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Abstract  

A new mechanism is proposed for exciting the magnetic state of a ferromagnet. Assuming ballistic conditions and using 
WKB wave functions, we predict that a transfer of vectorial spin accompanies an electric current flowing perpendicular to 
two parallel magnetic films connected by a normal metallic spacer. This spin transfer drives motions of the two 
magnetization vectors within their instantaneously common plane. Consequent new mesoscopic precession and switching 
phenomena with potential applications are predicted. 

PACS: 75.50.Rr; 75.70.Cn 

A magnetic multilayer (MML) is composed of 
alternating ferromagnetic and paramagnetic sublay- 
ers whose thicknesses usually range between 1 and 
l0 nm. The discovery in 1988 of gian t  magne tore -  

s i s tance  (GMR) in such multilayers stimulates much 
current research [1]. Although the initial reports dealt 
with currents flowing in the layer planes (CIP), the 
magnetoresistive phenomenon is known to be even 
stronger for currents flowing perpendicular to the 
plane (CPP) [2]. We predict here that the spin- 
polarized nature of  such a perpendicular current gen- 
erally creates a mutual transference of spin angular 
momentum between the magnetic sublayers which is 
manifested in their dynamic response. This response, 
which occurs only for CPP geometry, we propose to 
characterize as spin transfer .  It can dominate the 
Larmor response to the magnetic field induced by 
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the current when the magnetic sublayer thickness is 
about 1 nm and the smaller of  its other two dimen- 
sions is less than 10= to 10 3 r im. On this mesoscopic 
scale, two new phenomena become possible: a steady 
precession driven by a constant current, and alterna- 
tively a novel form of switching driven by a pulsed 
current. 

Other forms of current-driven magnetic response 
without the use of  any electromagnetically induced 
magnetic field are already known. Reports of both 
theory and experiments show how the exchange 
effect of  external current flowing through a ferro- 
magnetic domain wall causes it to move [3]. Even 
closer to the present subject is the magnetic response 
to tunneling current in the case of the sandwich 
structure f e r r o m a g n e t / i n s u l a t o r / f e r r o m a g n e t  
( F / I / F )  predicted previously [4]. Unfortunately, the- 
oretical relations indicated that the dissipation of 
energy, and therefore temperature rise, needed to 
produce more than barely observable spin-transfer 
through a tunneling barrier is prohibitively large. 
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However. the advent of multilayers incorporating 
very thin paramagnetic metallic spacers, rather than 
a barrier, places the realization of spin transfer in a 
different light. In the first place, the metallic spacer 
implies a low resistance and therefore low Ohmic 
dissipation for a given current, to which spin-transfer 
effects are proportional. Secondly, numerous experi- 
ments [5] and theories [6] show that the fundamental 
interlayer exchange coupling of RKKY type dimin- 
ishes in strength and varies in sign as spacer thick- 
ness increases. Indeed, there exist experimental spac- 
ers which are thick enough (e.g. 4 nm) for the 
exchange coupling to be negligible even though spin 
relaxation is too weak to significantly diminish the 
GMR effect which relies on preservation of spin 
direction during electron transit across the spacer. 
Moreover, the same fact of long spin relaxation time 
in magnetic multilayers is illustrated on an even 
larger distance scale, an order of magnitude greater 
than the circa 10 nm electron mean free path, by spin 
injection experiments [7]. It follows, as we show 
below, that interesting current-driven spin-transfer 
effects are expected under laboratory conditions in- 
volving very small distance scales. 

We begin with simple arguments to explain cur- 
rent-driven spin transfer and establish its physical 
scale. We then sketch a detailed treatment and sum- 
marize its results. Finally, we predict two spin-trans- 
fer phenomena: steady magnetic precession driven 
by a constant current and a novel form of magnetic 
switching. 

We consider the five metallic regions represented 
schematically in Fig. 1. Layers A, B, and C are 
paramagnetic, whilst F I and F2 are ferromagnetic. 
The instantaneous macroscopic vectors hS~ and kS  2 
forming the included angle 0 represent the respec- 
tive total spin momenta per unit area of the ferro- 
magnets. Now consider a flow of electrons moving 
rightward through the sandwich. The works on spin 
injection [7] show that if the thickness of spacer B is 
less than the spin-diffusion length, usually at least 
100 nm, then some degree of spin polarization along 
the instantaneous axis parallel to the vector S~ of 
local ferromagnetic polarization in FI will be present 
in the electrons impinging on F2. 

This leads us to consider a three-layer (B, F2, C 
in Fig. 1) model in which an electron with initial 
spin state along the direction Sj is incident from 

S i ~ i  S2 ~, 

EF=0J- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

_K_2 ] V_ 

IA gl B F2 C 

Fig. 1. Bottom: Coulomb plus locally diagonalized exchange 
potential V_ versus position ( in a five-layer system composed 
of paramagnets A, B, C, and ferromagnets FI and F2. The particle 
flow is rightward the charged flow leftward (1~ > 0). Top: Vector 
diagram of spin moments Si, 2 and their current-driven velocities 
'~1.2 for magnets FI,2. 

region B onto ferromagnet F2. Consider the moving 
spin-quantization frame given by orthogonal unit 
vectors 2.9g satisfying S 2 = S 2g and having the axis 
.9 in the direction S 2 × S 1. This frame generally 
rotates adiabatically as determined by the rotating 
vectors Si.2(t). Using ~ for the axis of spin quantiza- 
tion in this frame, the spin state of the electron 
incident from region B is (cos 0/2,  sin 0/2).  The 
Coulomb plus Stoner exchange potential of the mag- 
net has the locally diagonal values V+(s~), where 
is the position coordinate perpendicular to the multi- 
layer plane unrelated to 2.9g. The subscripts _+ cor- 
respond to majority/minority-spin energy bands, re- 
spectively. Within the limitations of the WKB 
parabolic-band approximation, we define the s~-com - 
ponents of the corresponding wave vectors k+ ({:). 
Employing a unit system in which (h2/2)  divided by 
the electron mass is unity, these wave numbers are 
given by the formula 

k ~ =  ( U - k ~ -  V+) 'j= ( l )  

where E is the constant energy of the electron and 
kpis the magnitude of the conserved component kp 
of the wave vector orthogonal to axis s ~. We let 
magnet F2 lie between s e:= ~1 and se2, and place 

= 0 at the center of region B. Thus we have the 
equality V+ = V , and we assume k+ = k_ is real, in 
paramagnetic regions well outside of magnet F2 
(particularly ~ = 0 and s¢ >> ~2). The stationary WKB 
Hartree-Fock spinor wave function O= ( O + , O )  
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carrying unit particle flux for all ~> 0 may be 
written 

). 
The method of spin currents and momentum con- 

servation used below is widely used in deriving the 
conventional exchange coupling energy written 
- J S  1 • S 2 [4,9]. Moreover, in that context it is shown 
to be equivalent to other common methods [10]. 

The rightward particle flux ~ and the compo- 
nents q~ = (@~, ¢b, @_) of rightward Pauli-spin ( = 2 s ) 
flux defined by 

,;-j-f +o:--aT-, (3) 

{ d~+ d~O_ 
q ~ + ( s c ) = q ) , . + i @ , . = i [ ~ - 6  - 6 d ~  - )  (4) 

satisfy general conditions of continuity. For the state 
(2) the Pauli-spin flux within regions B and C ap- 
proaches 

@ ~ = e x p ( i ~ [ ' ( k - k + ) d ~ ) s i n 0 ,  qb_=cos0 (5) 

in the limit of slowly varying potential. These ex- 
pressions describe the conical precession of one-elec- 
tron spin about S 2 with the frequency governed by 
the exchange splitting V - V +  during its passage 
through the magnet. 

A crucial consideration is that by conservation of 
angular momentum the magnet reacts to the passage 
of one such electron by acquiring a change of classi- 
cal momentum AS"` equal to the sum of the inward 

spin fluxes from both sides of magnet F2: 

AS"`.• + iAS2, ~ 

= [qb+ (0) - q~+(~c)]/2 

'( (f7 )) =-~ 1 - e x p  i (k - k + ) d ~  sin0, (6) 

AS2. : = O. 

The mean of the spin transfer averaged with 
respect to direction of electron motion and therefore 

k + - k _ ,  is predicted by Eq. (6) to be ( A S ) =  
(sin 0, 0, 0)/2.  This is equivalent to the total absorp- 
tion of the expectation value of the transverse (2)  
component of spin of the electron incident on F2. 
The oscillations about this mean echo predicted os- 
cillations of conventional exchange coupling J with 
magnet thickness [1 1]. 

In like spirit, we may consider that if the Stoner 
splitting is so large as to eliminate minority-spin 
electrons from the magnets (V > E), or in any case 
if kp is sufficiently large, then k will be imaginary 
according to Eq. (1). We assume that the thickness 
of the film F2 is too great for appreciable tunneling 
of minority-spin electrons. Therefore the component 

reflects totally back into region B just as ~+ 
transmits totally into region C. Consequently, the 
spin factor of the reflected wave ~ is (0, sin 0/2)  
whilst that of the transmitted wave is (cos 0/2,0).  
The off-diagonal nature of the matrix element (4) 
dictates that scattering from F2 totally annihilates the 
transverse spin. By spin conservation, it is totally 
transferred to F2 without oscillations. But the trans- 
mitted electron flux is cos"`0/2, so the spin transfer 
per  transmit ted electron is, instead of Eq. (6), 

sin 0 
ASe. - 2 cos20 /2  ( 1,0, 0) = (tan 0 /2 ) (  1,0, 0). 

(7) 
The total bar on electron transmission when ~ = -~"` 
causes the singularity at 0 = zr in this equation. 

Briefly put, Eqs. (6) and (7) describe the complete 
transfer of the transverse component of incident-elec- 
tron spin to the scattering ferromagnet, except for 
fluctuations due to geometrically-dependent wave 
interferences. The mean of these fluctuations will be 
small considering the usually broad distribution of 
incident-electron directions. It follows that an elec- 
tric current composed of preferentially polarized in- 
cident electrons generally causes a well-defined mo- 
tion of the moment of the scattering ferromagnet. 

Treatment of the total electron flow in the full 
five-region system of Fig. 1 gives useful macro- 
scopic expressions for current-driven spin transfer, 
including dynamic reactions of both magnets F1 and 
F2. The paramagnets A and C are considered semi- 
infinite. The interiors of all three paramagnets A, B, 
and C have the parabolic energy-momentum expres- 
sion E = k~ + kp - Q 2  where Q is the Fermi vector 
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and we take E = 0  to be the Fermi level. In our 
model, V± generally, varies with s ~ only near the 
interfaces, so we determine Q at the center {: = 0 of 
region B. For the two ferromagnets, assumed to have 
the sameband structures but generally different thick- 
nesses, wehave  E = k  e +k-+ - K +  where K+ are 
similarly the internal Fermi vectors for majori ty/  
minority-spin electrons, with K+ > K . 

To treat this system, we first solve the two-com- 
ponent Schroedinger equation in the WKB limit for a 
general value of 8. Some pages of  algebra are 
needed to do this and evaluate the fluxes (3) and (4) 
for these solutions. The common ballistic assumption 
distributes the electric current in the momentum 
space of paramagnet A by uniformly displacing the 
forward right-hand half of the Fermi sphere a con- 
stant infinitesimal amount independently of spin. If, 
for example, the smaller in-plane dimension of the 
multilayer is d =  100 nm, the ballistic condition 
a > > d  on the mean free path a will often be well 
satisfied at 80 K or less. At ambient temperatures, 
where the ballistic assumption is likely poor, the 
two-channel current model used in GMR theory [1,2] 
generally introduces the polarization of the current 
needed for spin transfer. Integration of  the fluxes (3) 
and (4) over occupied states provides the current 
densities of charge /~ (leftward) and spin I =  
(I,.,I.,.,1~) (rightward) as functions of  s ~, as in calcu- 
lations of tunneling currents [4] and conventional 
exchange J [4,9]. By momentum conservation, the 
velocities of the adiabatically rotating magnet vec- 
tors are then given by 

*-~1 = I ( - o o )  - I ( 0 ) ,  ~-~2 = I ( 0 )  - I (9c)  (8 )  

with the notation 2 = d x / d t .  To minimize the num- 
ber of  parameters in the theory, we use the ballistic 
assumption. In addition, we consistently average cur- 
rents with respect to the phase factor e ik+W, where w 
is the thickness of spacer B. 

We define the normal energy Eno r = - k ~  avail- 
able to a Fermi-level incident electron for the pur- 
pose of surmounting the potential rise within one of 
the ferromagnets. The stationary states incident from 
the left (paramagnet A in Fig. 1) fall into three 
classes a, b, c according to the ranges o f  kp defined 
below. The fluxes @e and q~ are identical for states 
belonging to a given one of these classes: 

Class a: 0 <_ kp < K . Since E,o,. > [max V,~(~)] 

= - K ~  for or= _+, an electron fully transmits 
through the system independently of o-. Therefore, 
the aggregate incident flux J,, of Class a states 
contributes to I e an amount /~a = eJ,(#: 0) and noth- 
i n g ( I ~ = 0 )  to l a t a n y s  ~. 

Class b: K _ < k p  < K + .  Now we have - K +  < 
E ...... < - K 2 so both magnets transmit only electrons 
of  polarity cr = + along the local axis of  quantiza- 
tion. Those with o-= - are totally reflected. Using 
the WKB wave functions, one finds that the aggre- 
gate incident o-= + flux Jb contributes to l e a  net 
charge current 

leb = eJb(4COS20/2)/( 3 + COS 8) .  (9) 

The corresponding spin currents are found to be 

Ib(0)  = Jb[(sin 0 ) / ( 3  + c o s  8)]2" + ( l ¢b /2e )e ,  

/ b (~ )  = ( /eb/Ze)• .  (10) 

Class c: K < K + < k p .  Now we have Eno ,.< 
- K  2 < - K  2 and all incident electrons totally re- 
flect, giving I~ = 0 and I t. = 0. 

We combine the above results according to l~ = 
I~ + l~b + l~c and I = I~ + I b + I~ and substitute the 
latter into the second Eq. (8) to find 

I~ = eJ~ + 2eJb(1 + cos 8 ) / ( 3  + cos 0) ,  

S2 = Jb(sin 0 ) / ( 3  + cos 0)2". (11) 

One similarly finds an analogous relation for Sl. 
Note from the Eqs. (11) that the ratio $2/I~ depends 
on the ratio Ja/Jb.  Since in practice Q is often 
effectively nearly equal to K+ (see below), we 
assume Q = K+ when evaluating Ja/Jb  under the 
ballistic assumption. Then this ratio becomes a func- 
tion of one parameter, the polarizing factor P having 
the conventional definition 

n + -  n_ K + -  K 
e . . . .  ( 1 2 )  

n++n_  K . + K  

Here n + are the majority/minority-state Fermi-level 
spin densities in the magnets. Experimental 4 K 
values for the ferromagnetic elements Fe, Co, Ni, 
and Gd are P = 0.40, 0.35, 0.23, 0.14, respectively, 
as obtained from tunneling between them and a 
superconductor [ 12]. 

A result of this calculation for the five-layer 
system is the relation 

'~1.2 = ( I eg / e ) '~ l . 2  X (,~, X~2),  (13) 
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where SI,2 are unit vectors si = S J S i .  The scalar 
function g ( >  0) is given by the formula 

g= [ -4+ ( I+p )3 (3+~ , '~2 ) /4p3 /2 ]  -' (14) 

The absence of any film-thickness dependences in 
Eqs. (13) and (14) results from our averaging the 
fluxes with respect to the phase of the exponent of 
the expression eik" occuring therein, involving phase 
differences across the thickness w of the spacer B. 
These oscillations are asymtotically negligible for 
spacers thicker in order of magnitude than one atomic 
layer. This averaging operation causes the conven- 
tional exchange coefficient J, determined by the 
spin currents present in the absence of charge cur- 
rent, to vanish because such oscillations of J with 
spacer thickness are symmetric about zero in mean- 
field calculations [6,9,10]. Only the current-driven 
coupling represented by Eq. (9) remains after consis- 
tent application of this averaging procedure. The 
practical consequence is that the predicted dynamics 
will not be greatly diminished even when the pres- 
ence of atomic steps in the crystalline interfaces 
tends to nullify J This circumstance is analogous to 
the persistence, both in theory and experiment, of 
GMR even under such conditions that large spacer 
thickness or rough interfaces make J neglible. More- 
over, current-driven spin transfer is insensitive to 
spacer thicknesses smaller than the mean free path 
(10-30 nm at ambient temperature). 

Noteworthy is the prediction of Eqs. (13) and (14) 

2 . 0  . . . .  , , . , , 

P = I  e. 1.5I  q~ o.~ 

x 1.o 

.( .~ 0.5 

o 
0 0.2 0.4 0.6 0.8 1.0 

O/rr 
Fig. 2. Spin-transfer  velocities IS].21 of  fer romagnet ic  spin vectors 

St, 2 versus included angle 0, based on Eqs. (9) and (10). The 

units are I t / e  (1~ - current,  e = electron charge) .  Equal polariza- 

tion coefficients P of  the magnets  are assumed.  

that the five-layer dynamics are reversible with re- 
spect to sign of the electric current. It is the subse- 
quent spin transfer back to the polarizing magnet by 
reflected minority electrons discussed before Eq. (7) 
which causes the polarizing magnet to react dynami- 
cally. Note also the equality [Sl[ = 182], even though 
the magnets may differ in thickness. (For P < 1, it 
may be special to our choice of identical magnet 
parameters.) The magnitude of these velocity vectors 
is plotted in Fig. 2. 

Note that the spin transfer predicted by Eqs. (13) 
and (14) for P < 1 generally vanishes at 0 = 0 and Jr 
as in the case of Eq. (6) based on our three-layer 
discussion. Its functional dependence on 0 tends to 
that of Eq. (7) in the limit P ~  1. However, its 
magnitude is just half of that inferrable from Eq. (7) 
because of the multiple minority-spin reflections 
tending to confine electrons within the 'quantum 
well' defined by the spacer, and thus share the spin 
transfer among the magnets F1 and F2. 

We leave to the reader the immediate geometric 
proof of the relation IS~,xl = [ l~ /2e l t an (O/2 ) ,  hold- 
ing for P = 1, from the conservation relation S~ + S~ 
= I ( - ~ c )  - I(~c) = ( / J 2 e ) ( ~  1 - s2) and the as- 
sumption that the vectors St.2 lie within the plane 
common to S 1 and So. This relation does not rest on 
the WKB or other approximations, but is a logical 
consequence of the 'perfect spin polarizer' concept. 

The geometric relationships between these veloci- 
ties dictated by the vector products in Eq. (13) are 
illustrated by the vector diagram in Fig. 1. The 
counter-intuitive tendency for the magnetic moments 
to rotate in the same direction propeller fashion is 
made consistent with angular-momentum conserva- 
tion when the spin currents in regions A and C are 
considered, viz. Eqs. (8). These motions of S~ and 
S 2 within their common plane contrast with the 
orthogonal precessions like SL = ]~JSI X S 2 dictated 
by the conventional exchange Hamiltonian - J S  t • 
S~. It is this new property of current-driven exchange 
which implies the novel mesoscopic magneto-dy- 
namics illustrated below. These motions due to spin 
transfer can dominate over those due to precession 
about the magnetic field H = I ~ d / 2  circulating about 
the current when the smaller in-plane dimension d 
satisfies the order-of-magnitude inequality d < 1 /xm 
×(10  3 G / M  s )X(1  n m / w )  where w is the mag- 
netic film thickness. 
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One defect of the WKB approximation is that it 
allows only perfect transmission or perfect reflection 
of the majority- or minority-spin component at the 
normal /magnet  interface, not allowing the coeffi- 
cients to range between 0 and 1. A measure of  the 
severity of this defect is provided by first-principles 
calculations of transmission probability, which we 
define as T_(kp) with hkp now the transverse com- 
ponent of crystalline momentum, for Bloch electrons 
crossing the interface from a paramagnet into the 
majority-spin band of a ferromagnet [8]. In favorable 
cases, Fig. 1 of this reference shows results satisfy- 
ing T+ > 0.96 within the major central portion of the 
space of kp describing the Fermi surface. Toward 
the edge of this space, T+ decreases steeply down to 
T+ < 0.04 within a narrow fringe. The mean trans- 
missions over the Fermi surfaces in these favorable 
cases have the values T + =  0.86 ( A g / F e  001), 0.84 
( A u / F e  001), 0.79 ( C u / C o  001), 0.75 ( C u / C o  111), 
0.66 ( C u / C o  110). These features qualitatively re- 
semble our WKB picture with Q a little greater than 
K+, for which T.(kp)= 1 in the main region k~ < 
K+ and T + ( k p ) =  0 in the smaller annular fringe 
region K+ < kp < Q. The case Cr/Fe(001),  how- 
ever, is rather unfavorable in this respect because 
T+(kp) differs considerably from both 0 and 1 on 
most of the Fermi surface [8]. 

Therefore, our use of the WKB approximation is 
reasonable for certain compositions including the 
favorable cases incorporating the noble-metal spac- 
ers Ag, Au, and Cu mentioned above. Our assump- 
tion of spherical Fermi surfaces satisfying Q = K+, 
used to derive Eqs. (13) and (14), gives T+= I for 
all kp. Therefore, it is a special case not far from the 
facts indicated by the differences between the com- 
puted T+ values, quoted above, and 1. Also, from 
the general smallness of transmission T into minor- 
ity bands computed [8] for A g / F e  (T = 0.16) and 
for A u / F e  (T = 0.17), we predict the peaking of 
the spin-transfer rate at large 0 shown by the curves 
in Fig. 2 with large values of P and reflected by the 
limiting Eq. (7). 

To obtain an idea of the remarkable new phenom- 
ena made possible by current-driven spin transfer, 
consider an effective uniaxial anisotropy field Hu, 
which includes the effect of magnet shape, and 
Gilbert damping coefficient ce. The Landau-Lifshits 

equation for such a single magnetic domain, modi- 
fied to include the term (13), is 

S" =g2 × (TH. c "$2c- aS~ + e-l leg.~l  NS2), 
(is) 

where "), is the gyromagnetic ratio and a fixed flame 
is defined by orthogonal unit vectors a, b, c of 
which c is the symmetry axis of anisotropy. For the 
sake of illustration, we assume S~ is constant in time 
because F1 is much thicker than F2 or has a much 
larger damping, etc. In addition, we align S~ with 
the anisotropy axis of S:  (gl = c). 

The motion of magnet F2 is found by substituting 
the solution 

g~=(sinO)(acoswt+bsinoot)+ccosO (16) 

into Eq. (15) under the assumption of weak damping. 
Applying the condition 101 << I~ol yields the lowest- 
order relations o)= TH u cos 0 and 

O= -(c~yHocosO+log/S~_e)sinO, (17) 

where the function g(O) ( >  0) is given by Eq. (14) 
with sl "s2 = cos 0. 

Qualitatively different behaviors of magnet F2 
occur, depending on the sign of H u. A steady preces- 
sion with constant polar angle 0. may occur for a 
constant current under the condition H u < 0 making 
_+c the hard directions of magnetization. Another 
condition is that the quantity within parentheses in 
Eq. (17) vanishes for a value of 0 different than 0 
and ~-. Thus the frequency v is tuneable according 
to 2Try= w=I~g/eo~S 2. Reasonable material pa- 
rameters can provide v =  10 GHz using /~, = 10 ~ A 
cm ~- which implies the feasibility of a mon- 
odomain sub-micron-scaled microwave-frequency 
oscillator powered and tuned by a constant applied 
current. 

In the case H u > 0, _+ c are easy directions for S,. 
Under some conditions, time-dependent solutions of 
Eq. (15) describe switching with 0(/)  varying be- 
tween orientations near the easy directions 0 = 0 and 
7r. Switching away from 0 =  0 is subject to the 
threshold condition I~ < - eS 2 ceyHu/g(O) obtained 
by means of  small-0 expansion. Switching away 
from 0 = "z- is governed by I~ > eS 2 c~yHu/g(~) for 
P < 1. For reasonable material parameter values, 
repetitive switching by alternating 1 ns wide pulses 
of applied current density on the order of 107 A 
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cm -2 is predicted. This effect may have applications 

to high-speed, high-densi ty digital storage and mem-  

ory. 
One  general advantage of devices based on cur- 

rent-driven spin transfer is the utter modesty of 

current supply demanded  by the all-metal structure. 
For  a device diameter  d, the Landauer- type ballistic 
resistance [ 13] is of  order R -- 2 7r -~ f ie-  2 k v 2 d -  2 T~h, 

where T~. h is a characteristic overall t ransmission 
coefficient for the layer system / F I / B / F 2 / .  Our 
preferred value d =  100 nm gives R = 0 . 2 T ~  l 12. 

Therefore the requirement  that the lead resistance 
plus the internal resistance of the current generator  
exceed R is modest  indeed with one exceptional  

case (in need of  clarification) that P is near 1 and 0 

is near 7r. For  then, T~h approaches 0 and R is 
singular,  totally b locking currents. The power  dissi- 

pated in the mult i layer  for j = 107 A c m  "- is only 

0.2T~h 1 #W.  When  the effective anisotropy field 
opposing switching exceeds the order of 10 4 0 e ,  
conservat ion of energy will require upward revision 

of  these estimates, but this subject is beyond the 
scope of the present  article. 
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