, since the packets may experience
congestion due to the overlaps between the ON periods of the traffic sources
even under a light load. For instance, consider a 4 × 4 2D mesh network run-
ning hotspot traffic.3 Although the traffic load is kept low such that the input
buffers of the most congested router are empty more than 80% of time and the
buffers become full only about 1% of time (see Figure 5(a)), about 18% of the
packets experience delays more than twice as large as the average delay, as
shown by the delay histogram in Figure 5(b). Such packets will not only block
the network resources, but also affect the other packets as well. As a result,
we cannot merely rely on such an open-loop control scheme so, in what follows,
we show how exactly the router model presented in this section can be used to
implement a predictive flow controller which regulates the traffic injection to
the network.

5. PREDICTION-BASED FLOW CONTROLLER

Collecting congestion data at the routers and delivering this data to the traffic
sources for flow control may cause a large communication overhead; so it is
not a scalable approach. Moreover, unpredictable delays in the feedback loop of
flow control algorithms prevent the timely transmission of the congestion infor-
mation and control signals. To mitigate this problem, we propose a prediction-
based control which relies on the traffic source and router models developed in
Sections 3 and 4, respectively. These models enable us to predict the availability
of any router at a future time step, as described next.

3Under the hotspot traffic, the nodes in the network receive packets with uniform probability,

except a few (in our experiments 4) randomly selected nodes that receive some extra traffic.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:14 • U. Y. Ogras and R. Marculescu

5.1 Availability Predictor

We use the conditional expectation of the state at n0 +k, given the state at time
n0, i.e., X̂ (n0 + k|n0), as the k-step predictor for network state [Mendel 1995].

X̂ (n0 + k|n0) = E[X (n0 + k)|X (n0), U (n0)]

Using Equation (8), we have:

X̂ (n0 + k|n0) = X (n0) +
n0+k−1∑

j=n0

(E[[U (j)H(j)]|n0] − E[O(j)|n0]) (9)

where E[.|n0] stands for E[.|X (n0), U (n0)] (for notational simplicity). To com-
pute the k-step forward prediction, we need the expected value of input and out-
put processes, given the current state and input. If sufficient processing power
is available (e.g., when the predictor is implemented in a data macronetwork
with plenty of resources), then Equation (9) can be directly used to estimate the
conditional mean values of the input and output processes to predict the state
at n0 + k. However, for NoCs we have to keep the area overhead as small as
possible. For this reason, we use Equation (9) to predict how many flits a given
input port can accept, over the following k steps, rather than dealing with the
absolute value of the state.

We call the number of flits the input port P can accept over the next k steps
as the availability of port P and denote it by aP (n0, k). aP (n0, k) simply consists
of the (I) sum of the number of empty slots in the buffer at time n0 + k, and (II)
the number of flits that are expected to be admitted in the following k steps,
that is,

(I) (II)

aP (n0, k) = bP − x̂P (n0 + k|n0) +
n0+k−1∑

j=n0

E[uP (j)h(bP − xP (j))|n0].

If we define the availability vector as A(n0, k) = [a1(n0, k), . . . , aP (n0, k)] and
B = [b1, b2, . . . , bP ,]T is the vector containing the depth for each input buffer,
then we can find A(n0, k) as:

A(n0, k) = B − X̂ (n0 + k|n0) +
n0+k−1∑

j=n0

E[[U (j)H(j)]|n0]. (10)

Next, we can substitute X̂ (n0+k|n0) in Equation (9) to Equation (10) and obtain
A(n0, k) as:

A(n0, k) = B − X (n0) +
n0+k−1∑

j=n0

E[O(j)|n0]. (11)

Intuitively, B–X (n0) represents the availability at time n0, while the last term
is the expected number of flits that will be read from the router in the in-
terval [(n0, n0 + k). Since a new flit can be written to the buffer for each
flit being read, the sum of these terms gives the availability for the interval
[(n0, n0 + k).

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:15

Fig. 6. Exchange of the availability information between the neighboring routers.

The expected value of the read process from the input buffers (that is, the
last term in Equation (11)) can be approximated using the router output Y (j)
as follows:

n0+k−1∑
j=n0

E[O(j)|n0] =

⎡
⎢⎢⎣

g1,1(n0) . . . g1, P (n0)
g2,1(n0) . . . g2, P (n0)

.

g p,1(n0) . . . g P, P (n0)

⎤
⎥⎥⎦

n0+k−1∑
j=n0

E[Y (j)|n0] (12)

where the coefficients gi,k(n0) reflect the state of the crossbar switch and chan-
nel allocation in the router. Computation of these coefficients are illustrated
in Section 5.2 using a concrete example. If we let G(n0) = {gi,k(n0)}, then
Equation (11) can be written as:

A(n0, k) = B − X (n0) + G(n0)
n0+k−1∑

j=n0

E[Y (j)|n0].

Note that �
n0+k−1
j=n0

(E[Y (j)|n0] is the expected number of flits transmitted by
the router in the interval [n0, n0 + k). However, this represents nothing but
the availability of the immediate neighboring routers. In other words, in-
stead of predicting the number of flits transmitted over the next k steps, we
aggregate the availability information already predicted by the neighboring
routers. As a result, the availability of a router is updated using the following
equation:

A(n0, k) = B − X (n0) + G(n0)C(n0 − 1, k), (13)

where the vector C(n0−1, k) denotes the availability of the immediate neighbors
predicted at time n0 − 1, as illustrated in Figure 6 (see also Figure 4).

In summary, the availability of the routers for the interval [(n0, n0 + k) are
predicted using the empty buffer slots at time n0, the state of the crossbar
switch and the availability of the neighboring routers using Equation (13).
Hence, the computations depend on only local information. At the same time,
the availability information computed at time n is obtained by aggregating the
availability of the immediate neighbors at time n−1. This information, in turn,
reflects the state of the routers situated two hops away, at time n−2, and so on

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:16 • U. Y. Ogras and R. Marculescu

Fig. 7. Practical implementation of the predictor.

so forth. Therefore, due to the aggregation process the local predictions actually
reflect the global view of the network.

5.2 Practical Implementation of the Predictor

Since all the input buffers in the network are initially empty, the availability
values are initialized to the sum of buffer capacities and the prediction step,
that is,

A(0, k) = B + k[1, 1, . . . , 1]T
1×P . (14)

According to Equation (13), a router needs the number of free slots in its input
buffers (B − X (n0)), the state of the crossbar switch (G(n0)), and the availabil-
ities from the neighboring routers (C(n0 − 1, k)) to update its availability. The
routers keep track of the number of free slots in the input buffers and the state
of the crossbar switch internally. On the other hand, they receive the availabil-
ities of the neighboring routers through dedicated control wires, as depicted
in Figure 6. The number of these dedicated wires determine the maximum
availability value that can be transferred between the neighboring values. For
instance, in our implementation we use 4 parallel wires, as shown in Figure 6;
this means that we can transfer 4 bits of information over these wires. Hence,
the maximum availability value that can be transferred is 24 − 1 = 15.

Once a router receives the availabilities from the immediate neighbors
through dedicated connections, it needs to determine how to distribute these
availability values to its input ports. This distribution is achieved according to
Equation (13), where the coefficients gi,k reflect the state of the crossbar switch.
The details of this distribution process are provided in Figure 7.

The first step towards computing the availabilities is to initialize the avail-
ability of each input port with the number of free slots in the corresponding
input buffer (i.e., the first term in Equation (13)), as shown by the box labeled

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:17

with “1” in Figure 7. We note that this term gives the zero-order approxima-
tion of the availabilities, when no input is received from the neighbors. After
this initialization, the availability of the neighboring routers are processed as
described in the box labelled with “2” in Figure 7. For each output port j , the
predictor checks whether there exist a connection through the crossbar switch
between that port and any input port i. If there is a connection, then the num-
ber of flits that are expected to use this connection (� in box 2, in Figure 7) is
determined using the packet length available in the header flit and the number
of flits that are already transmitted. If � is greater than the availability of out-
put port j (i.e., c j), then c j flits are allocated to input port i. Otherwise, � flits
are allocated to input port i, while the remaining (i.e., c j −�) is distributed
uniformly to all input ports except port j . Port j is excluded, since a packet
cannot leave the router using the same port it arrived, that is, 180 degree turns
are not possible due to shortest path routing. In case the output port j is not
connected to any input port, then the whole availability c j is distributed uni-
formly to all input ports except port j , as described by the outer if statement
in box 2, in Figure 7.

Example 1. Assume that at time n0, the depth of the input buffers, their
occupancies and the availability values received from the neighboring routers
are given as follows:

B =

Local
North
West
South
East

⎡
⎢⎢⎢⎢⎣

4
4
4
4
4

⎤
⎥⎥⎥⎥⎦ , X (n0) =

⎡
⎢⎢⎢⎢⎣

0
4
0
0
0

⎤
⎥⎥⎥⎥⎦ , C(n0) =

⎡
⎢⎢⎢⎢⎣

0
8
3
8
8

⎤
⎥⎥⎥⎥⎦ .

We further assume that the crossbar switch connects the North input port to
the West output port, and 4 flits in the North input port are waiting to traverse
the crossbar switch (i.e., � = 4).

Computation of Availabilities. We explain the computation of availabilities
in plain english according to the pseudo code in Figure 7. This description also
shows how the algorithm is implemented.

We start by initializing the availabilities to B − X (n0); that is, the number
of empty slots at time n0 : A = [4, 0, 4, 4, 4]T .

Next, we distribute the availabilities of the neighboring routers to the input
buffers. Since the West output port is connected to the North input port and
� > 3, the availability of the West output port is added to the North input
port. Hence, the availability vector becomes: A = [4, 3, 4, 4, 4]T .

No input port is connected to the North, South, and East output ports. There-
fore, their availabilities are distributed uniformly to all input ports. For ex-
ample, after the 8-flit availability from the North output port is distributed
to Local, West, South, and East input ports, the availability vector becomes:
A = [6, 3, 6, 6, 6]T .

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:18 • U. Y. Ogras and R. Marculescu

The computation of the availabilities can be written in matrix notation (sim-
ilar to Equation (13)), as follows:

A =

⎡
⎢⎢⎢⎢⎣

4
4
4
4
4

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

0
4
0
0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

8/4 0 8/4 8/4 8/4

0 3 0 0 0

8/4 8/4 8/4 0 8/4

8/4 8/4 8/4 8/4 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

The first two component correspond to the initialization step; that is, B− X (n0).
In the last term, each row describes how the availability from each output port
is distributed. For example, the first row is all zeros, since the first row of C(n0) is
zero. On the other hand, the 8-flit availability from the North port is distributed
uniformly to Local, West, South, and East input ports, as described by the second
row. Likewise, the fourth and fifth rows (which denote the availabilities from
South and East ports) are uniformly distributed. However, all availabilities
from the West output port go to the North input port, as described by the third
row. We note that the entries in each row sum up to the availabilities obtained
from the neighbors. Finally, Equation (15) can be rewritten by factoring C(n0)
out such that it takes the form of Equation (13):

A =

⎡
⎢⎢⎢⎢⎣

4
0
4
4
4

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

1/4 0 1/4 1/4 1/4

0 1 0 0 0

1/4 1/4 1/4 0 1/4

1/4 1/4 1/4 1/4 0

⎤
⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

0
8
3
8
8

⎤
⎥⎥⎥⎥⎦

B − X (n0) + G(n0) C(n0 − 1, k).

Hence, the components of the matrix G(gij) in Equation (13) reflect the distri-
bution process as demonstrated in this example.

5.3 Hardware Implementation of the Proposed Flow Controller

In order to accurately evaluate the area overhead, we implemented the proposed
flow control in Verilog HDL and synthesized the design using Synopsys Design
Compiler. The equivalent gate count of the proposed flow controller is found as
1093 gates.

We also integrated the proposed flow controller into an existing router and
developed an FPGA prototype based on a Xilinx XC2V3000 platform. The ba-
sic NoC router without the proposed flow controller is based on the prototype
presented in [Ogras and Marculescu 2006]. The router implements the basic
link-level ON/OFF flow control. The input buffers of the router have 16 flit
depth and 16 bit width. The router implements wormhole flow control with
deterministic table-based routing. It takes 4 cycles for the router to process
the header flit (that is, to receive, make a routing decision, traverse the cross-
bar switch and place it to the desired outgoing link). After that, the remaining
flits simply follow the header in a pipelined fashion. The time it takes to route

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:19

Fig. 8. Operation of the proposed flow control algorithm is illustrated.

packets is not affected by the proposed controller, since the computation of the
availabilities are performed concurrently with routing.

The proposed controller takes up 80 slices in the target FPGA; this corre-
sponds to about 18% increase in the number of resources used by the router. It
is also important to evaluate the overhead of the router in a real design. For
instance, the overhead of the proposed controller is about 0.8% for the MPEG-2
encoder presented in Lee et al. [2007]. In general, the overhead of our controller
is estimated be about 1% of the total chip area.

5.4 Using Prediction for Network Control

The overall operation of the proposed flow controller in summarized in Figure 8.
Each router in the network updates its availability periodically by aggregating
the data received from the immediate neighbors. As a result, the availability of
a local input port connected to a traffic source reflects the backpressure from
all of the downstream routers. In the absence of the proposed flow controller,
a traffic source switches freely from OFF state to ON state, whenever it needs
to inject a packet to the network. As opposed to this, the traffic sources check
the availability of its host router, before entering the ON state. In analogy with
wireless networks, the sources listen before transmit, that is, they sense the
congestion in the network through the local router. As such, when a traffic
source sees that the input port connected to it has zero availability, it delays
the generation of new packets until the availability of the port becomes greater
than zero, as shown in Figure 8.

Since the congestion information propagates in the network through aggre-
gation, prediction step k is selected as the diameter of the network. In this way,
the timely transmission of the prediction to the traffic sources is guaranteed,
since the information exchange between the neighboring routers is achieved by
a small number (i.e., log2(aP (0, k))) of dedicated control wires and the availabil-
ity signals do not experience queuing delays.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:20 • U. Y. Ogras and R. Marculescu

Table I. The Reduction in the Average Packet Latency and Number of Packets in the

Network Due to the Proposed Flow Control Algorithm are Indicated. The Latency Values

are the Sum of the Latencies Experienced at the Source Queue and in the Network. The

Average Latencies Experienced at the Source Queues are Also Given (in Parentheses)

Switch-to-Switch The Proposed Reduction

Control Only Flow Control (×)

Ave. latency 149 (112) cycles 47 (12) cycles 3.2

Max. latency 897 (774) cycles 466 (404) cycles 1.9

Standard deviation of latency 173.8 (156) cycles 55.7 (46) cycles 3.1

Ave. # of packets 94 packets 29 packets 3.2

Max. # of packets 129 packets 52 packets 2.5

Standard deviation of # of packets 24.7 packets 7.2 packets 3.4

6. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of the proposed flow control
technique using an audio/video system complying with the H263.1 standard, as
well as synthetic benchmarks which are all mapped to a 4×4 2D mesh network.
Wormhole routing and deterministic XY routing algorithm is used throughout
the simulations. The simulations are performed using a custom cycle-accurate
NoC simulator which implements a basic ON/OFF switch-to-switch flow
control, the ON/OFF traffic sources and the proposed flow control scheme.

The simulations are repeated for a range of buffer sizes in routers and local
PEs. The results reported next are obtained for 4-flit input buffers in the routers
and 100-flit local memory in the host PE4. The average packet latency reported
in this paper includes the latency experienced in the local memory (i.e., the
source queuing delay), and the network latency. The network latency denotes
the time the packet travels in the network before being ejected. Finally, we also
present experimental results obtained using the FPGA prototype in addition to
the simulations.

6.1 Audio/Video System

We first used the audio/video system described in Hu and Marculescu [2005]
to evaluate the potential of the proposed algorithm for real applications. The
target system includes an H263 video encoder, an H263 video decoder, an MP3
audio encoder, and an MP3 audio decoder. It is partitioned into 40 concurrent
tasks and then these tasks are mapped to the 4 × 4 2D mesh-network. Finally,
the traffic traces obtained from real video and audio clips are used to determine
the communication patterns among the processing cores in the network.

The audio/video system is first simulated using only the switch-to-
switch flow control. When the offered load is about half of the maximum
achievable throughput, the average and maximum packet latencies in the net-
work are found to be 149 and 897 cycles, respectively. After that, the simulations
are repeated with the proposed flow controller in place. As shown in Table I, the
average packet latency becomes 47 cycles, while the maximum packet latency

4Note that the local memory in the host PE is not part of the router. The 100-flit local buffer is used

to emphasize that (i) its size is finite and (ii) PEs sense the backpressure from the network for the

switch-to-switch flow control.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:21

Fig. 9. Variation of the number of packets in the network over time for multimedia traffic.

drops to 466 cycles. Table I summarizes also the queueing delay experienced at
the traffic sources (shown separately inside parentheses). We observe that the
average source queuing delay reduces from 112 cycles to 12 cycles with the use
of the proposed controller. Similarly, the maximum value of the source queuing
delay and the standard deviation drops significantly as a result of the proposed
controller.

This huge reduction in packet latencies is mainly due to the reduced number
of packets in the network. As mentioned before, unlike the switch-switch flow
controller, the proposed controller regulates the number of packets in the net-
work directly. As such, the average number of packets in the network drops from
94 to 29 packets, which is about a 3.2× reduction, as summarized in Table I.
Likewise, the maximum number of packets in the network and the standard
deviation of the number of packets in the network drop by 2.5× and 3.4×, re-
spectively.

We further investigate the number of packets travelling through the net-
work as a function of time in Figure 9. Without the proposed flow con-
troller, the number of packets quickly rises to about 100 packets and oscillates
around the average value (94 packets) with a standard deviation of 24.7 pack-
ets. On the other hand, the proposed controller provides about 3.2× reduction
in the average number of packets and 3.4× reduction in standard deviation, as
summarized in Table I and plotted in Figure 9. The variation in the packet la-
tency and number of packets observed in the absence of the proposed controller
show that the network can oscillate between congested and free traffic due to
the overlap in the ON periods of traffic sources, as discussed in Section 3.3.

To better understand the effects of the controller, in Figure 10, we further
analyze the histogram of the packet latencies. We notice that, for the network
without the proposed flow controller, about 50% percent of the packets experi-
ence longer delays than the average delay (i.e., 149 cycles). The packets located
at the tail of the distribution in Figure 10(a) are the main cause for this poor

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:22 • U. Y. Ogras and R. Marculescu

Fig. 10. Histogram of the packet latencies for the Audio/Video traffic without (a) and with (b) the

proposed flow controller. Note that the y-axes of the plots are in log-scale. A significant improvement

due to the flow-control mechanism can be observed.

performance. The technique we propose prevents the packets that are likely to
experience such long delays from entering the network. Indeed, as depicted in
Figure 10(b), the latency histogram is pushed significantly towards left; so about
91% of packets experience less than 100 cycles latency. We observe that there
are no packets with latency more than 466 cycles, if the proposed controller is
used. Moreover, the number of packets with latency more than 100 cycles drops
quickly due to the proposed controller. On the other hand, half of the pack-
ets experience latencies longer than 100 cycles in the absence of the proposed
controller. Besides this, there are packets with as high as 900 cycles latency.

Since the audio/video application we consider includes strong access locality,
the average hop count for this application on the 4 × 4 mesh network is only
1.98, while the average hop count for uniform traffic would be 2.67. For appli-
cations with less access locality, the number of packet contentions; therefore,
the improvement due to the proposed controller is expected to be larger.

6.2 Synthetic Traffic

Additional experiments are presented for uniform and hotspot traffic patterns
to further assess the effectiveness of the proposed controller. First, we compare
the performance of a 4 × 4 2D mesh network under hotspot traffic with and
without the proposed controller. The average packet latency in the network is
plotted as a function of the packet injection rate in Figure 11(a). We observe that
without the flow controller, the network becomes congested as the packet injec-
tion rate increases. The reason for this behavior is uncovered in Figure 11(b).
Indeed, in absence of a traffic controller, the number of packets in the network
grows at an increasing pace as the traffic injection rate increases. The proposed
flow controller, on the other hand, effectively limits the number of packets in-
jected to the network, as depicted in Figure 11(b). This, in turn, results in
significant improvements in the average packet latency. Finally, Figures 11(a)
and (b) demonstrate that the average packet latency is proportional to the av-
erage number of packets in the network and justify once more controlling the
packet injection as an effective means for improving the NoC performance.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:23

Fig. 11. (a) Average packet latency and (b) average number of packets in the network are plotted

as a function of the offered traffic.

Fig. 12. Variation of the number of packets in the network over time for the hotspot traffic. The

proposed controller reduce the average number of packet in the network and their variation over

time significantly.

Similar to the multimedia traffic, we monitored the number of packets in
the network when the packet injection rate was about half of the maximum
throughput. The mean and variance of the number of packets in the network
is significantly reduced with the proposed controller, as depicted in Figure 12.
More specifically, the average number of packets in the network drops from
151 to 25 packets resulting in 6× reduction, while the maximum number of
packets in transit decreases from 189 to 45 packets. Furthermore the standard
deviation of the number of packets is reduced from 24.6 to 6.2, as summarized
in Table II.

6.2.1 Impact of the Local Buffer Size on Performance. The PEs write the
packets that will be transmitted over the network to a local memory in the
network interface. Then the local router reads the packets from this memory.
In general the buffering space available in the local PEs are much larger than

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:24 • U. Y. Ogras and R. Marculescu

Table II. The Reduction in the Latency and Number of Packets in the Network Due to

the Proposed Flow Control Algorithm

Switch-to-Switch The Proposed Reduction

Control Only Flow Control (×)

Ave. # of packets 151 packets 25 packets 6.0

Max. # of packets 189 packets 45 packets 4.2

Standard deviation of # of packets 24.6 packets 6.2 packets 4.0

Table III. Average Packet Latency for the hotspot Traffic (at 0.2 packets/cycle traffic rate)

Without and with the Proposed Controller for Different Local Memory Sizes are Summarized

Local PE 50-flit 100-flit 200-flit 500-flit

Buffer Size Ave. Ave. PE Ave. Ave. PE Ave. Ave. Ave. Ave. PE

Latency Pausing Latency Pausing Latency PE Pausing Latency Pausing

Without the 80 0.75 106 0.43 158 0.31 217 0.14

proposed controller cycles cycles cycles cycles cycles cycles cycles cycles
With the proposed 43 1.93 44 1.94 44 1.92 44 1.96

controller cycles cycles cycles cycles cycles cycles cycles cycles

those on the routers. Nevertheless, local buffering space has also a finite value
and may fill up as a result of the backpressure from the network. When the local
memory at the PE becomes full, the PE cannot write to this memory. Since no
packets are dropped, the PE pauses in this situation.

In this section, we compare the performance of the proposed predictive con-
troller and switch-to-switch control for various buffer sizes in the local PE.
For the switch-to-switch control, the average packet latency at a given traffic
injection rate increases considerably with increasing local buffer size, as sum-
marized in the first row of Table III. Switch-to-switch control is less effective
for large local buffers, since a large number of packets can be generated before
the PE feels the backpressure. In Table III, we also give the average number
of cycles the PEs pause. We observe that the PEs pause on average 0.75 cycles,
when the local memory size is 50 flits. The PEs pause very rarely, since the
network is not heavily congested. We also observe that this number is reduced
as the local memory size is increasing. This is also expected, since the PEs are
affected by the backpressure less for large local memory.

In contrast to the switch-to-switch control, the proposed flow controller uses
directly the availability information predicted by routers as a measure of con-
gestion level. Therefore, the traffic sources do not rely on backpressure from
the network. Consequently, the proposed flow controller performs well over a
wide range of local PE sizes, as shown in the last row of Table III. Table III
also shows that the proposed controller causes PEs pause more often than the
switch-to-switch control. This is also expected, since the controller delays the
packet generation. However, we observe that the average time the PEs pause
is about 1.9 cycles, as shown in Table III. Hence, the sum of the latency and
pausing time is still much smaller when using the proposed controller.

6.2.2 Scalability of the Proposed Approach. The computation of the
availabilities at the routers depend only on the local information received
from the immediate neighbors. Therefore, the computational complexity

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:25

Fig. 13. (a) Average packet latency as a function of effective traffic injection rate is plotted for (a)

4 × 6 and (b) 6 × 8 networks under hotspot traffic pattern.

depends only on the number of ports in the router, not on the size of the
network.

In order to demonstrate the performance of the proposed technique for larger
network sizes and provide a more quantitative evaluation, we performed new
experiments involving 4 × 6 and 6 × 8 networks. Figure 13(a) and Figure 13(b)
show the average packet latency as a function of the effective traffic injection
rate for the 4 × 6 and 6 × 8 networks, respectively. We note that, the x-axes
of these figures show the effective traffic injection rates, which take the PE
pausing (discussed in Section 6.2.1) into account. Since the proposed flow con-
troller limits the number of packets in the network to prevent congestion, the
total traffic injection rate is limited, as shown in Figure 13. In particular, the
maximum effective injection rate is 0.51 packets/cycle for the 4 × 6 NoC and
0.72 packets/cycle for the 6 × 8 NoC. On the other hand, without the proposed
controller, the effective traffic injection rate continues to increase even in the
presence of congestion. Hence the average packet latency grows significantly.
As it can be clearly seen from Figure 13, due to the proposed controller, the
average latency improves especially at larger injection rates.

6.3 Experimental Evaluation with the FPGA Prototype

We also present results directly measured using the FPGA prototype to support
the simulation results. For this purpose, a 4 × 4 Mesh network is implemented
with and without the proposed flow controller. Similar to the simulations, a
basic link level ON/OFF flow control is implemented in both cases, and deter-
ministic XY routing is employed.

The reduction in the mean and standard deviation of the packet latencies in
the network are similar to those obtained using simulation. Table IV summa-
rizes measured values for the mean and standard deviation for a wide range
of traffic injection rates. For instance, at 0.016 packets/cycle traffic injection
rate,the average packet latency without the proposed controller is found as
32.6 cycles. The proposed controller reduces the average latency to only 18.2 cy-
cles including the waiting time in the processing element, as shown in Table IV.
Even more importantly, without the flow-controller, the standard deviation of
packet latencies over multiple simulations is as large as 17.6 cycles; this is

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:26 • U. Y. Ogras and R. Marculescu

Table IV. Mean and Standard Deviation of Packet Latencies Obtained Using the FPGA

Prototype are Shown with and without the Proposed Controller

Applied Traffic(packets/cycle) 0.016 0.031 0.062 0.0126

Average latency(cycles) w/o the proposed controller 32.6 46.1 94.8 169.4

with the proposed controller 18.2 21.2 28.7 45.9

Reduction (×) 1.8 2.2 3.3 3.7

Standard deviation of latency w/o the proposed controller 17.6 18.2 23.6 37.1

(cycles) with the proposed controller 0.15 8.1 13.2 14.7

Reduction (×) 119 2.3 1.8 2.5

due to the lack of capability of the link level flow control to regulate number
of packets in the network. On the other hand, the standard deviation with the
proposed flow controller is less than one cycle. Even though this value increases
for larger applied traffic, we see about 2× improvement over the basic link level
controller over a wide range of input traffic.

To summarize, the measurements obtained using the FPGA prototype are in
perfect agreement with the simulation results presented in Sections 6.1 and 6.2.

7. CONCLUSIONS

Effective flow control mechanisms are necessary for efficient utilization of net-
work resources in the context of NoCs. However, neither switch-to-switch, nor
end-to-end control schemes proposed so far for macro-networks can satisfy the
requirements of NoCs. For this reason, we have proposed a predictive flow con-
troller based on novel traffic source and router models specifically targeted to
NoCs. The proposed scheme controls the packet injection rate in order to regu-
late the number of packets in the network, similar to the end-to-end flow con-
troller. At the same time, our approach relies only on local information transfer
between the neighboring routers only; therefore, it has a low communication
overhead, similar to the switch-to-switch flow control.

Our experimental results show that the proposed controller effectively reg-
ulates the number of packet in the network and delivers much better perfor-
mance compared to traditional switch-to-switch flow control algorithms. The
improvement in the average latency, latency distribution, as well as the maxi-
mum value and standard deviation are demonstrated by extensive simulations
involving both real and synthetic benchmarks. Furthermore, direct measure-
ments obtained using the FPGA prototype we implemented fully support the
simulation results. Finally, the FPGA prototype shows that the area overhead
of the proposed controller is less than 1% when incorporated into an existing
MPEG-2 encoder design.

REFERENCES

ADRIAHANTENAINA, A. AND GREINER, A. 2003. Micro-network for SoC: Implementation of a 32-Port

SPIN network. In Proceedings of the Design Automation and Test in Europe Conference.

ASCIA, G., CATANIA, V., AND PALESI, M. 2004. Multi-objective mapping for mesh-based NoC architec-

tures. In Proceedings of International Conference on Hardware/Software Codesign and System
Synthesis.

BAYDAL, E., LOPEZ, P., AND DUATO, J. 2005. A family of mechanisms for congestion control in worm-

hole networks, IEEE Trans. Paral. Distrib. Syst. 16, 9.

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

Prediction-Based Flow Control in NoCs • 11:27

BENINI, L. AND DE MICHELI, G. 2002. Networks on chips: A new SoC paradigm. IEEE Comput.
35, 1.

BERTSEKAS, D. AND GALLAGER, R. 1992. Data Networks. Prentice Hall, Englewood Cliffs, NJ.

BJERREGAARD, T. AND SPARSO, J. 2005. A router architecture for connection-oriented service guar-

antees in the MANGO clockless network-on-chip. In Proceedings of the Design Automation and
Test in Europe Conference.

BOLOTIN, E., CIDON, I., GINOSAR, R., AND KOLODNY, A. 2004. Cost considerations in network on chip.

Integr. VLSI J. 38, 1.

BOLOTIN, E., CIDON, I., GINOSAR, R., AND KOLODNY. 2004. QNoC: QoS architecture and design pro-

cess for network on chip. J. Syst. Archite.: EUROMICRO J. 50, 2–3.

CHIEN, A. A. 1998. A cost and speed model for k-ary n-cube wormhole routers. IEEE Trans. Paral.
Distrib. Syst. 9, 2.

DALLY, W. J. 1992, Virtual-channel flow control. IEEE Trans. Paral. Distrib. Syst. 3, 2.

DALLY, W. J. AND TOWLES, B. 2001. Route packets, not wires: On-chip interconnection networks.

In Proceedings of Design Automation Conference.

DALLY, W. J. AND TOWLES, B. 2004. Principles and Practices of Interconnection Networks. Morgan

Kaufmann, San Francisco, CA.

DIELISSEN, J., RADULESCU, A., GOOSSENS, K., AND RIJPKEMA, E. 2003. Concepts and implementation

of the Philips network-on-chip. In Proceedings of the IP-Based SoC Design.

DUATO, J., YALAMANCHILI, S., AND NI, L. M. 2002. Interconnection Networks: An Engineering Ap-
proach. Morgan Kaufmann, San Francisco, CA.

LOPEZ, P., MARTINEZ, J. M., AND DUATO, J. 1998. DRIL: Dynamically reduced message injection

limitation mechanism for wormhole networks. In Proceedings of the International Conference on
Parallel Processing.

GERLA, M. AND KLEINROCK, L. 1980. Flow control: A comparative survey. IEEE Trans. Commun.
28, 4.

GUERRIER, P. AND GREINER, A. 2000. A generic architecture for on-chip packet switched intercon-

nections. In Proceedings of the Design Automation and Test in Europe Conference.

JALABERT, M. S., BENINI, L., AND DE MICHELI, G. 2004. XpipesCompiler: A tool for instantiating

application specific networks on chip. In Proceedings of the Design Automation and Test in Europe
Conference.

HARMANCI, M., ESCUDERO, N., LEBLEBICI, Y., AND IENNE, P. 2004. Providing QoS to connection-less

packet-switched NoC by implementing DiffServ functionalities. In Proceedings of the Interna-
tional Symposium on System-on-Chip.

HARMANCI, M., ESCUDERO, N., LEBLEBICI, Y., AND IENNE, P. 2005. Quantitative modeling and com-

parison of communication schemes to guarantee quality-of-service in networks-on-chip. In Pro-
ceedings of the International Symposium on Circuits and Systems (ISCAS).

HEDETNIEMI, S. M., HEDETNIEMI, S. T., AND LIESTMAN, A. L. 1988. A survey of gossiping and broad-

casting in communication networks. Networks 18, 4.

HEMANI, A., JANTSCH, A., KUMAR, S., POSTULA, A., OBERG, J., MILLBERG, M., AND LINDVIST, D. 2000.

Network on a chip: An architecture for billion transistor era. In Proceedings of the IEEE NorChip
Conference.

HU, J. AND MARCULESCU, R. 2005. Energy- and performance-aware mapping for regular NoC ar-

chitectures. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst. 24, 4.

HYATT, C. AND AGRAWAL, D. P. 1997. Congestion control in the wormhole-routed torus with cluster-

ing and delayed deflection. In Proceedings of Parallel Computing, Routing, and Communications
Workshop.

JANTSCH, A. AND TENHUNEN, H. EDS. 2003. Networks on Chip. Kluwer.

LEE, H. G., CHANG. N, OGRAS, U. Y., AND MARCULESCU, R. 2007. On-chip communication architecture

exploration: A quantitative evaluation of point-to-point, bus, and network-on-chip approaches.

ACM Trans. Des. Automat. Elect. Syst. 12, 3.

LIANG, L., LAFFELY, A., SRINIVASAN, S., AND TESSIER, R. 2004. An architecture and compiler for

scalable on-chip communication. IEEE Trans. VLSI Syst. 12, 1.

MENDEL, J. M. 1995. Lessons in Estimation Theory for Signal Processing, Communications, and
Control. Prentice Hall, Englewood Cliffs, NJ.

MILLBERG, M., NILSSON, E., THID, R., AND JANTSCH, A. 2004. Guaranteed bandwidth using looped

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

11:28 • U. Y. Ogras and R. Marculescu

containers in temporally disjoint networks within the nostrum network on chip. In Proceedings
of the Design Automation and Test in Europe Conference.

MURALI, S., BENINI, L., AND DE MICHELI, G. 2005. Mapping and physical planning of networks

on chip architectures with quality-of-service guarantees. In Proceedings of the Asia and South
Pacific Design Automation Conference.

NILSSON, E., MILLBERG, M., OBERG, J., AND JANTSCH, A. 2003. Load distribution with the proximity

congestion awareness in a network on chip. In Proceedings of the Design Automation and Test in
Europe Conference.

OGRAS, U. Y. AND MARCULESCU, R. 2005. Energy- and performance-driven NoC communication

architecture synthesis using a decomposition approach. In Proceedings of the Design Automation
and Test in Europe Conference.

OGRAS, U. Y. AND MARCULESCU, R. 2006. “It’s a small world after all”: NoC performance optimiza-

tion via long-range link insertion. IEEE Trans. VLSIS (Special Section on Hardware/Software
Codesign and System Synthesis) 14, 7.

OGRAS, U. Y. AND MARCULESCU, R. 2007. Analytical router modeling for networks-on-chip perfor-

mance analysis. In Proceedings of the Design Automation and Test in Europe Conference.

PAGANINI, F., DOYLE, J., AND LOW, S. 2001. Scalable laws for stable network congestion control, In

Proceedings of IEEE Conference on Decision and Control.
PARK, K. AND WILLINGER, W. EDS. 2000. Self-Similar Network Traffic and Performance Evaluation.

Wiley Interscience.

PEH, L. S. AND DALLY, W. J. 2001. A delay model for router micro-architectures. IEEE Micro.

PINTO, A. AND SANGIOVANNI-VINCENTELLI, A. 2003. Efficient synthesis of networks on chip. In Pro-
ceedings of the 21st International Conference on Computer Design.

PULLINI, A., ANGIOLINI, F., BERTOZZI, D., AND BENINI, L. 2005. Fault tolerance overhead in network-

on-chip flow control schemes. In Proceedings of Symposium on Integrated Circuits and System
Design.

RADULESCU, ET AL. 2005. An efficient on-chip ni offering guaranteed services, shared-memory

abstraction, and flexible network configuration. IEEE Trans. Comput.-Aid. Des. Integr. Circ. Syst.
24, 1.

THE SEMICONDUCTOR INDUSTRY ASSOCIATION. 2006. The International Technology Roadmap for

Semiconductors (ITRS). San Jose, CA.

QIU, D. AND SHRO, N. B. 2004. A predictive flow control mechanism to provide QoS and efficient

network utilization, IEEE Trans. Network. 12, 1.

SGROI, M., SHEETS, M., MIHAL, A., KEUTZER, K., MALIK, S., RABAEY, J., AND SANGIOVANNI-VINCENTELLI,

A. 2001. Addressing the system-on-a-chip interconnect woes through communication-based

design. In Proceedings of Design Automation Conference.

SMAI, A. AND THORELLI, L. 1998. Global Reactive Congestion Control in Multicomputer Networks.

In Proceedings of the 5th International Conference on High Performance Computing.

SRINIVASAN, K., CHATHA, K. S., AND KONJEVOD, G. 2004. Linear programming based techniques for

synthesis of network-on-chip architectures. In Proceedings of the IEEE International Conference
on Computer Design.

THOTTETHODI, M., LEBECK, A. R., AND MUKHERJEE, S. S. 2001. Self-tuned congestion control for mul-

tiprocessor networks. In Proceedings of the 7th International Symposium on High-Performance
Computer Architecture.

VARATKAR, G. AND MARCULESCU, R. 2004. On-Chip traffic modeling and synthesis for MPEG-2 video

applications. IEEE Trans. VLSI 12, 1, 108–119.

ZEFERINO, C. A., SANTO, F. M. E., AND SUSIN, A. A. 2004. Paris: A parameterizable interconnect

switch for networks-on-chip, In Proceedings of Symposium on Integrated Circuits and Systems
Design.

Received June 2006; revised March 2007, July 2007; accepted August 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 1, Article 11, Pub. date: January 2008.

