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Abstract—Load imbalance is a major source of overhead in
Hadoop where the uneven distribution of input data among tasks
can significantly delays the job completion. Running Hadoop in
a private cloud opens up opportunities for mitigating data skew
with elastic resource allocation, where stragglers are expedited
with more resources, yet introduces problems that often cancel
out the performance gain: (1) performance interference from co-
running jobs may create new stragglers; (2) there exist a semantic
gap between Hadoop task management and resource pool-based
virtual cluster management preventing efficient resource usage.

We present FlexSlot, a user-transparent task slot management
scheme that automatically identifies map stragglers and resizes
their slots accordingly to accelerate task execution. FlexSlot
adaptively changes the number of slots on each virtual node
to promote efficient usage of resource pool. Experimental results
with representative benchmarks show that FlexSlot effectively
reduces job completion time by 46% and achieves better resource
utilization.

I. INTRODUCTION

Hadoop, the open source implementation of the MapRe-
duce programming model [7], is increasingly popular in Big
Data analytics due to its simplicity of use and the scalability
to large clusters. However, studies have shown that current
use of Hadoop in enterprises and research stay in an ad hoc
manner, leaving advanced features underused [19], potential
performance unexploited [16], [26], [27], and resources in
Hadoop clusters inefficiently utilized [18]. In particular, load
imbalance (a.k.a. skew) among Hadoop tasks poses significant
challenges to achieving good performance and high resource
utilization [12], [15], [17]. Skew that could come from uneven
data distribution or non-uniform data processing cost creates
stragglers, tasks that runs significantly slower than others.
Such sluggish tasks can take more than five times longer to
complete than the fastest task [16], slowing the overall job
completion.

To address hardware failure and misconfiguration, Hadoop
speculatively runs a backup copy of a slow task on a different
machine. Besides fault-tolerance, speculative execution is able
to expedite stragglers due to skew to a certain extent as the
backup copy may run on a better performing machine. How-
ever, the differences in machines are not significant enough
to mitigate skew and job performance is still bottlenecked
by stragglers. Although skew can be eliminated by using
customized and job-specific data partitioners for balancing
workload among tasks [15], this approach requires domain

knowledge on the structure of input data and imposes burdens
on users. To this end, researchers proposed to mitigate skew
by dynamically re-partitioning data during job execution [16].
Nevertheless, re-distributing data at runtime introduces over-
head of moving data between machines.

We propose a new perspective on tackling the skew prob-
lem in Hadoop applications. Rather than mitigating skew
among tasks, we try to balance the processing time of tasks
even with the presence of data imbalance. Specifically, tasks
with more data or more expensive data records are accelerated
by having more resources. We purposely create heteroge-
neous clusters and match different machine capabilities with
the actual processing demands of unbalanced tasks. Cloud
computing, unlocked by virtualization, allows the creation
of dynamic virtual clusters with elastic resource allocation.
Hadoop clusters can be easily scaled out by adding virtual
nodes with a latency of several minutes. More importantly,
individual nodes can also be scaled up with more resources.
A recent studyfound that the ability to scale-up leads to better
Hadoop performance in a virtual cluster compared to a native
cluster with the same settings [4].

However, moving Hadoop into the cloud introduces ad-
ditional problems that can outweigh the benefit of flexible
resource management. First, clouds are usually shared by
multiple users in order to increase hardware utilization. In-
terferences from co-located users may create new stragglers
in Hadoop applications [6], [14]. Second, to reduce the re-
sources required to run a virtual cluster, private clouds often
multiplex a pool of shared resources among virtual nodes [20].
Virtual cluster management such as VMware DRS (Distributed
Resource Manager) [10] and OpenStack Utilization-based
Scheduling [2] dynamically allocates resources to individual
nodes according to their estimated demands. It eliminates
the need of proactively allocating resource for slave nodes.
Surprisingly, we find that there exists a semantic gap between
demand-based resource allocation and the actual needs of
Hadoop tasks. The virtual nodes that receive disproportionately
more resources due to high demands actually run fast tasks,
leaving nodes with stragglers deprived of resources. Our study
exposes that running unmodified Hadoop in such a cloud does
not mitigate skew but aggravates the imbalance.

In this work, we explore the possibility of using elastic
resource allocation in the cloud to mitigate skew in Hadoop
applications. We design FlexSlot, an effective yet simple
extension to the slot-based Hadoop task scheduling framework.
FlexSlot automatically identifies stragglers and resizes theirSC14, November 16-21, 2014, New Orleans
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Fig. 1. The slot-based task scheduling in Hadoop.

slots. Slot resizing not only allows stragglers to receive more
resources but also alleviates the interference between co-
running jobs. To expose the actual demands of tasks, FlexSlot
co-locates stragglers with fast tasks on a node by dynamically
changing its number of slots. As fast tasks finish quickly and
the node is allocated a large amount of resources, stragglers
in fact receive more resources and their executions are thus
accelerated.

We implemented FlexSlot on a 32-node Hadoop virtual
cluster and evaluated its benefits using the Purdue MapReduce
Benchmark Suite (PUMA) [3] with datasets collected from
real applications. We compared the performance of FlexSlot
running different workloads with that of the stock Hadoop and
a recently proposed skew mitigation approach SkewTune [16].
Experimental results show that FlexSlot reduces job comple-
tion time by as much as 46% and 22% compared to stock
Hadoop and SkewTune, respectively. FlexSlot also achieves
better cloud resource utilization with both the flexible slot size
and flexible number of slots.

The rest of this paper is organized as follows. Section II
introduces the background of Hadoop, discusses existing is-
sues, and presents a motivating example. Section III elaborates
FlexSlot’s architecture and key designs. Section IV presents the
implementation details of FlexSlot. Section V gives the testbed
setup and experimental results. Related work is presented in
Section VI. We conclude this paper in Section VII.

II. BACKGROUND AND MOTIVATION

We first describe the basics of the Hadoop MapReduce
framework and discuss the causes of skew in Hadoop tasks.
Then, we show that elastic resource allocation in a cloud
and an ideal task scheduling in Hadoop together help balance
task execution time and improve the overall job performance
significantly. Finally, we demonstrate that a naive migration
of Hadoop to the cloud does not mitigate skew but aggravates
task imbalance.

A. Skew in Hadoop MapReduce

The data processing in MapReduce is expressed as two
functions: map and reduce. The map function takes an input
pair and produces a list of intermediate key/value pairs. The
reduce function processes the intermediate key with the list of
its values and generates the final results. In the implementation
of Hadoop, the map and reduce functions are implemented in
MapTask and ReduceTask. Each MapReduce job is divided
into multiple map tasks and reduce tasks.
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Fig. 2. The skewed task execution time of wordcount.

TABLE I. TASK SKEWNESS OF wordcount ON THREE CLUSTERS.

Homo Heter Heter + Skew-Sched
Skewness 2.65 2.25 0.31

Figure 1 shows MapReduce execution environment in
Hadoop with one master node and multiple slave nodes.
The master node runs JobTracker and manages the
task scheduling on the cluster. Each slave node runs
TaskTracker and controls the execution of individual tasks.
Hadoop uses a slot-based task scheduling algorithm. Each
TaskTracker has a preconfigured number of map slots and
reduce slots. Task trackers report their number of free slots to
the job tracker through heartbeat [1]. The job tracker assigns
a task to each free slot.

Ideally, each task should take approximately the same
time to complete if it is assigned the same amount of data.
However, there is no guarantee that data is evenly distributed
among tasks or the same amount of input data will take the
same time to process. Hadoop tries to divide the input data
set into a collection of input splits, ideally each matching
the block size of Hadoop Distributed File System (HDFS).
Map tasks usually process block of input at a time using
the default FileInputFormat. If the input data contains
file with various sizes (e.g., files smaller or larger than the
HDFS block size), taking one block of data as input inevitably
leads to input skew in map tasks. Although it is possible to
combine small blocks into a map input (e.g., using a custom
input reader), there is only a small portion of hadoop users
customizes input handling while data skew in map tasks is
quite common in production hadoop clusters [19]. Similarly,
reduce tasks may also have imbalanced input size as the
partitions generated by map tasks can contain different number
of key/value pairs [8], [15], [16]. Moreover, the same input size
can lead to distinct task execution time as some records are
inherently more expensive to process. As a result, unbalanced
task runtime is prevalent in Hadoop applications [19].

Figure 2 shows an example of skewed task execution in the
wordcount benchmark. The job was run on a homogeneous
cluster with 32 nodes. We can see that nearly 20% of tasks run
at least 20% longer than the others. Such an imbalance leads
to prolonged job completion time and wasted cluster resources
on nodes that were idle waiting for the stragglers. Next, we
show that how a re-organization of cluster resources, i.e., using
a heterogeneous cluster, improves Hadoop performance.



B. Mitigating Skew with Heterogeneous Resource Allocation

In this subsection, we study how does heterogeneous
resource allocation to map tasks help the overall job per-
formance. The data skew in reduce tasks can be mitigated
by repartitioning and rebalancing intermediate data [11], [15],
[16]. But a similar approach cannot be easily applied to map
tasks. We show that purposely allocating more resources to
nodes that run stragglers effectively mitigates map input skew.
If not otherwise stated, tasks refer to map tasks throughout this
paper.

We created three 32-node Hadoop clusters, each with a total
capacity of 153.6 GHz CPU resource and 128 GB memory
in our university cloud. The first cluster (denoted as Homo)
emulates a physical cluster with homogeneous configurations
on each node. The resources were evenly distributed to nodes,
resulting in an uniform node capacity of 4.8 GHz CPU and 4
GB memory. The second cluster (denoted as Heter) contained
nodes with heterogeneous resource allocations. We profiled the
resource demands of individual Hadoop tasks and created pow-
erful nodes for stragglers. We first ran a job in a homogeneous
cluster and determined the stragglers. We then scaled up the
nodes running stragglers according to their runtime statistics.
Specifically, we increased the CPU resource and memory size
of these nodes proportionally based on their CPU time and
I/O wait time in the last run. We then re-ran the job on the
adjusted cluster. Although stragglers had their input data on
the powerful nodes, Hadoop’s task scheduler may still launch
them remotely on less powerful nodes if there are no available
slots on the powerful ones. In the third cluster (denoted as
Heter + Skew-sched), we forced that stragglers only run
on powerful nodes.

We calculated the statistical skewness in task runtimes
in a job J as 1

n ∑
i∈J

(xi−µ)3

σ3 , where xi is the runtime of indi-

vidual tasks, µ and σ represent the average and deviation,
respectively. The lower the skewness, the more balanced task
execution. Table I lists the task skewness of wordcount on the
three clusters. As expected, cluster Homo shows significant
skew in task completion with a skewness of 2.65. We can also
see that creating a heterogeneous cluster alone only mitigated
the skew to a certain extent (e.g., reducing skewness to 2.25)
because Hadoop task scheduler may not run stragglers on
powerful nodes. In contrast, strictly requiring stragglers be run
on powerful nodes significantly improved task balance with a
skewness of 0.30. This confirms previous findings [27] that
allocating more data and work on powerful nodes optimizes
Hadoop performance in a heterogeneous cluster environment.

Unfortunately, it is difficult to predict which tasks will be
the stragglers and determine their resource demands before
actually running these tasks. There is a need for dynamic re-
source allocation in Hadoop clusters in response to stragglers.

C. Automatically Tuning Hadoop with Demand-based Re-
source Allocation

Modern cloud management middleware, such as VMware
DRS, XenServer and OpenStack, supports demand-based re-
source allocation, where a virtual cluster shares a resource
pool and individual nodes receive resources according to their
estimated demands. This technique promotes efficient usage
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Fig. 3. Task runtime of wordcount on two clusters.
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Fig. 4. Task distribution of wordcount on two clusters.

of cluster resource and avoids the potential resource wastage
of manual configured resource reservation. Ideally, if nodes
running stragglers show high demands, demand-based resource
allocation is able to automatically tune a Hadoop cluster into
a heterogeneous cluster that accelerates stragglers. However,
we found that there exists a semantic gap between demand-
based resource allocation and the actual needs of Hadoop tasks,
making incorrect decisions in resource allocations.

We created a resource pool of 153.6 GHz CPU resources
and 128 GB memory, which is shared by a 32-node Hadoop
cluster. VMware DRS was used to automatically allocate
resources on these virtual nodes. Figures 3(a) and 3(b) show
the execution time of individual map tasks on a static ho-
mogeneous cluster and the dynamic cluster with demand-
based resource allocation, respectively. From the figure, we
can see that demand-based resource allocation unexpectedly
aggravated skewness in task execution time. Although the tasks
on the left of Figure 3(b) ran faster than those in the static
cluster, stragglers in the dynamic cluster (tasks on the right
tail) appeared to be significant slower.

Figure 4 shows the number of finished tasks on each virtual
node in the two clusters. We find that in the dynamic cluster,
some nodes ran 10X more tasks than the nodes with fewest
tasks. An examination of the Hadoop execution log and the
VMware resource allocation log revealed that these “hot spot”
nodes ran mostly fast tasks and received disproportionately
more resources than the “idle” nodes that turned out to host
straggler tasks. We attribute the counterintuitive resource allo-
cations to the semantic gap between the VM resource demands
estimated by the cloud management and the actual Hadoop
task demands. VMware DRS computes a node’s CPU demand
based on its recent actual CPU consumption and estimates the
memory demand according to the ratio of touched pages in a
set of randomly-selected pages.

However, the demand-based allocation does not meet strag-
glers’ needs. Study [19] has shown that production Hadoop
clusters are still dominated by I/O intensive jobs and stragglers



with more data are likely to spend a significant amount of time
waiting for disk I/O. Thus, nodes running stragglers appear
to be less busy than nodes with fast tasks and are allocated
less resource by the demand-based cloud management. For
memory, a straggler is unable to use the additional memory
allocated because its memory usage is upper bounded by the
JVM heap size of its slot. The heap size of a slot is statically
set in the cluster configuration file. The selection of the heap
size is usually conservative to prevent a node from memory
thrashing.

[Summary] We have shown that skew in Hadoop map
tasks can be effectively mitigated by accelerating stragglers
with more resources. However, demand-based dynamic re-
source allocation in a cloud does not meet stragglers’ needs
and the fixed slot configuration in Hadoop prevents a flexible
use of dynamic resources. These findings motivated us to make
Hadoop run more efficiently in the cloud in the presence of
skew and the in place cloud management. We found that a
simple extension to Hadoop’s map slot management effectively
directs resource to map stragglers in a cloud environment.
Next, we present FlexSlot, a user-transparent flexible slot
management scheme for Hadoop.

III. FLEXSLOT DESIGN

We aim to mitigate skew in Hadoop applications by lever-
aging dynamic resource allocation in the cloud. We focus on
a private cloud platform in which dynamic resource allocation
to virtual clusters is automated by estimating the demands of
individual virtual nodes and adjusting their resources accord-
ingly. In this section, we present FlexSlot, an effective yet
simple extension to the Hadoop’s slot management scheme
that automatically identifies map stragglers at run-time and
adjusts both the map slot size and number on the nodes hosting
the stragglers. The dynamic adjustment to slot configurations
effectively exposes the actual demands of stragglers to the
low-level virtual resource management and guides the demand-
based allocation to efficiently allocate resources to stragglers.

A. Overview

FlexSlot provides two functionalities: on-the-fly straggler
identification and automated slot reconfiguration.

Identifying Stragglers. FlexSlot continuously monitors
two task-specific metrics during task execution: progress rate
and input processing speed. Based on a synthesis of these
metrics, FlexSlot is able to identify tasks that are abnormally
slower than their peers due to either uneven data distribution,
expensive record or cloud interference. Once having deter-
mined stragglers, FlexSlot infers their resource bottlenecks
based on resource usages obtained on the straggler nodes.

Proactively changing the size of slots. If FlexSlot deter-
mines that a straggler’s performance is bottlenecked by I/O
operations, it proactively terminates the straggler and restarts
it with a larger slot size. Since it is hard to predict the memory
requirement of a task, FlexSlot uses a trial-and-error approach
to change the slot size at incremental steps. The increment
continues until the overhead of task restarting outweighs the
improvement on task processing speed.

Adaptively adjusting the number of slots. FlexSlot
bridges the semantic gap between Hadoop tasks and the

demand-based resource allocation by adaptively changing the
number of slots on Hadoop nodes. Contrary to intuition,
FlexSlot adds more slots to straggler nodes in order to ex-
pose the actual straggler demand to the cluster-level resource
management.

B. Identifying Stragglers

There are three causes of straggler tasks in a cloud en-
vironment: (1) uneven data distribution among tasks; (2) non-
uniform data processing time; and (3) performance interference
from co-running jobs. We measure two performance metrics
during task execution. Hadoop provides progress score to
represent the fraction of work completed. It is computed as the
ratio of finished input size and the original input size. Progress
rate [27], which is defined as the change in progress score
in unit time, is a good online measure of task performance.
If all tasks process input data at the same speed, the tasks
with smaller progress rates are likely to have large input sizes.
Another important metric is the input processing speed D. It
counts how many bytes are processed in unit time. Ideally,
all tasks should have the same input processing speed given
that the data distribution is uniform across tasks and it takes
the same amount time to process the same amount of data. If
some tasks exhibit apparently slower processing speed, it is
likely that their record are more expensive to process or they
are experiencing interferences.

Neither of the two metrics alone can reliably determine
stragglers. Thus, we create a composite metric based on these
two. We normalize both metrics against their maximum values
among all tasks, both in the range of 0 to 1, and simply use
their sum as a heuristic to identify stragglers. Since progress
rate can be expressed by D

S , where S is the input data size and D
is the input processing speed. Therefore, we use P= (1+ 1

S ) ·D
to measure task performance.

We consider straggler tasks as outliers compared to regular
tasks. For every measurement interval, we calculate the value
of P for all tasks and perform a k-means clustering algorithm
on the P values. The clustering algorithm divides all tasks
into two clusters. The tasks in cluster with smaller P values
are considered significantly different from the rest of tasks.

C. Determining Performance Bottlenecks

Having stragglers identified by the proposed heuristic,
FlexSlot then determines how to accelerate the execution of
stragglers. Depending on the cause of straggler, these tasks can
be bottlenecked either by disk I/O performance or insufficient
CPU resources.

Disk I/O Bottleneck due to Data Skew. Previous studies
show that the number of input records can largely affect the
task completion time even with the same amount of input
data [24], [25], [28]. The expensive record is a major type of
data skew in map tasks. A map task processes a collection
of key value pairs, each pair as one record. Due to data
skew, some records may require more resources to process
than others, leading to more processing time. These expensive
records can simply contain large data that fills the output buffer
quickly. When the output buffer is full, intermediate results
need to be written to disk. Thus, expensive records cause more
frequent disk I/O operations.
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The inverted-index benchmark contains non-uniform
records and incurs skewed task processing time. Figure 5
shows the breakdown of task execution time for all tasks.
Since expensive records incur excessive I/O operations, we
are interested in how much does I/O time (e.g., I/O wait)
contribute to the total task completion time. Tasks are sorted
in the ascending order of their completion time, with tasks
on the right tail considered as stragglers. We find that I/O
wait contributed most to the prolonged completion time in
stragglers. We observed as much as 8X more I/O wait
time than that of regular tasks. Thus, a large portion of time
spending in waiting for I/O is a good indicator of stragglers
with I/O bottleneck. A large slot memory size, e.g., a large
output buffer, can effectively reduce I/O operations.

CPU Starvation due to Inaccurate Demand Estimation.
As shown in Figure 4, demand-based resource allocation
incurs severe imbalance on task distribution, with some nodes
heavily loaded and some nodes hosting only a few stragglers.
The culprit is that nodes running faster tasks received more
resources from cloud resource management. It enters a loop
that nodes with more resources ran tasks even faster. Stragglers
usually incur more I/O operations and appear to be less busy in
terms of CPU usage. Thus, such tasks may become victims of
CPU starvation in demand-based resource allocation. Figure 6
shows the breakdown of task runtime of benchmark wordcount.
It plots each task’s actual cputime, I/O wait and steal
time, which is the time that a task’s node is ready to run
but fails to get scheduled by the hypervisor. In the figure, we
can see that steal time contributed most to the straggler
runtime. If given sufficient CPU, these stragglers can be
effectively accelerated. Thus, a large portion of time being
ready but not running is a good indicator of insufficient CPU
resources. Next, we show that purposely coupling stragglers
with faster tasks exposes the demands of stragglers to the
cluster-level resource manager.

D. Resizing Slot Memory

Increasing the memory size of a slot can reduce the number
of I/O operations and effectively expedites stragglers caused
by data skew. However, the memory that can be used by a slot
is limited by the heap size of its JVM and the output buffer
size of the task running on it. Although the JVM heap size can
be dynamically changed through JVM memory ballooning, the
output buffer size of a task cannot be altered without restarting
the task. Thus, it is difficult to increase a slot’s memory size
during task execution. We rely on the straggler identification

Algorithm 1 Flexible slot size.
1: Variables: Heartbeat interval T ; Data spilt size S;
2:
3: The killcount of task k is initialized to 0.
4: /* Only apply to stragglers */
5: function RESIZESLOTMEM(k)
6: get current input processing speed D
7: if k.killcount == 0 or S

D −
S

k.Dprev
> T then

8: kill k, free slot s
9: s.size = s.size∗ (1+α)

10: launch k on slot s
11: k.killcount = k.killcount +1
12: end if
13: k.Dprev = D
14: end function

to determine stragglers in a timely manner. As such, we can
afford to kill stragglers and restart them on larger slots.

Another question is how to efficiently determine the slot
size for straggler tasks. We propose an algorithm that is
automatically invoked on all straggler tasks at every heartbeat.
It determines the slot memory size for a straggler task. The
pseudo-code for this algorithm is shown in Algorithm 1. The
goal of this algorithm is to increase the slot memory size for
straggler tasks so that the performance of these tasks becomes
close to that of regular tasks. For some straggler tasks, it may
require multiple iterations to reach the desired slot memory
size.

Once a straggler is identified, the function
ResizeSlotMem is called to determine the appropriate
memory size of the task. If the task has not gone through a
memory resizing (i.e., first time killing and killcount = 0), we
kill it immediately and increase the memory size of the slot
at a step of α (empirically set to 0.2). Otherwise, we test if
an additional round of killing and memory resizing is needed.
Suppose a task k’s input data size is S. For each round (at
heartbeat intervals), we keep increasing the memory size of
the slot until the resulting decrease in the input processing
time (i.e., S

D −
S

k.Dprev
) no longer outweighs the wasted

processing time due to task killing (i.e., the last heartbeat
interval T ). Then, the slot resizing process is stopped.

E. Adjusting Slot Number

The key rationale behind adjusting slot number on Hadoop
nodes is to couple stragglers with fast tasks and expose



Algorithm 2 Flexible slot number.
1: Variables: list of node L; list of steal time ST on these

nodes
2:
3: while true do
4: calculate the average steal time µ

5: calculate the standard deviation of steal times σ

6: if σ ≤ λ then
7: break
8: end if
9: for sti in ST do

10: ∆sti = sti−µ

11: end for
12: sort list ∆ST in ascending order
13: find node lmax that has the maximum ∆st
14: find node lmin that has the minimum ∆st
15: lmin.removeMaxMapSlots(1)
16: lmax.addMaxMapSlots(1)
17: end while

stragglers’ demand to cloud management. Once stragglers are
identified and their bottlenecks are determined as insufficient
CPU resource, FlexSlot tries to move slots from nodes running
fast tasks to nodes running stragglers. We design a greedy
algorithm for automating the slot adjustment. The pseudo-code
is shown in Algorithm 2. The objective is to minimize the
steal time (defined in Section III-C) on the Hadoop cluster.
To reduce the steal time on straggler nodes, which are either
caused by CPU starvation or interference, we increase the
slot number on these nodes in hopes that the additional slots
will bring faster tasks and finally increase the nodes’ CPU
allocation. We follow a simple heuristic of moving slots from
the node with the smallest steal time to the nodes with the
largest. We ensure that the number of total task slots in the
cluster remain the same. The algorithm keeps calculating the
average node steal time µ and its standard deviation σ . When
σ is greater than the threshold λ , the algorithm decides that
the imbalance of CPU resource needs to be adjusted. Changing
λ allows us to trade-off between the resource imbalance and
the converging speed of the algorithm.

Changing the slot number on nodes not only affects cloud
resource allocation but also influences Hadoop task scheduling,
leading to a better coordination between the two. Without
slot adjustment, each Hadoop node is configured with the
same number of slots but is allocated imbalanced resources.
Dynamically changing slot number on each node directs both
task and resources to the same node. For example, adding slots
to a node brings more resources and tasks. The performance
interference from co-running jobs is also mitigated as the
objective of the algorithm is to minimize steal time.

One concern of this algorithm is that newly added slots
can be assigned with a straggler task, aggravating the skew
and worsening the starvation on straggler nodes. However, as
majority of the tasks are regular tasks, the new slot is likely to
be assigned to a regular task. Currently, all nodes are monitored
for the automated slot memory resizing. If we find that the
newly scheduled task is a straggler task, we kill it and reassign
it to another node that has no stragglers while trying to preserve
data locality.

TaskTracker

TaskLauncher Slot Agent
Task

Tracker
Task
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Virtual Machine Monitor

Resource Manager

JobTracker

Slot ManagerTaskScheduler

Fig. 7. The architecture of FlexSlot.

IV. IMPLEMENTATION

Figure 7 shows the architecture of FlexSlot. It consists
of two main components: SlotAgent and SlotManager.
The SlotAgent is implemented in the TaskTracker. It
provides the slot management interface that allows online
change of both map slot memory size and the number of
slots. It also collects performance metrics in a slave node.
The SlotManager is implemented in the JobTracker.
It identifies straggler map tasks based on the performance
metrics reported by the SlotAgent, determines the slot
memory size for each straggler task and the number of
slots on each slave node. These two components are orga-
nized in a client/server model and communicate via RPC
(remote procedure call). To support the functionalities of these
two components, we also modified the implementations of
TaskTracker, TaskLauncher, and TaskScheduler.

In Hadoop, the mapred-site.xml file contains all
the configurations of the MapReduce sub-system. All cluster
parameters are set according to this file during the Hadoop
initialization and cannot be changed online. Therefore, we
modified TaskTracker and TaskLauncher to support
online parameter update. Table II lists the functions that are
related to the slot management interface.

FlexSlot maintains a hash table for tasks and their cor-
responding task slot configurations. These configurations can
be changed with the setTaskConfiguration() func-
tion. We have implemented setSlotMemory function for
updating the slot memory allocation of a specific task. We
modified the startNewTask function to apply the updated
configuration before launching a new task. By updating the
configuration table, we enable changing the configuration of a
Hadoop cluster and its tasks online.

We added two functions to modify the map slot num-
ber: addMaxMapSlots() and removeMaxMapSlots().
They will change the variable maxMapSlots to increase or
decrease the number of map slots. The task launcher also keeps
a local copy of maxMapSlots. We have also modified the
task launcher so that their max slot variables can be correctly
updated via addMaxSlots() and removeMaxSlots()
functions.

Through these interfaces, we can change the slot memory
size and the number of slots without restarting the task
tracker. These changes are compatible with the slot-based task
scheduling in Hadoop. Any scheduler can use these interfaces
to perform the slot management during the task scheduling.



TABLE II. THE SLOT MANAGEMENT INTERFACE.

Function Class Functionality
setTaskConfiguration(TaskID tid, JobConf newConf) TaskTracker Update the configuration table for a specific task
setSlotMemory(TaskID tid, int memSize) TaskTracker Set memory size of the slot of a specific task
addMaxSlots(int numSlots) TaskLauncher Add slots to the task launcher.
removeMaxSlots(int numSlots) TaskLauncher Remove slots from the task launcher
addMaxMapSlots(int numSlots) TaskTracker Add map slots to the task tracker
removeMaxMapSlots(int numSlots) TaskTracker Remove map slots from the task tracker

TABLE III. PUMA BENCHMARK DETAILS.

Benchmark Input Size (GB) Input Data
tera-sort 150 TeraGen
inverted-index 150 Wikipedia
term-vector 150 Wikipedia
wordcount 150 Wikipedia
grep 150 Wikipedia
k-means 30 Netflix data, k = 6
histogram-movies 100 Netflix data
histogram-ratings 100 Netflix data

V. EVALUATION

A. Testbed Setup

We performed evaluations of FlexSlot on our university
cloud. It consists of 8 HP BL460c G6 blade servers. Each
server is equipped with 2-way Intel quad-core Xeon E5530
CPUs and 64GB memory. The servers are connected with 10
Gbps Ethernet. VMware vSphere 5.1 is used to provide the
server virtualization.

We used a 32-node virtual Hadoop cluster to evaluate
FlexSlot. Each node was initially configured with 4 VCPU
and 4 GB memory. Depending on different experiments, the
resource allocation to individual Hadoop nodes can be fixed or
managed by the demand-based resource allocation in VMware
DRS. We deployed Hadoop stable release version 1.1.1 and
each VM ran Ubuntu Linux with kernel 2.6.24. Two nodes
were configured as the JobTracker and NameNode, re-
spectively. The rest 30 nodes ran as slave nodes for HDFS
storage and MapReduce task execution. We set the HDFS
block size to its default value 64 MB. Each slave node was
initially configured with 4 map slots and 2 reduce slots and
parameters io.sort.mb and mapred.child.jvm.opts
were set to 100 MB and 200 MB, respectively. These Hadoop
task settings were dynamically adjusted by FlexSlot during
task execution.

For comparison, we also implemented a recently proposed
skew mitigation approach SkewTune [16]. SkewTune paral-
lelizes a straggler task by repartitioning and redistributing its
input data. It mitigates the data skew and improves the job
completion time. It assumes that all slave nodes have the
same processing capacity. SkewTune evenly distributes the
unprocessed data across all available nodes to mitigate the
data skew. However, in a virtualized environment, the resource
allocation of different slave nodes can be different, especially
in demand-based resource allocation. Evenly distributing the
unprocessed data may not the best option. The existence of
hotspot nodes also incurs unnecessary data movements.
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B. Workloads

We used the PUMA benchmark suite [3] for evaluation. It
contains various MapReduce benchmarks and real-world test
inputs. Table III shows the benchmarks and their configurations
used in our experiments.

These benchmarks are divided into three categories based
on the content of their input data. The tera-sort benchmark
uses a data set that is generated by TeraGen. The data
has a relatively uniform distribution due to the randomized
generation process. The inverted-index, term-vector, wordcount
and grep benchmarks use the data extracted from Wikipedia.
The data contains records with different sizes. Some of them
are significantly larger than the average. This provides a good
example of data skew. The k-means, histogram-movies and
histogram-ratings benchmarks use the data from Netflix. They
are good examples of expensive records. The content of the
records can significantly affect input processing time even with
the same record size.

C. Mitigating Data Skew

In this subsection, we study the effectiveness of FlexSlot
in mitigating data skew. If tasks take about the same time to
finish even in the presence of skew, we consider that the skew
has been mitigated. We measured the distribution of the task
completion time of different benchmarks. We used the stock
Hadoop with demand-based resource allocation in the cloud
as the baseline. The total number of task slots in FlexSlot is
set to be the same as that in stock Hadoop and SkewTune for
a fair comparison.

Figure 8 shows the distribution of the task completion
time of the inverted-index benchmark due to three different
approaches. The skewness of the task execution time due to
the stock Hadoop, SkewTune, and FlexSlot are 4.98, 1.68 and
0.96, respectively. The result shows that FlexSlot is the most
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Fig. 9. Breakdown of task runtime of inverted-index.

effective in mitigating data skew in all three approaches. Com-
pared to SkewTune, FlexSlot significantly reduced the task
completion time of straggler tasks. FlexSlot and SkewTune
have similar performance on those regular tasks, but FlexSlot
brings more improvement to the performance of straggler tasks
than SkewTune does.

FlexSlot outperformed SkewTune for two reasons. First,
FlexSlot continuously detects straggler tasks and reduces the
execution time of straggler tasks with automated slot memory
resizing. On the other hand, SkewTune only mitigates a strag-
gler task when there are free slots to parallel the straggler task.
Second, SkewTune does not have the coordination between the
Hadoop task scheduler and the cloud infrastructure. It does not
eliminate the hotspot nodes. SkewTune tends to use the hotspot
nodes to parallelize the execution of a straggler task because
these nodes hold more resources. This introduces additional
data movement for the straggler tasks that can be finished
quickly with simply more resource. FlexSlot does not have
the problems mainly because it moves slots, instead of tasks,
across slave nodes. It preserves the data locality and minimizes
the data movement for mitigating data skew.

The results in Figure 8 also show that FlexSlot has longer
completion time for fast tasks than stock Hadoop has. It is
due to the fact that running stock Hadoop with demand-based
resource allocation created “hot spot” nodes that boost these
fast tasks. FlexSlot avoided “hot spot” nodes from receiving
disproportional more resources. Note that making fast tasks
run even faster does not help improve overall job completion
time, which is bottlenecked primarily by stragglers.

To further study how skew is mitigated, we show detailed
breakdown of task completion time. For comparison, we also
ran benchmarks in Hadoop and SkewTune on static homoge-
neous virtual clusters (denoted as Homo). Figure 9 shows the
breakdown of average task execution time of inverted-index on
different clusters. FlexSlot reduced the portion of steal time
by 60.5% and 49.1% when compared to stock Hadoop and
SkewTune with demand-based resource allocation. The huge
steal time of stock Hadoop and SkewTune with demand-based
resource allocation is the sign of imbalanced CPU resource
allocation between fast tasks and straggler tasks. The reduction
of steal time suggests that FlexSlot was effective in preventing
CPU starvation on stragglers. Moreover, FlexSlot reduced the
I/O wait time compared to stock Hadoop and SkewTune in
homogeneous clusters. FlexSlot achieved 39.7% and 26.7%
lower I/O wait time than stock Hadoop and SkewTune, re-
spectively. It suggests that FlexSlot reduce the I/O operations
for straggler tasks with larger slot memory size.
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Fig. 10. The normalized job completion time.

D. Reducing Job Completion Time

We have shown that FlexSlot is effective in mitigating
skew. In this subsection, we study how does the mitigation
help improve overall job completion time. Similarly, we use the
job completion time in the stock Hadoop as the baseline and
compare the normalized job completion time of FlexSlot and
SkewTune. Figure 10 shows the normalized job completion
time of all benchmarks due to these three approaches. The
results show that for benchmarks with expensive records,
e.g., inverted-index, term-vector, wordcount and grep, FlexSlot
outperformed stock Hadoop by 35.1%, 29.3%, 26.7% and
27.4%, respectively. FlexSlot also outperformed SkewTune by
21.6%, 17.1%, 16.9% and 17.1% in these benchmarks.

Benchmarks such as k-means, histogram-movies and
histogram-ratings use data from Netflix. The input data is
relatively uniform in record size. In the experiments with these
benchmarks, FlexSlot outperformed the stock Hadoop by 25%,
13% and 12%, respectively. However, FlexSlot has less per-
formance improvement on histogram-movies and histogram-
ratings than on k-means, because those benchmarks have small
memory demand due to the small volume of their intermediate
results. The default configuration of slot memory size already
provides sufficient output buffer.

The k-means benchmark has a large volume of intermediate
data. It requires large output buffer and more memory to
reduce I/O operations. It contains computation intensive tasks
that require a lot of CPU resource. FlexSlot achieved much
shorter job completion time than stock Hadoop did because
FlexSlot was able to improve both the slot memory size and
CPU resource allocation for k-means.

FlexSlot achieved 17.5%, 1.2% and 3.3% shorter job
completion time than SkewTune in k-means, histogram-movies
and histogram-ratings benchmarks, respectively. FlexSlot only
had marginal performance improvement over SkewTune in
histogram-movies and histogram-ratings benchmarks because
their data skew is not severe and the CPU requirement is also
low. But for the job with significant data skew and high CPU
consumption, FlexSlot clearly showed a significant advantage
compared to SkewTune.

E. Mitigating Performance Interference

Note that adjusting slot size and number can possibly
resolve the interference between co-running jobs. To create
interferences, we consolidated two clusters with the same con-
figuration (see Section V-A for details) to the shared physical
infrastructure. We submitted the same jobs to these two clusters
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Fig. 11. The normalized job completion time with interferences of co-running
jobs.

and calculated their average job completion times. We used
the job completion time in stock Hadoop as the baseline, and
normalized FlexSlot and SkewTune’s performance against it.

Figure 11 shows the normalized job completion time of all
benchmarks due to three approaches with performance inter-
ference from co-running jobs. The results show that FlexSlot
outperformed stock Hadoop and SkewTune by as much as
43.8% and 33.2%, respectively. FlexSlot achieved 34.2% ∼
43.8% shorter job completion time than stock Hadoop in the
inverted-index, term-vector, wordcount and grep benchmarks.
FlexSlot also outperformed SkewTune by 24.3% ∼ 33.2% in
these benchmarks. Due to the performance among co-running
jobs, the difference of job completion time between FlexSlot,
SkewTune, and stock Hadoop is larger than the results in
Figure 10.

For benchmarks with less data skew, histogram-movies
and histogram-ratings, FlexSlot outperformed stock Hadoop
by 22% and 23% respectively, and outperformed SkewTune
by 17.1% and 18% respectively. The difference of job com-
pletion time between SkewTune and stock Hadoop is around
5%, because there is no much data skew to mitigate. The
results clearly show that FlexSlot can further improve the job
completion time by mitigating the performance interference
from co-running jobs in a cloud environment.

F. Improving Resource Utilization

By default, FlexSlot keeps the total number of task slots
unchanged in a Hadoop cluster. Thus, any addition of task slots
on one node should be coupled with the removal of slots on
another node. As discussed in previous experiments, FlexSlot’s
slot movement effectively mitigates skew and improves job
performance. In this subsection, we extend FlexSlot to handle
unlimited number of slots. That is, FlexSlot adds or removes
slot to/from a node only based on the performance of tasks
running on the node, without the constraint of maintaining the
total number of slots in the cluster. Although it is a common
practice to match the map slot number with the number of
CPUs on a node, it is not considered the optimal configuration.
With this experiment, we study if an even more flexible slot
management could further improve cluster resource utilization
and job performance.

We compare two FlexSlot variations (i.e., with limited
slots and unlimited slots) with stock Hadoop. Fig-
ure 12 shows the normalized job completion time of all bench-
marks due to the three approaches. FlexSlot with an unlimited
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Fig. 12. Job completion time with an unlimited number of slots.

number of slots achieved up to 46% shorter job completion
time than the stock Hadoop. It also outperformed the FlexSlot
using a limited number of slots by 35%. The improvement
varies depending on the job characteristics. For most jobs,
using an unlimited number of slots can bring approximately
17% shorter job completion time than using a limited number
of slots. But for CPU intensive jobs like k-means, removing
the limitation on slots makes no major difference because the
job performance is bottlenecked by the number of physical
CPUs. Adding more slots does not allow more tasks to run
concurrently. In contrast, job such as histogram-movies and
histogram-ratings have a significant portion of I/O time. With
a limited number of slots, the resources of the virtual cluster,
especially the CPU resource, are not fully utilized. Figure 12
shows that FlexSlot with unlimited slots achieved on average
35% shorter job completion time compared to FlexSlot with
limited slots.

Next, we compare the resource utilizations in different
FlexSlot variations. Figures 13(a) and 13(b) show the CPU
and memory usage of FlexSlot with and without a limit on the
number of total slots. The results show that FlexSlot without
a slot limit resulted in 10% and 11% higher in CPU and
memory utilization, respectively. As discussed above, these
resources were used to accelerate job execution. Note that
due to the different job characteristics of k-means, histogram-
movies, and histogram-ratings benchmarks, the changes in
resource utilizations of these jobs were different. For the k-
means benchmark, the resource utilization was high even with
a limited number of total slots. For histogram-movies and
histogram-ratings benchmarks, FlexSlot with a slot limit left
roughly 15% and 26% CPU and memory resources unused,
respectively. Removing the limit improved the resource uti-
lization significantly.

These results suggest that FlexSlot with unlimited slots can
be a viable approach for Hadoop in the cloud. It improves the
performance by maximizing the resource utilization. It does
not affect the performance of jobs that have high resource
demand because the slots will only be added when there is
available resource.

G. Slot Resizing Overhead

FlexSlot uses task-killing-based approach in the slot mem-
ory resizing and allows tasks to be killed multiple times. The
task killing inevitably incurs overhead as the killed stragglers
lose already performed work. We measure the overhead using
the number of kills per straggler. The fewer the kills the smaller
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Fig. 13. Resource consumption of FlexSlot.

the overhead. Figure 14 shows the average number of kills per
straggler in different benchmarks. The results show that most
straggler only required 1 kill to run normally as fast as other
tasks.

The slot memory resizing algorithm increases a slot’s
memory size by step α for each task kill. The average number
of task kills is affected by the value of α . Figure 15 shows
the average task kills due to different α values. For inverted-
index and k-means benchmarks, increasing α resulted in a
significant reduction in the average number of task kills. These
benchmarks are very sensitive to the memory size because they
have large intermediate data. Using a larger α increases the
amount of memory resource that will be allocated to them in
each task kill. The histogram-movies benchmark, which does
not have large intermediate data, is less sensitive to the memory
size. Allocating more memory to it during task killing does
not have a great impact on its task execution time. A larger α

value leads to more memory resource waste. According to the
observation shown in Figure 15, we empirically set α to 0.2
in FlexSlot because benchmarks with different types benefit
from it while not incurring significant memory waste.

VI. RELATED WORK

MapReduce is a popular programming model for large-
scale data processing [7]. Hadoop, the open-source implemen-
tation of MapReduce, provides a software framework to sup-
port the distributed processing of large datasets [1]. YARN [23]
is the second generation of Hadoop. It uses containers to
replace task slots and provides a finer granularity of resource
management. But it only allows different jobs to have different
containers. The tasks in one job still have the containers of one
fixed size. Therefore, YARN cannot mitigate data skew with
flexible size of containers.
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There are a few studies on data skew mitigations. SkewRe-
duce [15] alleviates the computational skew by balancing data
distribution across nodes using an user-defined cost function.
SkewTune [16] repartitions the data of stragglers to take the
advantage of idle slots freed by short tasks. However, moving
repartitioned data to idle nodes requires extra I/O operations,
which could aggravate the performance interference. More
importantly, these approaches do not have the coordination
between Hadoop and the cloud infrastructure.

A Hadoop cluster in the cloud can be seen as a heteroge-
neous Hadoop cluster because of the dynamic resource alloca-
tion. A number of studies proposed different task scheduling
algorithms to improve Hadoop performance for heterogeneous
environments [5], [9], [27]. DynMR [22] enables interleaved
MapReduce execution that overlaps the reduces tasks with
map tasks. By opportunistically schedule all tasks, DynMR
significantly increases both performance and efficiency of
Hadoop. For instance, PIKACHU focuses on achieving optimal
workload balance for Hadoop [9]. It presents guidelines for the
trade-offs between the accuracy of workload balancing and
the delay of workload adjustment. But, these studies focus
on hardware heterogeneity in physical machine based clusters.
They are not designed for VM-based clusters where the
heterogeneity can be changed by dynamic resource allocation.
FlexSlot is able to adapt to the change of heterogeneity with
flexible slot size and number.

There are recent studies that focus on improving per-
formance of applications in the cloud by dynamic resource
allocation [13], [20], [21]. For example, Bazaar is a cloud
framework that predicts the resource demand of applications
based on the high-level performance goals [13]. It translates the
performance goal of an application into multiple combinations
of resources and selects the combination that is most suitable



for a cloud provider. One recent work focuses on demand-
based resource allocation [20]. It efficiently distributes the
resource by dynamically allocating the overall capacity among
VMs based on their demands. But these approaches focus on
VM management only and are less effective than FlexSlot for
Hadoop in the cloud because of the semantic gap between
demand-based resource allocation and the actual needs of
Hadoop tasks.

VII. CONCLUSIONS

Hadoop provides an open-source implementation of the
MapReduce framework. But its design poses challenges to
attain the best performance in the cloud environment due
to the data skew. Moving Hadoop into the cloud offers the
possibility of mitigating data skew with dynamic resource
allocation. But Hadoop lacks of the coordination between its
task scheduler and the cloud management, which brings new
challenges due to the performance interference and demand-
based resource allocation. In this paper, we propose and design
FlexSlot, an effective yet simple extension to the Hadoop’s slot
management that provides the flexibility to change the slot
memory size and the number of slots in a slave node online.
We have implemented FlexSlot in Hadoop and evaluated its
effectiveness on a 32-node virtual Hadoop cluster with various
workloads. Experimental results show that FlexSlot is able to
reduce job completion time by as much as 46% compared to
stock Hadoop and by as much as 22% compared to SkewTune.
An extension to FlexSlot with unlimited slots further improves
the resource utilization of the virtual cluster.

Our future work will be on extending the flexible slot
management approach to the resource management in Apache
Hadoop YARN.
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