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Abstract
Recent experimental evidence suggests that synaptic plasticity depends on the
precise timing of pre- and post-synaptic activity. In this paper, an iterative model
for a multiplicative form of this spike-timing-dependent plasticity (mSTDP) is
introduced. This model is incorporated into a neural network with many input
cells coupled via excitation to a single output cell. Analysis of this network
yields a criterion for the output cell to fire on every iteration, as well as general
formulae for the steady-state output firing rate and the steady-state value to
which all synaptic weights are driven by mSTDP. These characterize the basic
state of network operation generated by mSTDP.

1. Introduction

A basic postulate of Hebbian learning is that synaptic modification in neural networks depends
on correlations in the activity of pre- and post-synaptic cells (Hebb 1949). Recent experimental
results indicate that such synaptic modification, in a variety of biological neuronal networks,
depends on short-timescale details of the relative timing of pre- and post-synaptic action
potentials (Debanne et al 1996, Bell et al 1997, Markram et al 1997, Bi and Poo 1998, Zhang
et al 1998). In particular, presynaptic spikes that precede post-synaptic firing lead to synaptic
potentiation, while those that follow post-synaptic firing elicit synaptic depression, with a
sharp (∼5 ms) transition zone (Markram et al 1997, Bi and Poo 1998, Zhang et al 1998).
Moreover, the magnitude of synaptic modification decays exponentially with the time interval
between pre- and post-synaptic spikes, yielding a window for significant synaptic plasticity of
only about 20 ms on either side of a post-synaptic spike. This form of synaptic modification
has been labelled as spike-timing-dependent plasticity (STDP) (Song et al 2000).

Given these results, it is clearly desirable to understand the functional role of STDP.
Previous authors (Abbott and Song 1999, Song et al 2000, Levy et al 2000) have concluded
that STDP represents a mechanism for synaptic competition. This interpretation is based
on numerical simulations of STDP in networks of integrate-and-fire neurons with excitatory
synapses that undergo STDP and inhibitory synapses that do not. In appropriate parameter
regimes, STDP was observed to drive the networks into an irregular firing regime, in
which output rate depends at most weakly on input rate and individual presynaptic spikes
can significantly affect timing of post-synaptic spikes. This occurred through adjustment
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of synaptic weights towards a bimodal distribution, in which individual synapse weights
approached preset upper or lower bounds built into the system.

In these works, STDP adjusts synaptic weights by a constant step, modulated by the
time between pre- and post-synaptic spikes, with fixed barriers limiting the possible ranges of
synaptic strengths. However, Bi and Poo (1998) found that the percentage changes in weights
due to a spike-timing-dependent potentiation event significantly depend on the weights before
the event, while the percentage changes due to spike-timing-dependent depression do not.
This suggests that synaptic enhancements by STDP should be scaled multiplicatively by a
term representing the difference between the current synaptic strength and some maximum.
Similarly, the magnitude of synaptic reduction should be given by a fixed percentage of current
synaptic strength.

The aim of this paper is to theoretically determine the basic properties of STDP in a model
neural network that incorporates such multiplicative scaling (see also Kistler and van Hemmen
(2000), van Rossum et al (2000), Rubin et al (2001)). We introduce a discrete, iterative model
for this multiplicative STDP (mSTDP) that can be treated analytically. While discretization
eliminates precise spike times, our model does incorporate time steps and allows for a temporal
ordering of events. This is of general interest as a representation of a discrete learning process
in which short-timescale details of correlations in activity of coupled elements determine future
coupling strength. This paper represents an initial step to lead to future analysis both of iterative
processes with more complex input structures and of a continuous model including mSTDP.

In the model featured here, a population of N independent presynaptic cells feeds
excitation, via synapses that undergo mSTDP, into a single post-synaptic cell. The firing
of each presynaptic cell is governed by a Poisson process. Throughout the paper, we use the
term firing rate to refer to a cell’s mean firing rate, which is the cell’s probability of firing on
any fixed time step. For fixed parameter values, as input firing rate changes, the post-synaptic
cell undergoes a transition from silence to a repeated firing regime, with output firing rate rising
monotonically between the two limiting states. For any fixed input firing rate, synaptic weights
all approach the same steady level. This contrasts completely with the competitive form of
STDP seen in the barrier model and sets the system into a baseline mode of operation with a
regular output rate that reflects input rate. Thus, mSTDP represents a means of establishing
a baseline state, in which a system transmits rate information and will be ready to respond to
structured inputs.

2. Model and steady states

To consider the behaviour of the N presynaptic cells, the single post-synaptic cell, and the
synaptic weights between them in our model, we treat time as a sequence of discrete time
steps. At each time step, each presynaptic cell may fire, with probability r , or remain silent;
the firing is all-or-none. The length of a time step thus represents the minimum time between
two firings of any cell in the network, which can be selected depending on the application of
interest. The weight of the synapse that a presynaptic cell makes with the post-synaptic cell is
then updated according to the recent firing history of the two cells. When a presynaptic cell
does fire, its excitatory influence on the post-synaptic cell is modulated by the weight of the
corresponding synapse. To start the next time step, the post-synaptic cell either fires or does
not fire, based on the total strength of input it receives from the presynaptic cells from the
previous time step; then, the process repeats, restarting with the presynaptic cells.
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Mathematically, the firing of the output cell at step n + 1, n = 1, 2, . . . , is cast as

σo(n + 1) = g

( N∑
i=1

σi(n)Ji(n)

)
. (1)

Here each σi(n) is 1 with probability r (representing a firing of presynaptic cell i) and 0 with
probability 1 − r . The function g(x) = 1 if x > NT or 0 if x � NT for some threshold T .
Finally, the synaptic weights are updated according to the STDP rule

Ji(n) = Ji(n− 1) + aσi(n− 1)σo(n)(1 − Ji(n− 1))− bσi(n)σo(n)Ji(n− 1), n � 2

(2)

for fixed constants a, b ∈ (0, 1), where Ji(1) are preset initial weights. Note from (1) that
σo(n) is calculated from the inputs at step n− 1, and can be thought of as preceding σi(n). In
this way the negative term in (2) really does encode the depressive side of mSTDP.

There are two steady states to which this system could, in principle, converge, both of which
are considered here. First, if the inputs

∑N
i=1 σi(n)Ji(n) were always (i.e. with probability 1)

above threshold, then the post-synaptic cell would fire at every time step for an output rate
of one; likewise, if the inputs were always below threshold, then the post-synaptic cell would
never fire, giving an output rate of zero. We give conditions for the output cell to fire at every
time step in section 3.

Alternatively, the synaptic weights could remain at some intermediate level, while the
post-synaptic cell would fire only on those iterations when it received sufficient input, yielding
an output rate between zero and one. In both classes of states, it turns out that the synaptic
weights converge to a steady value, Ji = J ∗ for all i, where J ∗ depends on a, b, r, T ,N . We
compute this value, and estimate the output rate σo when it lies in (0,1), in section 4.

The solid curves in figures 1 and 2 show the output firing rates and averaged steady synaptic
weights for a range of input values r = rin and four different thresholds T . These come from
simulations of (2) with a = 0.1, b = 0.15, and N = 250, starting with weights Ji(1) = 1 for
all i, run until the system reached a steady regime. These are compared with predictions from
our analytical computations, shown as dashed curves; this is discussed further in section 4.

3. Steady-state output firing rates

Suppose first that the output firing rate satisfies σo(n) = σ ∗. For our model, σ ∗ ∈ {0, 1},
corresponding to no output firing or output firing on every time step, but we keep σ ∗ as a
parameter for greater generality. In this section, we will show that in the limiting value of
the average input to the post-synaptic cell, taken as the number of time steps executed goes to
infinity, is given by

lim
n→∞〈σ(n)J (n)〉 = ra

[
1 − σ ∗(1 − r)b

a + b − σ ∗(1 − r)ab

]
(3)

where 〈·〉 denotes averaging over the N input cells. This will allow us to show that, for large
N , if

2r(a + b + 2(1 − r)ab) < 3 and T < ra

[
1 + (1 − r)b

a + b − (1 − r)ab

]
< r (4)

then σo ≡ 1 is a steady state of the system and the output cell fires at every time step.
To derive (3) and (4), we substitute σo = σ ∗ into the synaptic weight update rule (2). This

insertion allows us to rewrite (2), omitting reference to the cell number i, as

J (n) = h(n) + J (n− 1)(1 − λ(n)), n � 2 (5)
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Figure 1. Output rates for the iterative process (2). The solid curves show results from steady
states reached by simulation of (2) in MATLAB with a = 0.1, b = 0.15, N = 250, and the values
of r = rin and thresholds T shown. The dashed curves show estimates from (16) in section 4.

where h(n) = aσ(n− 1)σ ∗ and λ(n) = σ ∗(aσ (n− 1) + bσ(n)). Recursively, assuming that
the system was initialized with synaptic weight J (1) = 1, this implies that

J (n) = h(n) + (h(n− 1) + J (n− 2)(1 − λ(n− 1)))(1 − λ(n))

= · · ·
=

n∑
l=1

(
h(l)

n∏
k=l+1

(1 − λ(k))

)

where we set σ(0) = 1/aσ ∗ such that h(1) = J (1) = 1 and we also define
∏n

k=n+1 = 1.
From this, substituting back the full expressions for h(n), λ(n), it follows that

〈σ(n)J (n)〉 =
〈
σ(n)

n∑
l=1

aσ ∗σ(l − 1)
n∏

k=l+1

(1 − σ ∗(aσ (k − 1) + bσ(k)))

〉

= aσ ∗
n∑
l=1

〈σ(n)σ (l − 1)P 〉 (6)

where we define P = ∏n
k=l+1(1 − σ ∗(aσ (k − 1) + bσ(k))).

For any nonzero x and y, define the quantity t (k) by t (k) = 1−xσ(k−1)−yσ(k). Note
that t (k) = 1 if σ(k − 1) = σ(k) = 0, which occurs with probability (1 − r)2; t (k) = 1 − x

if σ(k − 1) = 1 and σ(k) = 0, which occurs with probability r(1 − r); and so on. To encode
this information, let

M =
(

1 1 − y

1 − x 1 − x − y

)
, D =

(
1 − r 0

0 r

)



Multiplicative spike-timing-dependent plasticity 135

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

r
in

weight

T=0.1

0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

r
in

weight

T=0.15

0.3 0.4 0.5 0.6 0.7 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

r
in

weight

T=0.2

0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

1

r
in

weight

T=0.25

Figure 2. Steady-state synaptic weights for (2). These plots compare results from the same
simulations used in figure 1 (solid curves), averaged over all 250 input cells, with estimates (dashed
curves) from numerical solution of the condition (13) derived analytically in section 4. The ranges
of input rates rin shown have been chosen to avoid an output rate very near zero, where weights in
simulations remain at their initial levels.

and let [MDM]ij refer to the element in the ith row and j th column of MDM , counting up
from 0 such that i, j ∈ {0, 1}. Then averaging t (k) over possible values of σ(k) yields

〈(1 − xσ(k − 1)− yσ(k))(1 − xσ(k)− yσ(k + 1))〉σ(k) = [MDM]σ(k−1),σ (k+1). (7)

In particular, let x = aσ ∗ and y = bσ ∗ so that we can apply (7) to the product P from (6).
Notice that this product P contains n− (l + 1) + 1 terms. There are (n− 1)− (l + 1) + 1

arguments of σ that appear in two terms of P (once each with a coefficient of x, once each
with a y), namely l + 1, . . . , n − 1. Further, the arguments l and n each appear in only one
term of P , although, since we are averaging σ(n)J (n), the coefficient σ(n) also appears in
each summand in (6). Finally, σ(l − 1) does not appear in the product P but also appears in
each summand in (6). Pulling this all together, we find that

〈σ(n)J (n)〉 = raσ ∗
[
n−1∑
l=2

r(1 − r)[(MD)n−(l+1)M]01 + r2[(MD)n−(l+1)M]11

]

+r2aσ ∗ + r(1 − r)[(MD)n−2M]01 + r2[(MD)n−2M]11 (8)

where we have separated out the l = 1 term to the second line since σ(0) = 1
aσ ∗ . In (8), [A]01

refers to the upper right element of a 2×2 matrixA and [A]11 refers to the lower right element,
as previously.

In expression (8), the indices n, l now appear only in the exponents of matrices. For
a positive integer m, basic linear algebra shows that we can find matrices K1,K2 such that
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(MD)mM = λm1 K1 + λm2 K2, where λ1, λ2 are the eigenvalues of MD. Further, for λ > 0,

n−1∑
l=2

λn−(l+1) = λn−3
n−3∑
l=0

λ−l = λn−3

(
1 − λ2−n

1 − λ−1

)
= λn−2 − 1

λ− 1
. (9)

The eigenvalues λ1, λ2 of MD are

λ1,2 = 1
2

[
1 − rσ ∗(a + b)±

√
(1 − rσ ∗(a + b))2 + 4(σ ∗)2r(1 − r)ab

]
.

Correspondingly, one eigenvalue is positive and O(1) and the other is negative (or zero) and
O(r). If σ ∗ = 0, then these are 1 and 0, respectively. Otherwise, the condition for the positive
eigenvalue, call it λ2, to be less than one is

σ ∗(1 − r)ab < a + b (10)

and the condition for the negative eigenvalue, call it λ1, to be greater than −1 (always true for
small r) is

2σ ∗r(a + b + 2σ ∗(1 − r)ab) < 3. (11)

For σ ∗ � 1 and a, b < 1, (10) always holds, since

a + b > a2 + b2 > 2ab > σ ∗(1 − r)ab,

while condition (11) represents the first constraint on parameters given in (4).
Since (10) holds, we know that λ2 < 1 and hence (9) can be approximated by 1/(1 − λ2)

for large n. Similarly, under (11),
∑n−1

l=2 λ
n−(l+1)
1 = 1+λ1 +λ2

1 + · · · ≈ 1
1−λ1

for large n. Finally,
we can neglect the last two terms in (8) for large n since they each split into factors multiplied
by λn−2

i for appropriate i.
When we actually compute K1,K2, using the relation λ1 = 1 − λ2 − r(x + y), the above

approximation yields that for large n

〈σ(n)J (n)〉 ≈ raσ ∗
[

r

λ2 − λ1

(
λ1(y(1 − r)− λ1)

1 − λ1
+
λ2(λ2 − y(1 − r))

1 − λ2

)
+ r

]
.

This expression for mean input simplifies, after some algebra, to (3), where the denominator
is positive since condition (10) holds. Note from (3) that 〈σ(n)J (n)〉 = O(r): the mean input
scales linearly with the presynaptic firing rate.

When (11) holds with σ ∗ = 1, we can insert σ ∗ = 1 into the mean input (3) to determine
a criterion for σ ∗ = 1 to be realized as a steady state of the system. That is, for the mean
input level in (3) to be attainable, it must correspond to a mean synaptic weight below 1. This
translates to the requirement 〈σ(n)J (n)〉 < r . Moreover, for the post-synaptic cell to fire at
each iteration when this input strength is provided, the quantity in (3) must be above threshold.
Together, these give the second constraint in (4).

In summary, for fixed parameters a, b, r, T and for largeN such that averaging is justified,
the steady state σo = 1 is attained by this system, with mean inputs approximated by (3), when
the conditions (4) hold. For r = 1, the second inequality in the second condition in (4) always
holds. Thus, the output firing rate approaches 1 as r → 1 unless the first inequality is violated
for r = 1, which amounts to a

a+b < T .

4. Steady-state synaptic weight

In the previous section, we assumed that the firing of the post-synaptic cell occurs at a constant
rate in order to derive conditions for such a steady state to occur. Now, we drop that assumption
and compute the steady-state values to which all synaptic weights may converge under (2).
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In general, the output firing rate could have large fluctuations over trials, especially if the
inputs that the output cell receives tend to be near its firing threshold. In such a regime, the
synaptic weights will evolve slowly relative to the jumps in output firing. To gain insight into
how this occurs, we suppose that all synaptic weights reach a steady state J and average the
update rule (2) over discrete time iterations. This yields

J = J + a〈σo(n)σi(n− 1)〉(1 − J )− b〈σo(n)σi(n)〉J (12)

where 〈·〉 now denotes averaging over n. We will show that all solutions to (12) are stable
and will use a combination of analysis and numerics to compute solutions to this equation.
These results imply that for at least some initial weight distributions, rule (2) drives all synaptic
weights in the system to the same steady level. Simulations suggest that this convergence in
fact holds for any initial weights.

Denote the mean post-synaptic firing rate, for a system with N presynaptic cells, by
〈σo〉 = pN . Since σo(n), σi(n) are independent, it follows that for each i, (12) becomes

0 = ar[pN + δN ](1 − J )− brpNJ

where rδN denotes the covariance of σo(n), σi(n − 1) for N inputs and any n. That is, any
steady-state synaptic weight must satisfy

J = 1 − bpN

(a + b)pN + aδN
(13)

where pN, δN depend on J ; δN quantifies the influence of a single input on the next output.
For any solution J ∗ of (13), plugging J = J ∗ + ε(n) into (12) yields

ε(n) = ε(n− 1)(1 − ar(pN + δN)− brpN)

so the stability condition for such a state is

|1 − ar(pN + δN)− brpN | < 1. (14)

The term on the left-hand side of (14) is clearly bounded above by 1. Further, ar(pN +δN) < 1
and brpN < 1, since by definition, 0 < pN < pN + δN < 1. Thus, every steady-state synaptic
weight that solves (13) is stable, and hence the system can have at most one steady-state
synaptic weight for any fixed set of parameters.

To make use of the steady-state equation (13), we compute formulae for pN and δN when
all synaptic strengths are fixed at some level J . Since pN = 〈σo〉 with N inputs

pN =
〈
g

(
J

N∑
i=1

σi

)〉

= Prob

( N∑
i=1

σi >
NT

J

)
. (15)

Using a binomial expansion, this yields the formula for pN :

pN ≡ pNN =
N∑

k=[NT/J ]+

(
N

k

)
rk(1 − r)N−k (16)

where [·]+ denotes rounding up to the next integer, the superscript N refers to the constant in
the threshold [NT/J ]+, and the subscript N refers to the total number of input cells.

It is convenient also to define

qNN =
〈
g

(
J

N∑
i=1

σi + J

)〉

= Prob

( N∑
i=1

σi >
NT

J
− 1

)
. (17)
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Since any one input cell fires with probability r , (15) and (17) yield the relation

pN = pNN = rqNN−1 + (1 − r)pNN−1. (18)

Direct examination of (12), (13) reveals that for fixed presynaptic cell i, at any fixed time
step, r(pN + δN) = 0 with probability (1 − r) and r(pN + δN) = 〈g(J +

∑
j �=i J σj (n− 1))〉

with probability r; that is,

r(pN + δN) = rqNN−1.

Thus, plugging in from (18), we obtain a formula for δN , namely

δN = qNN−1 − pNN = (1 − r)(qNN−1 − pNN−1)

=
(

N − 1[
NT

J
− 1

]+

)
r [ NT

J
−1]+

(1 − r)N−[ NT
J

−1]+
. (19)

That is, δN is the difference between the probability of obtaining [NT
J

]+ firings from N input
cells and that of obtaining [NT

J
− 1]+ firings from N − 1 cells, which in some sense measures

the influence of an individual input cell when the total of the inputs is close to threshold. As
N → ∞, δN → 0, such that in the limit of infinitely many cells, the steady synaptic weight
becomes a/(a +b) and the output firing rate tends to a step function (from 0 to 1) as a function
of r (assuming a/(a + b) > T ).

Formulae (16), (19) can be used in (13) to solve numerically for steady-state synaptic
weights. Note that a particularly simple case arises when the output firing rate is 1, which was
seen in section 3 to occur under (4); in particular, this occurs when input rate r is sufficiently
large and a, b are correspondingly small. In this case, (12) simplifies to ar(1−J ∗)−brJ ∗ = 0,
or J ∗ = a/(a + b).

The dashed curves in figure 1 show estimates of output rates from (16). These compare
quite well to simulations of (2), shown as solid curves. Figure 2 compares actual steady
synaptic weights from the same simulations (solid curves), averaged over all 250 input cells,
with those (dashed curves) estimated from numerical solution of (13) using (16) and (19). It is
important to note that all weights approached the average values shown, independent of initial
conditions selected. Also, notice that steady-state weight values approach a constant level as
r increases, as predicted. Figure 3 compares the actual (solid) and estimated (dashed) weights
for ranges of a, b values with r = 0.4. These figures show that our weight estimates work quite
well as long as input rates r are not too low. For smaller r values, the probability of output
firing is extremely low, such that pN, δN are extremely small, but a single output firing can
have a large effect on J . The asymptotic weight estimate (13) takes this effect into account,
whereas in actual simulations, an output spike is never observed and synaptic weights remain
at their initial values.

5. Discussion

We have proposed a simple model (2) for an iterative form of mSTDP. This represents a discrete
learning process in which changes in weights between coupled elements are determined by
short-timescale relationships in their past activity. Analysis of this model shows that the output
firing rate increases monotonically with the input firing rate and then saturates, with output
firing at each time step. Moreover, for fixed parameter values, there exists a stable steady
state in which all synaptic weights take on the same value; as shown in figure 2, this value
depends only weakly on input firing rate. These findings are consistent with recent results in
networks in which Poisson excitatory inputs feed into an integrate-and-fire output cell through
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Figure 3. Simulated (solid) and estimated (dashed) steady-state synaptic weights from (13). The
iterations are ordered sequentially such that the first 35 have r = 0.4, the next have r = 0.425, and
so on up to r = 0.475. Within each set of 35, b cycles from 0.05 to 0.2 in steps of 0.025; for each
fixed b, a cycles from 0.05 to 0.15 in steps of 0.025. N = 250 for all iterations.

synapses featuring mSTDP (van Rossum et al 2000, Rubin et al 2001). In that setting, the
independence of steady-state weights from input rates yields increases in output firing rate
as input rates increase. On the other hand, our results contrast with the effects of STDP in
numerical simulations of non-multiplicative barrier models (Abbott and Song 1999, Song et al
2000, Levy et al 2000) which do not take into account recent experimental data (Bi and Poo
1998) on STDP. Analysis shows that there, synaptic weights tend to a bimodal distribution,
clustered near built-in barrier levels, scaling such that output firing rate is approximately
constant over a certain range of input rates (Rubin et al 2001). No such scaling arises in the
model that we have considered.

We have ignored experimentally observed delays between co-activity of pre- and post-
synaptic cells and the resultant adjustment of synaptic weights (Markram et al 1997, Bi and
Poo 1998, Zhang et al 1998). Such delays can be included in our model by adjusting the
arguments of σo, σi on the right-hand side of (2) by a delay τ to obtain

Ji(n) = Ji(n− 1) + aσi(n− τ − 1)σo(n− τ)(1 − Ji(n− 1))

−bσi(n− τ)σo(n− τ)Ji(n− 1).

As long as the same delay is included in each term, the conclusions of our analysis hold.
Our results indicate that the key to the utility of mSTDP in a discrete process must lie in the

transmission of rate information and of information about input structure, such as correlations
among inputs. Future work should address how this system responds to changes in inputs
and to spatially or temporally structured inputs. These issues also remain to be considered
in networks with other coupling architectures, such as all-to-all coupling, and in continuous
models, such as networks of integrate-and-fire cells.
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