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High Performance Motion
Tracking Control for Electronic
Manufacturing
Motion control requirements in electronic manufacturing demand both higher speeds and
greater precision to accommodate continuously shrinking part/feature sizes and higher
densities. However, improving both performance criteria simultaneously is difficult be-
cause of resonances that are inherent to the underlying positioning systems. This paper
presents an experimental study of a feedforward controller that was designed for a
point-to-point motion control system on a modern and state of the art laser processing
system for electronics manufacturing. We systematically apply model identification, in-
verse dynamics control, iterative refinement (to address modeling inaccuracies), and
adaptive least mean square to achieve high speed trajectory tracking. The key innova-
tions lie in using the identified model to generate the gradient descent used in the itera-
tive learning control, encoding the result from the learning control in a finite impulse
response filter and adapting the finite impulse response coefficients during operation
using the least-mean-square update based on position, velocity, and acceleration feed-
forward signals. Experimental results are provided to show the efficacy of the proposed
approach, a variation of which has been implemented on the production machine.
�DOI: 10.1115/1.2789467�

Keywords: precision motion, iterative learning, inverse dynamics, motion control, adap-
tive FIR filter
Introduction

A key challenge facing electronic manufacturers today is that as
eature sizes continuously decrease and component counts in-
rease, maintaining or boosting production rates requires improve-
ent in both the speed and precision of the manufacturing equip-
ent. However, improving both of these performance criteria

imultaneously is difficult because higher speeds and accelera-
ions tend to excite structural modes in the systems, which are
ypically lightly damped. For electronic memory repair �1� and

icrovia drilling applications �2�, these unwanted vibrations re-
uce accuracy and detrimentally affect settling times. Conse-
uently, feedforward compensation schemes to augment the feed-
ack controller are becoming an increasingly critical component
f the overall control architecture to achieve today’s demanding
erformance requirements.

Various feedforward control schemes have been proposed to
uppress undesired vibration. The simplest is to generate a smooth
rajectory with bounded velocity, acceleration, and possibly even
igher motion derivatives �e.g., trapezoidal and S-curve velocity
rofiles are available in most industrial motion controllers� �3�.
his approach simply limits the bandwidth of the input trajectory
nd does not take any model information into account. When an
nalytic model �linear or nonlinear� is available, various model
nversion techniques have been proposed �4–8�. When the model
s nonminimum-phase �i.e., the zero dynamics are unstable�, the
ausal inverse is unstable. A noncausal stable inverse may be
sed, but the output would be phase shifted with respect to the
esired output, resulting in added motion time or tracking error.
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The inverse dynamics approach requires a high fidelity nonlinear
model, which is usually unavailable in practice. Furthermore, if
nonlinearity is present, the computation could also be quite de-
manding. A similar model inversion approach for nonminimum-
phase discrete time linear time invariant �LTI� systems has also
been proposed to achieve the overall zero phase shift �9–11�.
However, it is not possible to simultaneously achieve zero phase
as well as unity gain �since that would require causal inversion of
a nonminimum-phase transfer function�. To avoid explicit model
inversion, an H� model matching approach �12,13� may be used
to find the feedforward controller. As the bandwidth of the weight-
ing functions in the objective function increases, the solution con-
verges to the causal inversion. If the system has a few dominant
vibrational modes at known frequencies, then a finite impulse re-
sponse �FIR� filter may be designed to cancel vibration after a
finite period of time �14–18�. However, the approach does not
generalize to more complex systems or nonlinear systems.

In this paper, we develop and demonstrate an adaptive feedfor-
ward control approach to significantly improve the tracking per-
formance of a modern and state of the art electronics processing
machine used for microvia laser drilling operations. The plant is a
single-input/single-output �SISO� positioning system and we as-
sume that a suitable feedback controller has already been imple-
mented, as shown in Fig. 1. This controller has been carefully
designed to ensure stability even in the presence of slight plant
variations with the remaining design freedom used to achieve
good tracking and settling performance. However, the perfor-
mance of the production feedback controller alone was not accept-
able, which motivated this study of adaptive feedforward compen-
sation.

The laser scanning configuration used in the production ma-
chine and the experimental testbed in our laboratory are shown in
Fig. 2. In the machine, a beam steering mirror redirects a colli-
mated laser beam toward a scan lens, which collects the laser light
and focuses the beam onto the working area. This scan lens obeys
an f-� relationship between the angle of the incoming light beam

and the position of the focused spot on the surface to be processed
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Downloa
i.e., the position of the spot in x or y coordinates is directly
roportional to the angle of the associated beam steering mirror, �,
ot the tangent of � as is usually the case� �19�. For reference, the
ransformation to convert between rotary joint angle and linear
pot position is given by

x = 0.1667
�m

�rad
�x

y = 0.1667
�m

�rad
�y �1�

The angular position of the beam steering mirror is measured
hrough a high resolution rotary joint encoder and, in actuality, the
ontroller acts to direct the angle of the steering mirror. However,
e have chosen to perform all calculations with respect to the
rojected laser spot coordinate system as this is the true critical
imension of interest during the laser processing operation and to
e consistent with the existing production closed loop controller
pecifications.

The existing closed loop control system and the data acquisition
ystem operate at a sampling frequency of 200 kHz, which was
hosen to effectively address the high frequency oscillatory modes
f the system. To avoid internal saturation within the feedback
ontroller and electronics of the servo amplifier, the trajectory
ust obey certain velocity and acceleration constraints. A maxi-
um velocity vmax=5 m/s and maximum acceleration amax
1000g=9800 m/s2 were chosen based on the thermal/electronic

imitations of the hardware and the requirements of the electronic
anufacturing process. A high fidelity model that includes these

ffects has been considered, but the approach was rejected due to
he model complexity. Note that these values are associated with
he trajectory of the projected laser spot on the working surface
nd the transformation back to the rotary coordinate system is
iven by Eq. �1�. The motion range varies from 200 �m to
000 �m and the motion objective is to minimize the settling time
n point-to-point motion subject to the velocity and acceleration
onstraints. We transform the problem into a trajectory tracking
roblem by generating a desired output trajectory that satisfies the
elocity and acceleration constraints, and then designing the feed-
orward controller to track this desired trajectory as closely as
ossible. If only velocity and acceleration bounds are imposed,
he minimum time trajectory would be of a trapezoidal velocity
rectangular acceleration� profile. If additional jerk bounds are
lso required, the acceleration profile is trapezoidal �this is the
o-called S-curve velocity profile�. In our experimental study, we
ave found that a half-sine acceleration profile gives the best per-
ormance. All the experimental data presented in the paper are
ased on this trajectory profile.

Our design approach starts by identifying a LTI model by
hoosing the input amplitude in the linear regime. The LTI model
s then used in two ways: first generate a nominal feedforward
ased on its approximate inverse, and then use it as the gradient in
he iterative learning control �ILC� algorithm to obtain the small
dditional corrections for a set of motion trajectories covering the
ange of move lengths expected during operation. The corrective
nput generation is encoded in a FIR filter �for computational ef-

Fig. 1 Feedback and feedforward control architecture
ciency� with the nominal values of the coefficient obtained based
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on the learning results. The FIR coefficients are adaptively up-
dated in run time using the least-mean-square �LMS� algorithm
based on the position, velocity, and acceleration tracking errors.
The use of inverse dynamics for the nominal feedforward allows
ILC and adaptive LMS to provide only a small correction. This is
important for the convergence of ILC, since only the approximate
gradient �the LTI model instead of the true linear time varying
�LTV� , gradient� is used, and adaptive for LMS, since the correc-
tive signal is assumed to be linear in the FIR coefficients.

Iterative learning was first proposed for robot tracking control
in Ref. �20�, and has been extensively applied to motion control
problems �see Ref. �21� for a survey and references therein�. We
have chosen the gradient algorithm �22–25�, which is similar to
the Newton algorithm based ILC in Refs. �8,26,27�. We use the
identified LTI model in the gradient update rather than the true
LTV gradient. The LTI model is a reasonable approximation for
two reasons: The desired trajectory is chosen �with velocity and
acceleration bounds� to avoid thermal/electronic saturation of the
system, and the required correction by ILC is of very small am-
plitude. Using the LTI model to approximate the true LTV gradi-
ent has also been used in Ref. �27�. Adaptive feedforward control
has also been extensively applied to motion control and vibration
suppression �28–30�. We apply adaptation to the FIR coefficients
for the desired position, velocity, and acceleration separately, and
show that the position adaptation loop reduces steady state errors,
velocity adaptation reduces tracking error in the high velocity zero
acceleration regions, and acceleration adaptation reduces tracking

Fig. 2 Laser scanner configuration and experimental testbed.
The f-� lens provides a flat image field and a linear relationship
between x, y coordinates and �x, �y, respectively.
error in high acceleration/deceleration regions.
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Downloa
The contribution of this work is to systematically integrate ex-
sting techniques in system identification, inverse dynamics con-
rol, gradient based ILC, and adaptive LMS to achieve rapid and
recise motion in an industry control system. The novelty in our
pproach includes the use of the identified LTI model for both
nverse dynamics and gradient based learning control, the use of
LC result to initialize the adaptive LMS algorithm, and the use of
osition, velocity, and acceleration feedforward filter adaptation to
pecifically target steady state, high velocity, and high
cceleration/deceleration regions. Experimental results based on
n industrial strength controller are also included to show the
esults and effectiveness of this approach.

The rest of this paper is organized as follows. Section 2 pre-
ents our methods for system identification and our identified
odel. Section 3 shows the result of applying an inverse filter

ased on the identified system as the first component of the feed-
orward controller. Section 4 presents an iterative refinement �i.e.,
LC� based approach for producing a corrective input to the feed-
orward controller using a model-based gradient descent algo-
ithm. Section 5 generates a FIR approximation to the iterative
efinement corrective input that facilitates real-time corrections
or arbitrary move lengths. Section 6 shows how we adapt the FIR
oefficients during run time using position, velocity, and accelera-
ion tracking errors and a gradient update algorithm. The final
xperimental results for tracking a random move length trajectory
re shown and summarized in Sec. 7. Conclusions and future
ork are presented in Sec. 8.

Identification
LTI model identification based on input/output responses may

e performed in either the time or frequency domains. An ap-
roximately 50 KHz noise signal was present in the position mea-
urement that adversely affected the effectiveness of the time do-
ain approach. Therefore, we decided to use the frequency

omain subspace identification method �31,32�. By weighting the
requencies appropriately, we were able to emphasize the fre-
uency band of interest while rejecting the noise in our identifi-
ation process.

We first obtained the experimental frequency response of the
ystem by stimulating the hardware with a known input signal
hen collecting and processing the experimental response. Input
xcitation is an important consideration in system identification.
ommon choices include impulse �could be approximately gener-
ted through an impact hammer�, pulse train, sine sweep, pseudo-
andom binary sequence �PRBS�, and Schroeder-phase signal
33�. Important attributes of a good excitation signal include ex-
itation of the frequencies of interest, small enough amplitude to
void saturation and other nonlinear effects, and large enough
mplitude for good signal-to-noise ratio �SNR�.

Working with production hardware that had limited communi-
ations ability, we were forced to implement within the memory
nd storage constraints of the digital signal processor �DSP� based
losed loop controller board. The operating frequency of 200 kHz
ith only 20,000 data points available for the arbitrary input wave

orm and response wave form limited the complete excitation and
esponse signals to 0.1 s in duration. Note, however, that the in-
ex into the wave form could be reset to the start of the signal
pon reaching the end, which allowed for the signal to be repeated
ndefinitely. This capability suggested that signals that are con-
inuous across the wraparound would be particularly desirable in
rder to allow for the initial transients to decay and the system to
each a steady state. A sinusoidal signal with a period equal to
.1 s �frequency of 10 Hz� satisfies these criteria, as well as all
igher order harmonics. These limitations discouraged the use of a
ine sweep as the rate of frequency change was too rapid for the
ystem to reach steady state and the signal is not continuous

cross the wraparound.
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Both applying a series of single frequency sinusoidal signals at
a time and applying a Schroeder-phase excitation gave particu-
larly useful frequency response results when using multiples of
the fundamental 10 Hz frequency and allowing the system to
reach a steady state through several repetitions of the signal. The
single frequency sinusoidal signal approach provided a much bet-
ter SNR but was time consuming as a separate experiment was
performed for every frequency of interest. The Schroeder-phase
signal was attractive since it could excite multiple frequencies
while satisfying a specified time domain amplitude bound. We
found that the single frequency sinusoidal approach provided an
excellent experimental frequency response, while the Schroeder-
phase approach proved most useful for obtaining a very quick and
sometimes noisy snapshot of the frequency response. For this rea-
son, we chose the single frequency sinusoidal approach to gener-
ate the experimental frequency response used for system identifi-
cation and we gathered data at 20 Hz intervals from 0 Hz to
20 kHz.

In system identification, it is important to consider possible
input/output delays. If the experimental system contains a pure
delay, direct application of finite dimensional LTI identification
will often approximate the delay with nonminimum-phase zeros
and additional poles �as in the Padé approximation of the delay�.
The approximation can be avoided by including a pure time delay
in the identification procedure by time shifting the output signal
relative to the input signal before performing the identification.
Including the delay in this manner can result in identified models
of lower order and better agreement between simulated and ex-
perimental responses �no artificial undershoot�. Ultimately, when
we implement the inverse dynamics controller, the nonminimum-
phase zeros can compromise the tracking performance, while the
pure delay simply leads to a time shift in the response.

The production controller did include a pure digital delay for
internal signal synchronization and explicitly including the delay
in our identification procedure was critical for obtaining the de-
sired performance results. Notice how the identified plant model
exhibits significant nonminimum phase-zero behavior when iden-
tified with no delay, while including a delay of 16 samples �at
5 �s sampling period� shows minimal nonminimum-phase zero
contribution �see Fig. 3 for comparison�. For the final identified
model used in the controller design, we included a 16-sample

delay pure delay and identified a 16th order model, Ĝ. The iden-
tified model is compared to the experimental response with re-
spect to the frequency response in Fig. 4. We verified the model
by returning to the time domain and comparing simulated and
experimental step responses, as shown in Fig. 5.

3 Inverse Dynamics Control

The next step is to use the identified model Ĝ to construct an

approximate inverse dynamics filter Ĝ†. Two aspects of this pro-

cedure need to be treated with care. First, if Ĝ is strictly proper, its
inverse is improper. Therefore, higher order derivatives of ydes

would be needed to implement Ĝ†ydes in practice. In our case, this
is not a problem because the identified model has the same num-

ber of poles and zeros. However, Ĝ has a few nonminimum-phase
zeros with small real parts and therefore a stable causal inverse
does not exist. There are several alternative approaches. One

could apply the noncausal �but stable� inverse of Ĝ to ydes �5�.
This would effectively delay the output response by shifting the
time origin. Since the real part of the zero is small, this delay
could be significant. The zero phase error tracking control method
was proposed in Ref. �9�, which multiplies the nonminimum-
phase zeros by its mirror image to achieve the zero overall phase
shift. The gain, however, would deviate from 1, which would then
require further compensation. We have chosen to replace the un-

stable zeros by their stable mirror images, and then invert the

NOVEMBER 2007, Vol. 129 / 769
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esulting minimum-phase transfer function �a similar method has

lso been suggested in Ref. �34��. The approximate inverse, Ĝ†, is
hen applied to the desired output ydes to generate the command
nput u, as shown in Fig. 6. The transfer function from ydes to y is
n all pass function, which consists of a pair of high frequency
about 7 KHz� lightly damped poles and their mirror image zeros.
s a result, the phase delay of the output with respect to the
esired trajectory �based on the half-sine acceleration profile� is
lmost negligible. In simulation, the output tracks the desired tra-
ectory as expected. However, when this controller was imple-

ented on the physical experiment, large tracking errors near the
ntry into and inside the settling zone �low velocity and high
cceleration� are observed. Since this occurs in the low velocity
egion, the cause is likely the nonlinear friction in the positioner.
he experimental result of the 500 �m move is shown in Fig. 7.
±1 �m band is shown in this figure and represents the maxi-
um acceptable settling specification. We concluded that though

he model matches the linear �small amplitude� behavior well, it is
ot good enough to meet the desired performance specification in
ractice.

Iterative Refinement
The discrepancy between the experimental and simulated re-

ponses is due to the mismatch between the model and the physi-
al system. To correct for this mismatch, we modify the input to

e u= Ĝ†ydes+�u, where �u is obtained iteratively based on the
utput tracking error. We use the gradient ILC algorithm �22–25�
o generate �u with the identified LTI system Ĝ to approximate
he gradient operator �as in Ref. �27��. The derivation of the algo-

ig. 3 Pole/zero comparison between zero-delay and 16-
ample delay identified models
ithm and its convergence property are given in Appendix A.1.

70 / Vol. 129, NOVEMBER 2007

ded 28 Dec 2007 to 128.113.122.74. Redistribution subject to ASM
The overall control architecture is shown in Fig. 8. Note that ydes
is delayed to match with the pure delay in the actual plant. The
basic algorithm that we have implemented is summarized below:

Fig. 5 Step response comparison between experimental data
and identified model with 16-sample delay

Fig. 6 Inverse dynamics feedforward control architecture us-

Fig. 4 Gain/phase comparison between experimental data and
identified model with 16-sample delay
ing the identified model
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iven y*
ª �y*�ti� : i�0,1 , . . . ,N� and u0ª �u0�ti� : i�0,1 , . . . ,N�

generated from inverse dynamics�. Set u=u0
. Apply u to the physical system and obtain the output
equence yª �y�ti� : i�0,1 , . . . ,N�.
. Update u by adding a corrective term

�u� = − �Ĝ*�y� − y�
*� �2�

here Ĝ* is the adjoint of Ĝ, and � may be set as a sufficiently
mall constant or found by using a line search �which would
equire additional runs�.
. Iterate until �y−y*� or ��u� becomes sufficiently small.

The key step in the above algorithm is the updated equation �2�.
et the state space parameters of Ĝ be �A ,B ,C ,D�. The adjoint

ˆ * is given by �−AT ,−CT ,BT ,DT�, but it must propagate back-
ard in time from the zero state �see Appendix A.2�. To imple-

ent Ĝ*�y, we use the time reversal filtering approach as in Ref.
35�: First reverse �y to be backward in time, filter it forward in
ime through the filter �AT ,CT ,BT ,DT� �for SISO, it is the same as
ˆ �, and then reverse the result in time again. The procedure is
llustrated in Fig. 9.

As suggested by our industrial collaborators and also indepen-
ently published by other researchers �36�, the forward filtering
art may be performed using the actual system �by feeding the
ime reversed error signal into the plant as the input�, thus avoid-
ng using the analytic gradient altogether.

The result of iterative refinement for the move lengths of
00 �m and 1000 �m is shown in Fig. 10. In both cases, the
utput tracking error essentially converged after eight iterations.
he very high frequency oscillation �around 50 kHz� in the output

ig. 7 Experimental results using the inverse dynamics filter
or a 500 �m move length

ig. 8 Inverse dynamics combined with iterative refinement

eedforward control architecture
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signal does not correspond to mirror movement but to a repeatable
electrical coupling effect between the sensor and actuator elec-
tronics and other noises.

5 Finite Impulse Response Approximation
Excellent tracking performance is obtained by using iterative

refinement, but the update process is nonreal time, i.e., the output
error of a complete run is needed to update the input at any given
time. To allow for the real-time trajectory tracking, we use the
results from iterative refinement to train a filter that maps ydes to
the corrective input, �u. Many filter parametrizations are possible;
we decided on the FIR filter structure due to its efficient real-time
implementation in the DSP real-time controller, its guaranteed sta-
bility �adaptation of IIR filters can be dangerous because adapta-
tion of the coefficients can result in an unstable filter�, and the
ease for finding the filter coefficients. The overall control archi-
tecture is shown in Fig. 11. In principle, it is possible to approxi-
mate the inverse dynamics portion by a FIR filter as well. How-
ever, since this approximation needs to hold for a much larger
input range, a high order FIR filter and higher real-time computa-
tional load would be required. In the adaptive case, as in the next
section, there may be additional convergence issues associated
with the update of a large number of coefficients and the possible
nonlinear effect due to the large input range.

We parametrize the corrective input by the following FIR filter:

�uk = w1yk+n1

* + w2yk+n1−1
* + . . . + wnyk−n2+1

* �3�

where n=n1+n2 is the order of the filter and n1 is the look-ahead
horizon. The filter coefficients, �wi , i=1, . . . ,n�, may be obtained
through a least-squares fit to the �ydes ,�u� data obtained from
iterative refinement. The idea is to choose a sufficiently rich set of
ydes so that the FIR filter is applicable to the set of desire trajec-

Fig. 9 Procedure of calculating G*e
tories and move lengths of interest. To find the filter coefficients,

NOVEMBER 2007, Vol. 129 / 771

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



fi

w
n
s

w
a
m
fi
c

F
t
t
f
2
F
t
s

F
o

7

Downloa
rst write the FIR equation as

here �k1 ,k2� �range of data used for the fit�, n �order of FIR�, and

1 �look-ahead horizon� are parameters to be chosen. The least-
quares solution of the filter coefficients, w, are given by

w = Y†U �4�

here Y† is the Moore–Penrose pseudoinverse of Y. Note that U
nd Y contain the iteratively refined results of a wide range of
ove lengths that are concatenated together. Thus, a single FIR
lter is generated to work well in a least-squares sense over the
omplete range of expected move lengths.

Through experimentation, we decided on a 100-tap �n=100�
IR filter with 1 look-ahead step �n1=1�. For real-time implemen-

ation, the FIR runs at 20 kHz and is upsampled to 200 kHz
hrough sample and hold �the inverse dynamics filter runs at the
ull 200 kHz�. The iterative refinement data for move lengths from
00 �m to 700 �m at 100 �m increments were used to fit the
IR filter coefficients. The comparison between �u for the itera-

ive refinement case and FIR filter case for a 500 �m move is
hown in Fig. 12, where the FIR reproduces the iterative refine-

Fig. 10 Experimental results of applying
moves

ig. 11 Feedforward control architecture using a combination

f inverse dynamics and the FIR filter
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ment inputs very well. Also note that the high frequency noise
generated by the iterative refinement has been eliminated by the
least-squares fit operation. The output response for the 500 �m
move is shown in Fig. 13. The use of an FIR approximation does
an overall good job at reproducing the iterative refinement results,
but does result in slightly larger errors, especially in terms of the
steady state value.

6 Adaptive Finite Impulse Response Filter
The FIR approach as described requires fitting the filter coeffi-

cients to the ideal input/output responses pregenerated by the it-
erative refinement process applied to a range of move lengths.
This presents two drawbacks: �1� As seen in the previous section,
the FIR fit is not perfect, which results in a larger output tracking
error; �2� when the system changes over time, the performance of
the FIR filter will likely degrade. To address these issues, we
include velocity and acceleration feedforward terms and apply the
adaptive LMS controller �37� to adjust the FIR filter coefficients
based on the output tracking error in real time. This adaptive

ative refinement to 500 �m and 1000 �m

Fig. 12 Command input comparison between inverse dynam-
iter
ics, iterative refinement, and FIR filter: 500 �m move
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pproach is equivalent to the standard gradient parameter estima-
ion algorithm, as shown in Appendix B. The resulting overall
ontroller architecture is shown in Fig. 14.

We investigated an adaptive LMS architecture involving three
IR filters, with the corresponding inputs being the desired posi-

ion, velocity, and acceleration:

�uk = wx
Ty�desk+nx1

+ wv
Ty�̇desk+nv1

+ wa
Ty�̈desk+na1

�5�

here

y�desj ª �ydes�ti+j�:i = 0,1, . . . ,Nx� �6�

y�̇desj ª �ẏdes�ti+j�:i = 0,1, . . . ,Nv� �7�

y�̈desj ª �ÿdes�ti+j�:i = 0,1, . . . ,Na� �8�

The coefficient update using adaptive LMS is given by

�wx = − �x�y − y*�Ĝdy�
*

�wv = − �v�y − y*�Ĝdy�̇
*

�wa = − �a�y − y*�Ĝdy�̈
* �9�

here Ĝd is the identified LTI system represented in discrete time,
* is the delayed ydes �by 16 samples�, and �y�* ,y�̇* ,y�̈*� are the
elayed version of the output position, velocity, and acceleration
ime sequences. Through some initial experimentation, we decide
o use 100 taps for the position portion of FIR, and 4 taps each for
he velocity and acceleration portion. The FIR filter and adaptive
MS are both implemented at 20 kHz.

ig. 13 Output comparison between iterative refinement and
IR filter: 500 �m move

ig. 14 Feedforward control architecture using a combination

f inverse dynamics and adaptive FIR filtering
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Figure 15 in the top panel shows a desired motion trajectory
with a 1000 �m up and a 500 �m down movement. The perfor-
mance of the fixed coefficient FIR described in Sec. 5 is shown in
the next panel. Note the presence of steady state error as well as
large tracking error in the high velocity and acceleration regions
�highlighted in the figure�. Using this filter as a starting point, we
first apply adaptive LMS to only the position part of the filter in
Eq. �5� �i.e., wx is updated by the first equation in Eq. �9�, wv and
wa remain zero�. The result after 330 repeated runs �to allow the
coefficients to reach steady state� is shown in the third panel. The
steady state error is reduced since the position error strongly af-
fects the update of wx. However, the transient error in the high
velocity region remains.

We next add the velocity feedforward filter and apply adaptive
LMS to the position and velocity portions of the FIR filter �5�
�i.e., wx and wv are updated by the first two equations in Eq. �9�
with wv initially set at zero, wa remains zero�. The tracking error

Fig. 15 Comparison between fixed coefficient FIR, LMS updat-
ing position only, LMS updating position and velocity, and LMS
updating position, velocity, and acceleration
is shown in the fourth panel. Compare the fourth panel to the third
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anel. The result is quite striking: the peak tracking error in the
igh velocity range is reduced by about 2 /3. This is a direct result
f using wv to reduce the velocity tracking error. The steady state
rror also remains small due to wx.

Lastly, we use all three portions �position, velocity, accelera-
ion� of the FIR filter in Eq. �5� and update them using the adap-
ive LMS rule �9�. The result is shown in the last panel of 15.
here is some improvement in the 1000–0 �m transition region,
ut the improvement is inconclusive in other high acceleration
egions. This may be due to the fact that the tracking error is
lready quite small �less than 2 �m throughout the move�. Thus
he coefficient update is very slow. Another factor is the presence
f noise, which limits the amount of achievable tracking perfor-
ance.

Random Move Result
To compare the performance of the various approaches de-

cribed so far, we used a random motion profile as a test case. The
esired trajectory is shown in Fig. 16. A FIR filter was trained
sing the results of move lengths 200–700 �m at 100 �m inter-
als as was described in Sec. 5. The comparison between the
racking errors for the inverse dynamics filter and fixed-coefficient
IR filter are shown in Fig. 17. As expected, the tracking error is
ignificantly and uniformly reduced in the fixed FIR case. The
ddition of the adaptive LMS filters further improves the re-
ponse, as shown in Fig. 18. The adaptive filter clearly shows an
mprovement over the FIR filter with the xv and xva filters dem-
nstrating the best performance. A quantitative comparison be-
ween these different controllers is summarized in Table 1. The
daptive xv-filter gives the best performance in terms of rms,

Fig. 16 Desired output trajectory

ig. 17 Tracking error for random moves: inverse dynamics

ersus FIR filter
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mean, and standard deviation of the trajectory tracking error. The
adaptive xva-filter is slightly better in terms of the peak error.
Based on this result, the adaptive xv-filter appears to be the best
overall choice in terms of performance and algorithm complexity.

8 Conclusion
This paper presents the experimental results of a high perfor-

mance feedforward controller for a positioning system used in
modern electronics processing equipment. A LTI model is first
identified by using the frequency domain subspace identification
method. The identified model is used in an inverse dynamics ap-
proach to generate the nominal feedforward control, but signifi-
cant tracking error still remains due to model nonlinearity. By
applying the gradient based ILC using the identified model as an
approximate gradient, a corrective input is generated to reduce the
tracking error to about 1 �m. The ILC results are next used to
train an FIR filter to allow for real-time trajectory tracking. Fi-
nally, the FIR filter coefficients are updated by using an adaptive
LMS scheme. It is critical to combine the inverse dynamics with
ILC and adaptive LMS: the corrective input is sufficiently small
so that ILC and adaptive LMS may be effectively applied. Appli-
cation to the tracking of a random motion profile shows excellent
trajectory tracking capability by using the proposed method. A
variation of this work has been implemented in the production
machine and our current focus is on extending this approach to
motion system containing a significant amount of Coulomb fric-
tion and other nonsmooth nonlinearities.
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ppendix A: Gradient Based Iterative Refinement Algo-
ithm

.1 Convergence Property
We first show that an iterative gradient update scheme of the

nput will lead the output tracking error to converge to zero, pro-
ided that the gradient is full rank.

Consider a nonlinear dynamical system H :L2
m�0,T�→L2

p�0,T�
hat is initially at rest:

y = H�u� �A1�
efine

V =
1

2
�y − ydes�L2

p
2 �A2�

ote that a positive time dependent weighting may be used in the
bove norm with obvious modifications in the subsequent update
aw. The variation of V due to a variation in y is

�V = �y − ydes,�y	L2
p �A3�

here �· , · 	L2
denotes the L2 inner product. From Eq. �A1�, �y is

�y = �uH�u �A4�

here �uH is the Fréchet derivative of H. Suppose H is given by
he following state space representation:

ẋ = f�x,u� x�0� = x0 y = h�x,u� �A5�

hen �uH is the time varying linearized system about x and u �x
s the state trajectory corresponding to u�:

�ẋ =
�f�x,u�

�x
�x +

�f�x,u�
�u

�u �x�0� = 0

�y =
�h�x,u�

�x
�x +

�h�x,u�
�u

�u �A6�

here �uH is the operator that maps �u to �y.
The gradient descent algorithm chooses �u based on �uH*:

�u = − ��uH*�y − ydes� �A7�
f this can be implemented exactly, then from Eq. �A4�

�y = − ���uH���uH*�y − ydes�� �A8�
hich implies

�V = − ���uH*�y − ydes��L2
p

2 �A9�

he actual implementation of Eq. �A7� would be the following
teration:

uk+1 = uk − �k�uH*�uk��yk − ydes� �A10�

here �k is found through a line search to ensure Vk+1 �V with
k+1� is strictly smaller than Vk. Such �k can always be found

*

Table 1 Performance compa

All units in �m Min Ma

Inv dyn −10.88 13.1
FIR −3.77 2.5

Adaptive x −2.91 2.5
Adaptive xv −2.07 2.3

Adaptive xva −1.99 2.1
rovided that �uH�uk� is onto, i.e., �uH�uk��uH �uk� is positive
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definite. In this case, Vk converges to zero as k→�.

A.2 Computation of the Gradient Operator
We now consider the computation of �uH*. Write �uH as a

linear time varying system �same as Eq. �A6��:

�ẋ = A�t��x + B�t��u, �y = C�t��x + D�t��u �A11�

Let ��t ,	� be the state transition matrix from 	 to t. The output
can now be written as

�y�t� = C�t�

0

t

��t,	�B�	��u�	�d	 + D�t��u�t�

To find �uH*, we use the defining relationship ��v ,�uH�u	L2
p

= ��uH*�v ,�u	L2
m for all �v in L2

p�0,T� and all �u in L2
m�0,T�. We

then obtain

�uH*�v�	� =

	

T

BT�	��T�t,	�CT�t��v�t�dt + DT�	��v�	�

�A12�
Define

z�	� =

	

T

�T�t,	�CT�t��v�t�dt �A13�

The state space representation of �uH* is then given by the map-
ping from �v to w as follows:

ż�t� = − AT�t�z�t� − CT�t��v�t� z�T� = 0

w�t� = BT�t�z�t� + DT�t��v�t� �A14�
Equation �A14� needs to be integrated backward in time.

Through a change of variable, z1�t�=z�T− t�, we can instead use
the forward solution. The adjoint system in this case is then �with
z1�0�=0 and �v1�t�ª�v�T− t��:

ż1�t� = AT�T − t�z1�t� + CT�T − t��v1�t�

w�T − t� = BT�T − t�z1�t� + DT�T − t��v1�t� �A15�

This can be implemented by reversing �v backward in time, fil-
tering it through Eq. �A15�, and then reversing the result in time
again.

Appendix B: Adaptive Finite Impulse Response Algo-
rithm

Consider a SISO discrete time LTI system, y=Hu. Choose

u = y�des
T w + u* �B1�

where y�des is a vector of the delayed desired output, w is the
weighting vector, and u* is a feedforward control that depends on
ydes only. Then the output is

y = �Hy�des�Tw + Hu* �B2�

Assume that there exists a constant weighting vector wo such that

n for a random move profile

rms Mean Stdev

2.96 0.29 2.94
1.04 −0.68 0.79
0.52 −0.05 0.52
0.37 −0.03 0.37
0.46 0.21 0.41
riso

x

1
6
7
8
5

the desired output could be tracked exactly:
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ydes = �Hy�des�Two + Hu* �B3�

ur goal is to choose an update law for w so that y→ydes even
hough wo is unknown.

To simplify notation, let a=Hy�des, and write Eq. �B3� in dis-
rete time as

ydes�t� − �Hu*��t� = aT�t − 1�wo �B4�

here the left hand side and a�t−1� are known. The problem then
ecomes a standard least-squares parameter estimation problem of
stimating wo based on the output error ydes�t�− �Hu*��t�−aT�t
1�w�t−1�, where w�t−1� is the estimate of wo at time t−1 �38�

Sec. 3.3�. Various algorithms, ranging from projection to least
quares with covariance resetting may be used. To reduce the
eal-time computation load, we use the gradient update law:

w�t� = w�t − 1� + �a�t − 1��ydes�t� − �Hu*��t� − aT�t − 1�w�t − 1��
�B5�

Substituting Eq. �B2� into Eq. �B5�, we obtain the following
pdate law for w�t�, which may be efficiently implemented in real
ime:

w�t� = w�t − 1� − �a�t − 1��y�t� − ydes�t�� . �B6�
Other types of parameter estimation algorithms with more re-

axed convergence conditions may be used �e.g., projection, least
quare with covariance reset, etc.�. However, the real-time com-
utation load would be more demanding.
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