
Form Methods Syst Des (2008) 32: 207–234
DOI 10.1007/s10703-008-0055-8

Automatic symbolic compositional verification
by learning assumptions

Wonhong Nam · P. Madhusudan · Rajeev Alur

Published online: 17 May 2008
© Springer Science+Business Media, LLC 2008

Abstract Compositional reasoning aims to improve scalability of verification tools by re-
ducing the original verification task into subproblems. The simplification is typically based
on assume-guarantee reasoning principles, and requires user guidance to identify appropri-
ate assumptions for components. In this paper, we propose a fully automated approach to
compositional reasoning that consists of automated decomposition using a hypergraph par-
titioning algorithm for balanced clustering of variables, and discovering assumptions using
the L∗ algorithm for active learning of regular languages. We present a symbolic implemen-
tation of the learning algorithm, and incorporate it in the model checker NUSMV. In some
cases, our experiments demonstrate significant savings in the computational requirements
of symbolic model checking.

Keywords Formal verification · Symbolic model checking · Compositional verification ·
Assume-guarantee reasoning · Regular language learning · Hypergraph partitioning

1 Introduction

To enhance the scalability of analysis tools, compositional verification suggests a “divide
and conquer” strategy to reduce the verification task into simpler subtasks. The assume-

This research was partially supported by ARO grant DAAD19-01-1-0473, and NSF grants ITR/SY
0121431 and CCR0306382.

W. Nam (�)
Pennsylvania State University, University Park, PA, USA
e-mail: wnam@psu.edu

P. Madhusudan
University of Illinois, Urbana-Champaign, IL, USA
e-mail: madhu@cs.uiuc.edu

R. Alur
University of Pennsylvania, Philadelphia, PA, USA
e-mail: alur@cis.upenn.edu

mailto:wnam@psu.edu
mailto:madhu@cs.uiuc.edu
mailto:alur@cis.upenn.edu

208 Form Methods Syst Des (2008) 32: 207–234

guarantee based compositional reasoning to verify that a system S satisfies a requirement ϕ

typically consists of the following three steps: (1) System Decomposition: partitioning the
system S into components M1, . . . ,Mn, (2) Assumption Discovery: finding an environment
assumption Ai for each component Mi , and (3) Assumption Checking: verifying that the
assumptions Ai are appropriate for proving or disproving the satisfaction of ϕ by S.

In this paper, we develop a fully automated framework for symbolic compositional verifi-
cation by automatic partitioning and learning assumptions. Although a modular description
of a system can suggest a natural decomposition, we have several reasons for automatic
partitioning. The description of a system, particularly when transformed from a different
language to the input language of a model checker, is often monolithic. In addition, the parti-
tion provided in the original model may not be the one suitable for compositional reasoning,
either in terms of the number of components or the partitioning of functionality among com-
ponents. Our solution is based on an algorithm for hypergraph partitioning [24, 25]. Given a
system S with a set of variables X and a desired number n of components, we decompose the
set X into n disjoint subsets X1, . . . ,Xn so that each set Xi contains approximately the same
number of variables while keeping the number of communication variables small. Each such
variable partition Xi corresponds to a component Mi that controls these variables.

After partitioning, the main problem of compositional reasoning is to identify appropriate
assumptions for all the components so that the assumption checking phase will succeed, and
one promising solution is based on learning [6, 8, 14, 17, 32]. If a component Mi communi-
cates with its environment via a set IOi of boolean variables, then the assumption Ai can be
viewed as a language over the alphabet 2IOi . The assumption checking constraints impose
a lower and an upper bound on this language; verifying that the environment assumption
is adequate for proving the safety property gives an upper bound on which behaviors can
be allowed in the assumption, and verifying that the assumption of one component is guar-
anteed by the other components gives a lower bound on what behaviors it must include.
In this paper, we employ two assume-guarantee reasoning rules; one is for a system with
two components, and the other is for an arbitrary number of components. We compute this
assumption using the L∗ algorithm for learning a regular language using membership and
equivalence queries [7, 37]. The learning-based approach produces a DFA, and the num-
ber of queries made by the learner is only polynomial in the size of the output automaton.
The membership query is to test whether a given trace belongs to the desired assumption.
The equivalence query is to test whether the current assumptions are adequate for the as-
sumption checking phase. Both queries are implemented by using symbolic model checking
techniques.

While the standard L∗ algorithm is designed to learn a particular language, and the de-
sired assumptions Ai belong to a class of languages containing all languages that satisfy
all requirements of the assume-guarantee rule, we show that our strategy based on the L∗

algorithm learns one of the languages correctly. The learning-based approach to automatic
generation of assumptions is appealing as it builds the assumption incrementally guided
by the model-checking queries, and if it encounters an assumption that is a witness of the
requirement ϕ, the algorithm will stop and use it to prove the property.

We present our implementations of the automated compositional reasoning using a sym-
bolic model checker NUSMV [12]. In our context, the size of the alphabet itself grows
exponentially with the number of communication variables. Consequently, we propose a
symbolic implementation of the L∗ algorithm where the required data structures for rep-
resenting membership information and the assumption automata are maintained compactly
using BDDs [11]. In addition, we have enhanced our implementation with several heuristics,

Form Methods Syst Des (2008) 32: 207–234 209

in particular, one aimed at early falsification, and one aimed at deleting edges from the con-
jecture machine to force rapid convergence without violating the correctness of the learning
algorithm.

We report on some examples where the original model contains around 100 variables,
and the computational requirements of NUSMV are significant. The experiments are aimed
at understanding the following trade-offs: (1) how do the more general assume-guarantee
rule and the heuristics impact the performance? (2) what is the impact of the number of
components on the overall computational requirements? and (3) how does the integrated
tool, Automatic Symbolic Compositional Verifier (ASCV), compare with NUSMV? It turns
out that the general assume-guarantee rule and the heuristics work pretty well. No conclu-
sions can be drawn regarding whether a small or large number of components should be
preferred in this approach. In terms of comparisons of the integrated tool with NUSMV, ex-
cellent gains are observed in some cases resulting from either reducing the required time or
memory by two or three orders of magnitude, or converting infeasible problems into feasi-
ble ones. However, in some cases the number of states of the assumption is too large, and
our learning-based strategy performs poorly compared with the non-compositional analysis
performed by the original NUSMV.

Related work

Application of regular language learning to formal verification field has received little at-
tention in the past. However, since the use of learning algorithms for automatic discovery
of assumptions [8, 14] was first proposed in 2003, several papers have been reported in this
subject.

Our application of the learning technique is related to the work of Cobleigh et al. [14]
who use the L∗ algorithm to automatically construct assumptions for compositional veri-
fication. In order to verify that the composition of two components M1 and M2 satisfies a
safety requirement ϕ, the authors propose to learn the assumption A on inputs to M1 such
that M1‖A satisfies ϕ and M2 satisfies A [14].

Compared to these papers, we believe that our work makes several contributions. First,
we present a symbolic implementation of the learning algorithm, and this is essential since
the alphabet is exponential in the number of communication variables. Second, we address
and explain explicitly how the L∗ algorithm designed to learn an unknown, but fixed, lan-
guage is adapted to learn some assumption from a class of correct assumption languages.
Third, we demonstrate the benefits of the method by incorporating it in a state-of-the-art
publicly available symbolic model checker. Finally, our work includes an automatic de-
composition strategy, heuristic improvements in computing the conjecture assumptions, and
experiments to study several trade-offs.

After the work of Cobleigh et al., the use of learning algorithms has been further devel-
oped by many researchers: Alur et al. use predicate abstraction and learning to synthesize
(dynamic) interfaces for Java classes [5]; Sharygina et al. [38] consider the problem of sub-
stituting one component with another and how to reuse the conjecture machines computed
in the original version while checking properties of the revised version; Cobleigh et al. [15]
report several experiments to test whether assume-guarantee reasoning could provide an
advantage over monolithic verification. The work of Vardhan et al. [41, 42] uses learning
to compute the set of reachable states for verifying infinite-state systems, while Peled et
al. [35] use learning for black box checking, that is, verifying properties of partially speci-
fied implementations. In addition, Nam and Alur [33] have applied this learning technique
to a planning problem under partial observability. Recently, Gupta et al. [20] show how to

210 Form Methods Syst Des (2008) 32: 207–234

construct, using a SAT solver, a k-state automaton with the guarantee that the minimal DFA

for every language between the lower and upper bounds for the language we are hoping
to learn has at least k states. Sinha and Clarke [39] propose a lazy approach to assump-
tion learning, which avoids an explicit enumeration of the exponential alphabet set by using
symbolic alphabet clustering and iterative counter-example driven localized partitioning.

Compositional reasoning using assume-guarantee rules has a long history in the formal
verification literature [1, 2, 19, 21, 23, 29, 31, 34, 36, 40]. While such reasoning is sup-
ported by some tools (e.g. MOCHA [3]), the challenging task of finding the appropriate
assumptions is typically left to the user and only a few attempts have been made to automate
the assumption generation (in the work of Alur et al. [4], the authors present some heuristics
for automatically constructing assumptions using game-theoretic techniques).

Organization

The rest of this paper is organized as follows. In Sect. 2, we lay out the notions and the
problem we consider in this paper. Section 3 presents our first step, automatic decomposi-
tion. Then, we explain a learning algorithm we employ for learning appropriate assumptions
in Sect. 4. Section 5 provides, for two assume-guarantee rules, our algorithms which learn
appropriate assumptions or find a counter-example. In Sect. 6, we illustrate our symbolic
implementations for the algorithms, and heuristic improvements. Section 7 shows our ex-
periments to study the effectiveness of our algorithms. Finally, we give a few conclusions in
Sect. 8.

2 Preliminaries

We formalize the notions of a symbolic transition system and decomposition into its mod-
ules, and explain two assume-guarantee rules we use in this paper.

2.1 Symbolic transition systems

A symbolic transition system is a tuple S(X, Init, T) with the following components:

– X is a finite set of boolean variables.
– Init(X) is an initial predicate over X.
– T (X,X′) is a transition predicate over X ∪ X′ (X′ represents a set of variables encoding

the successor states).

A state q of the transition system S is a valuation of the variables in X; i.e. q : X →
{true, false}. Let Q denote the set of all states q of S. For a state q over a set X of variables, q ′

denotes a state over X′ such that q ′(x ′) = q(x) for every x ∈ X. The semantics of a transition
system is defined in terms of the set of runs it exhibits. A run of S(X, Init, T) is a sequence
q0q1 · · · where every qi ∈ Q, such that Init(q0) holds, and for every i ≥ 0, T (qi, q

′
i+1) holds.

A safety property for a transition system S(X, Init, T) is a predicate over X. For a transition
system S(X, Init, T) and a safety property ϕ(X), we define S |= ϕ if, for every run q0q1 · · ·
of S, ϕ(qi) holds for each i ≥ 0. Finally, given a transition system S(X, Init, T) and a safety
property ϕ(X), an invariant checking problem we consider in this paper is to check whether
S |= ϕ holds.

Form Methods Syst Des (2008) 32: 207–234 211

2.2 Decomposition into modules

A module is a tuple M(XM,XI
M,XO

M , InitM, TM) with the following components:

– XM is a finite set of boolean variables controlled by the module M.
– XI

M is a finite set of boolean input variables that the module reads from its environment;
XI

M is disjoint from XM .
– XO

M ⊆ XM is a finite set of boolean output variables that are observable to the environment
of M; let XIO

M denote XI
M ∪ XO

M .
– InitM(XM,XI

M) is an initial predicate over XM ∪ XI
M .

– TM(XM,XI
M,X′

M) is a transition predicate over XM ∪ XI
M ∪ X′

M .

For a state q over a set X of variables, let q[Y], where Y ⊆ X denote the valua-
tion over Y obtained by restricting q to Y . Given a module M(XM,XI

M,XO
M , InitM, TM),

a run of M, similar to the run of a symbolic transition system, is a sequence q0q1 · · ·
where every qi is a state over XM ∪ XI

M , such that Init(q0[XM], q0[XI
M]) holds, and for

each i ≥ 0, T (qi[XM], qi[XI
M], q ′

i+1[X′
M]) holds. Now, we can extended the notion of |=

to modules as follows: M |= ϕ if for every run q0q1 · · · of M, ϕ(qi) holds for every i ≥ 0.
Given a set of modules M1, . . . ,Mn, where each Mi = (XMi

,XI
Mi

,XO
Mi

, InitMi
, TMi

), we can
compose them if for every i and j (j
= i), XMi

is disjoint from XMj
. We denote this

composition as M1‖ · · · ‖Mn, and the composition can be considered as another module
M(XM,XI

M,XO
M , InitM, TM) as follows:

– XM = XM1 ∪ · · · ∪ XMn .
– XI

M = ⋃
i X

I
Mi

\ ⋃
i X

O
Mi

.
– XO

M = ⋃
i X

O
Mi

.
– InitM(XM,XI

M) = InitM1 ∧ · · · ∧ InitMn .
– TM(XM,XI

M,X′
M) = TM1 ∧ · · · ∧ TMn .

Given a variable x ∈ X of a symbolic transition system S(X, Init, T), Depend(x) denotes
a set of variables y ∈ X such that the value of y depends on the value of x in Init or T ;
e.g. y ′ := x. We assume that Depend(x) for each variable x is given, and in practice this
can be easily obtained from Init and T of the transition system. Given a transition system
S(X, Init, T) and a set Y ⊆ X of variables, we define a module S[Y], which intuitively is
the projection of system S on variables Y , as the tuple (XS[Y],XI

S[Y],X
O
S[Y], InitS[Y], TS[Y])

where:

– XS[Y] = Y .
– XI

S[Y] = {x ∈ X \ Y | ∃y ∈ Y. y ∈ Depend(x)}.
– XO

S[Y] = {y ∈ Y | ∃x ∈ X \ Y. x ∈ Depend(y)}.
– InitS[Y](XS[Y],XI

S[Y]) is an initial predicate (for variables y ∈ Y) over XS[Y] ∪ XI
S[Y].

– TS[Y](XS[Y],XI
S[Y],X

′
S[Y]) is a transition predicate (for variables y ∈ Y) over XS[Y] ∪XI

S[Y] ∪
X′

S[Y].

Now, we can decompose a transition system S(X, Init, T) into modules S[X1], . . . ,S[Xn]
by partitioning X into X1, . . . ,Xn where X = ⋃

i Xi and every Xi is disjoint from each
other.

For a transition system S(X, Init, T) decomposed into S[X1], . . . ,S[Xn] where each
S[Xi] = (XS[Xi],X

I
S[Xi],X

O
S[Xi], InitS[Xi], TS[Xi]), each run of S is obviously a run of

S[X1]‖ · · · ‖S[Xn] and each run of S[X1]‖ · · · ‖S[Xn] is also a run of S, since X = ⋃
i Xi , and

Init and T of S are the conjunction of each InitS[Xi] and the conjunction of each TS[Xi], re-
spectively. Finally, given S(X, Init, T) and a partition of X into disjoint subsets X1, . . . ,Xn,
S[X1]‖ · · · ‖S[Xn] |= ϕ iff S |= ϕ.

212 Form Methods Syst Des (2008) 32: 207–234

2.3 Assume-guarantee rules

For a given run q0q1 · · · of a module M(XM,XI
M,XO

M , InitM, TM), the trace is a sequence
q0[XIO

M]q1[XIO
M] · · ·. Let us denote the set of all the traces of M as L(M), and the complement

of the set as LC(M) (formally, LC(M) = (QIO
M)∗ \ L(M) where QIO

M is a set of all the states
over XIO

M). Given two modules M1 and M2 that have the same input and output variables,
we say M1 is a refinement of M2, denoted M1
 M2, if L(M1) ⊆ L(M2). For a trace set L

over a variable set XIO
M and a safety property ϕ over XIO

M , we can extended the notion of
|= to trace sets as following: L |= ϕ if for every trace q0q1 · · · in L, ϕ(qi) holds for every
i ≥ 0. In addition, the composition operator ‖ can be extend to trace sets which have the
same alphabet (i.e. the same set of input/output variables) as following: for L1 and L2 with
the same I/O variable set, L1‖L2 = L1 ∩ L2.

Now, we discuss two assume-guarantee rules to prove that a safety property ϕ holds for
a composition of modules.

Simple rule This assume-guarantee rule is to prove that a composition of two modules,
M1‖M2 satisfies a safety property ϕ over XIO where XIO = XIO

M1
∪ XIO

M2
. In the rule below, A

is an assumption module (XA,XI
A,XO

A , InitA,TA) with XI
A = XI

M2
and XO

A = XO
M2

.

Rule-S: M1‖A |= ϕ (Pr1-S)
M2
 A (Pr2-S)

M1‖M2 |= ϕ

The rule says that if there exists (some) module A such that the composition of M1 and
A is safe (i.e. satisfies the property ϕ) and M2 refines A, then M1||M2 satisfies ϕ. We can
view such an A as an appropriate assumption between M1 and M2: it is an abstraction of
M2 (possibly admitting more behaviors than M2) that is a strong enough assumption for M1

to make in order to satisfy ϕ. Then, our aim with this rule is to find such an assumption A to
show that M1‖M2 satisfies ϕ. A smaller assumption can save the more in terms of searching
state space. This rule is sound and complete [34].

General rule While Rule-S can be applied to a composition of two modules, we need
a more general rule to be used for a composition of an arbitrary number of modules,
M1‖ · · · ‖Mn. The following assume-guarantee rule, Rule-G, can be used to prove that a com-
position of modules, M1‖ · · · ‖Mn satisfies a safety property ϕ over XIO (= ⋃

i X
IO
Mi

). In the
rule below, let each Ai be a module such that Mi ||Ai is well defined and XI

Ai
∪ XO

Ai = XIO.
Note that we are assuming that the safety property ϕ for this rule is a predicate over XIO,
but this is not a restriction: to check a property that refers to private variables of a module,
we can simply declare them as output variables.

Rule-G: M1‖A1 |= ϕ, · · · ,Mn‖An |= ϕ (Pr1-G)
LC(A1)‖ · · · ‖LC(An) |= ϕ (Pr2-G)

M1‖ · · · ‖Mn |= ϕ

The rule above says that if there exist assumption modules A1, . . . ,An such that the com-
position of Mi and Ai is safe (i.e. satisfies the property ϕ) and the composition of the com-
plements of every Ai satisfies ϕ, then M1‖ · · · ‖Mn satisfies ϕ. Intuitively, the first premise
Pr1-G makes every assumption strong enough to make each Mi safe, and the second premise
Pr2-G makes the assumptions weak enough to cover all the traces which can violate ϕ (i.e.,

Form Methods Syst Des (2008) 32: 207–234 213

for every trace violating ϕ, Pr2-G requires at least one assumption to contain it). This rule is
sound and complete [8]. With this rule, our aim is to discover such assumptions A1, . . . ,An

to show that M1‖ · · · ‖Mn satisfies ϕ. For n = 2, while Rule-S requires only an assumption
A for M2, Rule-G tries to find two assumptions A1 and A2 simultaneously.

Given a symbolic transition system S(X, Init, T), an integer n ≥ 2, and a safety property
ϕ, the model checking problem we consider in this paper is, instead of checking S |= ϕ, to
partition X into disjoint subsets X1, . . . ,Xn, and to check S[X1]‖ · · · ‖S[Xn] |= ϕ using the
above assume-guarantee rules. The challenges of this model checking problem are (1) how
to find a good variable partition and (2) how to find assumptions satisfying both the above
premises.

3 Automatic partitioning

Our first step is automatic decomposition. This partitioning problem is, given a transition
system S(X, Init, T) and an integer n ≥ 2, to decompose X into disjoint subsets X1, . . . ,Xn.
There exist approximately n|X| possible partitions. Among them, we want a partition that
minimizes memory usage for assumption construction and commitment in our assume-
guarantee reasoning. The memory usage, however, cannot be predicted precisely. Thus, we
revise our goal to find a partition that has small number of variables required in each step
of the assume-guarantee reasoning because the number of possible states is exponential in
the number of variables. More precisely, the alternative goal is to find a partition that min-
imizes maxi (|Xi ∪ XIO

S[Xi]|) where XIO
S[Xi] is the set of I/O variables of the module S[Xi].

This partitioning problem is NP-complete [25].
We reduce our problem to a well-known partitioning problem called the hypergraph par-

titioning problem which is also NP-complete. For the reduction, we relax our goal as fol-
lowing; given a transition system S(X, Init, T), and an integer n ≥ 2, the goal of automatic
partitioning is to find a partition decomposing X into n disjoint subsets such that (1) the
number variables per module is approximately the same (2) modules corresponding to each
variable subset have as few input/output variables as possible.

A hypergraph hG(V ,hE) is defined as a set of vertices V and a set of hyperedges hE
where each hyperedge is a set of arbitrary number of vertices in V . Thus, an ordinary graph
is a special case of hypergraphs such that edges are pairs of two vertices. Given a hyper-
graph hG(V ,hE) and an overall load imbalance tolerance c ≥ 1.0, the k-way hypergraph
partitioning problem is to partition the set V into k disjoint subsets, V1, . . . , Vk such that the
number of vertices in each set Vi is bounded by |V |/(c ·k) ≤ |Vi | ≤ |V |(c/k), and the size of
hyperedge-cut of the partition is minimized where the hyperedge-cut is a set of hyperedges
e such that there exist v1 and v2 in e which belong to different partitions.

Now, our partitioning problem can be reformulated as the k-way hypergraph partitioning
problem. Given a transition system S(X, Init, T), we construct a hypergraph hG(V ,hE) as
follows. V = {vx | x ∈ X}. For each x ∈ X, we have a hyperedge ex that contains the corre-
sponding vertex vx and also vertices vy such that y ∈ Depend(x), meaning that the variable
y has a read-dependency on x. Finally, hE is the set of all edges ex . Then, after hypergraph
partitioning, V1, . . . , Vk corresponds to X1, . . . ,Xn in our problem. If we have a hyperedge
ex in the hyperedge-cut (let us assume that the corresponding vertex vx belongs to Vi), then
there exists some vertex vy ∈ ex which belongs to Vj (i
= j). Since y is dependent on x but
they are in different partitions, x should be an input variable of S[Xj] and also an output
variable of S[Xi]. For the overall load imbalance tolerance c, a large value as c can reduce
the number of I/O variables but it causes larger imbalance among modules in terms of their

214 Form Methods Syst Des (2008) 32: 207–234

number of variables. On the other hand, a small value as c increases I/O variables. There-
fore, we perform partitioning with six different values (e.g. 1.0, 1.2, . . . , 2.0) and pick the
partition that has the minimum value of maxi (|Xi ∪ XIO

S[Xi]|). While ‘1.0’ as c value requires
that every partition has the same number of variables, ‘2.0’ means that each partition may
have between twice and half the average value. We ignore more biased c values since we
believe that the more biased partitions gain less benefit from compositional reasoning.

Many researchers have studied the hypergraph partitioning problem and developed tools,
and among them we use hMETIS [24]. hMETIS is a state-of-the-art hypergraph partition-
ing tool which uses a multilevel k-way partitioning algorithm. The multilevel partitioning
algorithm has three phases; (1) it first reduces the size of a given hypergraph by collapsing
vertices and edges until the hypergraph is small enough (coarsening phase), (2) the algo-
rithm partitions it into k sub-hypergraphs (initial partitioning phase), and (3) the algorithm
uncoarsens and refines them to construct a partition for the original hypergraph (uncoarsen-
ing and refinement phase). Experiments on a large number of hypergraphs arising in various
domains including VLSI, databases and data mining show that hMETIS produces partitions
that are consistently better than those produced by other widely used algorithms, such as
KL [27] and FM [16]. In addition, it is fast enough to produce high quality bisections of
hypergraphs with 100,000 vertices in 3 minutes [25].

4 L* algorithm

According to the literature on active learning1 for regular languages, the active learn-
ing techniques for regular languages can be classified by the teachers they use: (1) a
teacher answering membership and equivalence queries [7, 37], and (2) a teacher answer-
ing only equivalence queries but she always provides the lexicographically first counter-
example [10, 22]. To the best of our knowledge, the best result of the first techniques requires
O(|Σ |n2 + n logm) membership queries and at most n − 1 equivalence queries, where n is
the number of states in the target DFA and m is the length of the longest counter-example
provided by the teacher [37]. On the other hand, the second one needs O(|Σ |n2) equiva-
lence queries [10]. The total number of queries needed is similar in both techniques, but
we believe that in our problem equivalence queries require more computation then member-
ship queries. Thus, we employ the learning technique with a teacher for membership and
equivalence queries, which requires fewer equivalence queries.

The L∗ algorithm learns an unknown regular language and generates a minimal DFA

accepting the language by asking membership and equivalence queries to a teacher. This
algorithm had been introduced by Angluin [7], but later its efficiency was improved by
Rivest and Schapire [37] (see [26] for a gentle introduction to these algorithms). In this
paper, we employ the improved version. The algorithm infers the structure of the DFA by
asking a teacher membership and equivalence queries.

Figure 1 illustrates the L∗ algorithm [37]. Let U be the unknown regular language and Σ

be its alphabet. At any given time, the L∗ algorithm has, in order to construct a conjecture
DFA, information about a finite collection of strings over Σ , classified either as members or
non-members of U . This information is maintained in an observation table (R,E,G) where

1Note that while passive learning learns a target from given sets of positive samples and negative samples,
in active learning a learner itself selects and asks queries to a teacher (oracle) who answers correctly for the
queries, and learns the target based on the answers from the teacher. Typically, the former cannot learn the
target exactly, but the latter can.

Form Methods Syst Des (2008) 32: 207–234 215

Fig. 1 L∗ algorithm

R and E are sets of strings over Σ , and G is a function from (R ∪R·Σ)×E to {0,1}. More
precisely, R is a set of representative strings for states in the conjecture DFA such that each
representative string rq ∈ R for a state q leads from the initial state (uniquely) to the state
q , and E is a set of experiment suffix strings that are used to distinguish states (i.e., for
any two states q1 and q2 of the DFA, there is a string e ∈ E such that member(rq1 · e)
=
member(rq2 · e) where rq1 and rq2 are representative strings for q1 and q2, respectively). G

maps strings σ = σ1 ·σ2 (where σ1 ∈ R ∪ R ·Σ and σ2 ∈ E) to 1 if σ is in U , and to 0
otherwise. Initially, R and E are set to {ε}, and G is initialized using membership queries
for every string in (R ∪ R ·Σ) × E (lines 3–4). In line 6, the algorithm checks whether the
observation table is closed. The function closed(R, E, G) returns null (meaning true) if for
every r ∈ R and a ∈ Σ , there exists r ′ ∈ R such that G[r ·a, e] = G[r ′, e] for every e ∈ E;
otherwise, it returns r ·a such that there is no r ′ satisfying the above condition. If the table is
not closed, such an r ·a (e.g., denoted by rnew in line 7) is simply added to R as a new state
(representative string). The algorithm again updates G with regard to r ·a (line 8). Once
the table is closed, it constructs a conjecture DFA C = (Q,q0,F, δ) as follows (line 10):
Q = R, q0 = ε, F = {r ∈ R | G[r, ε] = 1}, and for every r ∈ R and a ∈ Σ , δ(r, a) = r ′
such that G[r ·a, e] = G[r ′, e] for every e ∈ E. Finally, if the answer for the equivalence
query is ‘yes’, it returns the current conjecture machine C; otherwise, a counter-example
cex ∈ ((L(C) \ U) ∪ (U \ L(C)) is provided by the teacher. The algorithm analyzes the
counter-example cex in order to find the longest suffix enew of cex that witnesses a difference
between U and L(C) (line 13). Adding enew to E reflects the difference in the next conjecture
by splitting states in C. It then updates G with respect to enew (lines 15–18).

The L∗ algorithm is guaranteed to construct a minimal DFA for the unknown regular
language using only O(|Σ |n2 +n logm) membership queries and at most n−1 equivalence
queries, where n is the number of states in the final DFA and m is the length of the longest
counter-example provided by the teacher when answering equivalence queries. Moreover,
the algorithm never constructs any intermediate automaton with more than n states.

216 Form Methods Syst Des (2008) 32: 207–234

Fig. 2 Observation tables and conjecture machines (part 1 of 3)

Example

Suppose that the unknown regular set U is the set of all strings over Σ = {a, b} with an
even number of a’s and an even number of b’s. We illustrate how the L∗ algorithm in Fig. 1
constructs a minimal DFA representing U .

Initially, the algorithm sets R and E to {ε}, and asks membership queries for the strings
ε, a and b in lines 3–4. The initial observation table G1 is shown in Fig. 2a. This observation
table is not closed, since there is no r ∈ R such that G1[a, e] = G1[r, e] for every e ∈ E. The
L∗ algorithm adds the string a to the set R in line 7 and then asks membership queries for the
strings aa and ab to construct the observation table G2 shown in Fig. 2b. This observation
table is closed, and the algorithm constructs a conjecture C1, shown in Fig. 2c. The initial
state is q0 and the accepting state is also q0. In the following automata, a string labeled on
each state is the representative string in R which is corresponding to the state. However,
C1 is not a correct DFA for U , so the teacher provides a counter-example. In this case, we
assume that the counter-example is bb; bb ∈ U \ L(C1).

From the counter-example bb, the L∗ algorithm adds the string b to the experimental
string set E, which is returned by the function findSuffix() (lines 13–14). Then, it again
updates the observation for the new experiment string (lines 15–18) and the result is G3 in
Fig. 3a. However, G3 is not closed since there is no r ∈ R such that G3[b, e] = G3[r, e]
for every e ∈ E. We add the string b to the set R and then ask membership queries for ba

and bb. The result observation table is G4 (Fig. 3b) which is now closed. The algorithm
constructs a conjecture C2 based on G4, which is shown in Fig. 3c. However, C2 still is not
a correct DFA for U , so the teacher provides a counter-example. We assume that the teacher
returns aba; aba ∈ L(C2) \ U .

The function findSuffix() returns the string a as a new experiment string from the counter-
example aba, and we add it to the set E. Then, the algorithm again updates the observation
table for the new experiment string and the result is G5 in Fig. 4a. Again, G5 is not closed
since there is no r ∈ R such that G5[ab, e] = G5[r, e] for every e ∈ E. We add the string ab

to the set R and then ask membership queries for aba and abb to construct the observation
table G6 shown in Fig. 4b. This observation table is now closed, and the algorithm again
constructs a conjecture C3, shown in Fig. 4c. The conjecture DFA C3 is a correct DFA for the
language U and the teacher replies with ‘yes’ (line 11). Finally, the L∗ algorithm terminates
and returns C3 as its output.

Form Methods Syst Des (2008) 32: 207–234 217

Fig. 3 Observation tables and conjecture machines (part 2 of 3)

Fig. 4 Observation tables and conjecture machines (part 3 of 3)

5 Learning assumptions

In this section, for each of Rule-S and Rule-G in Sect. 2, we define the weakest safe assump-
tion (tuple) which is a witness for the truth of a given invariant. We then establish that our
verification algorithms based on the L∗ algorithm converge to the weakest safe assumption
(tuple) or, before that, conclude with a witness for the invariant.

5.1 Weakest safe assumption for Rule-S

Rule-S is a compositional rule to verify a transition system S consisting of two modules. To
use this rule, we first partition S into two modules, S[X1] and S[X2] by automatic partition-
ing as explained in Sect. 3. Then, given two modules S[X1] and S[X2] and a safety property
ϕ, in order to apply Rule-S, we need to find an assumption A that satisfies two premises,
Pr1-S and Pr2-S of Rule-S. An assumption A is called a safe assumption if the assumption
A satisfies Pr1-S (i.e. S[X1]‖A |= ϕ), and an assumption A is called an appropriate assump-
tion if the assumption A satisfies both of Pr1-S and Pr2-S. The weakest safe assumption
W [18] is a module such that S[X1]‖W |= ϕ and L(W) ⊇ L(A) for every safe assumption
A (i.e. S[X1]‖A |= ϕ). For a given module and a safety property, it is easy to see that W is
guaranteed to exist, and is unique. Now, we show that the weakest safe assumption W is a

218 Form Methods Syst Des (2008) 32: 207–234

witness for the truth of S[X1]‖S[X2] |= ϕ. That is, W gives proof whether S[X1]‖S[X2] |= ϕ

or not as an evidence.

Lemma 1 If S[X1]‖S[X2] |= ϕ, then the weakest safe assumption W is an appropriate as-
sumption with respect to Rule-S.

Proof If S[X1]‖S[X2] does indeed satisfy ϕ, then there exists an appropriate assumption
A since Rule-S is complete. By definition, W satisfies Pr1-S. For the above appropriate
assumption A, since S[X2]
 A and L(A) ⊆ L(W), S[X2]
 W (Pr2-S). Hence, the weak-
est safe assumption W is an appropriate assumption, and witnesses that S[X1]‖S[X2] |= ϕ

through Rule-S. �

Lemma 2 If S[X1]‖S[X2]
|= ϕ, then the weakest safe assumption W is not an appropriate
assumption with respect to Rule-S.

Proof If S[X1]‖S[X2] does not satisfy ϕ, then by the soundness of Rule-S, there is no ap-
propriate assumption; hence W is not an appropriate assumption. Since W satisfies Pr1-S
(by definition), W does not satisfy Pr2-S; i.e. there exists τ ∈ L(S[X2]) \ L(W) that does
not satisfy ϕ. �

The weakest safe assumption W can be represented as a DFA with the alphabet QIO

(where QIO is a set of all states over XIO) because S[X1] and S[X2] are finite. Therefore,
we can learn the weakest safe assumption W which a witness for truth of S[X1]‖S[X2] |= ϕ,
using the L∗ algorithm for learning regular languages.

5.2 Weakest safe assumption tuple for Rule-G

Rule-G is a compositional rule to verify a transition system S consisting of an arbitrary num-
ber of modules. To use this rule, we decompose S into n modules. Then our aim is, given a set
of modules S[X1], . . . ,S[Xn] and a safety property ϕ, to verify that S[X1]‖ · · · ‖S[Xn] |= ϕ

by finding assumption modules A1, . . . ,An that satisfy both premises, Pr1-G and Pr2-G
of Rule-G. A tuple (A1, . . . ,An) of assumptions is called a Safe assumption Tuple (ST)
if the assumptions A1, . . . ,An satisfy Pr1-G, and a tuple (A1, . . . ,An) of assumptions is
called an Appropriate assumption Tuple (AT) if the assumptions A1, . . . ,An satisfy both of
Pr1-G and Pr2-G. For every S[Xi], the weakest safe assumption Wi is a module such that
S[Xi]‖Wi |= ϕ and L(Wi) ⊇ L(Ai) for every Ai such that S[Xi]‖Ai |= ϕ. We denote such
a tuple (W1, . . . ,Wn) as the Weakest safe assumption Tuple (WT). As the weakest safe as-
sumption for Rule-G, the WT is guaranteed to exist, and is unique. Now, we show that the
WT is a witness for the truth of S[X1]‖ · · · ‖S[Xn] |= ϕ.

Lemma 3 If S[X1]‖ · · · ‖S[Xn] |= ϕ, then the weakest safe assumption tuple (W1, . . . ,Wn)
is an appropriate assumption tuple with respect to Rule-G.

Proof If S[X1]‖ · · · ‖S[Xn] does indeed satisfy ϕ, then there exists an AT (A1, . . . ,An)
since the composition rule is complete. By definition, WT (W1, . . . ,Wn) satisfies Pr1-G.
For the above AT (A1, . . . ,An), since for every i, LC(Wi) ⊆ LC(Ai) and LC(A1)‖ · · ·
‖LC(An) |= ϕ, it follows that LC(W1)‖ · · · ‖LC(Wn) |= ϕ (Pr2-G). Hence WT (W1, . . . ,Wn)
is an appropriate assumption tuple that proves S[X1]‖ · · · ‖S[Xn] |= ϕ. �

Form Methods Syst Des (2008) 32: 207–234 219

Fig. 5 Overview of compositional verification for Rule-S

Lemma 4 If S[X1]‖ · · · ‖S[Xn]
|= ϕ, then the weakest safe assumption tuple is not an ap-
propriate assumption tuple with respect to Rule-G.

Proof If S[X1]‖ · · · ‖S[Xn] does not satisfy ϕ, then, by soundness of Rule-G, there is
no appropriate assumption tuple, and hence the weakest assumption tuple cannot be ap-
propriate. In fact, since WT (W1, . . . ,Wn) satisfies Pr1-G by definition, there exists τ ∈
LC(W1)‖ · · · ‖LC(Wn) violating ϕ. �

The WT (W1, . . . ,Wn) can be represented by a tuple of DFAs with the alphabet QIO

(where QIO is a set of all states over XIO) because each S[Xi] is finite. Finally, we can learn
the WT which is a witness for truth of S[X1]‖ · · · ‖S[Xn] |= ϕ, using the L∗ algorithm for
learning regular languages.

5.3 Compositional verification algorithm for Rule-S

Now, we present our verification algorithm for Rule-S. Given a transition system S(X, Init,
T) and an invariant property ϕ, ASCV_S algorithm (Automatic Symbolic Compositional
Verification for Rule-S) decomposes X into two disjoint subsets, X1 and X2, and then checks
S[X1]‖S[X2] |= ϕ by learning the weakest safe assumption W which is a witness for the truth
of the invariant.

Figure 5 illustrates the high-level overview of our compositional verification procedure.
It first partitions S into two modules and the learner learns W by asking queries to the
teacher. Given a string τ ∈ (QIO)∗, the teacher answers whether there is an execution of
S[X1] consistent with τ , which violates ϕ; that is, whether τ /∈ L(W). The learner con-
structs a conjecture assumption A for the module S[X1], based on the results of membership
queries, and after this phase, it asks an equivalence query. The equivalence query consists of
two sub-queries: checking Pr1-S and Pr2-S of the assume-guarantee rule. If a given assump-
tion tuple satisfies both premises, we conclude S[X1]‖S[X2] |= ϕ; otherwise, the teacher
produces a counter-example. More precisely, the teacher checking Pr1-S answers, given an

220 Form Methods Syst Des (2008) 32: 207–234

Fig. 6 ASCV_S algorithm

assumption A for a module S[X1], whether S[X1]‖A |= ϕ; if not, it returns cex ∈ L(A) vi-
olating ϕ (i.e. cex ∈ L(A) \ L(W)). The teacher for Pr2-S checks, given an assumption A,
whether S[X2]
 A; if not, it returns τ ∈ L(S[X2]) \ L(A). For Pr1-S queries, cex is imme-
diately used to update A, but for Pr2-S queries, we need an additional analysis. We check
if the trace τ (which is a behavior of S[X2] but not in L(A)) keeps S[X1] safe. If it does
not, we conclude that S[X1]‖S[X2] does not satisfy ϕ; otherwise, we give τ back to the L∗
algorithm as a counter-example.

One of the nice properties of the L∗ algorithm is that it needs a polynomial number of
queries in the size of the minimal automaton accepting the language learned (and polynomial
in the lengths of the counter-examples provided by the teacher). Let us now explain which
language our algorithm converges to and derive bounds on the size of the automaton, and
simultaneously show that our procedure always terminates.

Note that all membership queries and all counter-examples provided by the teacher in our
algorithm are consistent with respect to W (for equivalence queries, all the counter-examples
are checked with W). Therefore, our algorithm eventually converges to the weakest safe
assumption W that is a witness for the model-checking question. However, there can be early
termination with a counter-example or an appropriate assumption satisfying both premises.
Hence our procedure always halts and reports correctly whether S[X1]‖S[X2] satisfies ϕ,
and in doing so, it never generates any assumption with more states than the minimal DFA

accepting W .
Figure 6 illustrates the ASCV_S algorithm. Given a transition system S and a safety prop-

erty ϕ, ASCV_S algorithm first decomposes S into two modules and assigns them to M[1]
and M[2] (line 1), and it constructs the initial conjecture assumption A according to the
rule of the L∗ algorithm (line 2). Then, we repeat asking two sub-queries for equivalence
and updating the current conjecture assumption A; if either of two sub-queries returns a
counter-example cex, the algorithm updates A using cex (lines 4–12). Updating the conjec-
ture assumption involves asking membership queries. In more detail, we first check that the
current assumption A is a safe assumption such that M[1]‖A |= ϕ by a function Safe-
Assumption(). If so, we have A satisfying Pr1-S; otherwise we update A with respect
to cex (line 5). Once we have A satisfying Pr1-S, the algorithm checks Pr2-S by a function
Refinement(). If the function returns null, then we conclude S |= ϕ since the current
assumption A satisfies both premises; otherwise, we are provided a counter-example cex.
Lines 10–11 analyze whether cex is a real counter-example for the invariant; if cex indeed

Form Methods Syst Des (2008) 32: 207–234 221

violates ϕ for M[1], then we conclude S
|= ϕ. Otherwise, it is a spurious counter-example
and we again update A using cex.

Summarizing the above argument, we have:

Theorem 1 The algorithm depicted in Fig. 6, when input a system S and a safety property
ϕ, always halts, and returns true iff S |= ϕ. Moreover, if S is split into M1 and M2, then
the algorithm never constructs an assumption automaton A that has more states than the
minimal deterministic automaton accepting the weakest safe assumption W with respect to
(M1,M2).

5.4 Compositional verification algorithm for Rule-G

In this section, we present our verification algorithm for the general rule Rule-G. Given a
transition system S(X, Init, T), an invariant property ϕ, and an integer n ≥ 2, ASCV_G al-
gorithm (Automatic Symbolic Compositional Verification for Rule-G) decomposes X into
n disjoint subsets X1, . . . ,Xn and then checks S[X1]‖ · · · ‖S[Xn] |= ϕ by learning the WT
(Weakest safe assumption Tuple) which is a witness for the truth of the invariant. For learn-
ing the WT, ASCV_G algorithm provides teachers who answer membership queries and
equivalence queries, which correspond with the WT (W1, . . . ,Wn). Our algorithm is trying
to learn a set of languages for W1, . . . ,Wn, but this can be viewed as n copies of L∗ learning
in parallel.

Given a string τ ∈ (QIO)∗ and a module S[Xi], a teacher for membership queries answers
whether there is an execution of S[Xi] consistent with τ , which violates ϕ; that is, whether
τ /∈ L(Wi). For each module S[Xi], ASCV_G algorithm constructs a conjecture assumption
Ai by asking membership queries, and after this phase, it asks an equivalence query. The
equivalence query consists of two sub-queries: checking Pr1-G and Pr2-G of the assume-
guarantee rule Rule-G. If a given assumption tuple satisfies both premises, we conclude
S[X1]‖ · · · ‖S[Xn] |= ϕ; otherwise, the teacher produces a counter-example. More precisely,
given an assumption Ai for a module S[Xi], the teacher checking Pr1-G answers whether
S[Xi]‖Ai |= ϕ; if not, it returns cex ∈ L(Ai) violating ϕ (i.e. cex ∈ L(Ai) \ L(Wi)). Given
A1, . . . ,An, the teacher for Pr2-G checks whether LC(A1)‖ · · · ‖LC(An) |= ϕ; if not, it re-
turns τ ∈ LC(A1) ∩ · · · ∩ LC(An) which violates ϕ. For Pr1-G queries, cex is immediately
used to update Ai , but for Pr2-G queries, we need an additional analysis. That is, when we
execute every S[Xi] corresponding to τ , if every S[Xi] reaches a state violating ϕ, then τ is
a counter-example of the original problem, S[X1]‖ · · · ‖S[Xn] |= ϕ; otherwise, τ is used to
update some Ai such that S[Xi] correspondent with Ai does not violate the invariant ϕ (i.e.
τ ∈ L(Wi) \ L(Ai)).

In the ASCV_G algorithm, since all answers from teachers are always consistent with
the WT (for equivalence queries, counter-examples are checked with each Wi), ASCV_G
algorithm will converge to the WT which a witness for the truth of S |= ϕ, in polynomial
number of queries by the property of the L∗ algorithm. However, there can be early termi-
nation with a counter-example or an AT satisfying both premises. In addition, the algorithm
will not generate any assumption Ai with more states than Wi .

Figure 7 illustrates the ASCV_G algorithm. Given a transition system S, a safety property
ϕ, and an integer n, ASCV_G algorithm first decomposes S into n modules and assigns them
to an array M[] (line 1), and it constructs the initial conjecture machines A[i] according to
the rule of the L∗ algorithm (line 2). Then, we repeat asking two sub-queries for equiv-
alence and updating the current conjecture machines; if either of the sub-queries returns
a counter-example cex, the algorithm updates the current conjecture machines using cex

222 Form Methods Syst Des (2008) 32: 207–234

Fig. 7 ASCV_G algorithm

(lines 4–20). In more detail, we check that for every i, the current conjecture A[i] is a safe
assumption such that M[i]‖A[i] |= ϕ by a function SafeAssumption(). If so, we have
A[1], . . . ,A[n] satisfying Pr1-G; otherwise (i.e., for some i, we have a counter-example cex

violating ϕ), we update A[i] with respect to cex (line 6). Once we have A[1], . . . ,A[n] sat-
isfying Pr1-G, the algorithm checks Pr2-G by a function DischargeAssumptions().
If the function returns null, then we conclude S |= ϕ since A[1], . . . ,A[n] satisfy both
premises; otherwise, we are provided a counter-example cex. Lines 12–19 analyze whether
cex is a real counter-example for the invariant; if cex indeed violates ϕ for every M[i], then
we conclude S
|= ϕ. Otherwise, it is a spurious counter-example and we update A[i] which
is the current conjecture for M[i] not violating ϕ.

Summarizing the above argument, we have:

Theorem 2 The algorithm depicted in Fig. 7, when input a system S and a safety property
ϕ, always halts, and returns true iff S |= ϕ. Moreover, if S is split into M1, . . . ,Mn, then the
algorithm constructs assumption automata A1, . . . ,An, where no Ai has ever more states
than that of the minimal deterministic automaton for Wi , where (W1, . . . ,Wn) is the weakest
safe assumption tuple for (M1, . . . ,Mn).

6 Symbolic implementations

ASCV_S algorithm and ASCV_G algorithm can be implemented implicitly as well as ex-
plicitly. However, as input/output variables increase, the number of alphabet symbols of the
languages we want to learn increases exponentially. In explicit implementations, the large
alphabet size poses crucial problems: (1) the constructed assumption DFAs have too many

Form Methods Syst Des (2008) 32: 207–234 223

edges when represented explicitly, (2) the size of the observation tables for each assumption
gets very large, and (3) the number of membership queries needed to fill each entry in the
observation tables also increases. Therefore, we introduce a symbolic implementation for
learning-based compositional verification (first introduced in [6, 32]).

6.1 Implementation of the ASCV_S algorithm

6.1.1 Data structures

For symbolic implementation of the two algorithms, ASCV_S and ASCV_G, we already de-
fined a symbolic transition system and decomposition to modules implicitly in Sect. 2. For
describing a symbolic implementation for the L∗ algorithm, we first explain the essential
data structures the L∗ algorithm needs, and then present implicit data structures correspond-
ing to them, which we use in our implementation. The L∗ algorithm uses the following data
structures for an observation table:

– string R[]: each R[i] is a representative string for i-th state qi in the conjectured
DFA.

– string E[]: each E[i] is i-th experiment string.
– boolean G1[][]: each G1[i][j] is the result of the membership query for
R[i]·E[j].

– boolean G2[][][]: each G2[i][j][k] is the result of the membership query for
R[i]·aj ·E[k] where aj is the j -th alphabet symbol in Σ .

Note that G : (R ∪ R ·Σ) × E → {0,1} of the observation table is split into two arrays,
G1 and G2; G1 is an array for the function from R × E to {0,1} and G2 is for a function
from R × Σ × E to {0,1}. The L∗ algorithm initializes the data structures as following:
R[0]=E[0]=ε, G1[0][0]=member(ε · ε), and G2[0][i][0]=member(ε · ai · ε) (for
every ai ∈ Σ). When introducing a new state or a new experiment string, the L∗ algorithm
adds to R[] or E[], and updates G1 and G2 by membership queries. These arrays also
represent the edges of the conjecture machine: there is an edge from state qi to qj on ak

when G2[i][k][l]=G1[j][l] for every l.
For symbolic implementations of ASCV_S and ASCV_G algorithm, we do not wish to

construct conjecture DFAs by explicit membership queries since |Σ | is too large. To identify
an alphabet symbol labeled on each edge, the explicit L∗ algorithm asks, for each state r ,
alphabet symbol a and experiment e, if r · a · e is a member. However, in our symbolic
technique, given a source state r and the boolean vector v of a target state, we compute
the set of alphabet symbols a’s such that for every j ≤ |v|, member(r · a · ej) = v[j]. The
edges from a state r to the target state captured by the boolean vector v, are labeled by the
representation of the set of symbols that are possible on these edges. This symbolic method
can reduce the cost of each explicit membership query. Now, we have the following data
structures for symbolic ASCV_S algorithm (for ASCV_G algorithm, we have one set of the
following data structures for each module):

– int nQ: the number of states in the current DFA.
– int nE: the number of experiment strings.
– BDD R[]: each R[i] (0 ≤ i< nQ) is a BDD over X1 to represent the set of states of the

module S[X1] that are reachable from an initial state of S[X1] by the representative string
ri of the i-th state qi : postImage(InitS[X1], ri).

– BDD E[]: each E[i] (0 ≤ i < nE) is a BDD over X1 to capture a set of states of
S[X1] from which some state violating ϕ is reachable by the i-th experiment string ei :
preImage(¬ϕ(X1), ei).

224 Form Methods Syst Des (2008) 32: 207–234

– booleanVector G1[]: each G1[i] (0 ≤ i< nQ) is the boolean vector for the state
qi , where the length of each boolean vector always equals to nE. Note that as nE is in-
creased, the length of each boolean vector is also increased. For i
= j , G1[i]
= G1[j].
Each element G1[i][j] of G1[i] (0 ≤ j < nE) indicates whether R[i] and E[j]
have empty intersection, and this holds precisely when ri · ej is a member where ri is a
representative string for R[i] and ej is an experiment string for E[j].

– booleanVector Cd[]: every iteration of the L∗ algorithm splits some states of the
current conjecture DFA by a new experiment string. More precisely, the new experiment
splits every state into two state candidates, and among them, only reachable candidates
are constructed as states of the next conjecture DFA. The Cd[] vector encodes all these
state candidates and each element is the boolean vector of each candidate. |Cd| = 2·nQ.

Given S = S[X1]‖S[X2] and ϕ, we initialize the data structures as follows. R[0] is the
BDD for InitS[X1] and E[0] is the BDD for ¬ϕ since the corresponding representative and
experiment string are ε, and G1[0][0] = 1 since we assume that every initial state sat-
isfies ϕ.

We also represent the conjecture assumption implicitly as A(XA,XIO, InitA,FA, TA)

with the following components:

– XA is a set of boolean variables representing states in A (|XA| = �log2nQ�) Valuations of
the variables can be encoded from the index for R.

– XIO is a set of boolean variables defining its alphabet, which comes from S[X1] and S[X2].
– InitA(XA) is an initial state predicate over XA. InitA(XA) is encoded from the index of

the state q0: InitA(XA) = ∧
x∈XA

(x ≡ 0).
– FA(XA) is a predicate for accepting states. It is encoded from the indices of the states qi

such that G1[i][0]=1.
– TA(XA,XIO,X′

A) is a transition predicate over XA ∪ XIO ∪ X′
A; that is, if TA(i, a, j) =

true, then the DFA has an edge from state qi to qj labeled by a.

This symbolic DFA A(XA,XIO, InitA, FA,TA) can be easily converted to a module
MA(XA,XI ,XO, InitA,TA).

6.1.2 Subfunctions

We implement, by using the above symbolic data structures, every function in ASCV_S
algorithm as follows. Figure 8 also illustrates the pseudo-codes for the important ones.

– BDD[] InitializeAssumptions(Module[] M, Property ϕ): given a
module array and a safety property, this function initializes an assumption module A[i]
for each module M[i] based on the L∗ algorithm. For initialization, it asks implicit mem-
bership queries.

– BDD[] SafeAssumption(Module M, SymbolicDFA A, Property ϕ):
given a module M , a symbolic assumption DFA A(XA,XIO, InitA,FA,TA) and a property
ϕ, this function checks if M‖MA |= (FA → ϕ) holds using symbolic forward reachabil-
ity analysis, where MA is a symbolic module converted from A. If so, it returns null;
otherwise, it returns a BDD array as a counter-example.

– void UpdateAssumption(Module M, SymbolicDFA A, BDD[] cex):
given a module M , an assumption A and a counterexample cex, it updates the current
assumption A using cex. The function first computes the longest suffix of cex which
shows a difference between A and the weakest safe assumption for M , and then it adds
the suffix to the experiment string set E. This addition introduces new states and edges,
and requires membership queries.

Form Methods Syst Des (2008) 32: 207–234 225

Fig. 8 Implementation of subfunctions for ASCV_S algorithm

– BDD[] Refinement(Module M, SymbolicDFA A): given a module M and a
symbolic assumption DFA A, it checks whether M
 A holds. The return value is similar
with SafeAssumption(). Since A is again a symbolic DFA, we can simply imple-
ment it by symbolic reachability computation for the product of M and MA. If it reaches
the non-accepting state of A, the sequence reaching the non-accepting state is a witness
showing M

 A.

– boolean SafeTrace(Module M, BDD[] τ): given a module M and a trace τ

represented by a BDD array, it executes M according to τ . If the execution reaches a state
violating ϕ, it returns false; otherwise, returns true.

226 Form Methods Syst Des (2008) 32: 207–234

The function, UpdateAssumption() invokes several subfunctions as follows. Fig-
ure 9 also illustrates the pseudo-code for some of them.

– BDD edges(Module M, int i, booleanVector v): given a module M , an
integer i and a boolean vector v (0 ≤ i < nQ, |v| = nE), this function returns a BDD over
XIO representing the set of alphabet symbols for the module M , by which there is an edge
from the state qi to a state that has v as its boolean vector.

– void addR(Module M, int i, BDD eds, booleanVector v): when we
introduce a new state for a module (its predecessor state is qi , the BDD representing
edges from qi is eds and its boolean vector is v), addR(M, i, eds, v) adds the new
state to R and updates G1 and nQ for the module M .

– void addE(Module M, BDD[] exp): given a module M and a new experiment
string represented as an array of BDDs (where each BDD of the array encodes the cor-
responding state in the experiment string), this function updates E, G1 and nE for the
module M . It also constructs a new set Cd[] of state candidates for the next iteration.

– boolean isInR(Module M, booleanVector v): given a module M and a
boolean vector v, it checks, for the module M , whether v = G1[i] for some i.

– BDD[] findSuffix(Module M, BDD[] cex): given a module M and a coun-
terexample cex (from equivalence queries) represented by a BDD array, this function re-
turns a BDD array representing the longest suffix of cex which witnesses the difference
between the conjecture DFA and the weakest safe assumption W for the module M . From
the shortest prefix of cex, we first identify the representative string for the prefix by tra-
versing the current conjecture machine, and replace the prefix part of cex with the repre-
sentative string. We then check whether this string is safe. If so, the rest of the string is the
suffix that is able to distinguish between the conjecture and the weakest safe assumption.
Otherwise, we try again this checking with the next shortest prefix.

6.2 Implementation of the ASCV_G algorithm

6.2.1 Data structures and subfunctions

The implementation for ASCV_G algorithm shares most of data structures with ASCV_S
implementation. The main difference is that as ASCV_G algorithm needs one assumption for
each module, we have n copies of data structures for the observation tables and assumption
machines.

For subfunctions, ASCV_G implementation invokes, instead of Refinement(), the
following function DischargeAssumptions() as the second premise Pr2-G in Rule-G
is different with Pr2-S. For other subfunctions in ASCV_G algorithm, the implementation is
the same as in the ASCV_S algorithm.

– BDD[] DischargeAssumptions(SymbolicDFA[] A, Property ϕ): it
checks the second premise Pr2-G: LC(A1)‖ · · · ‖LC(An) |= ϕ. For every Ai , we first con-
struct a module encoding the complement DFA of Ai . This complementation can be easily
performed even in our symbolic implementation. We then check that the composition of
the complement DFAs satisfies ϕ, which is also handled by the symbolic reachability test.

Form Methods Syst Des (2008) 32: 207–234 227

Fig. 9 Subfunctions for UpdateAssumption()

228 Form Methods Syst Des (2008) 32: 207–234

6.2.2 Early falsification

In previous implementations of learning-based compositional verification [6, 14, 17], we
have found a possible optimization that allows us to conclude earlier S
|= ϕ with a counter-
example. In Fig. 7, if the trace cex acquired from the function DischargeAssump-
tions() reaches some state violating ϕ for every S[Xi], then we conclude that the in-
variant is false (line 19). That is, in the case that the invariant is indeed false, the algorithm
cannot finish until encountering safe assumptions for each module and checking Dis-
chargeAssumptions(). On the other hand, cex provided from SafeAssumption()
is immediately used for updating the current conjecture (line 6) even though it may be
a counter-examples for S |= ϕ. In our implementation for ASCV_G, if cex obtained from
SafeAssumption() is a feasible trace for every other module S[Xj](j
= i), then we
declare cex as a counter-example for S
|= ϕ. Otherwise (cex violates ϕ in S[Xi], but it is
infeasible for some other module), we update the current assumption for S[Xi] to rule out
cex as in the previous algorithms. We believe that the additional feasibility checking adds
little to the computational overhead, but can sometimes falsify the invariant earlier. We will
present examples where the algorithm is able to terminate much earlier than experiments
without early falsification in Sect. 7. The function EarlyFalsify() is implemented as
below:

EarlyFalsify(Trace τ , int MNum){
foreach (j
= MNum)

if (¬ FeasibleTrace(M[j], τ)) return false;
return true;

}

Finally, we add the function EarlyFalsify() between line 5 and 6 in ASCV_G algo-
rithm (see Fig. 7).

5: while((cex := SafeAssumption(M[i],A[i], ϕ))
= null){
5′: if(EarlyFalsify(cex, i)) return false;
6: UpdateAssumption(M[i],A[i], cex);
7: }

6.2.3 Edge deletion for safe assumptions

The ultimate goal of our model-checking problem is to quickly discover a small appropriate
assumption (tuple) or a counter-example for S |= ϕ. ASCV_S and ASCV_G algorithm, how-
ever, only guarantee that we can eventually learn the weakest safe assumption (tuple) whose
size is, in theory, exponential in the size of each module in the worst case. That is, both
algorithms based on the L∗ algorithm may keep introducing new states for conjecture ma-
chines until converging on a very large weakest safe assumption (tuple), even though there
may exist smaller appropriate assumption (tuple) than the weakest safe assumption (tuple).
We have experienced many cases where our algorithm needs many iterations to converge on
the WT (lines 5–6 in Fig. 7). The optimal solution for this problem is to learn the smallest
appropriate assumption (tuple) in terms of the number of states rather than the weakest safe
assumption (tuple), but this is a computationally hard problem.

Instead, we propose, for ASCV_G algorithm, a simple heuristic called edge deletion
where we retry, without introducing new states, to check Pr1-G and Pr2-G after eliminating
some edges from the current assumption. More precisely, when we are given a counter-
example cex from SafeAssumption(M[i],Ai, ϕ), cex is a list of BDDs encoding a set

Form Methods Syst Des (2008) 32: 207–234 229

of counter-examples to reach some state violating ϕ. Each counter-example is a sequence
of states of M[i]‖Ai , and we can find the edge of Ai from the last transition of the se-
quence which immediately leads to the state violating ϕ. By disallowing the edges from
Ai , we can rule out cex from the current conjecture machine Ai . Then, we check Safe-
Assumption() again; if we get a safe assumption by the retrial, we proceed to the next
step. If we cannot conclude using this stronger assumption, then we replace it with the orig-
inal assumption and update the original one for the next iteration. This replacement ensures
the convergence to the WT. Intuitively, our heuristic edge deletion searches, with the same
number of states, more broadly in solution candidate space, while the original L∗ algorithm
keeps searching deeply by introducing new states. We believe that sometimes this heuristic
can encounter a smaller AT than the original algorithm. Section 7 shows evidence of this
benefit.

7 Experiments

We have implemented our automatic symbolic compositional verification algorithms with
the BDD package in the symbolic model checker NUSMV [12]. For experiments, we have
six sets of examples where five sets are collected from the NUSMV package and one is
artificial. The primary selection criterion was to include examples for which NUSMV takes
a long time or fails to complete. All experiments have been performed on a Sun-Blade-1000
workstation using a 750 MHz UltraSPARC III processor, 1 GB memory and SunOS 5.10.
We first explain the artificial example (called ‘simple’) to illustrate our method and then
report results on ‘simple’ and five example sets from the NUSMV package.

Example: simple Module S[X1] has a variable x (initially set to 0 and updated by the
rule x ′ := y in each round where y is an input variable) and a variable array that does not
affect x at all. Module S[X2] has a variable y (initially set to 0 and is never updated) and
also a variable array that does not affect y at all. For S[X1]‖S[X2], we want to check that
x is always 0. Both arrays in S[X1] and S[X2] are from an example swap known to be
hard for BDD encoding [30]. Our tool explores S[X1] and S[X2] separately with a two-
state assumption (which allows only y = 0), while ordinary model checkers will search
whole state space of S[X1]‖S[X2]. In our experiment, we have four instances, simple8,
simple9, simple10 and simple11, with arrays which have 8 to 11 4-bit elements,
respectively.

The second example set, guidance, is a model of a space shuttle digital autopilot. We
added redundant variables to the original model and did not use a given variable ordering
information as both tools finished fast with the original model and the ordering. The specifi-
cations were picked from the given pool: guidance_sp1, guidance_sp2 and guid-
ance_sp3 have the same models but have different specifications. The third set, barrel,
is an example for bounded model checking and no variable ordering works well for BDD-
based tools. barrel_sp1 has an invariant derived from the original, but barrel_sp2
has our own ones. barrel_sp1 and barrel_sp2 have the same model scaled-up from
the original, but with different initial predicates.

The fourth set, msi, is a MSI cache protocol model and shows how the tools scale on
a real example. We scaled-up the original model with 3 nodes: msi3 has 3 nodes, msi4
has 4 nodes and msi5 has 5 nodes. They have the same specification. robot_sp1 and
robot_sp2 are robotics controller models and we again added redundant variables to the
original model, as in the case of guidance example. The last set is syncarb that is the

230 Form Methods Syst Des (2008) 32: 207–234

Table 1 Comparison between ASCV_S and ASCV_G

Example Spec tv ASCV_S ASCV_G

name mx IO Time Peak BDD np mx IO Time Peak BDD F/D

simple8 69 37 4 19.2 607,068 2 36 4 4.9 605,024 D

simple9 78 42 5 106 828,842 2 41 5 31.3 620,354 D

simple10
True

86 46 5 754 3,668,980 2 46 5 223 2,218,762 D

simple11 94 50 5 4601 12,450,004 2 50 5 1527 9,747,836 D

guidance_sp1 False 135 118 23 124 686,784 2 89 18 – – –

guidance_sp2 True 122 105 22 196 1,052,660 4 59 18 6.6 359,744 D

guidance_sp3 True 122 93 46 357 619,332 2 76 15 – – –

barrel_sp1 False 60 35 10 20.3 345,436 2 35 10 – – –

barrel_sp2 True 60 35 10 23.4 472,164 2 35 10 – – –

msi3 45 37 25 2.1 289,226 2 37 19 0.3 50,078 D

msi4 True 57 49 25 37.0 619,332 2 49 22 1.8 524,286 D

msi5 70 62 26 1183 6,991,502 2 60 25 31.9 2,179,926 D

robot_sp1 False 92 89 12 1271 4,169,760 2 52 5 283 1,905,008 F

robot_sp2 True 92 75 12 1604 2,804,368 2 50 7 9.5 427,196 D

model of a synchronous arbiter. We have two instances with 6 and 7 elements, and for each
instance there are two specifications which are from the given pool.

We compare ASCV_S (Automatic Symbolic Compositional Verifier for Rule-S) with
ASCV_G (Automatic Symbolic Compositional Verifier for Rule-G). We then present ef-
fects of the number of partitions and our heuristics (early falsification and edge deletion
in Sect. 6.2). Finally, we compare our ASCV_G with the invariant checking (with early ter-
mination) to NUSMV 2.3.0. Each result table has the number of variables in total (tv), I/O

variables, maxi (|Xi ∪ XIO
S[Xi]|) (mx), execution time in seconds, the peak BDD size and the

number of states in the assumptions we learn (asm). Entries denoted ‘–’ mean that a tool did
not finish within 2 hours. For ASCV_G, columns denoted ‘F/D’ mean that early falsification
or the edge deletion contributes to concluding earlier, and ‘np’ stands for the number of
partitions.

ASCV_S vs. ASCV_G Compared with ASCV_S, the ASCV_G has the following addi-
tional features: a symmetric compositional rule, early falsification and edge deletion. Ta-
ble 1 presents that ASCV_G shows better performance in 10 of the 14 examples in terms of
required time and memory. In more detail, for the examples where ASCV_G shows better
performance, it terminates 3–30 times faster than ASCV_S. On the other hand, it cannot fin-
ish for the rest. Since we have selected the examples in Table 1 from [6], for which ASCV_S
terminated within the time limit, there is no example where ASCV_S does not finish. For
memory usage, while in simple8 ASCV_G reduces the peak BDD size by a small amount,
it consumes memory 3–5 times less than ASCV_S does for guidnace_sp2, msi3 and
robot_sp2. We omit the results for syncarb since both tools fail to learn small assump-
tions.

The number of partitions We have experimented with our example sets by using ASCV_G
to explain how increasing the number of partitions affects the performance. However, some
of them show that the large number of partitions helps our tool to terminate earlier, but in oth-
ers it does adversely. Table 2 illustrates selected examples which show this phenomenon. In

Form Methods Syst Des (2008) 32: 207–234 231

Table 2 Effect of the number of partitions

np simple11

Spec tv mx IO Time Peak BDD asm

2 49 5 1526 9,747,836 2,2

3 True 94 61 37 1.8 497,714 2,2,2

4 53 37 0.7 217,686 2,2,2,2

np guidance_sp2

Spec tv mx IO Time Peak BDD asm

2 82 18 1680 612,178 2,2

3 True 122 61 23 34 614,222 2,2,2

4 59 33 6.6 359,744 2,2,2,2

np robot_sp1

Spec tv mx IO Time Peak BDD asm

2 52 5 283 1,905,008 3,2

3 False 92 62 30 – – Too many

4 64 46 – – Too many

np syncarb7_sp2

Spec tv mx IO Time Peak BDD asm

2 21 21 332 7,700,770 131,131

3 True 21 21 21 643 14,870,100 35,19,35

4 21 21 4520 31,234,364 11,11,19,19

simple11 and guidance_sp2, increasing the number of partitions saves significantly in
terms of time and BDD usage by discovering small assumptions. However, in robot_sp1
and syncarb7_sp2, it needs more time and memory due to large assumptions. The par-
titioning result influences the appropriate assumption set, but we do not know which set is
better and which assumption our learning algorithm eventually learns among the set. Hence,
it seems to be a hard problem to decide which partitioning is best.

Early falsification & edge deletion In Table 3, we present how our new features of
ASCV_G allow it to terminate earlier. It shows only interesting examples where ASCV_G,
with or without early falsification and edge deletion, can terminate in the time limit. If the
given invariant holds, the edge deletion heuristic can save the number of states of assump-
tions in many examples. If the invariant does not hold, early falsification seems to be useful.
They, however, may waste effort unless they can succeed, since they require extra computa-
tion. For the simple set, edge deletion helps ASCV_G find appropriate assumptions twice
faster in terms of running time, and for msi it provides a significant saving where it allows
verification to finish. In syncarb set, however, these features affect performance adversely
by wasting extra computation.

ASCV_G vs. NuSMV Finally, Table 4 presents the comparison between ASCV_G and
NUSMV. We present examples for which at least one of tools terminates and NUSMV takes
a long time or fails to complete, as well as syncarb7_sp1 and syncarb7_sp2 that
explains a possible reason why our technique may show worse performance than NUSMV.
In 10 examples, ASCV_G is significantly better than NUSMV where we have found small
assumptions. That is, in simple8, simple9, msi3, msi4, and robot_sp2, ASCV_G

232 Form Methods Syst Des (2008) 32: 207–234

Table 3 With/without early falsification and edge deletion

Example Spec tv np mx IO Without F/D With F/D

name var Time Peak BDD asm Time Peak BDD asm F/D

simple8 69 2 36 4 10.3 605,024 2,3 4.9 605,024 2,2 D

simple9 True 78 2 41 5 58.3 624,442 2,3 31.3 620,354 2,2 D

simple10 86 2 45 5 441 2,997,526 3,2 223 1,849,462 2,2 D

simple11 94 2 49 5 3044 9,747,836 2,3 1526 9,747,836 2,2 D

guidance_sp2 True 122 2 105 18 1634 1,066,968 2,37 1603 612,178 2,2 D

msi3 45 2 37 19 – – – 0.3 49,056 2,2 D

msi4 True 57 2 49 22 – – – 1.8 524,286 2,2 D

msi5 70 2 60 25 – – – 31.9 2,179,926 2,2 D

robot_sp1 False 92 2 52 5 529 2,275,994 3,58 283 1,905,008 3,2 F

robot_sp2 True 92 2 50 7 10.4 529,396 2,3 9.5 427,196 2,2 D

syncarb6_sp1 False 18 2 18 18 28.2 1,384,810 67,67 125 1,536,066 67,67 –

syncarb6_sp2 True 18 2 18 18 30.4 1,274,434 67,67 86.6 1,280,566 67,67 –

syncarb7_sp1 False 21 2 21 21 351 9,948,148 131,131 957 10,512,054 131,131 –

syncarb7_sp2 True 21 2 21 21 332 7,700,770 131,131 720 8,182,126 131,131 –

Table 4 Comparison between ASCV_G and NUSMV

Example Spec tv ASCV_G NUSMV

name np mx IO Time Peak BDD Time Peak BDD

simple8 69 2 36 4 4.9 605,024 269 3,993,976

simple9 78 2 41 5 31.3 620,354 4032 32,934,972

simple10
True

86 4 50 37 1.0 330,106 – –

simple11 94 4 53 37 0.7 217,686 – –

guidance_sp2 True 122 4 59 18 6.6 359,744 – –

msi3 45 2 37 19 0.3 50,078 157 1,554,462

msi4 True 57 2 49 22 1.8 524,286 3324 16,183,370

msi5 70 2 60 25 31.9 2,179,926 – –

robot_sp1 False 92 2 52 5 283 1,905,008 654 2,729,762

robot_sp2 True 92 2 50 7 9.5 427,196 1039 1,117,046

syncarb7_sp1 False 21 2 21 21 351 9,948,148 0.1 5,110

syncarb7_sp2 True 21 2 21 21 332 7,700,770 0.1 3,066

barrel_sp1 False 60 – – – – – 1201 28,118,286

barrel_sp2 True 60 – – – – – 4886 36,521,170

reduces the required time or memory by two or three orders of magnitude. In addition,
in simple10, simple11, guidance_sp2, and msi5, it converts infeasible problems
into feasible ones. In syncarb7_sp1 and syncarb7_sp2, however, the assumptions we
have learned are relatively large (with 131 states for each) and we believe that the large size
of assumptions is a main reason of negative results in these examples. Also, it can explain
why ASCV_G cannot complete within the timeout in barrel_sp1 and barrel_sp2,
since ASCV_G constructed assumption candidates with a huge number of states until time-
out.

Form Methods Syst Des (2008) 32: 207–234 233

8 Conclusions

For scalability of algorithmic verification, we have proposed a solution that combines sym-
bolic state-space exploration, compositional reasoning via an assume-guarantee rule, com-
putational learning for generating assumptions, and automatic decomposition. Given a state-
transition system and a safety property, we check that the system satisfies the property as
an invariant using assume-guarantee reasoning. In the proposed technique, we first decom-
pose the system into small sub-modules, and then learn an environment assumption for each
sub-module which is adequate for proving or disproving the satisfaction of the property. Our
experiments demonstrate promising savings in terms of time and memory usage.

There are many directions for future work. First, we want to study heuristics to dis-
cover much smaller assumptions, although finding the smallest assumption is computation-
ally hard. Second, we plan to consider circular assume-guarantee rules as well as other
non-circular rules to identify more appropriate rules for the learning technique. Finally, it is
worth pointing out that, while our implementations use BDD-based state-space exploration,
the approach can easily be adopted to permit other model checking strategies such as SAT-
based model checking [9, 30] and counter-example guided abstraction refinement [13, 28].

References

1. Abadi M, Lamport L (1995) Conjoining specifications. ACM Trans Program Lang Syst (TOPLAS)
17:507–534

2. Alur R, Henzinger T (1999) Reactive modules. Form Methods Syst Des 15(1):7–48. Invited submission
to FLoC’96 special issue. A preliminary version appears in Proceedings of the 11th LICS, 1996

3. Alur R, Henzinger T, Mang F, Qadeer S, Rajamani S, Tasiran S (1998) MOCHA: Modularity in model
checking. In: Proceedings of the 10th international conference on computer aided verification, pp 516–
520

4. Alur R, de Alfaro L, Henzinger T, Mang F (1999) Automating modular verification. In: CONCUR’99:
Concurrency theory, tenth international conference. LNCS, vol 1664. Springer, Berlin, pp 82–97

5. Alur R, Cerný P, Madhusudan P, Nam W (2005) Synthesis of interface specifications for Java classes. In:
Proceedings of the 32nd symposium on principles of programming languages, POPL 2005, pp 98–109

6. Alur R, Madhusudan P, Nam W (2005) Symbolic compositional verification by learning assumptions. In:
Proceedings of the 17th international conference of computer aided verification, CAV 2005, pp 548–562

7. Angluin D (1987) Learning regular sets from queries and counterexamples. Inf Comput 75:87–106
8. Barringer H, Pasareanu C, Giannakopoulou D (2003) Proof rules for automated compositional verifica-

tion through learning. In: Proceedings of the 2nd international workshop on specification and verification
of component based systems

9. Biere A, Cimatti A, Clarke E, Zhu Y (1999) Symbolic model checking without BDDs. In: Proceedings
of the 5th international conference on tools and algorithms for the construction and analysis of systems,
pp 193–207

10. Birkendorf A, Böker A, Simon H-U (2000) Learning deterministic finite automata from smallest coun-
terexamples. SIAM J Discrete Math 13(4):465–491

11. Bryant R (1986) Graph-based algorithms for boolean-function manipulation. IEEE Trans Comput,
C-35(8)

12. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani R, Tacchella A
(2002) NuSMV Version 2: An OpenSource tool for symbolic model checking. In: Proceedings of the
14th international conference on computer-aided verification (CAV 2002). LNCS, vol 2404. Springer,
Berlin, pp 359–364

13. Clarke E, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement. In:
Proceedings of international conference on computer aided verification (CAV’00), pp 154–169

14. Cobleigh J, Giannakopoulou D, Pasareanu C (2003) Learning assumptions for compositional verifica-
tion. In: Proceedings of the 9th international conference on tools and algorithms for the construction and
analysis of software. LNCS, vol 2619. Springer, Berlin, pp 331–346

15. Cobleigh J, Avrunin G, Clarke L (2006) Breaking up is hard to do: An investigation of decomposition
for assume-guarantee reasoning. In: Proceedings of the international symposium on software testing and
analysis, pp 97–108

234 Form Methods Syst Des (2008) 32: 207–234

16. Fiduccia C, Mattheyses R (1982) A linear-time heuristic for improving network partitions. In: Proceed-
ings of the 19th design automation conference, pp 241–247

17. Giannakopoulou D, Pasareanu C (2005) Learning-based assume-guarantee verification. In: Proceeding
of the 12th international spin workshop, pp 282–287

18. Giannakopoulou D, Pasareanu C, Barringer H (2002) Assumption generation for software component
verification. In: Proceedings of 17th IEEE international conference on automated software engineering
(ASE 2002), pp 3–12

19. Grümberg O, Long D (1994) Model checking and modular verification. ACM Trans Program Lang Syst
16(3):843–871

20. Gupta A, McMillan K, Fu Z (2007) Automated assumption generation for compositional verification. In:
Proceedings of the 19th international conference of computer aided verification, CAV 2007, pp 420–432

21. Henzinger T, Qadeer S, Rajamani S (1998) You assume, we guarantee: Methodology and case studies.
In: CAV 98: Computer-aided verification. LNCS, vol 1427. Springer, Berlin, pp 521–525

22. Ibarra O, Jiang T (1991) Learning regular languages from counterexamples. J Comput Syst Sci
43(2):299–316

23. Jones C (1981) Development methods for computer programs including a notion of interference. PhD
thesis, Oxford University

24. Karypis G, Kumar V (1999) Multilevel k-way hypergraph partitioning. In: Proceedings of the 36th con-
ference on design automation, pp 343–348

25. Karypis G, Aggarwal R, Kumar V, Shekhar S (1999) Multilevel hypergraph partitioning: applications in
VLSI domain. IEEE Trans Very Large Scale Integr (VLSI) Syst 7(1):69–79

26. Kearns M, Vazirani U (1994) An introduction to computational learning theory. MIT Press, Cambridge
27. Kernighan B, Lin S (1970) An efficient heuristic procedure for partitioning graphs. Bell Syst Tech J

49(2):291–307
28. Kurshan R (1994) Computer-aided Verification of Coordinating Processes: The automata-theoretic ap-

proach. Princeton University Press, Princeton
29. McMillan K (1997) A compositional rule for hardware design refinement. In: Proceedings of the 9th

international conference on computer aided verification, pp 24–35
30. McMillan K (2002) Applying SAT methods in unbounded symbolic model checking. In: Proceedings

of the 14th international conference on computer aided verification. LNCS, vol 2404. Springer, Berlin,
pp 250–264

31. Misra J, Chandy K (1981) Proofs of networks of processes. IEEE Trans Softw Eng 7(4):417–426
32. Nam W, Alur R (2006) Learning-based symbolic assume-guarantee reasoning with automatic decompo-

sition. In: Proceedings of the 4th international symposium on automated technology for verification and
analysis (ATVA’06), pp 170–185

33. Nam W, Alur R (2007) Learning plans for safety and reachability goals with partial observability. Tech-
nical Report MS-CIS-07-16, University of Pennsylvania

34. Namjoshi K, Trefler R (2000) On the completeness of compositional reasoning. In: Proceedings of the
12th international conference of computer aided verification, CAV 2000, pp 139–153

35. Peled D, Vardi M, Yannakakis M (2002) Black box checking. J Autom Lang Comb 7(2):225–246
36. Pnueli A (1984) In transition from global to modular temporal reasoning about programs. In: Logics and

Models of Concurrent Systems. Springer, New York, pp 123–144
37. Rivest R, Schapire R (1993) Inference of finite automata using homing sequences. Inf Comput

103(2):299–347
38. Sharygina N, Chaki S, Clarke E, Sinha N (2005) Dynamic component substitutability analysis. In: Pro-

ceedings of the international symposium of formal methods Europe, pp 512–528
39. Sinha N, Clarke E (2007) SAT-based compositional verification using lazy learning. In: Proceedings of

the 19th international conference of computer aided verification, CAV 2007, pp 39–54
40. Stark E (1985) A proof technique for rely-guarantee properties. In: FST & TCS 85: Foundations of

software technology and theoretical computer science. LNCS, vol 206. Springer, Berlin, pp 369–391
41. Vardhan A, Viswanathan M (2006) Lever: A tool for learning based verification. In: Proceedings of 18th

international conference on computer aided verification (CAV 2006), pp 471–474
42. Vardhan A, Sen K, Viswanathan M, Agha G (2004) Actively learning to verify safety properties for FIFO

automata. In: Proceedings of 24th foundations of software technology and theoretical computer science.
LNCS, vol 3328. Springer, Berlin, pp 494–505

	Automatic symbolic compositional verification by learning assumptions
	Abstract
	Introduction
	Related work
	Organization

	Preliminaries
	Symbolic transition systems
	Decomposition into modules
	Assume-guarantee rules
	Simple rule
	General rule

	Automatic partitioning
	L* algorithm
	Example

	Learning assumptions
	Weakest safe assumption for Rule-S
	Weakest safe assumption tuple for Rule-G
	Compositional verification algorithm for Rule-S
	Compositional verification algorithm for Rule-G

	Symbolic implementations
	Implementation of the ASCV_S algorithm
	Data structures
	Subfunctions

	Implementation of the ASCV_G algorithm
	Data structures and subfunctions
	Early falsification
	Edge deletion for safe assumptions

	Experiments
	Example: simple
	ASCV_S vs. ASCV_G
	The number of partitions
	Early falsification & edge deletion
	ASCV_G vs. NuSMV

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

