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Performance Analysis of
Latency-Insensitive Systems

Ruibing Lu and Cheng-Kok Koh, Member, IEEE

Abstract—This paper formally models and studies latency-
insensitive systems (LISs) through max-plus algebra. We intro-
duce state traces to model behaviors of LISs and obtain a
formally proved performance upper bound achievable by latency-
insensitive design. An implementation of the latency-insensitive
protocol that can provide robust communication through back-
pressure is also proposed. The intrinsic performance of the pro-
posed implementation is acquired based on state traces. It is also
proved that the proposed implementation can always reach the
best performance achievable by latency-insensitive design.

Index Terms—Back-pressure, latency-insensitive system, max-
plus algebra, performance analysis, state trace.

I. INTRODUCTION

A S the system complexity increases and the feature size
scales down to deep submicrometer dimensions, the

interconnect delay becomes a dominating factor of the system
performance. Although the delay of interconnects can be signif-
icantly reduced by such interconnect optimization techniques
[1] as topology optimization, wire sizing, and buffer insertion
and sizing, the gap between delays of interconnects and devices
continues to grow. With increasing operating frequencies and
chip sizes of integrated circuits (ICs), the delay from one circuit
block to another may be longer than one clock period. In fact,
the delay of global interconnects can be as long as about five to
ten clock cycles in the near future [2], making pipelined global
communication inevitable. Unfortunately, the estimations of the
delay and latency of global interconnects at high-level design
stages have very low accuracy. Moreover, the insertion of flip-
flops [3]–[5] and the change of interconnect latency without
considering global consistency affect circuit functionality and
destroy the correctness of system behavior. Retiming [6] with
pipelined interconnects [7]–[9] has been proposed to move flip-
flops to the middle of interconnects so as to remove timing
violations while maintaining the functionality of circuits. The
effectiveness of interconnect retiming however, is quite limited
as flip-flops available for redistribution are typically limited.
Architectural retiming [10], [11] is proposed to increase the
number of registers on critical paths by using negative registers,
which are required to precompute or predict signal values. Such
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negative registers may be difficult to implement for general
global interconnects.

A latency-insensitive-design methodology, which can tol-
erate the change of communication latencies in late design
stages of synchronous systems, has been proposed in [12].
Carloni et al. [13] have presented an implementation of such
latency-insensitive systems (LISs), in which the timing viola-
tions of communication channels can be removed by pipelining
the channels with relay stations. The performance of LISs
has been analyzed in [14]. This analysis however, ignores
the “back-pressure,” which is necessary to establish fully re-
liable communications by informing the source module to stall
when the sink module cannot accommodate more input data
[13], [15]. Clearly, LISs without back-pressure is much less
robust than those with back-pressure.

In this paper, the behaviors of LISs are formally modeled
and studied based on max-plus algebra [16]. We also propose
an implementation of the latency-insensitive protocol that not
only provides robust communications through back-pressure,
but can always reach the best performance achievable by
latency-insensitive design.

II. BACKGROUND AND RELATED RESEARCH

Latency-insensitive-design methodology shares with asyn-
chronous-circuit design [17] some common ideas and char-
acteristics, e.g., “handshaking signaling” of communications.
However, the most important difference is that latency-
insensitive design is synchronous and can be implemented
using the conventional design flow of synchronous circuits
with minor changes.

An LIS is composed of a collection of modules that exchange
data using communication links. The communication among
modules of an LIS is controlled by the latency-insensitive
protocol. The precondition of latency-insensitive design is that
any module can freeze its operation, or “stall,” for an arbitrary
time without losing their internal states. A module has to stall
unless each of its input channels can provide informative data;
that provides a method for synchronization of input data when
input channels have different latencies. When a module stalls,
it produces noninformative data to its output channels. Infor-
mative data already generated but not ready to be consumed are
stored in channel queues temporarily. Therefore, the protocol
guarantees the correct behaviors of an LIS independent of
communication latencies. The change of communication la-
tency is performed by inserting relay stations, which can be
used to pipeline the communication like registers but with
handshaking signaling. A module may also stall when any
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of its output channels cannot accommodate more informative
data; this is called “back-pressure.”

The theory of latency-insensitive design is introduced
in [12]. Carloni et al. have presented an implementation of
such LISs in [13]. In order to fulfill latency-insensitive commu-
nication protocol, two additional interconnects with opposite
directions are added for each communication channel; the one
that has the same direction as data transmission is used to
identify whether the data are informative and the other one
is to provide back-pressure. The performance of LISs without
back-pressure is studied in [14]. However, to the best of our
knowledge, there is no published performance-analysis method
for LISs described in [13].

The problem of determining the system performance has
been studied in several other contexts. Rate analysis of em-
bedded systems has been performed through graph-based
techniques [18]. In [19] and [20], the worst case timing analysis
has been performed for embedded systems, while the average
case performance has been studied in [21]–[23]. The perfor-
mance of asynchronous systems has also been extensively
studied. Analytical methods [24]–[26] to obtain exact mea-
sures of performance have been proposed for a system with
deterministic delays. Systems with general delay distributions
have been studied with stochastic-based techniques in [27]–[29]
In [16], discrete-event dynamic systems are studied with al-
gebraic techniques and theory of linear systems, which we
adopt in this work as the theoretical basis to study the behavior
of latency-insensitive design.

In the remainder of this section, we first introduce the basic
notation and definitions for max-plus algebra that will be used
to model LISs. A brief overview of previous studies, especially
the performance analysis, for latency-insensitive design are
then outlined and discussed.

A. Max-Plus Algebra

In this paper, we denote the set of the real numbers by R,
the set of nonnegative integers by N, and the set of positive
integers by N0. The number of elements of a set S is denoted
by |S|. Let A ∈ R

m×n be an m× n matrix; the (i, j)th entry is
denoted by ai,j or (A)i,j . X ∈ R

n be a vector with n entries.
The ith entry is denoted by xi or (X)i. Given two vectors
X,Y ∈ R

n, X � Y means that xi � yi, ∀i ∈ {1, 2, . . . , n}.
Max-plus algebra is a widely used modeling framework for
discrete-event systems [16]. The algebra is based on two op-
erations, which are formally named addition and multiplication
and, respectively, denoted by ⊕ and ⊗, defined as follows1:

Addition : a⊕ b
def= min{a, b} (1)

Multiplication : a⊗ b
def= a+ b (2)

1The traditional term “max-plus algebra” refers to the semiring Rmax
def
=

(R ∪ {−∞}, max, +), that is to the set (R ∪ {−∞}) equipped with max as
addition (denoted by ⊕) and + as multiplication (denoted by ⊗). The algebraic
structure can be equally applied to (R ∪ {∞}, min, +), which is sometimes
also called as “min-plus algebra.” Both of them are special cases of a more
general algebra called “dioid” [16]. For convenience, the max-plus algebra in
this paper refers to the semiring (R ∪ {∞}, min, +).

where a, b ∈ R∞ and R∞
def= R ∪ {∞}. Similar to regular alge-

bra, commutativity of ⊕ and ⊗, associativity of ⊕ and ⊗, and
distributivity of ⊗ over ⊕ hold for the max-plus algebra.

The operations ⊕ and ⊗ can be extended to matrices. If
d ∈ R∞, A,B ∈ R

m×n
∞ , and C ∈ R

n×p
∞

(A⊕B)i,j
def= ai,j ⊕ bi,j

(d⊗A)i,j
def= d⊗ ai,j

(A⊗ C)i,j
def=

n⊕
k=1

ai,k ⊗ ck,j .

The kth (k ∈ N) max-plus-algebraic power of matrix A is
denoted by A⊗k

and defined recursively as follows:

A⊗1 def= A

A⊗k def= A⊗A⊗k−1
, for k = 2, 3, 4, . . . .

Example 2.1: The following is an example of matrix multi-
plication in max-plus algebra:

(
1 ∞
2 1

)
⊗

(
2 1
0 ∞

)

=
(

min(1 + 2,∞ + 0) min(1 + 1,∞ + ∞)
min(2 + 2, 1 + 0) min(2 + 1, 1 + ∞)

)

=
(

3 2
1 3

)
.

B. Precedence Graph

A matrix in max-plus algebra can be represented by a corre-
sponding graph. Given a matrix A ∈ R

n×n
∞ , we can construct

a directed weighted graph G(V, E , w), called the precedence
graph of matrix A, as follows:

V = {1, 2, 3, . . . , n}
E = {(i, j)|(A)j,i �= ∞}

w(i, j) = (A)j,i ∀(i, j) ∈ E

where V is the vertex set, E the edge set, and w : E → R the
edge-weight function. The precedence graph of a given matrix
A ∈ R

n×n
∞ is denoted by G(A).

A directed graph is weakly connected, or simply connected,
if there is an undirected path between any pair of vertices.
A directed graph is strongly connected if there is a directed path
between every pair of vertices.

Consider a directed weighted graph G(V, E , w), the mean
weight of a cycle C is defined as the sum of the weights of
the edges of this cycle, divided by the length of this cycle.
The mean weight of a cycle is also called the cycle mean,
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Fig. 1. Example strongly connected precedence graph G(A). The graph just
includes one cycle with mean weight of 2/3, therefore, λ∗(G(A)) = 2/3.

and denoted by λ(C). The minimum cycle mean of graph G
is defined as

λ∗(G) def= min
C∈G

λ(C)

which is the minimum mean weight of all cycles in graph
G. A cycle whose mean weight is equal to λ∗(G) is called a
critical cycle. The problem of determining the minimum cycle
mean is well studied, and there are several efficient algorithms
[30], [31] for solving it.

The following result can be found in many studies, including
[32]–[35].

Theorem 2.1: Given A ∈ R
n×n
∞ , if G(A) is strongly con-

nected, then

∃k0, d ∈ N, such that ∀k � k0, A
⊗k+d

= (λ∗)⊗
d ⊗A⊗k

where λ∗ = λ∗(G(A)) is the minimum cycle mean of G(A).
The equation in Theorem 2.1 can be rewritten with traditional

algebra as

∀i, j ∈ {1, 2, . . . , n},
(
A⊗k+d

)
i,j

= (λ∗ × d) +
(
A⊗k

)
i,j
.

It means that the power series {A⊗1
, A⊗2

, A⊗3
, . . .} is cyclic if

G(A) is strongly connected.
Example 2.2: Consider an example matrix A ∈ R

3×3
∞

A =


∞ ∞ 0

1 ∞ ∞
∞ 1 ∞


 .

The power series {A⊗1
, A⊗2

, A⊗3
, A⊗4

, . . .} is



∞ ∞ 0

1 ∞ ∞
∞ 1 ∞


 ,


∞ 1 ∞

∞ ∞ 1
2 ∞ ∞


 ,


 2 ∞ ∞

∞ 2 ∞
∞ ∞ 2


 ,


∞ ∞ 2

3 ∞ ∞
∞ 3 ∞


 , . . .


 .

It can be observed that A⊗4
= 2 ⊗A⊗1

. Based on this, we have

A⊗k+3
=A⊗4⊗A⊗k−1

=2⊗A⊗1⊗A⊗k−1
=2⊗A⊗k

, ∀k>1.

Compare this with Theorem 2.1, we have the period d = 3 and
λ∗ × d = 2. Then, λ∗ = 2/3. The precedence graph G(A) is
shown in Fig. 1, and its minimum cycle mean is exactly 2/3.

Theorem 2.1 has important applications for analysis of dis-
crete systems. When a discrete system can be modeled with
the power series of a matrix, it can help to find how the

Fig. 2. Simple LIS with three circuit blocks and one relay station.

Fig. 3. LIS graph for the LIS shown in Fig. 2. Weight of edge (v1, v3) is 1
because there is a relay station between two circuit blocks.

system state changes over time. In addition, the cyclicity of the
power series can also be used to estimate the speed and period
of state changes, which are typically closely related to sys-
tem performance.

C. Latency-Insensitive Systems

Here, we review the analysis presented in [14]. To model the
structure of LISs, Carloni et al. [14] introduce the concept of a
LIS graph, which is defined as follows

Definition 2.1: A LIS graph GL(V,E,w) is a weighted
connected directed graph, where V is the set of all cir-
cuit blocks, (vi, vj) ∈ E refers to the communication link
from circuit block vi to circuit block vj , and edge weight
w(vi, vj) ∈ N0 is the number of relay stations on the commu-
nication link between circuit blocks vi and vj .

Example 2.3: Fig. 2 provides an example LIS with three
circuit blocks and one relay station, which is on the channel
between circuit blocks 1 and 3. Fig. 3 is the corresponding LIS
graph, which has one vertex for each circuit block. The weight
of edge (v1, v3) is 1 because of relay station 4 in the LIS.

For LISs studied in [14], it is assumed that there is no
back-pressure for every channel. The performance of an LIS
is evaluated based on the throughput in [14]. The throughput
of a module can be viewed as the number of informative data
produced in one timestamp by this module on average. It is
shown in [14] that the throughput of an LIS GL, if GL has
cycles, is

ϑ(GL) = min
C∈GL

|C|
w(C) + |C| . (3)

For a cycle C, w(C) is actually the number of relay stations
in the cycle, and |C| is the number of circuit blocks. When the
system does not have any cycles, the throughput is 1. For an
LIS with more than one strongly connected component, infinite
queues may be required for communication channels between
components of different throughput rates. As infinite queues
are impossible in practice, “equalization” is performed in [14]
to maintain correct system behavior. The equalization step
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Fig. 4. Example for equalization. This is a strongly connected component S1

in a LIS graph; the component includes two relay stations on edges (v2, v3)
and (v4, v5), respectively. The critical cycle is Ca = {v1, v2, v3, v4, v5, v1}
and the component throughput ϑ(S1) = 5/7. The equalization requires in-
serting one additional relay station to the critical cycle Ca and expect that
the component throughput becomes 5/8. However, one cycle among Cb =
{v1, v2, v3, v1}, Cc = {v1, v4, v5, v1}, and Cd = {v3, v4, v5, v3} becomes
the new critical cycle of the component and the new throughput actually
becomes 3/5, no matter where the additional relay station is placed.

basically equalizes the throughput rates of all components by
adding additional relay stations. For an LISGL withm strongly
connected components, the equalization method proposed in
[14] is performed as follows.

1) Compute the throughput ϑ(Sk) = ak/bk for each
strongly connected component Sk ∈ GL.

2) Find nk ∈ N for each Sk ∈ GL, such that a1/(b1 +
n1) = a2/(b2 + n2) = · · · = am/(bm + nm).

3) Distribute nk additional relay stations to the critical cycle
Ck of each Sk, and obtain a new LIS G′

L.

This method has some limitations. First, usually we have
ϑ(G′

L) < ϑ(GL) and the performance loss due to equalization,
i.e., (ϑ(GL) − ϑ(G′

L)), may be significant even if there are a
very few number of strongly connected components in GL (see
Example 2.4). Second, after the distribution of additional relay
stations to the critical cycle of a strongly connected component,
it is possible that the component now has a new critical cycle,
making the actual throughput less than the expected value. As
a result, different components still have different throughputs
(see Example 2.5). While other equalization algorithms may
solve this problem, it is not clear how the system performance
is affected.

Example 2.4: Consider an LIS GL with two strongly
connected components to be equalized: ϑ(S1) = 4/5 and
ϑ(S2) = 3/4. The initial throughput is ϑ(GL) = 3/4 if the
channel queues have infinite capacity. The equalization result
is: n1 = 3, and n2 = 2. The throughput after equalization
becomes ϑ(G′

L) = 1/2. The performance decreases by 33.3%
compared with the initial throughput.

Example 2.5: LIS GL has two strongly connected compo-
nents to be equalized: ϑ(S1) = 5/7, and ϑ(S2) = 10/15. S1 is
shown in Fig. 4. The equalization result is n1 = 1, and n2 = 1,
with the expected throughput of 5/8. However, after the addition
of one relay station to the critical cycle of S1, its throughput
becomes 3/5, instead of the expected throughput of 5/8. The
reason is that the insertion of relay stations may introduce new
critical cycles.

These limitations are not inherent in the latency-insensitive-
design methodology. In fact, the issue of equalization would not
arise at all for an LIS with back-pressure because all modules

in such an LIS, as we shall see later, always have the same
throughput.

While latency-insensitive design may be used for the as-
sembly of complex Internet Protocol (IP) cores, in this paper,
we focus on synchronous LISs with a global clock signal. We
assume that the circuit blocks have the following properties.

1) Any path between a block input port and a block output
port has at least one register. In other words, there is no
combinational path between input and output ports.

2) In each clock cycle, a block takes one set of data from
input channels and produces one set of data to out-
put channels.

The first property ensures the screening of noninformative data
and prevents them from passing through circuit blocks. The
second property simplifies the modeling and analysis of LISs.
In practical systems, a block may not have output data in
each clock cycle. A simple but not efficient approach is to use
dummy output data, which are regarded as informative during
modeling and analysis. More realistic and accurate analysis
would require the consideration of the way how each circuit
block processes input/output data, which is not considered in
this paper.

III. LISS WITH BACK-PRESSURE

In this section, we introduce an implementation of the
latency-insensitive protocol with back-pressure. Modules in
an LIS are classified into two types: circuit blocks and relay
stations. While circuit blocks are required by the system itself
to perform specific functions, relay stations are inserted later to
resolve timing violations due to a long interconnect delay.

As LISs in this study are modeled differently from those in
[13] and [14], we prefix all system elements in [13] and [14]
with “B-” and all system elements in the proposed method with
“P-.” A relay station in [13] and [14] for example, is called a
“B-relay station,” whereas a “P-relay station” is a relay station
in the proposed modeling method. A B-channel in [13] and [14]
refers to the communication link between two B-circuit blocks
including both wires and B-relay stations inserted into the
communication link. In this paper, a P-channel is between two
consecutive P-modules, each of which can be either a P-relay
station or a P-circuit block. For example, if one P-relay station
is inserted into a communication link between two P-circuit
blocks, two P-channels are formed from the viewpoint of this
paper. In LISs, a module may stall at some timestamps, there-
fore, proper buffering is required for informative data already
generated but not ready to be consumed. This buffering of
informative data is modeled as queues in P-channels. In [13],
encapsulation shells for B-circuit blocks are used to synchro-
nize input data (arriving with different latencies) and propagate
appropriate output values (informative or noninformative) to
the output channels. An encapsulation shell includes queues to
buffer informative data not ready to be consumed. Fig. 5 shows
the two different structures [in Fig. 5(a) and (b), respectively],
as well as the mapping between them. A B-relay station is com-
posed of two registers: a main register (MR) and an auxiliary
register (AR). The main register can be mapped to the register
in a P-relay station, while the AR can be viewed as a queue of
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Fig. 5. Comparison of the system structure in [13] and [14] and that in this
paper. The AR in a B-relay station can be viewed as the input P-channel
queue of size 1 of the corresponding B-relay station. The shell queues of a
B-circuit block can be mapped to the input P-channel queues of the correspond-
ing P-circuit block.

size 1 in the input P-channel of the P-relay station. The queues
in the shell of a B-circuit block corresponds to the queues of
input P-channel of the P-circuit block.

In the proposed implementation of latency-insensitive de-
sign with back-pressure, there is one channel queue for each
P-channel. Compared with LISs with back-pressure in [13], our
implementation has uniform rules for the operation (to compute
or to stall) of both P-circuit blocks and P-relay stations, which
are completely determined by channel states using a finite state
machine (FSM). The uniform operation rules for both P-circuit
blocks and P-relay stations enable our performance-analysis
method to obtain the exact throughput performance of systems
without external influences due to primary inputs and outputs.
In addition, a P-relay station can have multiple sink P-modules
and support a multiterminal net, which may reduce the number
of P-relay stations in LISs. The flexibility of input channel-
queue sizes of P-relay stations may also help to reduce the
total number of buffering registers. When a P-relay station has
multiple sink modules, the same buffering ability may be kept
by up sizing the input channel queue of the relay station and
down sizing all its output P-channel queues. As the focus of the
remainder of this paper is on the performance analysis of LISs
based on the proposed implementation, we omit the prefixes for
P-channels, P-relay stations, and P-circuit blocks for simplicity.

Now, we present our implementation of the latency-
insensitive protocol. Every communication channel has one
queue with size equal to or larger than 1, regardless of whether
the sink module is a circuit block or a relay station. Otherwise,
the informative output of the source module might be lost as
follows: When the sink module stalls and cannot accept the
informative data of the source module at timestamp t, the source
module may receive the stall request (SR) only at timestamp
t+ 1. However, the source module may already discard the
informative data of timestamp t and generate a new informative
data, resulting in the loss of the informative output of the source

module at timestamp t. A channel queue with size of 1 is called
“minimum queue.”

Because the buffering of informative data is performed by the
input channel queue, a relay station becomes a register whose
output is noninformative in the first timestamp. All circuit
blocks generate informative outputs in the first timestamp.
Other than that, both circuit blocks and relay stations work
in a uniform way controlled by the states of input and output
channels. When a channel queue is full and the output of
the source module is informative at timestamp t, if the sink
module stalls and the source module does not at timestamp
t+ 1, a new informative data will be pushed into the already
full channel, resulting in channel overflow. Therefore, a channel
should request its source module to stall at timestamp t in such a
case. A channel is said to be full if and only if the channel queue
is full and the output of the source module is informative, and a
channel is said to be empty if and only if the channel queue is
empty and the output of the source module is noninformative.

For the proposed LISs with back-pressure, there are two
conditions under which a module should stall.

1) At least one of the module’s input channels is empty, i.e.,
it cannot provide required informative data to the module.

2) At least one of the module’s output channels is full, i.e.,
more informative data may result in channel overflow.

The behavior of such systems can be described by FSMs.
There are three possible states for a channel: informative event
(IE), empty data (ED), or SR. A channel is in the ED state
if the queue is empty and the output of the source module is
noninformative. A channel is in the SR state if the queue is full
and the output of the source module is informative. In all other
situations, the channel is in the IE state. For a channel with
queue size q, the IE state is further divided into q substates:
IE(k), 1 � k � q. Here, “k” can be viewed as the number
of informative data in the channel. The state of a module can
be defined directly from the states of input and output channels:
A module is in the stall state (SS) if any input channel is in the
ED state or any output channel is in the SR state, otherwise,
it is in the normal state (NS). Note that a module is in the SS
state if and only if this module will stall in the next timestamp.

The initial state of output channels of relay stations is ED,
and all other channels are in the IE(1) state initially.

The state-transition graph for communication channels is
shown in Fig. 6. The state-transition rules are as follows.

1) The next state of a channel, whose current state is IE(k),
will still be IE(k) if and only if both the source and sink
modules are in the NS state or both of them are in the
SS state. If only the source module is in the SS state, the
next state will be IE(k − 1) or ED depending on whether
k > 1. If only the sink module is in the SS state, the next
state will be IE(k + 1) or SR based on whether k < q.

2) The next state of a channel, whose current state is ED,
will be ED if and only if the source module is in the SS
state. Otherwise, it will change to the IE(1) state.

3) The next state of a channel, whose current state is SR,
will be SR if and only if the sink module is in the SS
state. Otherwise, it will change to the IE(q) state.
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Fig. 6. State graph of a communication channel with queue size of q. “in”
and “out” refer to the state of the source and sink modules, respectively. For
convenience, we assume that “SS < NS,” therefore, in < out means that the
source module is in the SS state while the sink module is in the NS state. When
a channel is in the ED state, the sink module is in the SS state, therefore, only
the source module state should be considered. Similarly, only the sink-module
state is considered for a channel in the SR state.

Fig. 7. BP-LIS graph for the LIS shown in Fig. 2, assuming it is a BP-LIS
whose channels all have minimum queues.

A LIS that follows the above behavior can handle back-
pressure easily. We refer to such an LIS “BP-LIS.”

We define BP-LIS graphs to capture the structure of BP-LISs
as follows:

Definition 3.1: A BP-LIS graph GB = (V,E, q, α) is a
weighted directed connected graph, where V is the set of all
modules including circuit blocks and relay stations, (vi, vj) ∈
E refers to the communication channel from module vi to mod-
ule vj . The edge-weight function q : E → N0 defines the queue
size of each communication channel (vi, vj). The vertex-weight
function α : V → {0, 1} distinguishes relay stations and circuit
blocks; α(vi) is 0 if and only if the module corresponding to vi

is a relay station.
Example 3.1: Fig. 7 shows the BP-LIS graph for the LIS

shown in Fig. 2 when the LIS is implemented as a BP-LIS
whose channels all have minimum queues.

IV. MODELING OF LISS WITH STATE TRACES

In this section, we introduce “state trace” to model the be-
haviors and analyze the performance of general LISs (G-LISs).
Here, a G-LIS is an LIS in which a module stalls in the next
timestamp if one of its input channels is empty. Note that
BP-LISs are a subset of G-LISs. (In fact, for LISs in [13] and
[14], a B-module also stalls in the next timestamp when any of
its input ports has no informative data available either from the
shell queue or directly from the source B-module of that input
port. Such a situation is equivalent to an empty input channel
from the viewpoint of this paper. Therefore, LISs in [13] and

[14] are also subsets of G-LISs. Hence, state traces can also be
applied to systems in [13] and [14].)

State traces have some similarities with the “progressive
traces” defined in [14]. Both of them use a sequence of numbers
or symbols to capture system behaviors. However, progressive
traces are defined for communication channels, whereas state
traces are for modules. Progressive traces include special sym-
bol “τ” to denote noninformative events, but all entries in state
traces are integers. As we shall see later, channel state and
informative data accumulated in a channel can be computed
immediately from state traces. Most important, through state
traces, the behaviors of LISs can be modeled formally with
max-plus algebra.

In the remainder of this section, we first introduce state
traces to model G-LISs and define important properties such
as throughput, stability, and cyclicity, based on state traces. The
performance of G-LISs is then analyzed and a throughput upper
bound is proved.

A. Modeling of General-LISs

For convenience, we use the following G-LIS graphs.
Definition 4.1: A G-LIS graph GL = (V,E, α) is a directed

connected graph with weighted vertices. The vertex-weight
function α : V → {0, 1} distinguishes relay stations and circuit
blocks; α(vi) is 0 means that the module corresponding to vi is
a relay station.

Definition 4.2: Let vi be a module of a G-LIS GL(V,E, α),
the state trace xi = (xi(1), xi(2), xi(3), . . .) of module vi is
an infinite sequence of nonnegative integers such that, for any
timestamp t ∈ N0

xi(t)
def=



α(vi), if t = 1
xi(t− 1), if t > 1 and module vi stalls

at timestamp t
xi(t− 1) + 1, otherwise.

(4)

In words, xi(t) corresponds to the number of informative
data generated by module vi till timestamp t. In the first
timestamp, every circuit block produces its first informative
data. Therefore, xi(1) is 1 for any circuit block vi. Relay
stations are different; they can only stall before they receive
informative data from input channels. Therefore, xi(1) is equal
to 0 for any relay station vi. After the first timestamp, xi(t)
increases by 1 from xi(t− 1) as long as module xi does not
stall at timestamp t.

With the state traces of all modules, a behavior of a G-LIS is
defined as follows.

Definition 4.3: Given a G-LIS GL(V,E, α), a behavior X ∈
R

|V |×∞ is a |V | ×∞ matrix

X
def= (x1 x2 x3 · · · x|V | )

T (5)

where xi is the state trace for module vi. The system state at
timestamp t is a vector

X(t) def= (x1(t) x2(t) x3(t) · · · x|V |(t) )T . (6)
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TABLE I
SYSTEM STATUS IN THE FIRST FIVE TIMESTAMPS

FOR THE BP-LIS IN FIG. 7

The system behavior can also be written as

X = (X(1) X(2) X(3) · · · ) .

Note that, given a G-LIS GL, there may be many different
behaviors because both system implementations (for example,
without or with back-pressure) and external influences may lead
to different behaviors. Here, two behaviors X and X ′ are called
to be different if the two matrices X and X ′ are not the same.

Example 4.1: Table I shows the system states in the first
five timestamps for the BP-LIS shown in Fig. 7 (and Fig. 2).
Note that we use a BP-LIS example here because BP-LISs are
a subset of G-LISs. In timestamp 1, all circuit blocks produce
their first informative data, whereas the relay station stalls.
The input channel d of block 3 is in state ED because its
source module is a relay station. Consequently, block 3 stalls
in timestamp 2 and we have x3(2) = x3(1) = 1. Therefore, the
first informative data generated by block 2 in channel b is not
processed, and it is stored in the queue of channel b. As a result,
channel b becomes full (i.e., in state SR) in the timestamp 2.
Therefore, block 2 stalls in timestamp 3 and we have x2(3) =
x2(2) = 2. Table I shows the states of all modules and channels
in the first five timestamps. Therefore, the system behaviorX is

X =




1 2 3 3 4 . . .
1 2 2 3 4 . . .
1 1 2 3 4 . . .
0 1 2 3 3 . . .


 .

Note that here, we assume that there is no external influence in
the first five timestamps. Consider a different situation: If there
is a primary input to module 1, and this primary input is not
able to supply informative data for the module at timestamp 1,
module 1 stalls at timestamp 2 (x1(2) = x1(1)). The system
behavior is changed to X ′

X ′ =




1 1 2 3 4 . . .
1 2 2 3 3 . . .
1 1 2 2 3 . . .
0 1 1 2 3 . . .


 .

Therefore, under different external influences, a BP-LIS can
have many different behaviors.

A circuit block produces its second informative data only
after it receives and consumes the first informative data in each
input channel. In general, a circuit block produces its (m+ 1)th
informative data to its output channels in the next timestamp

after it receives mth informative data from each of its input
channels. A relay station produces itsmth informative data after
it consumes the mth informative data from its input channel.
Therefore, a module, say vj , produces its mth informative data
after it consumes (m− α(vj))th informative data from each
of its input channels. Hence, for a channel (vi, vj) in G-LIS
GL(V,E, α), we have

xi(t) ≥ xj(t) − α(vj). (7)

Definition 4.4: Given a G-LIS GL(V,E, α), the set of infor-
mative data accumulated in a channel (vi, vj) at timestamp t is

fi,j(t)
def=




∅, if xi(t) = xj(t) − α(vj)
{xi(t), xi(t) − 1, . . . ,
xj(t) − α(vj) + 1} , otherwise.

(8)

Therefore, the number of informative data in channel (vi, vj)
at timestamp t is

|fi,j(t)| = xi(t) − xj(t) + α(vj). (9)

The throughput of a module can be computed when its state
trace is given.

Definition 4.5: Given a state trace xi for a module vi in a
G-LIS, the throughput ϑ(xi) of module vi is

ϑ(xi)
def= lim

t→∞
xi(t)
t

. (10)

The throughput, in fact, is the average number of informative
data generated for each timestamp by the corresponding mod-
ule. In general, it is possible that such a limit for the throughput
may not be well defined for an arbitrary state trace. For an LIS
without back-pressure and external influence, the results in [14]
show that the above limit, or a well-defined throughput, exists.
As we shall see later, state traces of a BP-LIS without external
influences also have a well-defined limit. However, one can
always specify for a primary input of a BP-LIS a state trace that
is without a well-defined throughput (see Example 4.2). Such
an input would render the throughput of the BP-LIS ill defined.

Example 4.2: This is an example state trace without well-
defined throughput

( 1,︸︷︷︸
A

2, 3,︸︷︷︸
B

3, 3, 3, 3, 3, 3,︸ ︷︷ ︸
A

4, 5, 6, 7, . . . , 20, 21,︸ ︷︷ ︸
B

. . .).

The state trace has two types of interleaving segments: A and
B. In an A-type segment, xi(t) = xi(t− 1), and in a B-type
segment, xi(t) is always equal to xi(t− 1) + 1. The length
of each segment is equal to two times the total length of
all segments before it. Consider the last item of any A-type
segment other than the first one

xi(t)
t

=
xi(3n)

3n
=
xi(n)
3n

� 1
3
.
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And for the last item of any B-type segment

xi(t)
t

=
xi(3n)

3n
=
xi(n) + 2n

3n
� 2

3
.

Therefore, this state trace does not have a well-defined
throughput.

In practice, however, most systems display good average
characteristics when given sufficient observation time. There-
fore, we assume that the limit for throughput exists in the
remainder of this paper.

Definition 4.6: Given a system behavior X for a G-LIS
GL(V,E, α), the system throughput ϑ(X) is defined as

ϑ(X) = min
vi∈V

ϑ(xi).

In practice, a system is useful only if all modules have the same
throughput. Consider a behavior X where not all state traces
xi ∈ X have the same throughput, we can always find a channel
(vi, vj) such that ϑ(xi) �= ϑ(xj). Then

lim
t→∞ |fi,j(t)| = lim

t→∞

((
xi(t)
t

− xj(t)
t

)
× t+ α(vj)

)
= ∞

which means that an infinite number of informative data will be
accumulated in channel (vi, vj). Clearly, no queue in practice
can provide infinite capacity; hence, it is impossible for an
LIS to avoid the loss of informative data and wrong behavior.
An LIS without back-pressure cannot automatically guarantee
the same throughput of all modules, therefore, such LISs may
require “equalization,” as in [14], in order to behave in a stable
fashion.

Definition 4.7: A behaviorX of a G-LISGL(V,E, α) is said
to be cyclic if there exist positive integers T ,M , and δ such that

∀t ≥ M,

X(t+ T ) = δ ⊗X(t)

= (x1(t) + δ x2(t) + δ · · · xn(t) + δ )T .

The minimum T is called the period, and X is said to be
T cyclic.

Corollary 4.1: For a T cyclic behavior X , we always
have that

ϑ(X) = ϑ(xi) =
δ

T
, ∀xi ∈ X.

Proof: The throughput of any state trace xi can be com-
puted as

ϑ(xi) = lim
t→∞

xi(t)
t

= lim
n→∞

xi(n× T +m)
n× T +m

= lim
n→∞

n× δ + xi(m)
n× T +m

=
δ

T
.

Therefore, for any cyclic behavior, all modules have the same
throughput, which is equal to the system throughput δ/T . �

B. Performance of General LISs

We now study the performance of G-LISs. Consider the rela-
tionship between system states of two consecutive timestamps:
t and t+ 1. By the definition of state traces in (4), we have

xi(t+ 1) � xi(t) + 1, ∀vi ∈ V. (11)

Consider a module vi with (vs, vi) being its input channel.
Channel (vs, vi) forces module i to stall at timestamp t+ 1
when it is empty at timestamp t:

xi(t+ 1) = xi(t), if |fs,i| = xs(t) − xi(t) + α(vi) = 0.

This can be converted to

xi(t+ 1) = xs(t) + α(vi). (12)

In the case when channel (vs, vi) is not empty

|fs,i| = xs(t) − xi(t) + α(vi) ≥ 1

or xi(t) + 1 � xs(t) + α(vi).

When combined with (11)

xi(t+ 1) � xs(t) + α(vi). (13)

Based on (12) and (13), we have

xi(t+ 1) � xs(t) + α(vi) (14)

regardless of the state of channel (vs, vi).
Definition 4.8: Given a G-LIS GL(V,E, α), the system

matrix AL ∈ R
|V |×|V |
∞ is a |V | × |V | matrix, where each entry

is determined by the following equation

(AL)i,j
def=



α(vi), if ∃(vj , vi) ∈ E
1, if i = j
∞, otherwise.

The system matrix can be represented by its precedence
graph G(AL) (see Section II), in which every edge corresponds
to a noninfinity entry of the matrix. The noninfinity entries in
the system matrix correspond to either “channel edges” or “self-
edges” in the precedence graph.

Example 4.3: Consider the LIS shown in Fig. 2, the system
matrix is




1 ∞ ∞ ∞
1 1 ∞ ∞
∞ 1 1 1
0 ∞ ∞ 1


 .

The precedence graph is shown in Fig. 8. Channel edge (v1, v4)
with weight of 0 corresponds to (AL)4,1; self-edge (v3, v3) is
from (AL)3,3.

Theorem 4.2: Given a G-LISGL(V,E, α), its system matrix
AL, and its behavior X , for all timestamp t ≥ 1

X(t+ 1) � AL ⊗X(t).
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Fig. 8. Example precedence graph for the LIS in Fig. 2.

Proof: When expressed in traditional algebra, it becomes

xi(t+1)� min
1�j�|V |

(
(AL)i,j +xj(t)

)
, ∀i∈{1, 2, . . . , |V |} .

This essentially summarizes (14) and (11). �
Now, we are ready to analyze the maximum throughput that

can be achieved by LISs.
Corollary 4.3: Given a G-LIS GL(V,E, α) and its system

matrix AL, for any behavior X of the LIS, its throughput
ϑ(X) is at most λ∗(G(AL)), the minimum cycle mean of the
precedence graph G(AL).

Proof: Consider the precedence graph G(AL) and its
critical cycle C = {i1, i2, . . . , in, i1}. Based on Theorem 4.2

xi2(t+ 1) �xi1(t) + (AL)i2,i1

xi3(t+ 2) �xi2(t+ 1) + (AL)i2,i3

. . .

xi1(t+ n) �xin
(t+ n− 1) + (AL)in,i1

.

Adding the preceding inequalities

xi1(t+ n) � xi1(t) + w(C).

Then

xi1(t) �
⌊
t

|C|
⌋
× w(C) + r(t)

where

r(t) = xi1

(
t−

⌊
t

|C|
⌋
× |C|

)
< |C|.

Therefore, the system throughput is given by

ϑ(X) � ϑ (xi1) = lim
t→∞

xi1(t)
t

� lim
t→∞

⌊
t

|C|
⌋
× w(C) + r(t)⌊

t
|C|

⌋
× |C| + r(t)

=
w(C)
|C| = λ∗ (G(AL)) .

�

There are two kinds of cycles in the precedence graph corre-
sponding to the two types of edges in the precedence graph.

1) A system cycle is a cycle with only channel edges.
2) A self-loop is a cycle with only one self-edge.

The mean weight of a self-loop is always 1. For a system
cycle C = {i1, i2, . . . , in, i1}, w(C) =

∑n
k=1 α(vik

) is the
number of circuit blocks in the cycle, and |C| is the total number
of modules including both circuit blocks and relay stations.

V. PERFORMANCE ANALYSIS OF BP-LISS

In this section, we analyze the performance of BP-LISs. As
a subset of G-LISs, BP-LISs follow all properties of G-LISs
shown in Section IV. BP-LISs have additional properties: For
a BP-LIS GB(V,E, q, α), the queue of any channel (vi, vj)
has a specific queue capacity q(vi, vj), and when a channel
(vi, vj) is full at timestamp t, the source module vi stalls at
timestamp t+ 1.

A channel (vi, vj) is full (or in state SR) when the number of
informative data in the channel is q(vi, vj) + 1, and the source
module vi will stall to avoid further increase of informative
data when the channel (vi, vj) is full. Therefore, the number
of informative data in the channel (vi, vj) can never be larger
than q(vi, vj) + 1

|fi,j(t)| = xi(t) − xj(t) + α(vj) � q(vi, vj) + 1. (15)

Theorem 5.1: All modules in a BP-LIS GB(V,E, q, α)
always have the same throughput.

Proof: Consider any behavior X of a BP-LIS
GB(V,E, q, α). From (7) and (15), we have for any channel
(vp, vq) ∈ E

−α(vq) + xq(t) � xp(t) � xq(t) + q(vp, vq) + 1 − α(vq).

Therefore

ϑ(xq) = lim
t→∞

xq(t) − α(vq)
t

� ϑ(vp)

� lim
t→∞

xq(t) + q(vp, vq) + 1 − α(vq)
t

= ϑ(xq)

or simply, ϑ(xp) = ϑ(xq). As BP-LIS GB is connected, the
throughputs of all modules are equal. �

Theorem 5.1 shows that BP-LISs, unlike LISs without back-
pressure in [14], do not require “equalization” to make the
throughput of all modules equal.

A. System Matrices of BP-LISs

Again, we consider the relationship between system states
of two consecutive timestamps to study the performance of
BP-LISs. Consider an output channel (vi, vd) of module vi.
When it is full at timestamp t

xi(t+ 1) =xi(t) = |fi,d(t)| + xd(t) − α(vd)

=xd(t) + q(vi, vd) + 1 − α(vd). (16)
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When channel (vi, vd) is not full

|fi,d(t)| = xi(t) − xd(t) + α(vd) � q(vi, vd).

Then

xi(t+ 1) � xi(t) + 1 � xd(t) + q(vi, vd) + 1 − α(vd).
(17)

Combining (16) and (17), we have

xi(t+ 1) � xd(t) + q(vi, vd) + 1 − α(vd) (18)

regardless of the channel state.
Definition 5.1: Given a BP-LIS G(V,E, q, α), the system

matrix AB ∈ R
|V |×|V |
∞ is a |V | × |V | matrix, where each entry

is determined as follows:

(AB)i,j
def=




α(vi), if (vj , vi) ∈ E
q(vi, vj) + 1 − α(vj), if (vi, vj) ∈ E

and (vj , vi) �∈ E
1, if i = j
∞, otherwise.

Similar to the system matrix AL for G-LISs, the system
matrixAB of a BP-LIS regulates the relationship between X(t)
and X(t+ 1). Generally, for a channel (vi, vj), there are two
related entries in the system matrix, corresponding to (14)
and (18). There is one exception when there are two channels
(vi, vj) and (vj , vi) with opposite directions between modules
vi and vj . In such a case, (AB)i,j and (AB)j,i is equal to α(vi)
and α(vj), respectively. Consider (AB)j,i, which constrains on
xj(t+ 1) − xi(t). From (14), and considering channel (vi, vj),
we have

xj(t+ 1) � xi(t) + α(vj). (19)

And from (18), and considering channel (vj , vi), we have

xj(t+ 1) � xi(t) + q(vj , vi) + 1 − α(vi). (20)

But (20) is always implied by (19) because

α(vj) � 1 � q(vj , vi) + 1 − α(vi).

Therefore, we can set (AB)j,i to α(vj) and ignore (20).
Like the system matrix AL of a G-LIS, the system matrix

AB for a BP-LIS can also be represented by its precedence
graph G(AB), in which each edge corresponds to a noninfinity
entry of the matrix. The precedence graph G(AB) for a BP-LIS
has one additional kind of edges compared with the precedence
graph G(AL) for a G-LIS:

Definition 5.2: Given a BP-LIS GB(V,E, α, q), edge (i, j)
in the precedence graph G(AB) is a “mirror edge” if there
exists channel (vj , vi) ∈ E and (AB)j,i is equal to q(vj , vi) +
1 − α(vi).

It can be viewed that the precedence graph G(AB) of a
BP-LIS is obtained from the precedence graph G(AL) of the
corresponding G-LIS by adding a mirror edge for each chan-
nel edge.

Fig. 9. Example precedence graph for the BP-LIS shown in Fig. 7. Compared
with Fig. 8, for the corresponding G-LIS, this graph has one additional mirror
edge with opposite direction for each channel edge.

Example 5.1: Consider a BP-LIS shown in Fig. 7; each chan-
nel of the BP-LIS has a minimum queue, the system matrix is




1 1 ∞ 2
1 1 1 ∞
∞ 1 1 1
0 ∞ 1 1


 .

The precedence graph is shown in Fig. 9.
Theorem 5.2: Given a BP-LISGB(V,E, q, α) and its system

matrix AB, for any behavior X

X(t+ 1) � AB ⊗X(t).

Proof: This is basically a summary of (11), (14),
and (18). �

B. Intrinsic Performance of BP-LISs

We now study the behaviors of BP-LISs without external
influence. In other words, all system primary inputs can always
supply the required data in time and all primary output would
not generate SRs. We refer to this system behavior, which
is completely determined by its structure, as the “intrinsic
behavior,” and denote the behavior by X̂ . The corresponding
throughput ϑ(X̂) is called the “intrinsic throughput.”

Theorem 5.3: Let AB be the system matrix of a BP-LIS
GB(V,E, q, α), the intrinsic behavior X̂ satisfies

X̂(t+ 1) = AB ⊗ X̂(t), ∀t ∈ N0.

Proof: As there are no external influences for the intrinsic
behavior, a module stalls at timestamp t+ 1 if and only if there
exists inside the system an empty input channel (|fj,i(t)| = 0)
or a full output channel (|fi,k(t)| = q(vi, vk) + 1) at time-
stamp t. Equivalently, for the intrinsic behavior X̂ of a BP-LIS
GB(V,E, q, α), we have (21), seen at the bottom of the next
page.

Therefore, when the BP-LIS graph GB(V,E, q, α) of a sys-
tem is given, its intrinsic behavior is completely determined
based on (21).

We now prove Theorem 5.3 by mathematical induction.
Base Case: Consider t=1, or prove that X̂(2)=AB⊗X̂(1).
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For any channel (vp, vq)

|fp,q(1)| = x̂p(1) − x̂q(1) + α(vq)

=α(vp) − α(vq) + α(vq) = α(vp).

Therefore, the channel cannot be full in the first timestamp
because

|fp,q(1)| = α(vp) < 2 � q(vp, vq) + 1.

Based on (21), we have

∀vi∈V, x̂i(2)=
{
x̂i(1), if ∃(vj , vi)∈E, s.t. α(vj)=0
x̂i(1)+1, otherwise.

(22)

This means that a module stalls at the second timestamp if
and only if at least one of its input channels has a relay station
as its source module.

Now consider (AB ⊗ X̂(1)), based on the definition of sys-
tem matrix AB

(
AB ⊗ X̂(1)

)
i
=

|V |⊕
j=1

(AB)i,j ⊗ x̂j(1)

=


 ⊕

(vk,vi)∈E

(AB)i,k ⊗ x̂k(1)




⊕

 ⊕

(vi,vm)∈E

(AB)i,m ⊗ x̂m(1)




⊕ (1 ⊗ x̂i(1)) . (23)

Clearly, the three parts of the right side correspond to the
three kinds of noninfinity values in the system matrix AB (see
Definition 5.1).

For each item in the first part

(AB)i,k ⊗ x̂k(1) = α(i) ⊗ α(k) = x̂i(1) ⊗ α(k).

For each item of second part

(AB)i,m ⊗ x̂m(1) = (q(vi, vm) + 1 − α(vm)) ⊗ α(vm)

= q(vi, vm) + 1 � 2 � 1 ⊗ x̂i(1).

The rightmost side of this inequality is exactly the third part
in (23). Therefore, the second part can be ignored. Hence

(
AB ⊗ X̂(1)

)
i
=


 ⊕

(vk,vi)∈E

x̂i(1) ⊗ α(k)


 ⊕ (x̂i(1) ⊗ 1)

= x̂i(1) ⊗




 ⊕

(vk,vi)∈E

α(k)


 ⊕ 1


 .

The right-hand side of the preceding equation is exactly the
expression in max-plus algebra for the right-hand side of (22).

Induction Step: Assume that X̂(t) = AB ⊗ X̂(t− 1), prove
that X̂(t+ 1) = AB ⊗ X̂(t).

Based on the definition of state traces

X̂(t− 1) � X̂(t) � 1 ⊗ X̂(t− 1).

Hence

X̂(t) =AB⊗X̂(t− 1) � AB⊗X̂(t) � AB⊗
(
1⊗X̂(t− 1)

)

=1⊗AB⊗X̂(t− 1) = 1⊗X̂(t).

Equivalently

x̂i(t) �
(
AB ⊗ X̂(t)

)
i
� x̂i(t) + 1, ∀vi ∈ V.

Therefore, (AB ⊗ X̂(t))i is either x̂i(t) or x̂i(t) + 1. We con-
sider the following two cases.

Case 1) When (AB ⊗ X̂(t))i is equal to x̂i(t), based on
Theorem 5.2(

AB ⊗ X̂(t)
)

i
= x̂i(t) � x̂i(t+ 1) �

(
AB ⊗ X̂(t)

)
i
.

Then, x̂i(t+ 1) = (AB ⊗ X̂(t))i.
Case 2) When (AB ⊗ X̂(t))i is equal to x̂i(t) + 1

(AB)i,j ⊗ x̂j(t) = (AB)i,j + x̂j(t) � x̂i(t) + 1.

Equivalently

x̂i(t) − x̂j(t) � (AB)i,j − 1, ∀vj ∈ V. (24)

Consider any output channel (vi, vj) ∈ E of module vi,
we have

|fi,j(t)| = x̂i(t) − x̂j(t) + α(vj) � (AB)i,j − 1 + α(vj)

= q(vi, vj) < q(vi, vj) + 1.

Therefore, any output channel of the module vi is not full.

∀vi ∈ V, t � 1, x̂i(t+ 1) =



x̂i(t), if ∃(vj , vi) ∈ E, s.t. |fj,i(t)| = 0,

or ∃(vi, vk) ∈ E, s.t. |fi,k(t)| = q(vi, vk) + 1
x̂i(t) + 1, otherwise.

(21)
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Similarly, consider any input channel (vk, vi). From (24)

x̂i(t) − x̂k(t) � (AB)i,k − 1.

Then we have

|fk,i(t)| = x̂k(t)−x̂i(t)+α(vi) � 1−(AB)i,k+α(vi)=1>0.
(25)

Hence, it is not empty. Based on (21)

x̂i(t+ 1) = x̂i(t) + 1 =
(
AB ⊗ X̂(t)

)
i
.

Combining the two cases 1) and 2), we have x̂i(t+ 1) =
(AB⊗ X̂(t))i, ∀i ∈{1, 2, . . . , |V |}, or equivalently, X̂(t+ 1)
= AB ⊗ X̂(t).

Based on the principle of mathematical induction, X̂(t+
1) = AB ⊗ X̂(t), ∀t ∈ N0. �

Theorem 5.3 can be used to compute the intrinsic throughput
of BP-LISs.

Corollary 5.4: The intrinsic behavior X̂ of any BP-LIS
GB(V,E, q, α) is cyclic, and the throughput is λ∗(G(AB)),
whereAB is the system matrix, and λ∗(G(AB)) is the minimum
cycle mean of the precedence graph G(AB).

Proof: Based on Theorem 5.3, we have

X̂(t) =AB ⊗ X̂(t− 1) = AB ⊗AB ⊗ X̂(t− 2)

= · · · = A⊗(t−1)

B ⊗ X̂(1), ∀t > 1.

Based on the definition of system matrix AB, for each edge
(vi, vj) in GB(V,E, q, α), there must be two corresponding
edges (i, j) and (j, i) with opposite directions in G(AB). In ad-
dition, BP-LIS graph GB(V,E, q, α) is connected. Therefore,
G(AB) is strongly connected.

From Theorem 2.1, ∃M , T ∈ N, such that ∀t > M

X̂(t+ T ) =A⊗(t+T−1)

B X̂(1) = (λ∗)⊗
T ⊗A⊗t−1

B ⊗ X̂(1)

= (λ∗)⊗
T ⊗ X̂(t) = (T × λ∗) ⊗ X̂(t)

where λ∗ refers to λ∗(G(AB)). Therefore, the intrinsic behavior
is cyclic. Based on Corollary 4.1, the intrinsic throughput is
ϑ(X̂) = (T × λ∗)/T = λ∗. �

Example 5.2: Considered the BP-LIS in Fig. 7 and its prece-
dence graph in Fig. 9. The minimum cycle mean λ∗(G) is
3/4 and the critical cycle is {v1, v4, v3, v2, v1}. The intrinsic
behavior is

X̂ =




1 2 3 3 4 5 . . .
1 2 2 3 4 5 . . .
1 1 2 3 4 4 . . .
0 1 2 3 3 4 . . .


 .

We can see that x̂i(t+ 4) = x̂i(t) + 3, ∀t � 1 and 1 � i � 4.
The intrinsic behavior has a period of 4 and the throughput
is 3/4, which is equal to the minimum cycle mean of the
precedence graph G(AB).

There are three kinds of cycles in the precedence graph cor-
responding to the three types of edges in the precedence graph.

1) A system cycle is a cycle with only channel edges.
2) A self-loop is a cycle with only a self-edge.
3) An extended cycle is a cycle with mirror edges.

While system cycles and self-loops are also in the precedence
graph of the corresponding LIS system matrix AL, extended
cycles exist only in G(AB). Therefore, we have

λ∗ (G(AB)) � λ∗ (G(AL)) .

The mean weight of an extended cycle is not only determined
by the distribution of relay stations in the extended cycle, but
also affected by the queue sizes of the channels corresponding
to mirror edges. Based on Definition 5.1, the weight of a
mirror edge (vj , vi) is (q(vi, vj) + 1 − α(vj)). Therefore, the
mean weight of an extended cycle can always be increased
by increasing the sizes of channel queues corresponding to its
mirror edges. Therefore, with proper queue size assignment,
λ∗(G(AB)) will not be limited by extended cycles.

Corollary 5.5: Given a G-LISGL(V,E, α), there is always a
corresponding BP-LISGB(V,E, q, α) whose intrinsic through-
put ϑ(X̂) = λ∗(G(AL)), where AL is the system matrix of
LIS GL.

Proof: This can be proved constructively by an algo-
rithm that constructs such a BP-LIS. For any given BP-LIS
GB(V,E, q0, α), as long as the critical cycle in the precedence
graph is an extended cycle, the mean weight of this cycle is
increased to a value not less than λ∗(G(AL)) by increasing the
size of the channel queue corresponding to one mirror edge in
the extended cycle. The process continues until the critical cycle
in the BP-LIS graph becomes a system cycle or a self-loop.
The intrinsic throughput of the final BP-LIS becomes equal to
λ∗(G(AL)). �

This shows the efficiency of the proposed BP-LISs: Their
intrinsic throughput can always reach the highest through-
put achievable by latency-insensitive design with proper
queue sizing.

Example 5.3: Consider the precedence graph in Fig. 9. The
critical cycle {v1, v4, v3, v2, v1} is an extended cycle because
(v2, v1) and (v3, v2) are mirror edges. There are no system
cycles in the precedence graph. Therefore, the maximum
throughput is 1. This throughput can be realized by increas-
ing the queue size of channel (v1, v2) or (v2, v3) to 2. If queue
size of (v2, v3) is increased to 2, the intrinsic behavior becomes

X̂ =




1 2 3 4 5 6 . . .
1 2 3 4 5 6 . . .
1 1 2 3 4 5 . . .
0 1 2 3 4 5 . . .




whose intrinsic throughput is 1.
Example 5.4: Fig. 10 shows a more complex BP-LIS exam-

ple, which corresponds to the structure of a Motion Pictures
Expert Group (MPEG)-2 video decoder from [14]. All channels
have minimum queues initially. Let AB be the system matrix of
the BP-LIS, and AL be the system matrix for corresponding
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Fig. 10. BP-LIS graph of an MPEG-2 video encoder, whose structure is from
[14]. All edge weights are 1, which means all channels have minimum queue.
All vertices other than v16 and v17 have weight 1, which means v16 and v17

are relay stations.

G-LIS. There are three cycles in G(AL), which include at least
one vertex corresponding to a relay station

C1 = (8, 9, 16, 11, 10, 8), λ(C1) =
4
5

C2 = (8, 9, 16, 11, 10, 3, 4, 5, 6, 7, 8), λ(C2) =
9
10

C3 = (8, 9, 16, 11, 12, 13, 14, 15, 5, 6, 7, 8), λ(C3) =
10
11
.

All these are channel cycles and can be mapped to cycles in
the G-LIS or BP-LIS graph. The critical cycle is C1, and the
minimum cycle mean of G(AL) is 4/5. Fig. 11 shows the prece-
dence graph G(AB) for the BP-LIS shown in Fig. 10. Because
G(AL) is a subgraph of G(AB), all cycles in G(AL) also exist
in G(AB). However, G(AB) has additional extended cycles. The
extended cycles with cycle mean less than λ∗(G(AL)) are

C ′
1 =(2, 17, 3, 10, 9, 16, 11, 2), λ (C ′

1) =
5
7

C ′
2 =(9, 16, 11, 10, 9), λ (C ′

2) =
3
4

C ′
3 =(2, 17, 3, 10, 8, 9, 16, 11, 2), λ (C ′

3) =
6
8
.

Therefore, the intrinsic throughput is λ∗(G(AB)) = 5/7, which
is about 10.7% smaller than λ∗(G(AL)). Now, consider the
three extended cycles one by one. For C ′

1, (3,10), (10,9), and
(11,2) are mirror edges corresponding to channels (v10, v3),
(v9, v10), and (v2, v11), respectively. Increasing the queue size
of any of the three channels to 2 leads to λ(C ′

1) equal to
6/7, which is consequently larger than λ∗(G(AL)). Suppose
we increase the queue size of channel (v10, v3) to 2. Because
(3, 10) is also a mirror edge in extended cycle C ′

3, the cycle
mean of C ′

3 is also increased to 7/8, which is larger than
λ∗(G(AL)). The intrinsic throughput becomes 3/4, which is
limited by C ′

2. Similarly, suppose that we increase the queue
size of (v9, v10). λ(C ′

2) becomes 1. Now, channel cycle C1

becomes the critical cycle; no further queue sizing can improve

Fig. 11. Precedence graph G(AB) for the BP-LIS in Fig. 10. All self-edges
are omitted. Edge weight is 1 if it is not noted in the graph. The precedence
graph G(AL) for the corresponding G-LIS can be acquired by removing all
mirror edges in this graph.

the performance. The intrinsic throughput is increased from
5/7 to 4/5 at the cost of two additional buffers in channel queues.

An alternative queue-sizing solution can achieve the same
intrinsic throughput. If we increase the queue size of channel
(v2, v11) and (v9, v10) to 2, the intrinsic throughput of the
BP-LIS also becomes 4/5.

Now let us consider the equalization of the corresponding
LIS without back-pressure in [14]. The LIS graph includes three
strongly connected components

S1 = {v1}
S2 = {v2}
S3 = {v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15}.

Note that B-relay stations do not appear directly in these
components because only B-circuit blocks have corresponding
vertices in the “LIS graph,” as defined in [14]. The throughput
of the three components are 1, 1, and 4/5, respectively. Because
the three components connects in series, it is not necessary to
really equalize their throughput. Instead, the effect of equaliza-
tion can be realized as long as the first component S1 has the
smallest throughput. To slow down a component like S1, which
has only one vertex and has no cycle, it is proposed in [14]
that a self-loop with extra B-relay stations is added to the only
vertex. For S1, adding one B-relay station on the self-loop will
reduce the throughput to 1/2. Hence, the equalization results in
a final throughput of 1/2. This throughput is less than that of the
corresponding BP-LIS either before or after queue sizing.

To achieve the same throughput, there often exist many
queue-sizing solutions. The flexibilities may help to reduce the
total area cost of channel queues. Most important, it is possible
to achieve high performance improvement even when there are
stringent area constraints. This paper focuses on the perfor-
mance analysis of LISs. For channel-queue-sizing algorithms,
the reader may refer to [36].

BP-LISs always have correct system behaviors regardless of
the primary input/output activities. However, the primary inputs
or outputs do affect the system behavior and performance. It is
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easy to see that the intrinsic behavior X̂ defines an upper bound
of any behavior X of a BP-LIS

X(t) � X̂(t) ∀t ∈ N0.

Obviously, the intrinsic throughput defines the maximum
performance that a BP-LIS can achieve under any input/output
combinations.

VI. CONCLUSION AND FUTURE WORKS

The behaviors of LISs are formally modeled and studied
based on max-plus algebra. We proposed BP-LIS, an imple-
mentation of the latency-insensitive protocol that can provide
robust communication because of back-pressure. It has also
been shown that the intrinsic throughput of BP-LISs with
proper queue sizing can always reach the best performance
achievable by general latency-insensitive design.

In the future, we will study behaviors of BP-LISs under
external influences. Mixed-timing interfaces for LISs have been
proposed in [37] and extends latency-insensitive design into
multiclock domains. Modeling and performance analysis of
LISs in multiclock domains will also be considered.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions that helped to
improve this manuscript.

REFERENCES

[1] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance optimization
of VLSI interconnect layout,” Integr. VLSI J., vol. 21, no. 1–2, pp. 1–94,
Nov. 1996.

[2] D. Matzke, “Will physical scalability sabotage performance gains?” IEEE
Computer, vol. 30, no. 9, pp. 37–39, Sep. 1997.

[3] R. Lu, G. Zhong, C.-K. Koh, and K.-Y. Chao, “Flip-flop and repeater
insertion for early interconnect planning,” in Design, Automation Test
Europe Conf., Paris, France, 2002, pp. 690–695.

[4] P. Cocchini, “Concurrent flip-flop and repeater insertion for high perfor-
mance integrated circuits,” in Proc. Int. Conf. Computer Aided Design,
San Jose, CA, 2002, pp. 268–273.

[5] S. Hassoun, C. J. Alpert, and M. Thiagarajan, “Optimal buffered
routing path constructions for single and multiple clock domain
systems,” in Proc. Int. Conf. Computer Aided Design, San Jose, CA, 2002,
pp. 247–253.

[6] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Algo-
rithmica, vol. 6, no. 1, pp. 87–116, 1991.

[7] C. Lin and H. Zhou, “Retiming for wire pipelining in system-on-
chip,” in Proc. Int. Conf. Computer Aided Design, San Jose, CA, 2003,
pp. 215–220.

[8] C. Chu, F. Y. Young, K. Y. Tong, and S. Dechu, “Retiming with inter-
connect and gate delay,” in Proc. Int. Conf. Computer Aided Design,
San Jose, CA, 2003, pp. 221–226.

[9] R. Lu and C.-K. Koh, “Interconnect planning with local area constrained
retiming,” in Design, Automation Test Europe Conf., Munich, Germany,
2003, pp. 442–447.

[10] S. Hassoun and C. Ebeling, “Architectural retiming: Pipelining latency-
constrained circuits,” in Proc. Design Automation Conf., Las Vegas, NV,
1996, pp. 708–713.

[11] ——, “Using precomputation in architecture and logic resynthesis,”
in Proc. Int. Conf. Computer Aided Design, San Jose, CA, 1998,
pp. 316–323.

[12] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory
of latency-insensitive design,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[13] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-
Vincentelli, “A methodology for correct-by-construction latency insensi-
tive design,” in Proc. Int. Conf. Computer Aided Design, San Jose, CA,
1999, pp. 309–315.

[14] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis
and optimization of latency insensitive systems,” in Proc. Design Automa-
tion Conf., Los Angeles, CA, 2000, pp. 361–367.

[15] ——, “Coping with latency in SOC design,” IEEE Micro, Special Issue
Systems on Chip, vol. 22, no. 5, pp. 24–35, 2002.

[16] F. L. Baccelli, G. Cohen, and G. J. Olsder, Synchronization and Linearity:
An Algebra for Discrete Event Systems. New York: Wiley, 1992.

[17] S. Hauck, “Asynchronous design methodologies: An overview,” Proc.
IEEE, vol. 83, no. 1, pp. 69–93, Jan. 1995.

[18] A. Mathur, A. Dasdan, and R. K. Gupta, “Rate analysis for embedded
systems,” ACM Transact. Des. Automat. Electron. Syst., vol. 3, no. 3,
pp. 408–436, 1998.

[19] S. Malik, M. Martonosi, and Y.-T. S. Li, “Static timing analysis of em-
bedded software,” in Proc. Design Automation Conf., Anaheim, CA,
1997, pp. 147–152.

[20] T.-Y. Yen and W. Wolf, “Performance estimation for real-time distributed
embedded systems,” in Proc. IEEE Int. Conf. Computer Design, Austin,
TX, 1995, pp. 64–69.

[21] T. Zhou, X. Hu, and E. H.-M. Sha, “A probabilistic performance met-
ric for real-time system design,” in Proc. Int. Conf. Hardware/Software
Codesign, Rome, Italy, 1999, pp. 90–94.

[22] A. Kalavade and P. Moghe, “A tool for performance estimation of net-
worked embedded end-systems,” in Proc. Design Automation Conf.,
San Francisco, CA, 1998, pp. 257–262.

[23] R. Marculescu, A. Nandi, L. Lavagno, and A. L. Sangiovanni-Vincentelli,
“System-level power/performance analysis of portable multimedia
systems communicating over wireless channels,” in Proc. Int. Conf. Com-
puter Aided Design, San Jose, CA, 2001, pp. 207–214.

[24] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asynchro-
nous concurrent systems using Petri nets,” IEEE Trans. Softw. Eng., vol. 6,
no. 5, pp. 440–449, Sep. 1980.

[25] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” Ph.D. thesis, Comput. Sci. Dept., Calif. Inst. Technol., Pasadena,
1991.

[26] T. Lee, “A general approach to performance analysis and optimization
of asynchronous circuits,” Ph.D. dissertation, Comput. Sci. Dept., Calif.
Inst. Technol., Pasadena, 1995.

[27] P. Kudva, G. Gopalakrishnan, E. Brunvand, and V. Akella, “Performance
analysis and optimization of asynchronous circuits,” in Proc. IEEE Int.
Conf. Computer Design, Cambridge, MA, 1994, pp. 221–224.

[28] A. Xie and P. A. Beerel, “Symbolic techniques for performance analysis
of timed systems based on average time separation of events,” in Proc. Int.
Symp. Advanced Research Asynchronous Circuits Systems, Eindhoven,
The Netherlands, 1997, pp. 64–75.

[29] ——, “Performance analysis of asynchronous circuits and systems using
stochastic timed Petri nets,” in Proc. 2nd Workshop Hardware Design
Petri Nets, Williamsburg, VA, 1999, pp. 35–62.

[30] R. M. Karp, “A characterization of the minimum cycle mean in a digraph,”
Discrete Math., vol. 23, no. 3, pp. 309–311, 1978.

[31] A. Dasdan and R. Gupta, “Faster maximum and minimum mean cycle
algorithms for system performance analysis,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 17, no. 10, pp. 889–899, Oct. 1998.

[32] G. Cohen, D. Dubois, J.-P. Quadrat, and M. Viot, “A linear system-
theoretic view of discrete event processes and its use for performance
evaluation in manufacturing,” IEEE Trans. Autom. Control, vol. 30, no. 3,
pp. 210–220, Mar. 1985.

[33] J. P. Quadrat, M. Akian, G. Cohen, S. Gaubert, and M. Viot, “Max-
plus algebra and applications to system theory and optimal control,”
in Proc. Int. Congress Mathematicians, Zurich, Switzerland, 1994,
pp. 1502–1511.

[34] S. Gaubert, “Rational series over dioids and discrete event systems,” in
Proc. 11th Conf. Analysis Optimization Systems: Discrete Event Systems,
Sophia Antipolis, France, 1994, pp. 247–256.

[35] G. Cohen, S. Gaubert, and J.-P. Quadrat, “Max-plus algebra and system
theory: Where we are and where to go now,” Annu. Rev. Control, vol. 23,
no. 1, pp. 207–219, 1999.

[36] R. Lu and C.-K. Koh, “Performance optimization of latency insen-
sitive systems through buffer queue sizing of communication chan-
nels,” in Proc. Int. Conf. Computer Aided Design, San Jose, CA, 2003,
pp. 227–231.

[37] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing sys-
tems with application to latency-insensitive protocols,” in Proc. Design
Automation Conf., Las Vegas, NV, 2001, pp. 21–26.

Authorized licensed use limited to: Purdue University. Downloaded on July 9, 2009 at 11:15 from IEEE Xplore.  Restrictions apply.



LU AND KOH: PERFORMANCE ANALYSIS OF LATENCY-INSENSITIVE SYSTEMS 483

Ruibing Lu received the B.E. and M.E. degrees
in electronic engineering from Tsinghua University,
Beijing, China, in 1997 and 2000, respectively. He
received the Ph.D. degree in electrical engineering
from Purdue University, West Lafayette, IN, in 2004.

Currently, he is a Senior R&D Engineer at
Synopsys, Inc., Mountain View, CA. His research in-
terests include multivoltage and interconnect-centric
design optimization, on-chip communication analy-
sis, design and optimization.

Cheng-Kok Koh (S’92–M’98) received the B.S.
degree with first class honors and the M.S. degree,
both in computer science, from the National Univer-
sity of Singapore in 1992 and 1996, respectively. He
received the Ph.D. degree in computer science from
University of California, Los Angeles in 1998.

Currently, he is an Associate Professor of Electri-
cal and Computer Engineering at Purdue University,
West Lafayette, IN. His research interests include
physical design of high-performance low-power very
large scale integration (VLSI) circuits, with an

emphasis on VLSI interconnect layout optimization.
Dr. Koh received the Lim Soo Peng Book Prize for Best Computer Science

Student from the National University of Singapore in 1990, and the Tan Kah
Kee Foundation Postgraduate Scholarship in 1993 and 1994. He received the
GTE Fellowship and the Chorafas Foundation Prize from the University of
California at Los Angeles in 1995 and 1996, respectively. He received the ACM
Special Interest Group on Design Automation (SIGDA) Meritorious Service
Award and Distinguished Service Award in 1998, the Chicago Alumni Award
from Purdue University in 1999, the National Science Foundation CAREER
Award in 2000, and the ACM/SIGDA Distinguished Service Award in 2002.

Authorized licensed use limited to: Purdue University. Downloaded on July 9, 2009 at 11:15 from IEEE Xplore.  Restrictions apply.


